1
|
Yallampalli C, Betancourt A, Mishra A, Pennington KA, Ruano SH, Tacam M, Chauhan M. Role of adrenomedullin2/ intermedin in pregnancy induced vascular and metabolic adaptation in mice. Front Physiol 2023; 14:1116042. [PMID: 36875025 PMCID: PMC9982084 DOI: 10.3389/fphys.2023.1116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction: Adrenomedullin2 (AM2) shares its receptor with Calcitonin gene related peptide and adrenomedullin with overlapping but distinct biological functions. Goal of this study was to assess the specific role of Adrenomedullin2 (AM2) in pregnancy induced vascular and metabolic adaptation using AM2 knockout mice (AM2 -/-). Method : The AM2 -/- mice were successfully generated using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Nuclease Cas nine system. Phenotype of pregnant AM2 -/- mice was assessed with respect to its fertility, blood pressure regulation, vascular health and metabolic adaptations and compared to the wild type littermates (AM2 +/+). Results : Current data shows that AM2 -/- females are fertile with no significant difference in number of pups/litter compared to the AM2 +/+. However, ablation of AM2 decreases the gestational length and the total number of pups born dead or that die after birth is greater in AM2 -/- mice compared to AM2 +/+ mice (p < 0.05). Further AM2 -/- mice exhibit elevated blood pressure and elevated vascular sensitivity for the contractile responses to angiotensin two and higher serum sFLT-1 trigylcerides levels compared to AM2 +/+(p < 0.05). In addition, AM2 -/- mice develop glucose intolerance with elevated serum levels of Insulin during pregnancy compared to the AM2 +/+mice. Discussion: Current data suggests a physiological role for AM2 in pregnancy induced vascular and metabolic adaptations in mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Madhu Chauhan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Chauhan M, Betancourt A, Balakrishnan M, Mishra A, Espinosa J, Shamshirsaz AA, Fox K, Belfort M, Yallampalli C. Calcitonin Gene Related Peptide, Adrenomedullin, and Adrenomedullin 2 Function in Uterine Artery During Human Pregnancy. Endocrinology 2022; 163:6374898. [PMID: 34558598 PMCID: PMC8574633 DOI: 10.1210/endocr/bqab204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/26/2022]
Abstract
RATIONALE Calcitonin gene-related peptide (CGRP) and its family members adrenomedullin (ADM) and adrenomedullin 2 (ADM2; also known as intermedin) support vascular adaptions in rat pregnancy. OBJECTIVE This study aimed to assess the relaxation response of uterine artery (UA) for CGRP, ADM, and ADM2 in nonpregnant and pregnant women and identify the involved mechanisms. FINDINGS (1) Segments of UA from nonpregnant women that were precontracted with U46619 (1μM) in vitro are insensitive to the hypotensive effects of CGRP, ADM, and ADM2; (2) CGRP, ADM, and ADM2 (0.1-100nM) dose dependently relax UA segments from pregnant women with efficacy for CGRP > ADM = ADM2; (3) the relaxation responses to CGRP, ADM, and ADM2 are differentially affected by the inhibitors of nitric oxide (NO) synthase (L-NAME), adenylyl cyclase (SQ22536), apamin, and charybdotoxin; (4) UA smooth muscle cells (UASMC) express mRNA for calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein (RAMP)1 and RAMP2 but not RAMP3; (5) receptor heterodimer comprising CRLR/RAMP1 and CRLR/RAMP2 but not CRLR/RAMP3 is present in UA; (6) soluble fms-like tyrosine kinase (sFLT-1) and TNF-α treatment decrease the expression of RAMP1 mRNA (P < 0.05) in UASMC; and (7) sFLT-1 treatment impairs the association of CRLR with all 3 peptides while TNF-α inhibits the interaction of CGRP but not ADM or ADM2 with CRLR in UASMC (P < 0.05). CONCLUSIONS Relaxation sensitivity of UA for CGRP, ADM, and ADM2 is increased during pregnancy via peptide-specific involvement of NO system and endothelium-derived hyperpolarizing factors; vascular disruptors such as sFLT-1 and TNFα adversely impact their receptor system in UASMC.
Collapse
Affiliation(s)
- Madhu Chauhan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Madhu Chauhan, PhD, Department of Obstetrics and Gynecology, Baylor College of Medicine, 1102 bates Avenue, Houston, TX 77030, USA.
| | - Ancizar Betancourt
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meena Balakrishnan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akansha Mishra
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jimmy Espinosa
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alireza A Shamshirsaz
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karin Fox
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael Belfort
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chandra Yallampalli
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Chandra Yallampalli, DMV, PhD, Department of Obstetrics and Gynecology, Baylor College of Medicine, 1102 bates Avenue, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Liu K, Shi R, Wang S, Liu Q, Zhang H, Chen X. Intermedin Inhibits the Ox-LDL-Induced Inflammation in RAW264.7 Cells by Affecting Fatty Acid-Binding Protein 4 Through the PKA Pathway. Front Pharmacol 2021; 12:724777. [PMID: 34925001 PMCID: PMC8671820 DOI: 10.3389/fphar.2021.724777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives: Macrophages stimulated by oxidized low-density lipoprotein (ox-LDL) play an important role in the occurrence and progression of atherosclerosis. Fatty acid-binding protein 4 (FABP4), mainly existing in macrophages and adipocytes, can influence lipid metabolism and inflammation regulated by macrophages. Herein, we first established the connection between intermedin (IMD: a new peptide that has versatile biological activities in the cardiovascular system) and FABP4 and then investigated the influence of IMD on ox-LDL-induced changes in RAW264.7 macrophages line. Methods: The bioinformatics analysis, such as gene ontology enrichment and protein-protein interactions, was performed. For ox-LDL-stimulated assays, RAW264.7 was first pretreated with IMD and then exposed to ox-LDL. To explore the cell signaling pathways of IMD on inflammatory inhibition, main signaling molecules were tested and then cells were co-incubated with relevant inhibitors, and then exposed/not exposed to IMD. Finally, cells were treated with ox-LDL. The protein and gene expression of FABP4, IL-6, and TNF-α were quantified by WB/ELISA and RT-qPCR. Results: In the ox-LDL-stimulated assays, exposure of the RAW264.7 macrophages line to ox-LDL reduced cell viability and increased the expression of FABP4, as well as induced the release of IL-6 and TNF-α (all p < 0.05). On the other hand, IMD prevented ox-LDL-induced cell toxicity, FABP4 expression, and the inflammatory level in RAW264.7 (all p < 0.05) in a dose-dependent manner. The inhibition of FABP4 and the anti-inflammatory effect of IMD were partially suppressed by the protein kinase A (PKA) inhibitor H-89. Conclusion: IMD can prevent ox-LDL-induced macrophage inflammation by inhibiting FABP4, whose signaling might partially occur via the PKA pathway.
Collapse
Affiliation(s)
- Kai Liu
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Rufeng Shi
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy, The Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Si Wang
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Liu
- State Key Laboratory of Biotherapy, The Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyu Zhang
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoping Chen
- Cardiology Department, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Tellİ G, Tel BC, GÜmÜŞel B. The Cardiopulmonary Effects of the Calcitonin Gene-related Peptide Family. Turk J Pharm Sci 2020; 17:349-356. [PMID: 32636714 DOI: 10.4274/tjps.galenos.2019.47123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/27/2019] [Indexed: 01/12/2023]
Abstract
Cardiopulmonary diseases are very common among the population. They are high-cost diseases and there are still no definitive treatments. The roles of members of the calcitonin-gene related-peptide (CGRP) family in treating cardiopulmonary diseases have been studied for many years and promising results obtained. Especially in recent years, two important members of the family, adrenomedullin and adrenomedullin2/intermedin, have been considered new treatment targets in cardiopulmonary diseases. In this review, the roles of CGRP family members in cardiopulmonary diseases are investigated based on the studies performed to date.
Collapse
Affiliation(s)
- Gökçen Tellİ
- Hacettepe University Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| | - Banu Cahide Tel
- Hacettepe University Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| | - Bülent GÜmÜŞel
- Lokman Hekim University Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| |
Collapse
|
5
|
Holmes D, Corr M, Thomas G, Harbinson M, Campbell M, Spiers P, Bell D. Protective effects of intermedin/adrenomedullin-2 in a cellular model of human pulmonary arterial hypertension. Peptides 2020; 126:170267. [PMID: 32017948 DOI: 10.1016/j.peptides.2020.170267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/18/2022]
Abstract
Proliferation of pulmonary fibroblasts (PF) and distal migration of smooth muscle cells (PSM) are hallmarks of pulmonary arterial hypertension (PAH). Intermedin/adrenomedullin-2 (IMD/AM2) belongs to the Calcitonin Gene-Related Peptide (CGRP)/Adrenomedullin (AM) superfamily. These peptides act via Calcitonin-Like Receptors (CLR) combined with one of three Receptor activity-modifying proteins (RAMPs). IMD/AM2 is a potent pulmonary vasodilator in animal studies. The aim was to describe expression of IMD/AM2, AM and receptor components in human pulmonary vascular cells and to elucidate effects of IMD/AM2 on human PSM migration and PF proliferation. Gene expression was detected by immunofluorescence, immunoblotting and qRT-PCR. Normotension and hypertension were simulated by applying pulsatile mechanical stretch (Flexcell® apparatus). Viable cell numbers were determined by dye exclusion. PSM chemotaxis was measured via Dunn chamber. IMD/AM2 protein was co-expressed with AM and their receptor components in pulmonary artery and microvascular endothelial (PAEC, PMVEC) and non-endothelial cells (PF, PSM), and localised to vesicles. IMD/AM2 was secreted under basal conditions, most abundantly from PF and PMVEC. Secretion from PF and PSM was enhanced by stretch. IMD/AM2 mRNA expression increased in response to hypertensive stretch of PSM. IMD/AM2 inhibited PDGF (10-7 M)-mediated PSM migration maximally at 3 × 10-10 M and PF proliferation maximally at 3 × 10-9 M. Angiotensin II (5 × 10-8 M), normotensive and hypertensive stretch augmented PF proliferation. IMD/AM2 (10-9 M) abolished the proliferative effects of Angiotensin II and normotensive stretch and attenuated the proliferative effect of hypertensive stretch alone and combined with angiotensin II. These findings indicate an important counter-regulatory role for IMD/AM2 in PAH.
Collapse
Affiliation(s)
- David Holmes
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom
| | - Michael Corr
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom
| | - Gavin Thomas
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom
| | - Mark Harbinson
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom
| | - Malcolm Campbell
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom
| | - Paul Spiers
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom
| | - David Bell
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Northern Ireland, United Kingdom.
| |
Collapse
|
6
|
Chen Y, Zhang LS, Ren JL, Zhang YR, Wu N, Jia MZ, Yu YR, Ning ZP, Tang CS, Qi YF. Intermedin 1-53 attenuates aging-associated vascular calcification in rats by upregulating sirtuin 1. Aging (Albany NY) 2020; 12:5651-5674. [PMID: 32229709 PMCID: PMC7185112 DOI: 10.18632/aging.102934] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/27/2020] [Indexed: 02/01/2023]
Abstract
Vascular calcification is a common phenomenon in older adults. Intermedin (IMD) is a cardiovascular bioactive peptide inhibiting vascular calcification. In this study, we aimed to investigate whether IMD1-53 attenuates aging-associated vascular calcification. Vascular calcification was induced by vitamin D3 plus nicotine (VDN) in young and old rats. The calcification in aortas was more severe in old rats treated with VDN than young control rats, and IMD expression was lower. Exogenous administration of IMD1-53 significantly inhibited the calcium deposition in aortas and the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) in VDN-treated old rats. Moreover, levels of aging-related p16, p21 and β-galactosidase were all greatly decreased by IMD1-53. These results were further confirmed in rat and human VSMCs in vitro. In addition, IMD-deficient mouse VSMCs showed senescence features coinciding with osteogenic transition as compared with wild-type mouse VSMCs. Mechanistically, IMD1-53 significantly increased the expression of the anti-aging factor sirtuin 1 (sirt1); the inhibitory effects of IMD1-53 on calcification and senescence were blocked by sirt1 knockdown. Furthermore, preincubation with inhibitors of PI3K, AMPK or PKA efficiently blunted the upregulatory effect of IMD1-53 on sirt1. Consequently, IMD1-53 could attenuate aging-associated vascular calcification by upregulating sirt1 via activating PI3K/Akt, AMPK and cAMP/PKA signaling.
Collapse
Affiliation(s)
- Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Ning Wu
- Department of Gynaecology and Obstetrics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Zhong-Ping Ning
- Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Chao-Shu Tang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| |
Collapse
|
7
|
Cai W, Kim CH, Go HJ, Egertová M, Zampronio CG, Jones AM, Park NG, Elphick MR. Biochemical, Anatomical, and Pharmacological Characterization of Calcitonin-Type Neuropeptides in Starfish: Discovery of an Ancient Role as Muscle Relaxants. Front Neurosci 2018; 12:382. [PMID: 29937709 PMCID: PMC6002491 DOI: 10.3389/fnins.2018.00382] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022] Open
Abstract
Calcitonin (CT) is a peptide hormone released by the thyroid gland that regulates blood Ca2+ levels in mammals. The CT gene is alternatively spliced, with one transcript encoding CT and another transcript encoding the CT-like neuropeptide calcitonin-gene related peptide (α-CGRP), which is a powerful vasodilator. Other CT-related peptides in vertebrates include adrenomedullin, amylin, and intermedin, which also act as smooth muscle relaxants. The evolutionary origin of CT-type peptides has been traced to the bilaterian common ancestor of protostomes and deuterostomes and a CT-like peptide (DH31) has been identified as a diuretic hormone in some insect species. However, little is known about the physiological roles of CT-type peptides in other invertebrates. Here we characterized a CT-type neuropeptide in a deuterostomian invertebrate—the starfish Asterias rubens (Phylum Echinodermata). A CT-type precursor cDNA (ArCTP) was sequenced and the predicted structure of the peptide (ArCT) derived from ArCTP was confirmed using mass spectrometry. The distribution of ArCTP mRNA and the ArCT peptide was investigated using in situ hybridization and immunohistochemistry, respectively, revealing stained cells/processes in the nervous system, digestive system, and muscular organs, including the apical muscle and tube feet. Investigation of the effects of synthetic ArCT on in vitro preparations of the apical muscle and tube feet revealed that it acts as a relaxant, causing dose-dependent reversal of acetylcholine-induced contraction. Furthermore, a muscle relaxant present in whole-animal extracts of another starfish species, Patiria pectinifera, was identified as an ortholog of ArCT and named PpCT. Consistent with the expression pattern of ArCTP in A. rubens, RT-qPCR revealed that in P. pectinifera the PpCT precursor transcript is more abundant in the radial nerve cords than in other tissues/organs analyzed. In conclusion, our findings indicate that the physiological action of CT-related peptides as muscle relaxants in vertebrates may reflect an evolutionarily ancient role of CT-type neuropeptides that can be traced back to the common ancestor of deuterostomes.
Collapse
Affiliation(s)
- Weigang Cai
- School of Biological & Chemical Sciences Queen Mary University of London, London, United Kingdom
| | - Chan-Hee Kim
- Department of Biotechnology, College of Fisheries Sciences Pukyong National University, Busan, South Korea
| | - Hye-Jin Go
- Department of Biotechnology, College of Fisheries Sciences Pukyong National University, Busan, South Korea
| | - Michaela Egertová
- School of Biological & Chemical Sciences Queen Mary University of London, London, United Kingdom
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform University of Warwick, Coventry, United Kingdom
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform University of Warwick, Coventry, United Kingdom
| | - Nam Gyu Park
- Department of Biotechnology, College of Fisheries Sciences Pukyong National University, Busan, South Korea
| | - Maurice R Elphick
- School of Biological & Chemical Sciences Queen Mary University of London, London, United Kingdom
| |
Collapse
|
8
|
Telli G, Erac Y, Tel BC, Gumusel B. Mechanism of adrenomedullin 2/intermedin mediated vasorelaxation in rat main pulmonary artery. Peptides 2018; 103:65-71. [PMID: 29588171 DOI: 10.1016/j.peptides.2018.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 11/25/2022]
Abstract
Adrenomedullin 2/intermedin (AM2/IMD) is a member of calcitonin related gene peptide family and an important nitric oxide mediated vasorelaxant in various vascular beds. However, the mechanism of post receptor-interaction is not clear and may differ depending on tissue type and species. In this study, we aimed to investigate the exact mechanism and the role of BKCa and calcium channels on the vasorelaxant effect of AM2/IMD in rat PA. Changes in the AM2/IMD-mediated vasorelaxation were evaluated in the presence of various inhibitors. CGRP(8-37) (10-6 M), L-NAME (10-4 M), ODQ (10-5 M), SQ22536 (10-4 M), H89 (10-6 M), TEA (10-2 M), iberiotoxin (3 × 10-7 M), and verapamil (10-5 M), all partly or completely inhibited the vasorelaxation. The relaxation was also abolished by removal of the endothelium, or in KCl precontracted PAs. AM2/IMD did not elicit vasorelaxation in the Ca2+-free conditions. However, the vasorelaxation was not inhibited with AM(22-52) (10-6 M), 4-AP (3 × 10-3 M), glibenclamide (10-5 M), apamin (3 × 10-7 M), TRAM-34 (10-5 M), and La+3 (10-4 M). AM2/IMD -induced changes in intracellular calcium levels and isometric force were monitored simultaneously in fura-2-loaded, endothelium-intact PAs. The AM2/IMD-induced increase in intracellular Ca2+ concentration was inhibited in the presence of iberiotoxin and verapamil, whereas no change was observed with La3+ incubation. Our data suggest that the cAMP/PKA pathway is one of the important pathways AM2/IMD-induced vasorelaxation. AM2/IMD acts through activation of endothelial BKCa and subsequently causes hyperpolarization of the endothelial cell membrane. The hyperpolarization induces Ca2+ influx, which leads to NO production and subsequent vasorelaxation.
Collapse
Affiliation(s)
- Gokcen Telli
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Yasemin Erac
- Department of Pharmacology, Faculty of Pharmacy, Ege University, 35040, Izmir, Turkey
| | - Banu Cahide Tel
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Bulent Gumusel
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
9
|
Telli G, Tel BC, Yersal N, Korkusuz P, Gumusel B. Effect of intermedin/adrenomedullin2 on the pulmonary vascular bed in hypoxia-induced pulmonary hypertensive rats. Life Sci 2018; 192:62-67. [DOI: 10.1016/j.lfs.2017.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
|
10
|
H 2S is a key antisecretory molecule against cholera toxin-induced diarrhoea in mice: Evidence for non-involvement of the AC/cAMP/PKA pathway and AMPK. Nitric Oxide 2017; 76:152-163. [PMID: 28943473 DOI: 10.1016/j.niox.2017.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 01/18/2023]
Abstract
Hydrogen sulphide (H2S) is a gasotransmitter that participates in various physiological and pathophysiological processes within the gastrointestinal tract. We studied the effects and possible mechanism of action of H2S in secretory diarrhoea caused by cholera toxin (CT). The possible mechanisms of action of H2S were investigated using an intestinal fluid secretion model in isolated intestinal loops on anaesthetized mice treated with CT. NaHS and Lawesson's reagent and l-cysteine showed antisecretory activity through reduction of intestinal fluid secretion and loss of Cl- induced by CT. Pretreatment with an inhibitor of cystathionine-γ-lyase (CSE), dl-propargylglycine (PAG), reversed the effect of l-cysteine and caused severe intestinal secretion. Co-treatment with PAG and a submaximal dose of CT increased intestinal fluid secretion, thus supporting the role of H2S in the pathophysiology of cholera. CT increased the expression of CSE and the production of H2S. Pretreatment with PAG did not reverse the effect of SQ 22536 (an AC inhibitor), bupivacaine (inhibitor of cAMP production), KT-5720 (a PKA inhibitor), and AICAR (an AMPK activator). The treatment with Forskolin does not reverse the effects of the H2S donors. Co-treatment with either NaHS or Lawesson's reagent and dorsomorphin (an AMPK inhibitor) did not reverse the effect of the H2S donors. H2S has antisecretory activity and is an essential molecule for protection against the intestinal secretion induced by CT. Thus, H2S donor drugs are promising candidates for cholera therapy. However, more studies are needed to elucidate the possible mechanism of action.
Collapse
|
11
|
Zhang SY, Xu MJ, Wang X. Adrenomedullin 2/intermedin: a putative drug candidate for treatment of cardiometabolic diseases. Br J Pharmacol 2017; 175:1230-1240. [PMID: 28407200 DOI: 10.1111/bph.13814] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/15/2017] [Accepted: 03/30/2017] [Indexed: 11/28/2022] Open
Abstract
Adrenomedullin (ADM) 2/intermedin (IMD) is a short peptide that belongs to the CGRP superfamily. Although it shares receptors with CGRP, ADM and amylin, ADM2 has significant and unique functions in the cardiovascular system. In the past decade, the cardiovascular effect of ADM2 has been carefully analysed. In this review, progress in understanding the effects of ADM2 on the cardiovascular system and its protective role in cardiometabolic diseases are summarized. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Song-Yang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Ming-Jiang Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| |
Collapse
|
12
|
Fang J, Luan J, Zhu G, Qi C, Yang Z, Zhao S, Li B, Zhang X, Guo N, Li X, Wang D. Intermedin 1-53 Inhibits Myocardial Fibrosis in Rats by Down-Regulating Transforming Growth Factor-β. Med Sci Monit 2017; 23:121-128. [PMID: 28065931 PMCID: PMC5242205 DOI: 10.12659/msm.898522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Myocardial fibrosis is the result of persistent anoxia and ischemic myocardial fibers caused by coronary atherosclerotic stenosis, which lead to heart failure, threatening the patient's life. This study aimed to explore the regulatory role of intermedin 1-53 (IMD1-53) in cardiac fibrosis using neonatal rat cardiac fibroblasts and a myocardial infarction (MI) rat model both in vitro and in vivo. MATERIAL AND METHODS The Western blot method was used to detect the protein expression of collagen I and collagen III in myocardial fibroblasts. The SYBR Green I real-time quantitative polymerase chain reaction (PCR) assay was used to detect the mRNA expression of collagen type I and III, IMD1-53 calcitonin receptor-like receptor (CRLR), transforming growth factor-β (TGF-β), and matrix metalloproteinase-2 (MMP-2). Masson staining was used to detect the area changes of myocardial fibrosis in MI rats. RESULTS Results in vivo showed that IMD1-53 reduced the scar area on the heart of MI rats and inhibited the expression of collagen type I and III both in mRNA and protein. Results of an in vitro study showed that IMD1-53 inhibited the transformation of cardiomyocytes into myofibroblasts caused by angiotensin II (Ang II). The further mechanism study showed that IMD1-53 inhibited the expression of TGF-β and the phosphorylation of smad3, which further up-regulated the expression of MMP-2. CONCLUSIONS IMD1-53 is an effective anti-fibrosis hormone that inhibits cardiac fibrosis formation after MI by down-regulating the expression of TGF-β and the phosphorylation of smad3, blocking fibrous signal pathways, and up-regulating the expression of MMP-2, thereby demonstrating its role in regression of myocardial fibrosis.
Collapse
Affiliation(s)
- Jian Fang
- Department of Nephrology, Wuhan Medical
| | | | | | - Chang Qi
- Department of Nephrology, Wuhan Medical
| | | | | | - Bin Li
- Department of Nephrology, Wuhan Medical
| | | | | | | | - Dandan Wang
- Department of Internal Medicine-Cardiovascular, Wuhan Medical
| |
Collapse
|
13
|
Spatial expression of components of a calcitonin receptor-like receptor (CRL) signalling system (CRL, calcitonin gene-related peptide, adrenomedullin, adrenomedullin-2/intermedin) in mouse and human heart valves. Cell Tissue Res 2016; 366:587-599. [DOI: 10.1007/s00441-016-2473-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
|
14
|
Cameron MS, Nobata S, Takei Y, Donald JA. Vasodilatory effects of homologous adrenomedullin 2 and adrenomedullin 5 on isolated blood vessels of two species of eel. Comp Biochem Physiol A Mol Integr Physiol 2015; 179:157-63. [DOI: 10.1016/j.cbpa.2014.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 09/10/2014] [Accepted: 09/24/2014] [Indexed: 11/26/2022]
|
15
|
Körner C, Kuchenbuch T, Pfeil U, Jung K, Padberg W, Kummer W, Mühlfeld C, Grau V. Low-dose adrenomedullin-2/intermedin(8-47) reduces pulmonary ischemia/reperfusion injury. Peptides 2014; 62:49-54. [PMID: 25290159 DOI: 10.1016/j.peptides.2014.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
Adrenomedullin-2/intermedin stabilizes the pulmonary microvascular barrier challenged by application of thrombin ex vivo and by experimental ventilation in vivo. Here, we test the hypothesis that adrenomedullin-2/intermedin(8-47) protects mouse lungs from ischemia/reperfusion injury in vivo. C57BL/6 mice were anesthetized, intubated, ventilated, and heparinized. Blood vessels and the main bronchus of the left lung were clamped for 90min. Thereafter, lungs were reperfused for 120min. Five min before clamping and before reperfusion, mice obtained intravenous injections of adrenomedullin-2/intermedin(8-47). After reperfusion, mice were sacrificed and bronchoalveolar lavage of the left and the right lung was performed separately. The integrity of the blood-air barrier was investigated by electron microscopy using stereological methods. In response to ischemia/reperfusion injury, intraalveolar leukocytes accumulated in the ischemic lung. Two applications of 10ng/kg body weight adrenomedullin-2/intermedin(8-47) dramatically reduced leukocyte infiltration to about 15% (p≤0.001). Also the proportion of the subpopulation of neutrophil granulocytes decreased (12% vs 5%, p=0.013). Electron microscopy revealed a protection of the blood-air barrier by adrenomedullin-2/intermedin(8-47). Adrenomedullin-2/intermedin(8-47) ameliorates early ischemia/reperfusion injury in mouse lungs by protecting the integrity of the blood-air barrier and by potently reducing leukocyte influx into the alveolar space. Adrenomedullin-2/intermedin(8-47) might be of therapeutic interest in lung transplantation and cardiopulmonary bypass.
Collapse
Affiliation(s)
- Christian Körner
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| | - Tim Kuchenbuch
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Uwe Pfeil
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, UGMLC, Member of the DZL, Giessen, Germany
| | - Kristina Jung
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, UGMLC, Member of the DZL, Giessen, Germany
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, UGMLC, Member of the DZL, Giessen, Germany
| | - Christian Mühlfeld
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, UGMLC, Member of the DZL, Giessen, Germany; Institute of Functional and Applied Anatomy, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the DZL, Hannover, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
16
|
Wong P, Cheung M, WS O, Tang F. Intermedin inhibits norepinephrine-induced contraction of rat seminal vesicle. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2014. [DOI: 10.1016/s2305-0500(14)60022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
17
|
Ni X, Zhang J, Tang C, Qi Y. Intermedin/adrenomedullin2: an autocrine/paracrine factor in vascular homeostasis and disease. SCIENCE CHINA-LIFE SCIENCES 2014; 57:781-9. [DOI: 10.1007/s11427-014-4701-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/20/2014] [Indexed: 12/01/2022]
|
18
|
Olschewski A, Papp R, Nagaraj C, Olschewski H. Ion channels and transporters as therapeutic targets in the pulmonary circulation. Pharmacol Ther 2014; 144:349-68. [PMID: 25108211 DOI: 10.1016/j.pharmthera.2014.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Pulmonary circulation is a low pressure, low resistance, high flow system. The low resting vascular tone is maintained by the concerted action of ion channels, exchangers and pumps. Under physiological as well as pathophysiological conditions, they are targets of locally secreted or circulating vasodilators and/or vasoconstrictors, leading to changes in expression or to posttranslational modifications. Both structural changes in the pulmonary arteries and a sustained increase in pulmonary vascular tone result in pulmonary vascular remodeling contributing to morbidity and mortality in pediatric and adult patients. There is increasing evidence demonstrating the pivotal role of ion channels such as K(+) and Cl(-) or transient receptor potential channels in different cell types which are thought to play a key role in vasoconstrictive remodeling. This review focuses on ion channels, exchangers and pumps in the pulmonary circulation and summarizes their putative pathophysiological as well as therapeutic role in pulmonary vascular remodeling. A better understanding of the mechanisms of their actions may allow for the development of new options for attenuating acute and chronic pulmonary vasoconstriction and remodeling treating the devastating disease pulmonary hypertension.
Collapse
Affiliation(s)
- Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Austria.
| | - Rita Papp
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Austria
| |
Collapse
|
19
|
Zhou H, Sun HJ, Chang JR, Ding L, Gao Q, Tang CS, Zhu GQ, Zhou YB. Cardiac sympathetic afferent reflex response to intermedin microinjection into paraventricular nucleus is mediated by nitric oxide and γ-amino butyric acid in hypertensive rats. Exp Biol Med (Maywood) 2014; 239:1352-9. [DOI: 10.1177/1535370214533882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intermedin (IMD) is a member of calcitonin/calcitonin gene-related peptide (CGRP) and involves in the regulation of cardiovascular function in both peripheral tissues and central nervous system (CNS). Paraventricular nucleus (PVN) of hypothalamus is an important site in the control of cardiac sympathetic afferent reflex (CSAR) which participates in sympathetic over-excitation of hypertension. The aim of this study is to investigate whether IMD in the PVN is involved in the inhibition of CSAR and its related mechanism in hypertension. Rats were subjected to two-kidney one-clip (2K1C) surgery to induce renovascular hypertension or sham-operation (Sham). Acute experiments were carried out four weeks later under anesthesia. The CSAR was evaluated with the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to the epicardial application of capsaicin. The RSNA and MAP were recorded in sinoaortic-denervated, cervical-vagotomized and anesthetized rats. Bilateral PVN microinjection of IMD (25 pmol) caused greater decrease in the CSAR in 2K1C rats than in Sham rats, which was prevented by pretreatment with adrenomedullin (AM) receptor antagonist AM22-52, non-selective nitric oxide (NO) synthase (NOS) inhibitor l-NAME or γ-amino butyric acid (GABA)B receptor blocker CGP-35348. PVN pretreatment with CGRP receptor antagonist CGRP8-37 or GABAA receptor blocker gabazine had no significant effect on the CSAR response to IMD. AM22-52, l-NAME and CGP-35348 in the PVN could increase CSAR in Sham and 2K1C rats. These data indicate that IMD in the PVN inhibits CSAR via AM receptor, and both NO and GABA in the PVN involve in the effect of IMD on CSAR in Sham and renovascular hypertensive rats.
Collapse
Affiliation(s)
- Hong Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
- Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Hai-jian Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Jin-rui Chang
- Department of Physiology, Xi'an Medical University, Shanxi 710021, China
| | - Lei Ding
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Qing Gao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
- Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 210029, China
| | - Chao-shu Tang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Guo-qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Ye-bo Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
20
|
Pires AL, Pinho M, Alves BS, Pinho S, Sena C, Seica RM, Leite-Moreira AF. Reverse myocardial effects of intermedin in pressure-overloaded hearts: role of endothelial nitric oxide synthase activity. J Physiol 2013; 591:677-687. [PMID: 23165766 PMCID: PMC3577549 DOI: 10.1113/jphysiol.2012.240812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/14/2012] [Indexed: 11/08/2022] Open
Abstract
Intermedin (IMD) is a cardiac peptide synthesized in a prepro form, which undergoes a series of proteolytic cleavages and amidations to yield the active forms of 47 (IMD(1-47)) and 40 amino acids (IMD(8-47)). There are several lines of evidence of increased IMD expression in rat models of cardiac pathologies, including congestive heart failure and ischaemia; however, its myocardial effects upon cardiac disease remain unexplored. With this in mind, we investigated the direct effects of increasing concentrations of IMD(1-47) (10(-10) to10(-6) m) on contraction and relaxation of left ventricular (LV) papillary muscles from two rat models of chronic pressure overload, one induced by transverse aortic constriction (TAC), the other by nitric oxide (NO) deficiency due to chronic NO synthase inhibition (NG-nitro-l-arginine, l-NAME), and respective controls (Sham and Ctrl). In TAC and l-NAME rats, exogenous administration of IMD(1-47) elicited concentration-dependent positive inotropic and lusitropic effects. By contrast, in Sham and Ctrl rats, IMD(1-47) induced a negative inotropic response without a significant effect on relaxation. Both TAC and l-NAME rats presented LV hypertrophy, elevated LV systolic pressures, preserved systolic function and elevated peroxynitrite levels. In the normal myocardium (Ctrl and Sham), IMD(1-47) induced a 3-fold increase of endothelial nitric oxide synthase (eNOS) phosphorylation at Ser(1177), indicating enhanced eNOS activity. In TAC and l-NAME rats, eNOS phosphorylation was increased at baseline, and its response to IMD(1-47) was blunted. In addition, the distinct myocardial response to IMD(1-47) was accompanied by distinct subcellular mechanisms. While in Sham rats the addition of IMD(1-47) induced the phosphorylation of cardiac troponin I due to NO/cGMP activation, in TAC rats IMD(1-47) induced phospholamban phosphorylation possibly associated with cAMP/protein kinase A activation. Therefore, we demonstrated for the first time a reversed myocardial response to IMD(1-47) neurohumoral stimulation due to impairment of eNOS activation in TAC and l-NAME rats. These results not only reveal the distinct myocardial effects and subcellular mechanisms for IMD(1-47) in normal and hypertrophic hearts, but also highlight the potential pathophysiological relevance of cardiac endothelial dysfunction in neurohumoral myocardial action.
Collapse
Affiliation(s)
- Ana Luísa Pires
- Department of Physiology and Cardiothoracic Surgery, Cardiovascular R&D Unit, Faculty of Medicine, University of Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhang W, Wang LJ, Xiao F, Wei Y, Ke W, Xin HB. Intermedin: a novel regulator for vascular remodeling and tumor vessel normalization by regulating vascular endothelial-cadherin and extracellular signal-regulated kinase. Arterioscler Thromb Vasc Biol 2012; 32:2721-32. [PMID: 22922959 DOI: 10.1161/atvbaha.112.300185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Intermedin (IMD), a member of calcitonin family, was suggested to play a role in angiogenesis and cancer. The aim of this study was to investigate the role of IMD in the angiogenic process and the underlying mechanism, and the possibility for it to be used as a target for angiogenesis-based anticancer therapies. METHODS AND RESULTS Using in vivo and in vitro 3-dimensional angiogenic models, we found that IMD induced a well-ordered vasculature with hierarchical structure and had a synergistic effect with vascular endothelial growth factor. Using RNA interference, real-time polymerase chain reaction, and Western blot analysis, we found that IMD alleviated the undesirable effects of vascular endothelial growth factor by restricting the excessive vessel sprouting and uneven lumen formation through the regulation of vascular endothelial-cadherin and identified its receptor on the endothelial cells. Both mitogen-activated protein kinase/extracellular signal-regulated kinase and phosphoinositide 3-kinase/Akt activation were involved in the effects. Furthermore, using experimental tumor models, we demonstrated that IMD was involved in tumor angiogenesis, and the blockade of IMD severely impaired blood supply and eventually inhibited tumor growth. CONCLUSIONS We demonstrated that IMD played a critical role in the vascular remodeling process and tumor angiogenesis and may serve as a novel target for the development of angiogenesis-based anticancer therapies.
Collapse
Affiliation(s)
- Wei Zhang
- Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Adrenomedullin 2 (AM2) or intermedin is a member of the calcitonin gene-related peptide (CGRP)/calcitonin family of peptides and was discovered in 2004. Unlike other members of this family, no unique receptor has yet been identified for it. It is extensively distributed throughout the body. It causes hypotension when given peripherally, but when given into the CNS, it increases blood pressure and causes sympathetic activation. It also increases prolactin release, is anti-diuretic and natriuretic and reduces food intake. Whilst its effects resemble those of AM, it is frequently more potent. Some characterization of AM2 has been done on molecularly defined receptors; the existing data suggest that it preferentially activates the AM(2) receptor formed from calcitonin receptor-like receptor and receptor activity modifying protein 3. On this complex, its potency is generally equivalent to that of AM. There is no known receptor-activity where it is more potent than AM. In tissues and in animals it is frequently antagonised by CGRP and AM antagonists; however, situations exist in which an AM2 response is maintained even in the presence of supramaximal concentrations of these antagonists. Thus, there is a partial mismatch between the pharmacology seen in tissues and that on cloned receptors. The only AM2 antagonists are peptide fragments, and these have limited selectivity. It remains unclear as to whether novel AM2 receptors exist or whether the mismatch in pharmacology can be explained by factors such as metabolism.
Collapse
|
23
|
Aslam M, Pfeil U, Gündüz D, Rafiq A, Kummer W, Piper HM, Noll T. Intermedin (adrenomedullin2) stabilizes the endothelial barrier and antagonizes thrombin-induced barrier failure in endothelial cell monolayers. Br J Pharmacol 2012; 165:208-22. [PMID: 21671901 DOI: 10.1111/j.1476-5381.2011.01540.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Intermedin is a member of the calcitonin gene-related-peptide (CGRP) family expressed in endothelial cells and acts via calcitonin receptor-like receptors (CLRs). Here we have analysed the receptors for intermedin and its effect on the endothelial barrier in monolayers of human umbilical vein endothelial cells (HUVECs). EXPERIMENTAL APPROACH We analysed the effect of intermedin on albumin permeability, contractile machinery, actin cytoskeleton and VE-cadherin in cultured HUVECs. KEY RESULTS Intermedin concentration-dependently reduced basal endothelial permeability to albumin and antagonized thrombin-induced hyperpermeability. Intermedin was less potent (EC(50) 1.29 ± 0.12 nM) than adrenomedullin (EC(50) 0.24 ± 0.07 nM) in reducing endothelial permeability. These intermedin effects were inhibited by AM(22-52) and higher concentrations of αCGRP(8-37), with pA(2) values of αCGRP(8-37) of 6.4 for both intermedin and adrenomedullin. PCR data showed that HUVEC expressed only the CLR/RAMP2 receptor complex. Intermedin activated cAMP/PKA and cAMP/Epac signalling pathways. Intermedin's effect on permeability was blocked by inhibition of PKA but not of eNOS. Intermedin antagonized thrombin-induced contractile activation, RhoA activation and stress fibre formation. It also induced Rac1 activation, enhanced cell-cell adhesion and antagonized thrombin-induced loss of cell-cell adhesion. Treatment with a specific inhibitor of Rac1 prevented intermedin-mediated barrier stabilization. CONCLUSION AND IMPLICATIONS Intermedin stabilized endothelial barriers in HUVEC monolayers via CLR/RAMP2 receptors. These effects were mediated via cAMP-mediated inactivation of contractility and strengthening of cell-cell adhesion. These findings identify intermedin as a barrier stabilizing agent and suggest intermedin as a potential treatment for vascular leakage in inflammatory conditions.
Collapse
Affiliation(s)
- M Aslam
- Physiologisches Institut, Justus-Liebig-Universität, Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
24
|
Pires AL, Pinho M, Sena CM, Seica R, Leite-Moreira AF. Intermedin elicits a negative inotropic effect in rat papillary muscles mediated by endothelial-derived nitric oxide. Am J Physiol Heart Circ Physiol 2012; 302:H1131-H1137. [PMID: 22227127 DOI: 10.1152/ajpheart.00877.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intermedin (IMD) is a novel vasoactive peptide from the calcitonin gene-related peptide (CGRP) implicated in cardiac regulation, yet the contractile effects of IMD remain controversial, since previous studies in vivo and isolated cardiomyocytes documented contradictory results. We hypothesized cardiac endothelial cells involvement in IMD modulation of cardiac function as an explanation for these opposing observations. With this in mind, we investigated the direct action of increasing concentrations of IMD (10(-8) to 10(-6)M) on myocardial performance parameters in rat left ventricular (LV) papillary muscles with and without endocardial endothelium (EE) and in presence of receptor antagonists and intracellular pathways inhibitors. In LV papillary muscles with intact EE, IMD induced a concentration-dependent negative inotropic action (%decrease relative to baseline, at IMD concentration of 10(-6)M, active tension of 14 ± 4%, and maximum velocity of tension rise of 10 ± 4%). These effects were blunted by EE removal, AM receptor antagonist (AM(22-52)), and CGRP receptor antagonist (CGRP(8-37)). Additionally, nitric oxide (NO) synthase inhibition with N(G)-nitro-l-arginine (l-NAME) in muscles with and without EE and guanylyl cyclase inhibition with {1H-[1,2,4]oxadiazole-[4,4-a]-quinoxalin-1-one} not only blunted the negative inotropic action of IMD but also unmasked IMD-positive inotropic effect dependent on CGRP receptor PKA activation. Western blot quantification of phosphorylated cardiac troponin I (P-cTnI) in IMD-treated papillary muscles revealed a significant increase in P-cTnI when compared with untreated muscles, while in l-NAME-pretreated papillary muscles IMD failed to increase P-cTnI. Finally, we found that stimulation of both EE and microvascular endothelial cells with IMD significantly increased NO production by 40 ± 3 and 38 ± 3%, respectively, suggesting the role of cardiac endothelial cells in NO production upon IMD stimulation. Our findings establish IMD negative inotropic effect in isolated myocardium due to NO/cGMP pathway activation with concomitant thin myofilament desensitization by increase in cTnI phosphorylation and provide a coherent explanation for the previously reported contradictory results.
Collapse
Affiliation(s)
- Ana Luísa Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
25
|
Rat intermedin1-47 does not improve functional recovery in postischemic hearts. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:535-42. [PMID: 21881857 DOI: 10.1007/s00210-011-0680-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
Abstract
Intermedin, a novel member of the calcitonin/calcitonin gene-related peptide family identified from vertebrate genomes, may directly affect cardiac function but current studies revealed no clear picture. The aims of our study were to compare direct contractile effects of intermedin on cardiomyocytes to that on the whole organ and to investigate whether intermedin improves postischemic recovery independent of an effect on acute reperfusion injury. Isolated adult rat ventricular cardiomyocytes were electrically paced and cell shortening was monitored as a readout associated to cardiac performance. Calcium transients were analyzed by Fura-2AM loading of these cells. Isolated rat hearts were investigated by Langendorff perfusion under nonischemic conditions and after 45-min no-flow ischemia followed up by 30-min reperfusion prior to drug testing. Intermedin caused a positive contractile effect on cardiomyocytes that was mediated by protein kinase A activation and accompanied by improved calcium transients. In contrast, intermedin reduced left ventricular developed pressure in Langendorff-perfused rat hearts. This negative inotropic effect was attenuated by inhibition of nitric oxide synthesis. In postischemic hearts (impaired nitric oxide synthesis), the negative inotropic effect was attenuated but no positive inotropic effect occurred. However, intermedin caused robust vasodilation in nonischemic and postischemic hearts. Our findings suggest that the peptide binds preferentially to vascular cells in the intact organ. The loss of nitric oxide induction in postischemic hearts attenuates a negative inotropic effect of intermedin but does not improve cardiac performance independent of acute reperfusion injury.
Collapse
|
26
|
Jolly L, March JE, Kemp PA, Bennett T, Gardiner SM. Mechanisms involved in the regional haemodynamic effects of intermedin (adrenomedullin 2) compared with adrenomedullin in conscious rats. Br J Pharmacol 2010; 157:1502-13. [PMID: 19681873 DOI: 10.1111/j.1476-5381.2009.00306.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Intermedin (IMD) is a newly identified member of the calcitonin family of peptides that shares structural and functional homology with adrenomedullin (AM). In vivo cardiovascular effects of AM have been described, but relatively little is known of the in vivo actions of IMD. The purpose of this study was to compare the regional haemodynamic effects of IMD with those of AM in conscious rats, and investigate possible underlying mechanisms. EXPERIMENTAL APPROACH Measurements of blood pressure, heart rate and renal, mesenteric and hindquarters haemodynamics were made in conscious, chronically-instrumented rats. KEY RESULTS IMD caused tachycardia and vasodilatation in all three vascular beds, associated with modest hypotension. At an equimolar dose (1 nmol.kg(-1)), most of the cardiovascular effects of IMD were greater than those of AM. The AM receptor antagonist, AM(22-52), was equally effective in attenuating the renal and mesenteric vasodilator effects of IMD (1 nmol.kg(-1)) and AM (3 nmol.kg(-1)), but inhibition of NO synthase was more effective at reducing the vasodilator effects of IMD than AM. Vascular K(ATP) channel blockade with U-37883A did not inhibit the vasodilator effects of either peptide. CONCLUSIONS AND IMPLICATIONS In vivo, the regional haemodynamic profile of IMD resembles that of AM, and some of the vasodilator effects of IMD are mediated by AM receptors and NO, but not by K(ATP) channels. The cardiovascular effects of AM have been implicated in various pathological conditions, but whether or not endogenous IMD fulfils a similar role remains to be determined.
Collapse
Affiliation(s)
- L Jolly
- Centre for Integrated Systems Biology & Medicine, School of Biomedical Sciences, University of Nottingham, Nottingham, UK
| | | | | | | | | |
Collapse
|
27
|
Grossini E, Molinari C, Mary DASG, Uberti F, Caimmi PP, Vacca G. Intracoronary intermedin 1-47 augments cardiac perfusion and function in anesthetized pigs: role of calcitonin receptors and beta-adrenoreceptor-mediated nitric oxide release. J Appl Physiol (1985) 2009; 107:1037-50. [PMID: 19696365 DOI: 10.1152/japplphysiol.00569.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Systemic intermedin (IMD)1-47 administration has been reported to result in vasodilation and marked hypotension through calcitonin-related receptor complexes. However, its effects on the coronary circulation and the heart have not been examined in vivo. The present study was therefore planned to determine the primary in vivo effect of IMD1-47 on coronary blood flow and cardiac function and the involvement of the autonomic nervous system and nitric oxide (NO). In 35 anesthetized pigs, IMD1-47, infused into the left anterior descending coronary artery at doses of 87.2 pmol/min, at constant heart rate and arterial blood pressure, augmented coronary blood flow and cardiac function. These responses were graded in a further five pigs by increasing the infused dose of IMD1-47 between 0.81 and 204.1 pmol/min. In the 35 pigs, the blockade of cholinergic receptors (intravenous atropine, 5 pigs), alpha-adrenoceptors (intravenous phentolamine, 5 pigs), and beta1-adrenoceptors (intravenous atenolol, 5 pigs) did not abolish the cardiac response to IMD1-47, the effects of which were prevented by blockade of beta2-adrenoceptors (intravenous butoxamine, 5 pigs), NO synthase (intracoronary N(omega)-nitro-l-arginine methyl ester, 5 pigs), and calcitonin-related receptors (intracoronary CGRP8-37/AM22-52, 10 pigs). In porcine coronary endothelial cells, IMD1-47 induced the phosphorylation of endothelial NO synthase and NO production through cAMP signaling leading to ERK, Akt, and p38 activation, which was prevented by the inhibition of beta2-adrenoceptors, calcitonin-related receptor complexes, and K+ channels. In conclusion, IMD1-47 primarily augmented coronary blood flow and cardiac function through the involvement of calcitonin-related receptor complexes and beta2-adrenoreceptor-mediated NO release. The intracellular signaling involved cAMP-dependent activation of kinases and the opening of K+ channels.
Collapse
Affiliation(s)
- Elena Grossini
- Facoltà di Medicina e Chirurgia, via Solaroli 17, Novara I-28100, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Intermedin is upregulated and has protective roles in a mouse ischemia/reperfusion model. Hypertens Res 2009; 32:861-8. [DOI: 10.1038/hr.2009.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Pfeil U, Aslam M, Paddenberg R, Quanz K, Chang CL, Park JI, Gries B, Rafiq A, Faulhammer P, Goldenberg A, Papadakis T, Noll T, Hsu SYT, Weissmann N, Kummer W. Intermedin/adrenomedullin-2 is a hypoxia-induced endothelial peptide that stabilizes pulmonary microvascular permeability. Am J Physiol Lung Cell Mol Physiol 2009; 297:L837-45. [PMID: 19684198 DOI: 10.1152/ajplung.90608.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Accumulating evidence suggests a pivotal role of the calcitonin receptor-like receptor (CRLR) signaling pathway in preventing damage of the lung by stabilizing pulmonary barrier function. Intermedin (IMD), also termed adrenomedullin-2, is the most recently identified peptide targeting this receptor. Here we investigated the effect of hypoxia on the expression of IMD in the murine lung and cultured murine pulmonary microvascular endothelial cells (PMEC) as well as the role of IMD in regulating vascular permeability. Monoclonal IMD antibodies were generated, and transcript levels were assayed by quantitative RT-PCR. The promoter region of IMD gene was analyzed, and the effect of hypoxia-inducible factor (HIF)-1alpha on IMD expression was investigated in HEK293T cells. Isolated murine lungs and a human lung microvascular endothelial cell monolayer model were used to study the effect of IMD on vascular permeability. IMD was identified as a pulmonary endothelial peptide by immunohistochemistry and RT-PCR. Hypoxia caused an upregulation of IMD mRNA in the murine lung and PMEC. As shown by these results, HIF-1alpha enhances IMD promoter activity. Our functional studies showed that IMD abolished the increase in pressure-induced endothelial permeability. Moreover, IMD decreased basal and thrombin-induced hyperpermeability of an endothelial cell monolayer in a receptor-dependent manner and activated PKA in these cells. In conclusion, IMD is a novel hypoxia-induced gene and a potential interventional agent for the improvement of endothelial barrier function in systemic inflammatory responses and hypoxia-induced vascular leakage.
Collapse
Affiliation(s)
- Uwe Pfeil
- Institute for Anatomy and Cell Biology, Department of Internal Medicine, Justus Liebig University, Aulweg 123, 35385 Giessen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|