1
|
Lee HS, Kim HY, Ahn YM, Cho KW. Herbal medicine Oryeongsan (Wulingsan): Cardio-renal effects via modulation of renin-angiotensin system and atrial natriuretic peptide system. Integr Med Res 2024; 13:101066. [PMID: 39247397 PMCID: PMC11378099 DOI: 10.1016/j.imr.2024.101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 09/10/2024] Open
Abstract
Background Oryeongsan (Wulingsan, Goreisan) has long been used for the treatment of impaired body fluid metabolism. However, the action mechanisms have not been clearly defined. Recently, effects of Oryeongsan on the body fluid and Na+ metabolism and the action mechanisms have been shown more clearly. The present review focuses on the recent findings on the effects of Oryeongsan in the cardio-renal system in relation with body fluid metabolism and action mechanisms leading to a decrease in blood pressure in animal models of hypertension. Methods The new and recent findings were searched by using searching systems including PubMed-NCBI and Google-Scholar. Results Oryeongsan induced an increase in glomerular filtration rate, and natriuresis and diuresis with a decreased osmolality and resulted in a contraction of the body fluid and Na+ balance. These findings were associated with a suppression of abundance of Na+-H +-exchanger isoform 3 expression and V2 receptor/aquaporin2 water channel signaling pathway in the kidney. Further, treatment with Oryeongsan accentuated atrial natriuretic peptide secretion in the atria from spontaneously hypertensive rats in which the secretion was suppressed. In addition, Oryeongsan ameliorated impaired vasodilation in spontaneously hypertensive rats. Conclusion The effects of Oryeongsan in the kidney, atria, and vessel were accompanied by a suppression of AT1 receptor and concurrent accentuation of abundance of AT2/Mas receptors expression and modulation of the natriuretic peptide system in these organs from hypertensive rats. The review shows multiple sites of action of Oryeongsan and mechanisms involved in the regulation of volume and pressure homeostasis in the body.
Collapse
Affiliation(s)
- Ho Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
- College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Hye Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
- College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, Iksan, Republic of Korea
| | - You Mee Ahn
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Kyung Woo Cho
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
- College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
2
|
Amelioration of Hypertension by Oryeongsan through Improvements of Body Fluid and Sodium Balance: Roles of the Renin-Angiotensin System and Atrial Natriuretic Peptide System. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9159292. [PMID: 35722149 PMCID: PMC9200506 DOI: 10.1155/2022/9159292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
Oryeongsan (Wulingsan in China and Goreisan in Japan), a formula composed of five herbal medicines, has long been used for the treatment of imbalance of the body fluid homeostasis in Asian countries. However, the mechanism by which Oryeongsan (ORS) improves the impaired body fluid and salt metabolism is not clearly defined. The present study was performed to define the role of the cardiorenal humoral system in the ORS-induced changes in blood pressure and renal function in hypertension. Experiments were performed in normotensive and two-kidney, one-clip hypertensive rats. Changes in the fluid and salt balance were measured in rats individually housed in metabolic cages. Changes in the systemic and local renin-angiotensin system (RAS) and cardiac natriuretic peptide hormone system (NPS) were evaluated. ORS water extract was administered by oral gavage (100 mg/kg daily) for 3 weeks. ORS induced diuresis and natriuresis along with an increase in glomerular filtration rate and downregulation of the Na+/H+ exchanger 3 (NHE3) and aquaporin 2 expression in the renal cortex and medulla, respectively. Furthermore, treatment with ORS significantly decreased systolic blood pressure with contraction of body sodium and water accumulation in hypertensive rats. ORS-induced changes were accompanied by modulation of the RAS and NPS, downregulation of the systemic RAS and cardiorenal expression of angiotensin-converting enzyme (ACE) and angiotensin II subtype 1 (AT1) receptor, and upregulation of the plasma ANP concentration and cardiorenal expression of ANP, ACE2, Mas receptor, and AT2 receptor. These findings indicate that ORS induces beneficial effects on the high blood pressure through modulation of the RAS and NPS of the cardiorenal system, suppression of the prohypertensive ACE-AT1 receptor pathway and NHE3, accentuation of the antihypertensive ACE2-Mas axis/AT2 receptor pathway in the kidney, suppression of the systemic RAS, and elevation of the plasma ANP levels and its synthesis in the heart. The present study provides a biological basis for the use of ORS in the treatment of impaired volume and pressure homeostasis.
Collapse
|
3
|
Kim HY, Ahn YM, Na SW, Jang YJ, Kang DG, Lee HS, Cho KW. Oryeongsan (Wulingsan) ameliorates impaired ANP secretion of atria from spontaneously hypertensive rats. Biomed Pharmacother 2022; 146:112433. [PMID: 35062052 DOI: 10.1016/j.biopha.2021.112433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
Oryeongsan (ORS), a herbal medicine formula, has long been used for the treatment of impaired body water balance in Asian countries. Recently, it was shown that ORS administration modulates the renin-angiotensin system (RAS). Purpose of the present study was to determine characteristics of atrial ANP secretion and effects of ORS on the secretion in the atria from spontaneously hypertensive rats (SHR). Normotensive WKY groups (WKY-V, WKY-ORS, WKY-LOS) and hypertensive SHR groups (SHR-V, SHR-ORS, SHR-LOS) treated with vehicle, ORS, and losartan as a positive control group, respectively, were used. Experiments were performed in perfused beating atria (1.3 Hz) allowing atrial distension, acetylcholine (ACh) stimulation, and serial collection of atrial perfusates. The secreted ANP concentration was measured using radioimmunoassay. Interstitial fluid (ISF) translocation was measured using [3H]inulin clearance. Stepwise increase in atrial distension by 1.1, 2.0, and 2.7 cmH2O above basal distension further increased ANP secretion proportionally in the atria from WKY-V, but the response was significantly suppressed in the atria from SHR-V. Cardiomyocyte ANP release, the first step of atrial ANP secretion, was suppressed in the atria from SHR-V compared to those from WKY-V (-8.02 ± 2.86, -15.86 ± 2.27, and -20.09 ± 3.62%; n = 8, for SHR-V vs. 8.59 ± 2.81, 15.65 ± 7.14, and 38.12 ± 8.28%; n = 8, for WKY-V; p < 0.001 for all stepwise distension, respectively). Chronic treatment with ORS reversed the suppressed ANP release in atria from SHR-ORS group (6.76 ± 3.92, 9.12 ± 2.85, and 28.79 ± 1.79% for SHR-ORS; n = 5 vs. SHR-V; n = 8; p = 0.01, p < 0.001, p < 0.001, respectively). The effects of ORS were comparable to those of losartan. Trans-endocardial translocation of ISF, the second step of atrial ANP secretion was similar in the atria from the hypertensive SHR-V and normotensive WKY-V. ACh-induced ANP secretion and cardiomyocyte ANP release were also suppressed in the atria from SHR-V compared to WKY-V and ORS reversed the suppression. These findings were accompanied with accentuation of the AT1 receptor expression and suppression of the AT2/Mas receptor, M2 mACh receptor and GIRK4, a molecular component of KACh channel, expression in the atria from SHR-V. Further, treatment with ORS or losartan reversed the expressions in the groups of SHR-ORS and SHR-LOS. These results show that ANP secretion is suppressed in the atria from SHR in association with accentuation of AT1 receptor and suppression of AT2/Mas receptor and KACh channel expression. Treatment with ORS ameliorates impaired ANP secretion through improving cardiomyocyte ANP release with modulation of the cardiac RAS and muscarinic signaling. These findings provide experimental evidence which supports the effect of ORS on the regulation of atrial ANP secretion in the atria from SHR.
Collapse
Affiliation(s)
- Hye Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk, Republic of Korea.
| | - You Mee Ahn
- Clinical Medicine Division, Korea Institute of Oriental Medicine, 1672, Yuseong-daero, Daejeon, Republic of Korea.
| | - Se Won Na
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk, Republic of Korea.
| | - Youn Jae Jang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk, Republic of Korea.
| | - Dae Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk, Republic of Korea.
| | - Ho Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk, Republic of Korea.
| | - Kyung Woo Cho
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk, Republic of Korea; College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk, Republic of Korea.
| |
Collapse
|
4
|
Lee HS, Cho KW, Kim HY, Ahn YM. Chamber-specific regulation of atrial natriuretic peptide secretion in cardiac hypertrophy: atrial wall dynamics in the ANP secretion. Pflugers Arch 2020; 472:639-651. [DOI: 10.1007/s00424-020-02377-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022]
|
5
|
Park BM, Ai Phuong HT, Li W, Kim SH. Similarity and dissimilarity between angiotensin A and angiotensin II in cardiovascular functions in a rat model. Peptides 2020; 127:170298. [PMID: 32169442 DOI: 10.1016/j.peptides.2020.170298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 11/25/2022]
Abstract
Angiotensin (Ang) A differs from Ang II in a single N-terminal alanine residue. The aim of this study was to investigate whether the effects of Ang A on postischemic cardiac injury and hemodynamics differ from Ang II. After euthanizing Sprague-Dawley rats, hearts were perfused with Krebs-Henseleit buffer for a 20 min preischemic period with or without Ang A or Ang II, followed by 20 min global ischemia and 50 min reperfusion. The blood pressure was measured in anesthetized rats. Ang A (0.1, 1.0, 10 μg/kg) deteriorated the postischemic left ventricular hemodynamics in a dose-dependent manner, which was similar to that by Ang II. Ang A (10 μg/kg) increased the infarct size and the lactate dehydrogenase level, and decreased the coronary flow, which were attenuated by the pretreatment with Ang type 1 receptor (AT1R) antagonist (losartan) but not by AT2R antagonist (PD123319). Ang A increased the expression of apoptotic proteins and decreased the expression of antioxidative proteins. Interestingly, Ang A increased the atrial natriuretic peptide (ANP) level in coronary effluent and in atrial perfusate but Ang II did not increase it. Ang A increased mean arterial blood pressure, which was less potent than Ang II. These results suggest that Ang A has a similar effect on postischemic injury via AT1R and less potent vasopressor effect but opposite effect on ANP secretion as compared to Ang II.
Collapse
Affiliation(s)
- Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hoang Thi Ai Phuong
- Department of Physiology, Research Institute for Endocrine Sciences, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Weijian Li
- Department of Physiology, Research Institute for Endocrine Sciences, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences, Jeonbuk National University Medical School, Jeonju, Republic of Korea.
| |
Collapse
|
6
|
Yu L, Li W, Park BM, Lee GJ, Kim SH. Hypoxia augments NaHS-induced ANP secretion via KATP channel, HIF-1α and PPAR-γ pathway. Peptides 2019; 121:170123. [PMID: 31386893 DOI: 10.1016/j.peptides.2019.170123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
It has been reported that sodium hydrosulfide (NaHS) stimulated high stretch induced-atrial natriuretic peptide (ANP) secretion via ATP sensitive potassium (KATP) channel. KATP channel is activated during hypoxic condition as a compensatory mechanism. However, whether NaHS affects ANP secretion during hypoxia remains obscure. The purpose of the present study is to discover the impact of NaHS on ANP secretion during hypoxia and to unravel its signaling pathway. Isolated beating rat atria were perfused with buffer exposed to different O2 tension (to 100% O2, normoxia; to 20% O2, hypoxia). The ANP secretion increased negatively correlated with O2 tension. NaHS (50 μM) did not show any significant effect on low stretch induced-ANP secretion in normoxic condition but augmented low stretch induced-ANP secretion in hypoxic condition. The augmentation of NaHS-induced ANP secretion during hypoxia was blocked by the pretreatment with KATP channel blocker (glibenclamide) and was enhanced by the pretreatment with KATP channel activator (pinacidil). Hypoxia increased the expression of PPAR-γ protein but did not change the expression of HIF-1α protein and eNOS phosphorylation. The NaHS-induced ANP secretion during hypoxia was also blocked by the pretreatment with HIF-1α inhibitor (2-methoxy- estradiol), PPAR-γ inhibitor (GW9662) but not by NOS inhibitor (L-NAME) and endothelin receptor inhibitor (bosentan). The intravenous infusion of NaHS increased plasma ANP level in monocrotaline-treated rats but not in sham rats. These results suggest that hypoxia augmented NaHS-induced ANP secretion partly through KATP channel, HIF-1α, and PPAR-γ pathway.
Collapse
Affiliation(s)
- Lamei Yu
- Department of Physiology, Binzhou Medical University, China; Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Weijian Li
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Byung Mun Park
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Gi-Ja Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Suhn Hee Kim
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Republic of Korea.
| |
Collapse
|
7
|
Yu L, Park BM, Ahn YJ, Lee GJ, Kim SH. Hydrogen sulfide donor, NaHS, stimulates ANP secretion via the K ATP channel and the NOS/sGC pathway in rat atria. Peptides 2019; 111:89-97. [PMID: 29684589 DOI: 10.1016/j.peptides.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 01/20/2023]
Abstract
Hydrogen sulfide (H2S) is normally produced from l-cysteine in mammalian tissues and related to the pathogenesis of cardiovascular diseases. The aim of this study is to investigate the effects of H2S donor on atrial natriuretic peptide (ANP) secretion and define its mechanism using normal and isoproterenol (ISP)-treated rats. Several H2S donors were perfused into isolated beating rat atria, and atrial pressure (AP) and ANP secretion were measured. NaHS augmented high stretch-induced ANP secretion and decreased AP in a dose-dependent manner. The high stretch-induced ANP secretion was stimulated by Na2S but was not changed by GYY4137 and sodium thiosulfate. NaHS and Na2S produced very high amount of H2S rapidly whereas GYY4137 produced very low amount of H2S slowly. NaHS-stimulated ANP secretion was blocked by the pretreatment with inhibitor for KATP channel, nitric oxide synthase (NOS), soluble guanylyl cyclase (sGC), phosphoinositol 3 kinase (PI3K) or protein kinase B. H2S synthesis enzyme inhibitor (DL-propargylglycine) did not show any significant changes in atrial parameters. However, the response of ANP secretion to NaHS markedly attenuated and DL-propargylglycine suppressed ANP secretion in ISP-treated rat atria. The expression of eNOS protein was decreased but the expression of cardiomyocyte-specific H2S producing enzyme, cystathione γ-lyase, was not changed in ISP-treated rat atria. The attenuation of NaHS-induced ANP secretion in ISP-treated rat atria may be due to the low expression of eNOS protein. These findings clarify that NaHS stimulates ANP secretion via the KATP channel and the PI3K/Akt/NOS/sGC pathway in rat atria.
Collapse
Affiliation(s)
- Lamei Yu
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Yong Jin Ahn
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Gi-Ja Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Republic of Korea.
| |
Collapse
|
8
|
Turu G, Balla A, Hunyady L. The Role of β-Arrestin Proteins in Organization of Signaling and Regulation of the AT1 Angiotensin Receptor. Front Endocrinol (Lausanne) 2019; 10:519. [PMID: 31447777 PMCID: PMC6691095 DOI: 10.3389/fendo.2019.00519] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022] Open
Abstract
AT1 angiotensin receptor plays important physiological and pathophysiological roles in the cardiovascular system. Renin-angiotensin system represents a target system for drugs acting at different levels. The main effects of ATR1 stimulation involve activation of Gq proteins and subsequent IP3, DAG, and calcium signaling. It has become evident in recent years that besides the well-known G protein pathways, AT1R also activates a parallel signaling pathway through β-arrestins. β-arrestins were originally described as proteins that desensitize G protein-coupled receptors, but they can also mediate receptor internalization and G protein-independent signaling. AT1R is one of the most studied receptors, which was used to unravel the newly recognized β-arrestin-mediated pathways. β-arrestin-mediated signaling has become one of the most studied topics in recent years in molecular pharmacology and the modulation of these pathways of the AT1R might offer new therapeutic opportunities in the near future. In this paper, we review the recent advances in the field of β-arrestin signaling of the AT1R, emphasizing its role in cardiovascular regulation and heart failure.
Collapse
Affiliation(s)
- Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
- *Correspondence: László Hunyady
| |
Collapse
|
9
|
Abstract
BACKGROUND Alamandine differs from angiotensin-(1-7) in a single N-terminal alanine residue. The aim of this study was to investigate whether alamandine protects the heart against reperfusion injury. METHODS AND RESULTS After euthanizing Sprague-Dawley rats, hearts were perfused with Krebs-Henseleit buffer for a 20-min pre-ischemic period with or without alamandine, followed by 20 min global ischemia and 50 min reperfusion. Alamandine (0.1 mg/kg) improved the postischemic left ventricular developed pressure and ±dP/dt, decreased the infarct size, and decreased the lactate dehydrogenase levels in the effluent. Alamandine increased the coronary flow and the amount of atrial natriuretic peptide (ANP) in the coronary effluent, and it decreased the expression of apoptotic proteins and increased the expression of antioxidative proteins. Pretreatment with the MrgD receptor antagonist or PD123319, but not the angiotensin type 1 receptor antagonist, attenuated the cardioprotective effects of alamandine. A similar cardioprotective effect with alamandine was also observed with high plasma ANP levels in an in vivo study. Alamandine directly stimulated ANP secretion from isolated atria, which was completely blocked by pretreatment with the MrgD receptor antagonist and was partially blocked by PD123319. CONCLUSIONS These results suggest that the cardioprotective effects of alamandine against I/R injury are, in part, related to the activation of antioxidant and antiapoptotic enzymes via the MrgD receptor.
Collapse
Affiliation(s)
- Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School
| | - Hoang Thi Ai Phuong
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School
| | - Lamei Yu
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School
| |
Collapse
|
10
|
Tan R, Ahn YM, Kim HY, Lee YJ, Cho KW, Kang DG, Lee HS. Atrial secretion of ANP is suppressed in renovascular hypertension: shifting of ANP secretion from atria to the left ventricle. Am J Physiol Heart Circ Physiol 2018; 315:H590-H601. [PMID: 29979625 DOI: 10.1152/ajpheart.00612.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, the change in secretion of atrial natriuretic peptide (ANP) from the atria was defined in hypertension accompanied by ventricular hypertrophy and increased synthesis of ANP. To identify the change of the secretion and mechanisms involved, experiments were performed in isolated perfused beating atria from sham-operated normotensive and renovascular hypertensive rats. Expression of ANP, natriuretic peptide receptor (NPR)-C, components of the renin-angiotensin system, and muscarinic signaling pathway was measured in cardiac tissues. Basal levels of ANP secretion and acetylcholine (ACh)- and stretch-induced activation of ANP secretion were suppressed in the atria from hypertensive compared with normotensive rats. ACh increased ANP secretion via M2 muscarinic ACh receptor-ACh-sensitive K+ channel signaling. In hypertensive rats, ANP concentration increased in the left ventricle but decreased in the right ventricle. The atrial concentration of ANP was not changed in hypertensive compared with normotensive rats. ANP mRNA expression was accentuated in the left ventricle but suppressed in the other cardiac chambers in the hearts of hypertensive rats. NPR-C expression was inversely related to ANP mRNA levels. Angiotensin II type 1 receptor (AT1R) expression was accentuated in the cardiac chambers from hypertensive rats compared with normotensive rats, whereas angiotensin II type 2 receptor, M2 muscarinic receptor, and Kir3.4 channels were suppressed. AT1R blockade with losartan reversed the change observed in hypertensive rats. The present findings indicate that renovascular hypertension shifts the major site of ANP secretion and synthesis from the atria to the left ventricle through modulation of the expression of ANP, NPR-C, AT1R, and the M2 muscarinic signaling pathway. NEW & NOTEWORTHY Renovascular hypertension suppresses the atrial secretion of ANP and shifts the major site of the regulation of ANP secretion and synthesis from atria to the hypertrophied left ventricle possibly via modulation of the expression of ANP, natriuretic peptide receptor-C, angiotensin II subtype 1 receptor, and M2 muscarinic signaling pathway.
Collapse
Affiliation(s)
- Rui Tan
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| | - You Mee Ahn
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| | - Hye Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| | - Yun Jung Lee
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| | - Kyung Woo Cho
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| | - Dae Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| | - Ho Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| |
Collapse
|
11
|
Modification of levosimendan-induced suppression of atrial natriuretic peptide secretion in hypertrophied rat atria. Eur J Pharmacol 2018; 829:54-62. [PMID: 29653089 DOI: 10.1016/j.ejphar.2018.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
This study aimed to determine the effects of levosimendan, a calcium sensitizer, on atrial contractility and atrial natriuretic peptide (ANP) secretion and its modification in hypertrophied atria. Isolated perfused beating rat atria were used from control and isoproterenol-treated rats. Levosimendan and its metabolite OR-1896 caused a positive inotropic effect and suppressed ANP secretion in rat atria. Similar to levosimendan, the selective phosphodiesterase 3 (PDE3) or PDE4 inhibitor also suppressed ANP secretion. Suppression of ANP secretion by 1 µM levosimendan was abolished by PDE3 inhibitor, but reversed by PDE4 inhibitor. Levosimendan-induced suppression of ANP secretion was potentiated by KATP channel blocker, but blocked by KATP channel opener. Levosimendan alone did not significantly change cyclic adenosine monophosphate (cAMP) efflux in the perfusate; however, levosimendan combined with PDE4 inhibitor markedly increased this efflux. The stimulation of ANP secretion induced by levosimendan combined with PDE4 inhibitor was blocked by the protein kinase A (PKA) inhibitor. In isoproterenol-treated atria, levosimendan augmented the positive inotropic effect and ANP secretion in response to an increased extracellular calcium concentration ([Ca+]o). These results suggests that levosimendan suppresses ANP secretion by both inhibiting PDE3 and opening KATP channels and that levosimendan combined with PDE4 inhibitor stimulates ANP secretion by activating the cAMP-PKA pathway. Modification of the effects of levosimendan on [Ca+]o-induced positive inotropic effects and ANP secretion in isoproterenol-treated rat atria might be related to a disturbance in calcium metabolism.
Collapse
|
12
|
Phuong HTA, Yu L, Park BM, Kim SH. Comparative effects of angiotensin II and angiotensin-(4-8) on blood pressure and ANP secretion in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:667-674. [PMID: 29200910 PMCID: PMC5709484 DOI: 10.4196/kjpp.2017.21.6.667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Abstract
Angiotensin II (Ang II) is metabolized from N-terminal by aminopeptidases and from C-terminal by Ang converting enzyme (ACE) to generate several truncated angiotensin peptides (Angs). The truncated Angs have different biological effects but it remains unknown whether Ang-(4-8) is an active peptide. The present study was to investigate the effects of Ang-(4-8) on hemodynamics and atrial natriuretic peptide (ANP) secretion using isolated beating rat atria. Atrial stretch caused increases in atrial contractility by 60% and in ANP secretion by 70%. Ang-(4-8) (0.01, 0.1, and 1 µM) suppressed high stretch-induced ANP secretion in a dose-dependent manner. Ang-(4-8) (0.1 µM)-induced suppression of ANP secretion was attenuated by the pretreatment with an antagonist of Ang type 1 receptor (AT1R) but not by an antagonist of AT2R or AT4R. Ang-(4-8)-induced suppression of ANP secretion was attenuated by the pretreatment with inhibitor of phospholipase (PLC), inositol triphosphate (IP3) receptor, or nonspecific protein kinase C (PKC). The potency of Ang-(4-8) to inhibit ANP secretion was similar to Ang II. However, Ang-(4-8) 10 µM caused an increased mean arterial pressure which was similar to that by 1 nM Ang II. Therefore, we suggest that Ang-(4-8) suppresses high stretch-induced ANP secretion through the AT1R and PLC/IP3/PKC pathway. Ang-(4-8) is a biologically active peptide which functions as an inhibition mechanism of ANP secretion and an increment of blood pressure.
Collapse
Affiliation(s)
- Hoang Thi Ai Phuong
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Lamei Yu
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| |
Collapse
|
13
|
Ahn YM, Choi YH, Yoon JJ, Lee YJ, Cho KW, Kang DG, Lee HS. Oleanolic acid modulates the renin-angiotensin system and cardiac natriuretic hormone concomitantly with volume and pressure balance in rats. Eur J Pharmacol 2017; 809:231-241. [PMID: 28514645 DOI: 10.1016/j.ejphar.2017.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 01/13/2023]
Abstract
Oleanolic acid is known to possess beneficial effects on the regulation of the cardiovascular homeostasis. However, the exact nature of the role of oleanolic acid on the regulation of body fluid balance and blood pressure homeostasis and its mechanisms involved are not well defined. Experiments were performed to identify the effects of oleanolic acid on the renin-angiotensin system and cardiac natriuretic hormone (ANP) system, and also renal function and blood pressure in normotensive and renovascular hypertensive rats. The change in the plasma levels of hormones and the expressions of renin, angiotensin II receptors, ANP, natriuretic peptide receptor-C, M2 muscarinic receptor and GIRK4 were determined in the kidney, heart and aorta. Oleanolic acid was administered orally for 1 or 3 weeks. Here, we found that oleanolic acid suppressed plasma levels of renin activity and aldosterone and intrarenal levels of renin and angiotensin II type 1 receptor expression and increased angiotensin II type 2 receptor in normotensive and hypertensive rats. Also, oleanolic acid increased plasma levels of ANP. Further, oleanolic acid suppressed angiotensin II type 1 receptor and natriuretic peptide receptor-C expression and increased angiotensin II type 2 receptor and ANP expression in the heart and aorta. Along with these changes, oleanolic acid accentuated urinary volume, electrolyte excretion and glomerular filtration rate in normotensive rats and suppressed arterial blood pressure in hypertensive rats. These findings suggest that beneficial effects of oleanolic acid on the cardiorenal system are closely associated with its roles on the renin-angiotensin system and cardiac natriuretic hormone system.
Collapse
Affiliation(s)
- You Mee Ahn
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea
| | - Yoon Hee Choi
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea
| | - Jung Joo Yoon
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea
| | - Yun Jung Lee
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea
| | - Kyung Woo Cho
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea
| | - Dae Gill Kang
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea.
| | - Ho Sub Lee
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea.
| |
Collapse
|
14
|
Yu L, Yuan K, Phuong HTA, Park BM, Kim SH. Angiotensin-(1-5), an active mediator of renin-angiotensin system, stimulates ANP secretion via Mas receptor. Peptides 2016; 86:33-41. [PMID: 27660028 DOI: 10.1016/j.peptides.2016.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 01/29/2023]
Abstract
Angiotensin-(1-5) [Ang-(1-5)], which is a metabolite of Angiotensin-(1-7) [Ang-(1-7)] catalyzed by angiotensin-converting enzyme (ACE), is a pentapeptide of the renin-angiotensin system (RAS). It has been reported that Ang-(1-7) and Ang-(1-9) stimulate the secretion of atrial natriuretic peptide (ANP) via Mas receptor (Mas R) and Ang II type 2 receptor (AT2R), respectively. However, it still remains unknown whether Ang-(1-5) has a similar function to Ang-(1-7). We investigated the effect of Ang-(1-5) on ANP secretion and to define its signaling pathway using isolated perfused beating rat atria. Ang-(1-5) (0.3, 3, 10μM) stimulated high pacing frequency-induced ANP secretion in a dose-dependent manner. Ang-(1-5)-induced ANP secretion (3μM) was attenuated by the pretreatment with an antagonist of Mas R (A-779) but not by an antagonist of AT1R (losartan) or AT2R (PD123,319). An inhibitor for phosphatidylinositol 3-kinase (PI3K; wortmannin), protein kinase B (Akt; API-2), or nitric oxide synthase (NOS; L-NAME) also attenuated the augmentation of ANP secretion induced by Ang-(1-5). Ang-(1-5)-induced ANP secretion was markedly attenuated in isoproterenol-treated hypertrophied atria. The secretagogue effect of Ang-(1-5) on ANP secretion was similar to those induced by Ang-(1-9) and Ang-(1-7). These results suggest that Ang-(1-5) is an active mediator of renin-angiotensin system to stimulate ANP secretion via Mas R and PI3K-Akt-NOS pathway.
Collapse
Affiliation(s)
- Lamei Yu
- Department of Physiology, Research Institute for Endocrine Sciences Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Kuichang Yuan
- Department of Internal Medicine, Yanbian University, China
| | - Hoang Thi Ai Phuong
- Department of Physiology, Research Institute for Endocrine Sciences Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences Chonbuk National University Medical School, Jeonju, Republic of Korea.
| |
Collapse
|
15
|
Park BM, Cha SA, Lee SH, Kim SH. Angiotensin IV protects cardiac reperfusion injury by inhibiting apoptosis and inflammation via AT4R in rats. Peptides 2016; 79:66-74. [PMID: 27038740 DOI: 10.1016/j.peptides.2016.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/17/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023]
Abstract
Angiotensin IV (Ang IV) is formed by aminopeptidase N from Ang III by removing the first N-terminal amino acid. Previously, we reported that Ang III has some cardioprotective effects against global ischemia in Langendorff heart. However, it is not clear whether Ang IV has cardioprotective effects. The aim of the present study was to evaluate the effect of Ang IV on myocardial ischemia-reperfusion (I/R) injury in rats. Before ischemia, male Sprague-Dawley rats received Ang IV (1mg/kg/day) for 3 days. Anesthetized rats were subjected to 45min of ischemia by ligation of left anterior descending coronary artery followed by reperfusion and then, sacrificed 1 day or 1 week after reperfusion. Plasma creatine kinase (CK) and lactate dehydrogenase (LDH) concentrations, and infarct size were measured. Quantitative analysis of apoptotic and inflammatory proteins in ventricles were performed using Western blotting. Pretreatment with Ang IV attenuated I/R-induced increases in plasma CK and LDH levels, and infarct size, which were blunted by Ang IV receptor (AT4R) antagonist and but not by antagonist for AT1R, AT2R, or Mas receptor. I/R increased Bax, caspase-3 and caspase-9 protein levels, and decreased Bcl-2 protein level in ventricles, which were blunted by Ang IV. I/R-induced increases in TNF-α, MMP-9, and VCAM-1 protein levels in ventricles were also blunted by Ang IV. Ang IV increased the phosphorylation of Akt and mTOR. These effects were attenuated by co-treatment with AT4R antagonist or inhibitors of downstream signaling pathway. Myocardial dysfunction after reperfusion was improved by Ang IV. These results suggest that Ang IV has cardioprotective effect against I/R injury by inhibiting apoptosis via AT4R and PI3K-Akt-mTOR pathway.
Collapse
Affiliation(s)
- Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seung Ah Cha
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sun Hwa Lee
- Internal Medicine, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea.
| |
Collapse
|
16
|
Maksimov VF, Korostyshevskaya IM, Markel' AL, Yakobson GS, Rudenko NS. Inhibition of secretory activity of atrial myocytes in hypertensive rats after losartan treatment. Bull Exp Biol Med 2015; 158:301-3. [PMID: 25573355 DOI: 10.1007/s10517-015-2746-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Indexed: 11/27/2022]
Abstract
Male ISIAH rats with inherited stress-induced arterial hypertension (BP 174.0 ± 1.3 mm Hg) received antagonist of angiotensin II receptors losartan in a dose of 10 mg/kg/day for 16 days. Ultrastructural study of the right atrium showed signs of dramatic and pronounced inhibition of synthesis of the natriuretic peptides (changes in the composition of secretory granules and decrease in their population density and size) the atrial myocytes against the background of persistent BP decrease in hypertensive rats to 142.0 ± 4.2 mm Hg. We concluded that myoendocrine cells in rats with stable hypertension retain ability to respond adequately to distention of the atria with blood.
Collapse
Affiliation(s)
- V F Maksimov
- Research Institute of Physiology and Fundamental Medicine, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
17
|
Park BM, Cha SA, Han BR, Kim SH. Angiotensin IV stimulates high atrial stretch-induced ANP secretion via insulin regulated aminopeptidase. Peptides 2015; 63:30-7. [PMID: 25451332 DOI: 10.1016/j.peptides.2014.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 01/11/2023]
Abstract
Angiotensin IV (Ang IV) is formed by aminopeptidase N (APN) from angiotensin III (Ang III) by removing the first N-terminal amino acid. Previously, we reported that angiotensin II (Ang II) inhibits atrial natriuretic peptide (ANP) secretion via angiotensin II type 1 receptor (AT1R). In contrast, angiotensin-(1-7) [Ang-(1-7)] and Ang III stimulate ANP secretion via Mas receptor (Mas R) and angiotensin II type 2 receptor (AT2R), respectively. However, it is not known whether there is any relationship between Ang IV and ANP secretion. Therefore, the aim of the present study was to determine the effect of Ang IV on ANP secretion and to find its downstream signaling pathway using in isolated perfused beating atria. Ang IV (0.1, 1 and 10μM) stimulated high atrial stretch-induced ANP secretion and ANP concentration in a dose-dependent manner. The augmented effect of Ang IV (1μM) on high atrial stretch-induced ANP secretion and concentration was attenuated by pretreatment with insulin-regulated aminopeptidase (IRAP) antagonist but not by AT1R or AT2R antagonist. Pretreatment with inhibitors of downstream signaling pathway including phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) and mammalian target of rapamycin (mTOR) blocked Ang IV-induced ANP secretion and concentration. Therefore, these results suggest that Ang IV stimulates ANP secretion and concentration via IRAP and PI3K-Akt-mTOR pathway.
Collapse
Affiliation(s)
- Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seung Ah Cha
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Bo Ram Han
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea.
| |
Collapse
|
18
|
Gao S, Park BM, Cha SA, Kim SZ, Kim SH. Comparision of secretagogue effects of rosiglitazone and telmisartan on ANP secretion in rats. Peptides 2014; 56:52-8. [PMID: 24703963 DOI: 10.1016/j.peptides.2014.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/18/2014] [Accepted: 03/21/2014] [Indexed: 01/23/2023]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPAR-γ), a nuclear transcription factor, is a key regulator of insulin signaling, and glucose and fat metabolism. In this study, we evaluated the direct effect of PPAR-γ ligand on the secretion of atrial natriuretic peptide (ANP). The isolated perfused beating atria were used and rosiglitazone (0.01, 0.3 and 1 μM) or telmisartan was perfused into atria with and without inhibitors. High frequency stimulation caused a decreased atrial contractility by 40% and an increased ANP secretion by 80%. Rosiglitazone augmented high frequency-induced ANP secretion and concentration in a dose-dependent manner. Rosiglitazone-induced ANP secretion was attenuated by the pretreatment with PPAR-γ antagonist (GW 9662), or inhibitor for phosphoinositol 3-kinase (PI3-kinase, wortmannin), Akt (API-2) or nitric oxide synthase (l-NAME). Telmisartan, a partial agonist of PPAR-γ with angiotensin II type 1 receptor (AT1R) blocker, also stimulated ANP secretion, which was more potent than rosiglitazone or losartan. Infusion of rosiglitazone or telmisartan in anesthetized rats tended to decrease mean arterial pressure and to increase pulse pressure without difference. A plasma ANP level was increased by telmisartan more than by rosiglitazone. In diabetic rats, an increased plasma ANP level was more prominent than sham rats. Therefore, we suggest that rosiglitazone stimulates high frequency-induced ANP secretion through the PPAR-γ receptor-PI3-kinase-Akt-eNOS pathway and telmisartan shows synergistic effect on ANP secretion.
Collapse
Affiliation(s)
- Shan Gao
- Department of Physiology, Diabetic Research Center, Chonbuk National University Medical School, Jeonju, Republic of Korea; Department of Pharmacology, Taishan Medical University, Shandong, China
| | - Byung Mun Park
- Department of Physiology, Diabetic Research Center, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seung Ah Cha
- Department of Physiology, Diabetic Research Center, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sung Zoo Kim
- Department of Physiology, Diabetic Research Center, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Suhn Hee Kim
- Department of Physiology, Diabetic Research Center, Chonbuk National University Medical School, Jeonju, Republic of Korea.
| |
Collapse
|
19
|
Park BM, Gao S, Cha SA, Park BH, Kim SH. Cardioprotective effects of angiotensin III against ischemic injury via the AT2 receptor and KATP channels. Physiol Rep 2013; 1:e00151. [PMID: 24400153 PMCID: PMC3871466 DOI: 10.1002/phy2.151] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 09/23/2013] [Accepted: 10/17/2013] [Indexed: 12/30/2022] Open
Abstract
Angiotensin III (Ang III) has similar effects on blood pressure and aldosterone secretion as Ang II, but cardioprotective effects are also proposed. In this study, we investigated whether Ang III protects the heart against ischemia/reperfusion (I/R) injury. After sacrificing Sprague-Dawley rats, the hearts were perfused with Krebs–Henseleit buffer for a 20 min preischemic period with and without Ang III followed by 20-min global ischemia and 50-min reperfusion. Pretreatment with Ang III (1 μmol/L) improved an increased postischemic left ventricular end-diastolic pressure (LVEDP) and a decreased postischemic left ventricular developed pressure (LVDP) induced by reperfusion compared to untreated hearts. Ang III markedly decreased infarct size and lactate dehydrogenase levels in effluent during reperfusion. Ang III increased coronary flow and the concentrations of atrial natriuretic peptide in coronary effluent during reperfusion. Pretreatment with Ang II type 2 receptor (AT2R) antagonist or ATP-sensitive K+ channel (KATP) blocker for 15 min before ischemia attenuated the improvement of LVEDP, LVDP, and ±dP/dt induced by Ang III. Ang III treatment increased Mn-superoxide dismutase, catalase, and heme oxygenase-1 protein levels, which was attenuated by pretreatment with AT2R antagonist or KATP blocker. Ang III treatment also decreased Bax, caspase-3, and caspase-9 protein levels, and increased Bcl-2 protein level, which were attenuated by pretreatment with AT2R antagonist or KATP blocker. These results suggest that the cardioprotective effects of Ang III against I/R injury may be partly related to activating antioxidant and antiapoptotic enzymes via AT2R and KATP channels.
Collapse
Affiliation(s)
- Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School Jeonju, Korea
| | - Shan Gao
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School Jeonju, Korea
| | - Seung Ah Cha
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School Jeonju, Korea
| | - Byung Hyun Park
- Department of Biochemistry, Research Institute for Endocrine Sciences, Chonbuk National University Medical School Jeonju, Korea
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School Jeonju, Korea
| |
Collapse
|
20
|
Cha SA, Park BM, Gao S, Kim SH. Stimulation of ANP by angiotensin-(1-9) via the angiotensin type 2 receptor. Life Sci 2013; 93:934-40. [PMID: 24177599 DOI: 10.1016/j.lfs.2013.10.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 01/09/2023]
Abstract
AIMS Angiotensin-(1-9) [Ang-(1-9)] and Ang-(1-7) are cleaved by Ang converting enzyme 2 forming Ang I and Ang II, respectively, and the truncated Angs play a role in regulating atrial natriuretic peptide (ANP) secretion. Previously, we found that Ang-(1-7) stimulates ANP secretion via the Mas receptor. However, the effect of Ang-(1-9) on ANP secretion is still unknown. The aim of the present study is to determine whether Ang-(1-9) stimulates ANP secretion and to characterize the signaling pathway involved in stimulating secretion. MAIN METHODS We examined the effects of Ang-(1-9) on ANP secretion and atrial contractility with and without inhibitors in isolated perfused atria. KEY FINDINGS Ang-(1-9) stimulated ANP secretion and concentration without change in atrial contractility. Ang-(1-9)-induced-ANP secretion was increased from 5% to 60% by 3 μM Ang-(1-9) during the low-stretch state of the atrium. This stimulatory effect of Ang-(1-9) on ANP secretion was attenuated by pretreatment with an Ang II type 2 receptor (AT2R) antagonist but not by AT1R or Mas receptor antagonist. In addition, pretreatment with inhibitors of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), nitric oxide synthase (NOS) and soluble guanylyl cyclase (sGC) blocked Ang-(1-9)-induced ANP secretion. In the high-stretch atrial state, Ang-(1-9)-induced ANP secretion was increased more than in the low-stretch state following addition of 1 μM Ang-(1-9) (from 108% to 170%). In an in vivo experiment, acute infusion of Ang-(1-9) increased plasma ANP level without altering arterial blood pressure. This effect was attenuated by pretreatment with AT2R antagonist but not by Mas receptor antagonist. SIGNIFICANCE These results suggest that Ang-(1-9) stimulates ANP secretion via the AT2R-PI3K-Akt-NO-cGMP pathway.
Collapse
Affiliation(s)
- Seung Ah Cha
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | | | | | | |
Collapse
|
21
|
Gao S, Park BM, Cha SA, Park WH, Park BH, Kim SH. Angiotensin AT2 receptor agonist stimulates high stretch induced- ANP secretion via PI3K/NO/sGC/PKG/pathway. Peptides 2013; 47:36-44. [PMID: 23791669 DOI: 10.1016/j.peptides.2013.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 11/16/2022]
Abstract
Angiotensin II (Ang II) type 1 receptor (AT1R) mediates the major cardiovascular effects of Ang II. However, the effects mediated via AT2R are still controversial. The aim of the present study is to define the effect of AT2R agonist CGP42112A (CGP) on high stretch-induced ANP secretion and its mechanism using in vitro and in vivo experiments. CGP (0.01, 0.1 and 1μM) stimulated high stretch-induced ANP secretion and concentration from isolated perfused rat atria. However, atrial contractility and the translocation of extracellular fluid did not change. The augmented effect of CGP (0.1μM) on high stretch-induced ANP secretion was attenuated by the pretreatment with AT2R antagonist or inhibitor for phosphoinositol 3-kinase (PI3K), nitric oxide (NO), soluble guanylyl cyclase (sGC), or protein kinase G (PKG). However, antagonist for AT1R or Mas receptor did not influence CGP-induced ANP secretion. In vivo study, acute infusion of CGP for 10min increased plasma ANP level without blood pressure change. In renal hypertensive rat atria, AT2R mRNA and protein levels were up-regulated and the response of plasma ANP level to CGP infusion in renal hypertensive rats augmented. The pretreatment with AT2R antagonist for 10min followed by CGP infusion attenuated an increased plasma ANP level induced by CGP. However, pretreatment with AT1R or Mas receptor antagonist unaffected CGP-induced increase in plasma ANP level. Therefore, we suggest that AT2R agonist CGP stimulates high stretch-induced ANP secretion through PI3K/NO/sGC/PKG pathway and these effects are augmented in renal hypertensive rats.
Collapse
MESH Headings
- Angiotensin II/analogs & derivatives
- Angiotensin II/pharmacology
- Animals
- Atrial Natriuretic Factor/metabolism
- Atrial Pressure/drug effects
- Cyclic GMP-Dependent Protein Kinases/genetics
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Gene Expression Regulation
- Guanylate Cyclase/genetics
- Guanylate Cyclase/metabolism
- Heart Atria/drug effects
- Heart Atria/metabolism
- Hypertension, Renal/genetics
- Hypertension, Renal/metabolism
- Hypertension, Renal/physiopathology
- Imidazoles/pharmacology
- Losartan/pharmacology
- Male
- Nitric Oxide/metabolism
- Oligopeptides/pharmacology
- Peptide Fragments/pharmacology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Pyridines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction/drug effects
- Soluble Guanylyl Cyclase
- Tissue Culture Techniques
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Shan Gao
- Department of Pharmacology, Taishan Medical University, Shandong, China
| | | | | | | | | | | |
Collapse
|
22
|
Park BM, Oh YB, Gao S, Cha SA, Kang KP, Kim SH. Angiotensin III stimulates high stretch-induced ANP secretion via angiotensin type 2 receptor. Peptides 2013; 42:131-7. [PMID: 23419986 DOI: 10.1016/j.peptides.2013.01.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
Angiotensin III (Ang III) is metabolized from Ang II by aminopeptidase (AP) A and in turn, Ang III is metabolized to Ang IV by APN. Ang III is known to have a similar effect to Ang II on aldosterone secretion, but the effect of Ang III on atrial natriuretic peptide (ANP) secretion from cardiac atria is not known. The aim of the present study is to define the effect of Ang III on ANP secretion and its receptor subtype using isolated perfused beating atria. The volume load was achieved by elevating the height of outflow catheter connected with isolated atria from 5 cmH2O to 7.5 cmH2O. Atrial stretch by volume load increased atrial contractility and ANP secretion. Ang III stimulated stretch-induced ANP secretion in a dose-dependent manner without change in atrial contractility. The stimulated effect of Ang III (1 μM) on stretch-induced ANP secretion was blocked by the pretreatment of Ang II type 2 (AT2) receptor antagonist but not by AT1 or Mas receptor antagonist. Pretreatment with inhibitor of phosphoinositide 3-kinase (PI3K), Akt, nitric oxide synthase, soluble guanylyl cyclase, or protein kinase G (PKG) attenuated Ang III-stimulated ANP secretion. When Ang III (40 nM) or Ang II (4nM) was infused for 10 min into anesthetized rats, mean arterial pressure was increased about 10%. However, Ang III increased plasma ANP level by 35.81±10.19% but Ang II decreased plasma ANP level by 30.41±7.27%. Therefore, we suggest that Ang III, opposite to Ang II, stimulated stretch-induced ANP secretion through AT2 receptor/PI3K/Akt/nitric oxide/PKG pathway.
Collapse
Affiliation(s)
- Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Mifune H, Nishi Y, Tajiri Y, Yabuki A. A-type natriuretic peptide level in angiotensin II type 1a receptor knockout mice. Exp Anim 2012; 61:131-8. [PMID: 22531728 DOI: 10.1538/expanim.61.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A-type (atrial) natriuretic peptide (ANP) levels in the heart and plasma were examined by immunohistochemistry, electron microscopy, and radioimmunoassay (RIA) in angiotensin II type 1a receptor knockout (Agtr1a KO) mice. Additionally, the ANP mRNA level in the heart was measured using a real-time polymerase chain reaction (PCR) assay. The blood pressure in Agtr1a KO mice was significantly lower than that in wild-type (WT) mice. The number of ANP granules and ANP immunoreactivity in the auricular cardiocytes were significantly lower in Agtr1a KO mice than in WT mice. Ultrastructurally, the ventricular cardiocytes in Agtr1a KO mice occasionally had ANP-like granules, which were not present in WT mice. The plasma, auricular, and ventricular ANP and plasma cyclic guanosine monophosphate (cGMP) concentrations were significantly higher in Agtr1a KO mice than in WT mice. The ANP mRNA levels of the auricular and ventricular cardiocytes in the Agtr1a KO mice were almost twice as large as those in WT mice. The present data suggest that a notable increase in the ANP biosynthesis and release in the heart of Agtr1a KO mice may account for the reduction in blood pressure together with the lack of an AGTR1A receptor in this model.
Collapse
Affiliation(s)
- Hiroharu Mifune
- Institute of Animal Experimentation, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | | | | | | |
Collapse
|
24
|
Shah A, Oh YB, Lee SH, Lim JM, Kim SH. Angiotensin-(1-7) attenuates hypertension in exercise-trained renal hypertensive rats. Am J Physiol Heart Circ Physiol 2012; 302:H2372-80. [PMID: 22467306 DOI: 10.1152/ajpheart.00846.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin-(1-7) [ANG-(1-7)] plays a counterregulatory role to angiotensin II in the renin-angiotensin system. In trained spontaneous hypertensive rats, Mas expression and protein are upregulated in ventricular tissue. Therefore, we examined the role of ANG-(1-7) on cardiac hemodynamics, cardiac functions, and cardiac remodeling in trained two-kidney one-clip hypertensive (2K1C) rats. For this purpose, rats were divided into sedentary and trained groups. Each group consists of sham and 2K1C rats with and without ANG-(1-7) infusion. Swimming training was performed for 1 h/day, 5 days/wk for 4 wk following 1 wk of swimming training for acclimatization. 2K1C rats showed moderate hypertension and left ventricular hypertrophy without changing left ventricular function. Chronic infusion of ANG-(1-7) attenuated hypertension and cardiac hypertrophy only in trained 2K1C rats but not in sedentary 2K1C rats. Chronic ANG-(1-7) treatment significantly attenuated increases in myocyte diameter and cardiac fibrosis induced by hypertension in only trained 2K1C rats. The Mas receptor, ANG II type 2 receptor protein, and endothelial nitric oxide synthase phosphorylation in ventricles were upregulated in trained 2K1C rats. In conclusion, chronic infusion of ANG-(1-7) attenuates hypertension in trained 2K1C rats.
Collapse
Affiliation(s)
- Amin Shah
- Department of Physiology, Research Center for Endocrine Sciences, Chonbuk National University Medical University, Jeonju, Korea
| | | | | | | | | |
Collapse
|
25
|
Endlich PW, Firmes LB, Gonçalves WLS, Gouvea SA, Moysés MR, Bissoli NS, Reis AM, Abreu GR. Involvement of the atrial natriuretic peptide in the reduction of arterial pressure induced by swimming but not by running training in hypertensive rats. Peptides 2011; 32:1706-12. [PMID: 21762739 DOI: 10.1016/j.peptides.2011.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 06/28/2011] [Accepted: 06/28/2011] [Indexed: 11/23/2022]
Abstract
The aim of this study was to compare, under resting conditions, the influence of chronic training in swimming or running on mean arterial pressure (MAP) and the involvement of the natriuretic peptide system in this response. Two-month-old male spontaneously hypertensive rats (SHR) were divided into three groups-sedentary (SD), swimming (SW) and running (RN)-and were trained for eight weeks under regimens of similar intensities. Atria tissue and plasma atrial natriuretic peptide (ANP) concentrations were measured by radioimmunoassay. ANP mRNA levels in the right and left atria as well as the natriuretic peptide receptors (NPR), NPR-A and NPR-C, mRNA levels in the kidney were determined by real-time PCR. Autoradiography was used to quantify NPR-A and NPR-C in mesenteric adipose tissue. Both training modalities, swimming and running, reduced the mean arterial pressure (MAP) of SHR. Swimming, but not running, training increased plasma levels of ANP compared to the sedentary group (P<0.05). Expression of ANP mRNA in the left atrium was reduced in the RN compared to the SD group (P<0.05). Expression of NPR-A and NPR-C in the kidneys of the SW group decreased significantly (P<0.05) compared to the SD group. Although swimming increased (125)I-ANP binding to mesenteric adipose tissue, displacement by c-ANF was reduced, indicating a reduction of NPR-C. These results suggest that the MAP reduction induced by exercise in SHR differs in its mechanisms between the training modalities, as evidenced by the finding that increased levels of ANP were only observed after the swimming regimen.
Collapse
Affiliation(s)
- Patrick W Endlich
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Espírito Santo, Vitória-ES, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|