1
|
Bai Y, Zhang X, Yu X, Lian Y, Lai K, Chen X, Li W, Sun C. Urotensin II in GIFT Nile tilapia (Oreochromis niloticus): CDS cloning, tissue distribution, and in vitro regulation of male reproduction. Gen Comp Endocrinol 2025; 367:114720. [PMID: 40180193 DOI: 10.1016/j.ygcen.2025.114720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 03/23/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
The caudal neurosecretory system (CNSS), present in all jawed vertebrates, except sarcopterygians, is considered a major site of urotensin II (UII) secretion. UII, a 12-amino acid peptide with a conserved hexapeptide ring structure, is also secreted by other tissues and found in sarcopterygians. UII has been associated with endocrine regulation, osmoregulation, and several pathophysiological conditions. In this study, CDS of GIFT Nile tilapia (Oreochromis niloticus) UII (tUII) and its receptors UT1 (tUT1) and UT2 (tUT2) were cloned from the CNSS and cerebellum, respectively. Phylogenetic analysis indicated that tUII, tUT1, and tUT2 shared a high homology with the ones of cichlid species, Haplochromis burtoni and Neolamprologus brichardi. Despite variations in precursor peptide sequences, the core sequence of the mature UII peptide remains highly conserved. tUII was predominantly expressed in the CNSS, while tUT1 and tUT2 were widely distributed in the central nervous system (CNS) and peripheral tissues of male and female tilapia. Functional studies revealed that synthetic tUII significantly activated luciferase activity in HEK293T cells transiently transfected with pNFAT-TA-Luc vectors and tUT1 or tUT2. In vitro studies in male GIFT Nile tilapia showed that tUII stimulated mRNA expression of gnrh1, gnrh2, and gnrh3 in a dose-dependent manner by brain fragments, as well as fshβ, lhβ, and gthα by primary culture of pituitary cells. Furthermore, tUII promoted the expression of gnrhr1, gnrhr2, and gnrhr3 in pituitary cells and stimulated mRNA levels of fshr, lhr, arα, cyp11b2, and dmrt1 in testicular tissue. All these stimulatory effects of tUII on gene expression mentioned above were blocked by the non-selective UT antagonist urantide, suggesting for the first time that the actions of tUII were mediated via tUT1 or tUT2. In addition, tUII could significantly stimulate the secretion of testosterone by testis fragments. Taken together, these results suggest that tUII may play a role in reproductive regulation in male GIFT Nile tilapia.
Collapse
Affiliation(s)
- Ying Bai
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xusheng Zhang
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xiaozheng Yu
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yingying Lian
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Kingwai Lai
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xiaoxia Chen
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wensheng Li
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Caiyun Sun
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
2
|
Choueiri TK, Donahue AC, Braun DA, Rini BI, Powles T, Haanen JB, Larkin J, Mu XJ, Pu J, Teresi RE, di Pietro A, Robbins PB, Motzer RJ. Integrative Analyses of Tumor and Peripheral Biomarkers in the Treatment of Advanced Renal Cell Carcinoma. Cancer Discov 2024; 14:406-423. [PMID: 38385846 PMCID: PMC10905671 DOI: 10.1158/2159-8290.cd-23-0680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/22/2023] [Accepted: 12/21/2023] [Indexed: 02/23/2024]
Abstract
The phase III JAVELIN Renal 101 trial demonstrated prolonged progression-free survival (PFS) in patients (N = 886) with advanced renal cell carcinoma treated with first-line avelumab + axitinib (A+Ax) versus sunitinib. We report novel findings from integrated analyses of longitudinal blood samples and baseline tumor tissue. PFS was associated with elevated lymphocyte levels in the sunitinib arm and an abundance of innate immune subsets in the A+Ax arm. Treatment with A+Ax led to greater T-cell repertoire modulation and less change in T-cell numbers versus sunitinib. In the A+Ax arm, patients with tumors harboring mutations in ≥2 of 10 previously identified PFS-associated genes (double mutants) had distinct circulating and tumor-infiltrating immunologic profiles versus those with wild-type or single-mutant tumors, suggesting a role for non-T-cell-mediated and non-natural killer cell-mediated mechanisms in double-mutant tumors. We provide evidence for different immunomodulatory mechanisms based on treatment (A+Ax vs. sunitinib) and tumor molecular subtypes. SIGNIFICANCE Our findings provide novel insights into the different immunomodulatory mechanisms governing responses in patients treated with avelumab (PD-L1 inhibitor) + axitinib or sunitinib (both VEGF inhibitors), highlighting the contribution of tumor biology to the complexity of the roles and interactions of infiltrating immune cells in response to these treatment regimens. This article is featured in Selected Articles from This Issue, p. 384.
Collapse
Affiliation(s)
- Toni K. Choueiri
- The Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - David A. Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Brian I. Rini
- Hematology Oncology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Thomas Powles
- Department of Genitourinary Oncology, Barts Cancer Institute, Experimental Cancer Medicine Centre, Queen Mary University of London, St Bartholomew's Hospital, London, United Kingdom
| | - John B.A.G. Haanen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - James Larkin
- Department of Medical Oncology, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Jie Pu
- Pfizer, La Jolla, California
| | | | | | | | - Robert J. Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
3
|
Avagimyan A, Kajaia A, Gabunia L, Ghambashidze K, Sulashvili N, Ratiani L, Heshmat-Ghahdarijani K, Sheibani M, Aznauryan A. Urotensin-II As a Promising Key-Point of Cardiovascular Disturbances Sequel. Curr Probl Cardiol 2021; 47:101074. [PMID: 34848248 DOI: 10.1016/j.cpcardiol.2021.101074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Arterial hypertension is a highly urgent problem of modern medicine since the crisis of blood pressure control remains open, due to the increasing number of uncontrolled arterial hypertension. Today, one of the most critical problems of cardiology is the study of the mechanisms of development and progression of arterial hypertension. Therefore, our international and multidisciplinary working group presents a vision of a new therapeutic target - urotensin II in the pathogenesis of arterial hypertension. Thus, this article reflects the concept of the Armenian, Georgian and Iranian medical schools.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Department of Pathological Anatomy and Clinical Morphology, Yerevan State Medical University after M. Heratsi, Republic of Armenia.
| | - Albina Kajaia
- Pharmacology Department, Tbilisi State Medical University, Tbilisi, Georgia
| | - Luiza Gabunia
- Pharmacology Department, Tbilisi State Medical University, Tbilisi, Georgia
| | | | - Nodar Sulashvili
- Pharmacology Department, Tbilisi Open University, Tbilisi, Georgia
| | - Levan Ratiani
- Director of the First University Clinic of Tbilisi State Medical University, Tbilisi, Georgia
| | | | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Artashes Aznauryan
- Histology Department, Yerevan State Medical University after M. Heratsi, Yerevan, Republic of Armenia
| |
Collapse
|
4
|
Lim G, Lim CJ, Lee JH, Lee BH, Ryu JY, Oh KS. Identification of new target proteins of a Urotensin-II receptor antagonist using transcriptome-based drug repositioning approach. Sci Rep 2021; 11:17138. [PMID: 34429474 PMCID: PMC8384862 DOI: 10.1038/s41598-021-96612-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
Drug repositioning research using transcriptome data has recently attracted attention. In this study, we attempted to identify new target proteins of the urotensin-II receptor antagonist, KR-37524 (4-(3-bromo-4-(piperidin-4-yloxy)benzyl)-N-(3-(dimethylamino)phenyl)piperazine-1-carboxamide dihydrochloride), using a transcriptome-based drug repositioning approach. To do this, we obtained KR-37524-induced gene expression profile changes in four cell lines (A375, A549, MCF7, and PC3), and compared them with the approved drug-induced gene expression profile changes available in the LINCS L1000 database to identify approved drugs with similar gene expression profile changes. Here, the similarity between the two gene expression profile changes was calculated using the connectivity score. We then selected proteins that are known targets of the top three approved drugs with the highest connectivity score in each cell line (12 drugs in total) as potential targets of KR-37524. Seven potential target proteins were experimentally confirmed using an in vitro binding assay. Through this analysis, we identified that neurologically regulated serotonin transporter proteins are new target proteins of KR-37524. These results indicate that the transcriptome-based drug repositioning approach can be used to identify new target proteins of a given compound, and we provide a standalone software developed in this study that will serve as a useful tool for drug repositioning.
Collapse
Affiliation(s)
- Gyutae Lim
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Chae Jo Lim
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jeong Hyun Lee
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Byung Ho Lee
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jae Yong Ryu
- Department of Biotechnology, Duksung Women's University, 33 Samyang-ro 144-gil, Dobong-gu, Seoul, 01369, Republic of Korea.
| | - Kwang-Seok Oh
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea. .,Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 217 Gajeong-ro, Yuseong,-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
5
|
Jiang P, Pan X, Zhang W, Dai Z, Lu W. Neuromodulatory effects of GnRH on the caudal neurosecretory Dahlgren cells in female olive flounder. Gen Comp Endocrinol 2021; 307:113754. [PMID: 33711313 DOI: 10.1016/j.ygcen.2021.113754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 01/28/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is considered a key player in reproduction. The caudal neurosecretory system (CNSS) is a unique neurosecretory structure of fish that may be involved in osmoregulation, nutrition, reproduction, and stress-related responses. However, a direct effect of GnRH on Dahlgren cells remains underexplored. Here, we examined the electrophysiological response of Dahlgren cell population of the CNSS to GnRH analog LHRH-A2 and the transcription of related key genes of CNSS. We found that GnRH increased overall firing frequency and may be changed the firing pattern from silent to burst or phasic firing in a subpopulation of Dahlgren cells. The effect of GnRH on a subpopulation of Dahlgren cells firing activity was blocked by the GnRH receptor (GnRH-R) antagonist cetrorelix. A positive correlation was observed between the UII and GnRH-R mRNA levels in CNSS or gonadosomatic index (GSI) during the breeding season. These findings are the first demonstration of the ability of GnRH acts as a modulator within the CNSS and add to our understanding of the physiological role of the CNSS in reproduction and seasonal adaptation.
Collapse
Affiliation(s)
- Pengxin Jiang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Xinbei Pan
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Wei Zhang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Zhiqi Dai
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| |
Collapse
|
6
|
Yu QQ, Cheng DX, Xu LR, Li YK, Zheng XY, Liu Y, Li YF, Liu HL, Bai L, Wang R, Fan JL, Liu EQ, Zhao SH. Urotensin II and urantide exert opposite effects on the cellular components of atherosclerotic plaque in hypercholesterolemic rabbits. Acta Pharmacol Sin 2020; 41:546-553. [PMID: 31685976 PMCID: PMC7468446 DOI: 10.1038/s41401-019-0315-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022]
Abstract
Increasing levels of plasma urotensin II (UII) are positively associated with atherosclerosis. In this study we investigated the role of macrophage-secreted UII in atherosclerosis progression, and evaluated the therapeutic value of urantide, a potent competitive UII receptor antagonist, in atherosclerosis treatment. Macrophage-specific human UII-transgenic rabbits and their nontransgenic littermates were fed a high cholesterol diet for 16 weeks to induce atherosclerosis. Immunohistochemical staining of the cellular components (macrophages and smooth muscle cells) of aortic atherosclerotic lesions revealed a significant increase (52%) in the macrophage-positive area in only male transgenic rabbits compared with that in the nontransgenic littermates. However, both male and female transgenic rabbits showed a significant decrease (45% in males and 31% in females) in the smooth muscle cell-positive area compared with that of their control littermates. The effects of macrophage-secreted UII on the plaque cellular components were independent of plasma lipid level. Meanwhile the wild-type rabbits were continuously subcutaneously infused with urantide (5.4 µg· kg-1· h-1) using osmotic mini-pumps. Infusion of urantide exerted effects opposite to those caused by UII, as it significantly decreased the macrophage-positive area in male wild-type rabbits compared with that of control rabbits. In cultured human umbilical vein endothelial cells, treatment with UII dose-dependently increased the expression of the adhesion molecules VCAM-1 and ICAM-1, and this effect was partially reversed by urantide. The current study provides direct evidence that macrophage-secreted UII plays a key role in atherogenesis. Targeting UII with urantide may promote plaque stability by decreasing macrophage-derived foam cell formation, which is an indicator of unstable plaque.
Collapse
|
7
|
Calan M, Arkan T, Kume T, Bayraktar F. The relationship between urotensin II and insulin resistance in women with gestational diabetes mellitus. Hormones (Athens) 2019; 18:91-97. [PMID: 30471011 DOI: 10.1007/s42000-018-0084-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Abstract
AIM Urotensin II (UII), a pluripotent vasoactive peptide, plays a crucial role in development of insulin resistance. Gestational diabetes mellitus (GDM) is a metabolic disorder associated with insulin resistance. The aims of the current study were to compare UII levels in women with or without GDM and to investigate the relationship between UII and insulin resistance in women with GDM. METHODS A total of 84 women were recruited in this case-control study (42 women with GDM and 42 age- and body mass index (BMI)-matched pregnant women without GDM as controls). GDM was diagnosed by a 2-h 75-g oral glucose tolerance test over a period of 24-28 gestational weeks. Circulating UII levels were assessed via the ELISA method. The metabolic parameters of the recruited women were also determined. RESULTS The circulating levels of UII in women with GDM were higher than in controls (11.56 ± 4.13 vs. 7.62 ± 3.45 ng/ml, P < 0.001). UII showed a positive correlation with insulin resistance marker (HOMA-IR), fasting blood glucose, and BMI. Moreover, according to the results of multiple linear regression analyses, UII was independently related to HOMA-IR. Additionally, the binary logistic analysis revealed that the women with the highest tertile of UII levels showed increased risk for GDM by comparison with those women with the lowest tertile of UII levels. CONCLUSION Elevated UII levels are associated with insulin resistance in women with GDM.
Collapse
Affiliation(s)
- Mehmet Calan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Izmir Bozyaka Training and Research Hospital, Bozyaka, 35170, Izmir, Turkey.
| | - Tugba Arkan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University Medical School, Inciralti, 35340, Izmir, Turkey
| | - Tuncay Kume
- Department of Biochemistry and Clinical Biochemistry, Dokuz Eylul University Medical School, Inciralti, 35340, Izmir, Turkey
| | - Fırat Bayraktar
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University Medical School, Inciralti, 35340, Izmir, Turkey
| |
Collapse
|
8
|
Li YY, Shi ZM, Yu XY, Feng P, Wang XJ. Urotensin II-induced insulin resistance is mediated by NADPH oxidase-derived reactive oxygen species in HepG2 cells. World J Gastroenterol 2016; 22:5769-5779. [PMID: 27433090 PMCID: PMC4932212 DOI: 10.3748/wjg.v22.i25.5769] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/12/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigated the effects of urotensin II (UII) on hepatic insulin resistance in HepG2 cells and the potential mechanisms involved.
METHODS: Human hepatoma HepG2 cells were cultured with or without exogenous UII for 24 h, in the presence or absence of 100 nmol/L insulin for the last 30 min. Glucose levels were detected by the glucose-oxidase method and glycogen synthesis was analyzed by glycogen colorimetric/fluorometric assay. Reactive oxygen species (ROS) levels were detected with a multimode reader using a 2′,7′-dichlorofluorescein diacetate probe. The protein expression and phosphorylation levels of c-Jun N-terminal kinase (JNK), insulin signal essential molecules such as insulin receptor substrate -1 (IRS-1), protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), and glucose transporter-2 (Glut 2), and NADPH oxidase subunits such as gp91phox, p67phox, p47phox, p40phox, and p22phox were evaluated by Western blot.
RESULTS: Exposure to 100 nmol/L UII reduced the insulin-induced glucose consumption (P < 0.05) and glycogen content (P < 0.01) in HepG2 cells compared with cells without UII. UII also abolished insulin-stimulated protein expression (P < 0.01) and phosphorylation of IRS-1 (P < 0.05), associated with down-regulation of Akt (P < 0.05) and GSK-3β (P < 0.05) phosphorylation levels, and the expression of Glut 2 (P < 0.001), indicating an insulin-resistance state in HepG2 cells. Furthermore, UII enhanced the phosphorylation of JNK (P < 0.05), while the activity of JNK, insulin signaling, such as total protein of IRS-1 (P < 0.001), phosphorylation of IRS-1 (P < 0.001) and GSK-3β (P < 0.05), and glycogen synthesis (P < 0.001) could be reversed by pretreatment with the JNK inhibitor SP600125. Besides, UII markedly improved ROS generation (P < 0.05) and NADPH oxidase subunit expression (P < 0.05). However, the antioxidant/NADPH oxidase inhibitor apocynin could decrease UII-induced ROS production (P < 0.05), JNK phosphorylation (P < 0.05), and insulin resistance (P < 0.05) in HepG2 cells.
CONCLUSION: UII induces insulin resistance, and this can be reversed by JNK inhibitor SP600125 and antioxidant/NADPH oxidase inhibitor apocynin targeting the insulin signaling pathway in HepG2 cells.
Collapse
|
9
|
Zhao S, Li Y, Gao S, Wang X, Sun L, Cheng D, Bai L, Guan H, Wang R, Fan J, Liu E. Autocrine Human Urotensin II Enhances Macrophage-Derived Foam Cell Formation in Transgenic Rabbits. BIOMED RESEARCH INTERNATIONAL 2015; 2015:843959. [PMID: 26640798 PMCID: PMC4659961 DOI: 10.1155/2015/843959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/29/2015] [Indexed: 11/18/2022]
Abstract
Circulating urotensin II (UII) is involved in the development of atherosclerosis. However, the role of autocrine UII in the development of atherosclerosis remains unclear. Here, we tested the hypothesis that autocrine UII would promote atherosclerosis. Transgenic rabbits were created as a model to study macrophage-specific expressing human UII (hUII) and used to investigate the role of autocrine UII in the development of atherosclerosis. Transgenic rabbits and their nontransgenic littermates were fed a high cholesterol diet to induce atherosclerosis. Comparing the transgenic rabbits with their nontransgenic littermates, it was observed that hUII expression increased the macrophage-positive area in the atherosclerotic lesions by 45% and the positive area ratio by 56% in the transgenic rabbits. Autocrine hUII significantly decreased the smooth muscle cell-positive area ratio in transgenic rabbits (by 54%), without affecting the plasma levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and glucose and adipose tissue contents. These results elucidated for the first time that autocrine UII plays an important role in the development of atherosclerosis by increasing the accumulation of macrophage-derived foam cell.
Collapse
Affiliation(s)
- Sihai Zhao
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Yafeng Li
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Shoucui Gao
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Xiaojing Wang
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Lijing Sun
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Daxing Cheng
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Liang Bai
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Hua Guan
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Rong Wang
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Enqi Liu
- Laboratory for Lipid Metabolism and Atherosclerosis, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| |
Collapse
|
10
|
Liu LM, Zhao L, Liang DY, Yu FP, Ye CG, Tu WJ, Zhu T. Effects of urotensin-II on cytokines in early acute liver failure in mice. World J Gastroenterol 2015; 21:3239-3244. [PMID: 25805930 PMCID: PMC4363753 DOI: 10.3748/wjg.v21.i11.3239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/23/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate urotensin-II (UII) and its effects on tumor necrosis factor (TNF)-α and interleukin (IL)-1β in early acute liver failure (ALF). METHODS We investigated the time-dependent alteration in UII levels and its effects on TNF-α and IL-1β in liver and blood in the early stage of lipopolysaccharide/D-galactosamine-induced ALF. RESULTS After lipopolysaccharide/D-galactosamine challenge, UII rose very rapidly and reached a maximal level 0.5 h, and the level remained significantly elevated after 2 h (P < 0.05). Six hours after challenge, UII began to degrade, but remained higher than at 0 h (P < 0.05). Pretreatment with urantide, an inhibitor of the UII receptor, suppressed the degree of UII increase in liver and blood at 6 h after challenge (P < 0.05 vs paired controls). In addition, liver and blood TNF-α increased from 1 to 6 h, and reached a peak at 1 and 2 h, respectively; however, IL-1β did not rise until 6 h after challenge. Urantide pretreatment inhibited the degree of TNF-α and IL-1β increase following downregulation of UII post-challenge (all P < 0.05). CONCLUSION UII plays a role in the pathogenesis and priming of ALF by triggering an inflammatory cascade and driving the early release of cytokines in mice.
Collapse
|
11
|
Mohammadi A, Najar AG, Khoshi A. Effect of urotensin II on apolipoprotein B100 and apolipoprotein A-I expression in HepG2 cell line. Adv Biomed Res 2014; 3:22. [PMID: 24600602 PMCID: PMC3929015 DOI: 10.4103/2277-9175.124661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/19/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Increased apolipoprotein B100 (apo B) and decreased apolipoprotein A-I (apo A-I) production are important risk factors in atherosclerosis. Urotensin II (UII), as the most potent vasoconstrictor in human, is related with hypertension and probably atherosclerosis. Because of the relationship between the hypertension and lipoprotein metabolism in atherosclerosis, the aim of this study was to test the effect of urotensin II on apo B and apo A-I expression in hepatic (HepG2) cell line. MATERIALS AND METHODS HepG2 cells were treated with 10, 50, 100, and 200 nmol/L of urotensin II (n = 6). Relative apo B and apo A-I messenger RNA (mRNA) levels in conditioned media, normalized to glyceraldehyde-3-phosphate dehydrogenase, were measured with quantitative real-time polymerase chain reaction method. In addition, apo B and apo A-I levels were also estimated and compared with the controls using the western blotting method. Data were analyzed statistically by ANOVA and non-parametric tests. RESULTS The apo B mRNA levels were not increased significantly following the treatment with UII. However, apo B protein levels were increased significantly after the treatment with urotensin II, especially at 100 and 200 nmol/L. The apo A-I mRNA and protein levels in conditioned media also were not significantly changed. However, there was a significant decrease in apo A-I mRNA and protein levels at 200 nM UII. CONCLUSIONS UII might increase apo B at protein level probably through participating factors in its synthesis and/ or stability/degradation. In addition, UII may have decreasing effect at more than 200 nM concentrations on apo A-I.
Collapse
Affiliation(s)
- Abbas Mohammadi
- Department of Biochemistry, Physiology Research Center, Kerman, Iran
| | | | - Amirhosein Khoshi
- Department of Biochemistry, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
You Z, Al Kindi H, Abdul-Karim A, Barrette PO, Schwertani A. Blocking the urotensin II receptor pathway ameliorates the metabolic syndrome and improves cardiac function in obese mice. FASEB J 2013; 28:1210-20. [PMID: 24297699 DOI: 10.1096/fj.13-236471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The metabolic syndrome is defined by the presence of hyperlipidemia, obesity, hypertension, and diabetes. The syndrome is associated with significant cardiovascular morbidity and mortality. The aim of the present study was to determine the role of the vasoactive peptide urotensin II (UII) in the pathogenesis of the metabolic syndrome. We used obese mice (ob/ob) to determine the effect of UII receptor (UT) blockage on the different facets of the metabolic syndrome with special emphasis on cardiac function. Our data demonstrate a significant increase in UII and UT expression in the myocardium of obese mice accompanied by a significant decrease in sarco/endoplasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) expression, as well as intracellular Na(+) and Ca(2+) compared with wild-type mice (P<0.05). Treatment of ob/ob mice with the UII receptor antagonist SB657510 significantly improved glucose levels, blood pressure, hyperlipidemia, expression of myocardial SERCA2a, intracellular Na(+) and Ca(2+) and cardiac function in association with a decrease in weight gain, and mammalian target of rapamycin (mTOR) and sodium/hydrogen exchanger 1 (NHE-1) protein expression compared with vehicle (P<0.05). These findings demonstrate an important role for UII in the pathogenesis of the metabolic syndrome and suggest that the use of UT receptor antagonists may provide a new therapeutic tool for the treatment of this syndrome.
Collapse
Affiliation(s)
- Zhipeng You
- 1McGill University Health Center, Ste. C9-166, Montreal General Hospital, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada.
| | | | | | | | | |
Collapse
|
13
|
Sniderman AD, Qi Y, Ma CIJ, Wang RHL, Naples M, Baker C, Zhang J, Adeli K, Kiss RS. Hepatic cholesterol homeostasis: is the low-density lipoprotein pathway a regulatory or a shunt pathway? Arterioscler Thromb Vasc Biol 2013; 33:2481-90. [PMID: 23990208 DOI: 10.1161/atvbaha.113.301517] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The hypothesis that cholesterol that enters the cell within low-density lipoprotein (LDL) particles rapidly equilibrates with the regulatory pool of intracellular cholesterol and maintains cholesterol homeostasis by reducing cholesterol and LDL receptor synthesis was validated in the fibroblast but not in the hepatocyte. Accordingly, the present studies were designed to compare the effects of cholesterol that enters the hepatocyte within an LDL particle with those of cholesterol that enters via other lipoprotein particles. APPROACH AND RESULTS We measured cholesterol synthesis and esterification in hamster hepatocytes treated with LDL and other lipoprotein particles, including chylomicron remnants and VLDL. Endogenous cholesterol synthesis was not significantly reduced by uptake of LDL, but cholesterol esterification (280%) and acyl CoA:cholesterol acyltransferase 2 expression (870%) were increased. In contrast, cholesterol synthesis was significantly reduced (70% decrease) with other lipoprotein particles. Furthermore, more cholesterol that entered the hepatocyte within LDL particles was secreted within VLDL particles (480%) compared with cholesterol from other sources. CONCLUSIONS Much of the cholesterol that enters the hepatocyte within LDL particles is shunted through the cell and resecreted within VLDL particles without reaching equilibrium with the regulatory pool.
Collapse
Affiliation(s)
- Allan D Sniderman
- From the Department of Medicine, Cardiovascular Research Laboratories, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada (A.D.S., Y.Q., C.J.M., R.H.L.W., R.S.K.); Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (M.N., C.B., J.Z., K.A.); and Department of Biochemistry and Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada (M.N., C.B., J.Z., K.A.)
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liang DY, Liu LM, Ye CG, Zhao L, Yu FP, Gao DY, Wang YY, Yang ZW, Wang YY. Inhibition of UII/UTR system relieves acute inflammation of liver through preventing activation of NF-κB pathway in ALF mice. PLoS One 2013; 8:e64895. [PMID: 23755157 PMCID: PMC3670940 DOI: 10.1371/journal.pone.0064895] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/19/2013] [Indexed: 02/06/2023] Open
Abstract
Urotensin II (UII) is implicated in immune inflammatory diseases through its specific high-affinity UT receptor (UTR). Enhanced expression of UII/UTR was recently demonstrated in the liver with acute liver failure (ALF). Here, we analysed the relationship between UII/UTR expression and ALF in lipopolysaccharide (LPS)/D-galactosamine (GalN)-challenged mice. Thereafter, we investigated the effects produced by the inhibition of UII/UTR system using urantide, a special antagonist of UTR, and the potential molecular mechanisms involved in ALF. Urantide was administered to mice treated with LPS/GalN. Expression of UII/UTR, releases of proinflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interferon-γ (IFN-γ), and activation of nuclear factor κB (NF-κB) signaling pathway were assessed in the lethal ALF with or without urantide pretreatment. We found that LPS/GalN-challenged mice showed high mortality and marked hepatic inflammatory infiltration and cell apoptosis as well as a significant increase of UII/UTR expression. Urantide pretreatment protected against the injury in liver following downregulation of UII/UTR expression. A close relationship between the acutely flamed hepatic injury and UII/UTR expression was observed. In addition, urantide prevented the increases of proinflammatory cytokines such as TNF-α, IL-1β and IFN-γ, and activation of NF-κB signaling pathway induced by LPS/GalN in mice. Thus, we conclude that UII/UTR system plays a role in LPS/GalN-induced ALF. Urantide has a protective effect on the acutely inflamed injury of liver in part through preventing releases of proinflammatory cytokines and activation of NF-κB pathway.
Collapse
Affiliation(s)
- Dong-yu Liang
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Liang-ming Liu
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
- Department of Infection, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Chang-gen Ye
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
- Department of Infection, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Liang Zhao
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Fang-ping Yu
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - De-yong Gao
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
- Department of Infection, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Ying-ying Wang
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Zhi-wen Yang
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Yan-yan Wang
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
15
|
Liu LM, Liang DY, Zhang FF, Yu FP, Zhao L, Ye CG. Expression and role of Urotensin Ⅱ in lipopolysaccharide/D-galactosamine-induced acute liver failure in mice. Shijie Huaren Xiaohua Zazhi 2012; 20:1616-1622. [DOI: 10.11569/wcjd.v20.i18.1616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression and role of Urotensin Ⅱ (UⅡ) in lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced acute liver failure (ALF) in mice.
METHODS: Male Balb/c mice were randomly and equally divided into four groups: normal control group (group A), pre-treatment control group (group B), ALF model group (group C), and pre-treatment model group (group D). ALF were induced in mice by intraperitoneal injection of LPS (50 μg/kg body weight)/D-GalN (800 mg/kg body weight). The pre-treatment mice were intravenously injected with Urantide (0.6 mg/kg body weight) 30 min before model induction. Serum and liver tissues were sampled 12 h after LPS/D-GalN injection. Mortality was calculated 24 h after attack. Serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were detected using the Reitman-Frankel method. Histopathological changes were observed by hematoxylin and eosin (HE) staining. Serum UⅡ levels were assessed by ELISA, and the expression of UⅡ and UT was detected by RT-PCR and immunohistochemistry.
RESULTS: A mortality of 66.7% was observed in group C, while all mice of groups A, B and D survived. Serum ALT and AST levels had a dramatic increase in groups C and D, but were significantly lower in group D than in group C (2 271.09 U/L ± 102.24 U/L vs 1 160.67 U/L ± 258.32 U/L, 1 569.42 U/L ± 204.04 U/L vs 1 030.31 U/L ± 108.09 U/L, both P < 0.01). Widespread destruction of liver architecture, hemorrhagic necrosis, and neutrophil infiltration were noted in group C, whereas liver architecture was completely preserved, and focal necrosis and fewer neutrophil infiltrates were observed in group D. After LPS/D-GalN challenge, serum UⅡ levels increased sharply in groups C and D, but were lower in group D than in group C (3.73 μg/L ± 0.52 μg/L vs 1.90 μg/L ± 0.27 μg/L, both P < 0.01). Overexpression of liver UⅡ and UT mRNAs and proteins was induced by the injection of LPS/D-GalN in groups C and D. Compared to group C, group D had lower levels of UⅡ and UT in the liver.
CONCLUSION: UⅡ expression and secretion can be induced by LPS/D-GalN challenge in the liver tissue of ALF mice via a positive feedback mechanism associated with promoting the expression of its receptor UT. UⅡ/UT receptor may be a vital mediator of LPS/D-GalN-induced ALF.
Collapse
|
16
|
You Z, Genest J, Barrette PO, Hafiane A, Behm DJ, D'Orleans-Juste P, Schwertani AG. Genetic and pharmacological manipulation of urotensin II ameliorate the metabolic and atherosclerosis sequalae in mice. Arterioscler Thromb Vasc Biol 2012; 32:1809-16. [PMID: 22723440 DOI: 10.1161/atvbaha.112.252973] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Urotensin II (UII) is a potent vasoactive peptide that binds to the urotensin receptor-coupled receptor-14 (known as UT) and exerts a wide range of actions in humans and experimental animals. We tested the hypothesis that UII gene deletion or UT blockade ameliorate experimental atherosclerosis. METHODS AND RESULTS We observed a significant reduction in weight gain, visceral fat, blood pressure, circulating plasma lipids, and proatherogenic cytokines and improvement of glucose tolerance in UII knockout mice compared with wild type (P<0.05). Deletion of UII after an apolipoprotein E knockout resulted in a significant reduction in serum cytokines, adipokines, and aortic atherosclerosis compared with apolipoprotein E knockout mice. Similarly, treatment of apolipoprotein E knockout mice fed on high-fat diet with the UT antagonist SB657510A reduced weight gain, visceral fat, and hyperlipidemia and improved glucose tolerance (P<0.05) and attenuated the initiation and progression of atherosclerosis. The UT antagonist also decreased aortic extracellular signal-regulated kinase 1/2 phosphorylation and oxidant formation and serum level of cytokines (P<0.05). CONCLUSIONS These findings demonstrate for the first time the role of UII gene deletion in atherosclerosis and suggest that the use of pharmaceutical agents aimed at blocking the UII pathway may provide a novel approach in the treatment of atherosclerosis and its associated precursors such as obesity, hyperlipidemia, diabetes mellitus, and hypertension.
Collapse
Affiliation(s)
- Zhipeng You
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Ma CIJ, Beckstead JA, Thompson A, Hafiane A, Wang RHL, Ryan RO, Kiss RS. Tweaking the cholesterol efflux capacity of reconstituted HDL. Biochem Cell Biol 2012; 90:636-45. [PMID: 22607224 DOI: 10.1139/o2012-015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanisms to increase plasma high-density lipoprotein (HDL) or to promote egress of cholesterol from cholesterol-loaded cells (e.g., foam cells from atherosclerotic lesions) remain an important target to regress heart disease. Reconstituted HDL (rHDL) serves as a valuable vehicle to promote cellular cholesterol efflux in vitro and in vivo. rHDL were prepared with wild type apolipoprotein (apo) A-I and the rare variant, apoA-I Milano (M), and each apolipoprotein was reconstituted with phosphatidylcholine (PC) or sphingomyelin (SM). The four distinct rHDL generated were incubated with CHO cells, J774 macrophages, and BHK cells in cellular cholesterol efflux assays. In each cell type, apoA-I(M) SM-rHDL promoted the greatest cholesterol efflux. In BHK cells, the cholesterol efflux capacities of all four distinct rHDL were greatly enhanced by increased expression of ABCG1. Efflux to PC-containing rHDL was stimulated by transfection of a nonfunctional ABCA1 mutant (W590S), suggesting that binding to ABCA1 represents a competing interaction. This interpretation was confirmed by binding experiments. The data show that cholesterol efflux activity is dependent upon the apoA-I protein employed, as well as the phospholipid constituent of the rHDL. Future studies designed to optimize the efflux capacity of therapeutic rHDL may improve the value of this emerging intervention strategy.
Collapse
Affiliation(s)
- Cheng-I J Ma
- Cardiovascular Research Laboratories, Department of Medicine, Royal Victoria Hospital, 687 Pine Avenue West, Montreal, QC H3A 1A1, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Lee CY, Ruel I, Denis M, Genest J, Kiss RS. Cholesterol trapping in Niemann-Pick disease type B fibroblasts can be relieved by expressing the phosphotyrosine binding domain of GULP. J Clin Lipidol 2012; 7:153-64. [PMID: 23415435 DOI: 10.1016/j.jacl.2012.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Impairment of acid sphingomyelinase (SMase) results in accumulation of sphingomyelin (SM) and cholesterol in late endosomes, the hallmarks of a lysosomal storage disease. OBJECTIVE We describe cellular lipid metabolism in fibroblasts from two patients with novel compound heterozygote mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene manifesting as Niemann-Pick disease type B (NPB) and demonstrate mechanisms to overcome the storage defect. METHODS Using biochemical assays and confocal microscopy, we provide evidence that accumulated lysosomal SM and cholesterol can be released by different treatments. RESULTS Defective SMase activity in these fibroblasts results in a 2.5-fold increased cellular mass of SM and cholesterol, increased de novo endogenous cholesterol synthesis, and decreased cholesterol esterification, demonstrating impaired intracellular cholesterol homeostasis. Depletion of exogenous addition of cholesterol for 24 hours or addition of the cholesterol acceptor apolipoprotein A-I are sufficient to restore normal homeostatic responses. In an effort to correct the lysosomal storage phenotype of NPB, we infected the fibroblasts with a lentivirus expressing the phosphotyrosine binding domain of the adapter protein GULP (PTB-GULP). We have previously shown that expression of PTB-GULP in Chinese hamster ovary cells promotes intracellular cholesterol trafficking and ABCA1-mediated cholesterol efflux. We find that expression of PTB-GULP in NPB fibroblasts results in increased ABCA1 expression, increased cellular cholesterol efflux and lysosomal cholesterol redistribution, independent of the impaired SMase and cholesterol presence. CONCLUSION We provide extensive functional characterization of a novel compound heterozygote mutation and provide a novel functional mechanism to overcome lysosomal storage disease defects.
Collapse
Affiliation(s)
- Ching Yin Lee
- Cardiovascular Sciences Research Laboratories, Division of Cardiology, McGill University Health Center/Royal Victoria Hospital, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
19
|
Barrette PO, Schwertani AG. A closer look at the role of urotensin II in the metabolic syndrome. Front Endocrinol (Lausanne) 2012; 3:165. [PMID: 23293629 PMCID: PMC3531708 DOI: 10.3389/fendo.2012.00165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/29/2012] [Indexed: 12/12/2022] Open
Abstract
Urotensin II (UII) is a vasoactive peptide that was first discovered in the teleost fish, and later in mammals and humans. UII binds to the G protein coupled receptor GPR14 (now known as UT). UII mediates important physiological and pathological actions by interacting with its receptor. The metabolic syndrome (MetS) is described as cluster of factors such as obesity, dyslipidemia, hypertension, and insulin resistance (IR), further leading to development of type 2 diabetes mellitus and cardiovascular diseases. UII levels are upregulated in patients with the MetS. Evidence directly implicating UII in every risk factor of the MetS has been accumulated. The mechanism that links the different aspects of the MetS relies primarily on IR and inflammation. By directly modulating both of these factors, UII is thought to play a central role in the pathogenesis of the MetS. Moreover, UII also plays an important role in hypertension and hyperlipidemia thereby contributing to cardiovascular complications associated with the MetS.
Collapse
Affiliation(s)
| | - Adel Giaid Schwertani
- *Correspondence: Adel Giaid Schwertani, Division of Cardiology, Department of Medicine, McGill University Health Center, 1650 Cedar Avenue, Room C9-166, Montreal, QC, Canada H3G 1A4. e-mail:
| |
Collapse
|