1
|
Kulig K, Rapala-Kozik M, Karkowska-Kuleta J. Extracellular vesicle production: A bidirectional effect in the interplay between host and Candida fungi. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100255. [PMID: 39040088 PMCID: PMC11260599 DOI: 10.1016/j.crmicr.2024.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Candida fungi exploit various virulence strategies to invade the human host, while host cells employ diverse mechanisms to maintain homeostasis and respond to infection. Extracellular vesicles (EVs) are integral components of the multifaceted landscape of host-pathogen interactions, with their abundant production by all contributors involved in these complex and dynamic relations. Herein, we present the current state of knowledge regarding the host response by releasing EVs in reaction to Candida, as well as the influence of fungal EVs on the functionality of the confronted host cells. Fungal vesicles contribute to enhanced adhesion of pathogens to human cells as evidenced for C. auris, and may modulate the production of several cytokines, including IL-6, IL-8, IL-10, IL-12p40, TGF-β and TNF-α, thereby exerting pro-infective and pro-inflammatory effects, as described for C. albicans and other Candida species. Whereas the biosynthesis of EVs by host cells can dynamically modulate the proliferation and viability of fungal cells and affect the candidacidal functionality of other effector cells. The reciprocal influence of EVs from host cells and Candida pathogens is a key focus, explaining their significant role in cell signaling and interkingdom communication.
Collapse
Affiliation(s)
- Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
2
|
Alves SAS, Teixeira DE, Peruchetti DB, Silva LS, Brandão LFP, Caruso-Neves C, Pinheiro AAS. Bradykinin produced during Plasmodium falciparum erythrocytic cycle drives monocyte adhesion to human brain microvascular endothelial cells. Brain Res 2024; 1822:148669. [PMID: 37951562 DOI: 10.1016/j.brainres.2023.148669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Cerebral malaria (CM) pathogenesis is described as a multistep mechanism. In this context, monocytes have been implicated in CM pathogenesis by increasing the sequestration of infected red blood cells to the brain microvasculature. In disease, endothelial activation is followed by reduced monocyte rolling and increased adhesion. Nowadays, an important challenge is to identify potential pro-inflammatory stimuli that can modulate monocytes behavior. Our group have demonstrated that bradykinin (BK), a pro-inflammatory peptide involved in CM, is generated during the erythrocytic cycle of P. falciparum and is detected in culture supernatant (conditioned medium). Herein we investigated the role of BK in the adhesion of monocytes to endothelial cells of blood brain barrier (BBB). To address this issue human monocytic cell line (THP-1) and human brain microvascular endothelial cells (hBMECs) were used. It was observed that 20% conditioned medium from P. falciparum infected erythrocytes (Pf-iRBC sup) increased the adhesion of THP-1 cells to hBMECs. This effect was mediated by BK through the activation of B2 and B1 receptors and involves the increase in ICAM-1 expression in THP-1 cells. Additionally, it was observed that angiotensin-converting enzyme (ACE) inhibitor, captopril, enhanced the effect of both BK and Pf-iRBC sup on THP-1 adhesion. Together these data show that BK, generated during the erythrocytic cycle of P. falciparum, could play an important role in adhesion of monocytes in endothelial cells lining the BBB.
Collapse
Affiliation(s)
- Sarah A S Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro S Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Felipe P Brandão
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTIC, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Werelusz P, Galiniak S, Mołoń M. Molecular functions of moonlighting proteins in cell metabolic processes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119598. [PMID: 37774631 DOI: 10.1016/j.bbamcr.2023.119598] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
Moonlighting proteins have more than one physiologically significant role within one polypeptide chain. The multifunctionality of proteins was first described in 1987 by Joram Piatigorsky and Graeme Wistow. Cells can benefit from involvement of these proteins in biological processes in several ways, e.g. at the energy level. Furthermore, cells have developed a number of mechanisms to change these proteins' functions. Moonlighting proteins are found in all types of organisms, including prokaryotes, eukaryotes, and even viruses. These proteins include a variety of enzymes that serve as receptors, secreted cytokines, transcription factors, or proteasome components. Additionally, there are many combinations of functions, e.g. among receptors and transcription factors, chaperones and cytokines, as well as transcription factors within the ribosome. This work describes enzymes involved in several important metabolic processes in cells, namely cellular respiration, gluconeogenesis, the urea cycle, and pentose phosphate metabolism.
Collapse
Affiliation(s)
| | - Sabina Galiniak
- Institute of Medical Sciences, Rzeszów University, Rzeszów, Poland
| | - Mateusz Mołoń
- Institute of Biology, Rzeszów University, Rzeszów, Poland.
| |
Collapse
|
4
|
Curtis NJ, Patel KJ, Rizwan A, Jeffery CJ. Moonlighting Proteins: Diverse Functions Found in Fungi. J Fungi (Basel) 2023; 9:1107. [PMID: 37998912 PMCID: PMC10672435 DOI: 10.3390/jof9111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Moonlighting proteins combine multiple functions in one polypeptide chain. An increasing number of moonlighting proteins are being found in diverse fungal taxa that vary in morphology, life cycle, and ecological niche. In this mini-review we discuss examples of moonlighting proteins in fungi that illustrate their roles in transcription and DNA metabolism, translation and RNA metabolism, protein folding, and regulation of protein function, and their interaction with other cell types and host proteins.
Collapse
Affiliation(s)
- Nicole J. Curtis
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (N.J.C.); (K.J.P.)
| | - Krupa J. Patel
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (N.J.C.); (K.J.P.)
| | | | - Constance J. Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (N.J.C.); (K.J.P.)
| |
Collapse
|
5
|
Wei Y, Wang Z, Liu Y, Liao B, Zong Y, Shi Y, Liao M, Wang J, Zhou X, Cheng L, Ren B. Extracellular vesicles of Candida albicans regulate its own growth through the l-arginine/nitric oxide pathway. Appl Microbiol Biotechnol 2022; 107:355-367. [PMCID: PMC9703431 DOI: 10.1007/s00253-022-12300-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Wei
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Zheng Wang
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Yawen Zong
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Min Liao
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Jiannan Wang
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| | - Biao Ren
- State Key Laboratory of Oral Diseases &, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610000 Sichuan Province China
| |
Collapse
|
6
|
Pirovich DB, Da'dara AA, Skelly PJ. Schistosoma mansoni phosphoglycerate mutase: a glycolytic ectoenzyme with thrombolytic potential. PARASITE (PARIS, FRANCE) 2022; 29:41. [PMID: 36083036 PMCID: PMC9461710 DOI: 10.1051/parasite/2022042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/28/2022] [Indexed: 11/14/2022]
Abstract
Schistosomiasis is a debilitating parasitic disease caused by intravascular flatworms called schistosomes (blood flukes) that affects >200 million people worldwide. Proteomic analysis has revealed the surprising presence of classical glycolytic enzymes – typically cytosolic proteins – located on the extracellular surface of the parasite tegument (skin). Immunolocalization experiments show that phosphoglycerate mutase (PGM) is widely expressed in parasite tissues and is highly expressed in the tegument. We demonstrate that live Schistosoma mansoni parasites express enzymatically active PGM on their tegumental surface. Suppression of PGM using RNA interference (RNAi) diminishes S. mansoni PGM (SmPGM) gene expression, protein levels, and surface enzyme activity. Sequence comparisons place SmPGM in the cofactor (2,3-bisphosphoglycerate)-dependent PGM (dPGM) family. We have produced recombinant SmPGM (rSmPGM) in an enzymatically active form in Escherichia coli. The Michaelis-Menten constant (Km) of rSmPGM for its glycolytic substrate (3-phosphoglycerate) is 0.85 mM ± 0.02. rSmPGM activity is inhibited by the dPGM-specific inhibitor vanadate. Here, we show that rSmPGM not only binds to plasminogen but also promotes its conversion to an active form (plasmin) in vitro. This supports the hypothesis that host-interactive tegumental proteins (such as SmPGM), by enhancing plasmin formation, may help degrade blood clots around the worms in the vascular microenvironment and thus promote parasite survival in vivo.
Collapse
Affiliation(s)
- David B Pirovich
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Akram A Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| |
Collapse
|
7
|
Arvizu-Rubio VJ, García-Carnero LC, Mora-Montes HM. Moonlighting proteins in medically relevant fungi. PeerJ 2022; 10:e14001. [PMID: 36117533 PMCID: PMC9480056 DOI: 10.7717/peerj.14001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/13/2022] [Indexed: 01/19/2023] Open
Abstract
Moonlighting proteins represent an intriguing area of cell biology, due to their ability to perform two or more unrelated functions in one or many cellular compartments. These proteins have been described in all kingdoms of life and are usually constitutively expressed and conserved proteins with housekeeping functions. Although widely studied in pathogenic bacteria, the information about these proteins in pathogenic fungi is scarce, but there are some reports of their functions in the etiological agents of the main human mycoses, such as Candida spp., Paracoccidioides brasiliensis, Histoplasma capsulatum, Aspergillus fumigatus, Cryptococcus neoformans, and Sporothrix schenckii. In these fungi, most of the described moonlighting proteins are metabolic enzymes, such as enolase and glyceraldehyde-3-phosphate dehydrogenase; chaperones, transcription factors, and redox response proteins, such as peroxiredoxin and catalase, which moonlight at the cell surface and perform virulence-related processes, contributing to immune evasion, adhesions, invasion, and dissemination to host cells and tissues. All moonlighting proteins and their functions described in this review highlight the limited information about this biological aspect in pathogenic fungi, representing this a relevant opportunity area that will contribute to expanding our current knowledge of these organisms' pathogenesis.
Collapse
|
8
|
Miryala SK, Anbarasu A, Ramaiah S. Organ-specific host differential gene expression analysis in systemic candidiasis: A systems biology approach. Microb Pathog 2022; 169:105677. [PMID: 35839997 PMCID: PMC9283004 DOI: 10.1016/j.micpath.2022.105677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/19/2022]
Abstract
Patients admitted to the hospital with coronavirus disease (COVID-19) are at risk for acquiring mycotic infections in particular Candidemia. Candida albicans (C. albicans) constitutes an important component of the human mycobiome and the most common cause of invasive fungal infections. Invasive yeast infections are gaining interest among the scientific community as a consequence of complications associated with severe COVID-19 infections. Early identification and surveillance for Candida infections is critical for decreasing the COVID-19 mortality. Our current study attempted to understand the molecular-level interactions between the human genes in different organs during systematic candidiasis. Our research findings have shed light on the molecular events that occur during Candidiasis in organs such as the kidney, liver, and spleen. The differentially expressed genes (up and down-regulated) in each organ will aid in designing organ-specific therapeutic protocols for systemic candidiasis. We observed organ-specific immune responses such as the development of the acute phase response in the liver; TGF-pathway and genes involved in lymphocyte activation, and leukocyte proliferation in the kidney. We have also observed that in the kidney, filament production, up-regulation of iron acquisition mechanisms, and metabolic adaptability are aided by the late initiation of innate defense mechanisms, which is likely related to the low number of resident immune cells and the sluggish recruitment of new effector cells. Our findings point to major pathways that play essential roles in specific organs during systemic candidiasis. The hub genes discovered in the study can be used to develop novel drugs for clinical management of Candidiasis.
Collapse
Affiliation(s)
- Sravan Kumar Miryala
- Medical and Biological Computing Laboratory, School of Biosciences and Technology Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Phan QT, Solis NV, Lin J, Swidergall M, Singh S, Liu H, Sheppard DC, Ibrahim AS, Mitchell AP, Filler SG. Serum bridging molecules drive candidal invasion of human but not mouse endothelial cells. PLoS Pathog 2022; 18:e1010681. [PMID: 35797411 PMCID: PMC9295963 DOI: 10.1371/journal.ppat.1010681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/19/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
During hematogenously disseminated candidiasis, blood borne fungi must invade the endothelial cells that line the blood vessels to infect the deep tissues. Although Candida albicans, which forms hyphae, readily invades endothelial cells, other medically important species of Candida are poorly invasive in standard in vitro assays and have low virulence in immunocompetent mouse models of disseminated infection. Here, we show that Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei can bind to vitronectin and high molecular weight kininogen present in human serum. Acting as bridging molecules, vitronectin and kininogen bind to αv integrins and the globular C1q receptor (gC1qR), inducing human endothelial cells to endocytose the fungus. This mechanism of endothelial cell invasion is poorly supported by mouse endothelial cells but can be restored when mouse endothelial cells are engineered to express human gC1qR or αv integrin. Overall, these data indicate that bridging molecule-mediated endocytosis is a common pathogenic strategy used by many medically important Candida spp. to invade human vascular endothelial cells.
Collapse
Affiliation(s)
- Quynh T. Phan
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Norma V. Solis
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Jianfeng Lin
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Marc Swidergall
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Shakti Singh
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Hong Liu
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Donald C. Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ashraf S. Ibrahim
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Scott G. Filler
- Institute for Infection and Immunity, Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Proteinous Components of Neutrophil Extracellular Traps Are Arrested by the Cell Wall Proteins of Candida albicans during Fungal Infection, and Can Be Used in the Host Invasion. Cells 2021; 10:cells10102736. [PMID: 34685715 PMCID: PMC8534323 DOI: 10.3390/cells10102736] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/08/2023] Open
Abstract
One of defense mechanisms of the human immune system to counteract infection by the opportunistic fungal pathogen Candida albicans is the recruitment of neutrophils to the site of invasion, and the subsequent production of neutrophil extracellular traps (NETs) that efficiently capture and kill the invader cells. In the current study, we demonstrate that within these structures composed of chromatin and proteins, the latter play a pivotal role in the entrapment of the fungal pathogen. The proteinous components of NETs, such as the granular enzymes elastase, myeloperoxidase and lactotransferrin, as well as histones and cathelicidin-derived peptide LL-37, are involved in contact with the surface of C. albicans cells. The fungal partners in these interactions are a typical adhesin of the agglutinin-like sequence protein family Als3, and several atypical surface-exposed proteins of cytoplasmic origin, including enolase, triosephosphate isomerase and phosphoglycerate mutase. Importantly, the adhesion of both the elastase itself and the mixture of proteins originating from NETs on the C. albicans cell surface considerably increased the pathogen potency of human epithelial cell destruction compared with fungal cells without human proteins attached. Such an implementation of adsorbed NET-derived proteins by invading C. albicans cells might alter the effectiveness of the fungal pathogen entrapment and affect the further host colonization.
Collapse
|
11
|
Karkowska-Kuleta J, Wronowska E, Satala D, Zawrotniak M, Bras G, Kozik A, Nobbs AH, Rapala-Kozik M. Als3-mediated attachment of enolase on the surface of Candida albicans cells regulates their interactions with host proteins. Cell Microbiol 2020; 23:e13297. [PMID: 33237623 DOI: 10.1111/cmi.13297] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
The multifunctional protein enolase has repeatedly been identified on the surface of numerous cell types, including a variety of pathogenic microorganisms. In Candida albicans-one of the most common fungal pathogens in humans-a surface-exposed enolase form has been previously demonstrated to play an important role in candidal pathogenicity. In our current study, the presence of enolase at the fungal cell surface under different growth conditions was examined, and a higher abundance of enolase at the surface of C. albicans hyphal forms compared to yeast-like cells was found. Affinity chromatography and chemical cross-linking indicated a member of the agglutinin-like sequence protein family-Als3-as an important potential partner required for the surface display of enolase. Analysis of Saccharomyces cerevisiae cells overexpressing Als3 with site-specific deletions showed that the Ig-like N-terminal region of Als3 (aa 166-225; aa 218-285; aa 270-305; aa 277-286) and the central repeat domain (aa 434-830) are essential for the interaction of this adhesin with enolase. In addition, binding between enolase and Als3 influenced subsequent docking of host plasma proteins-high molecular mass kininogen and plasminogen-on the candidal cell surface, thus supporting the hypothesis that C. albicans can modulate plasma proteolytic cascades to affect homeostasis within the host and propagate inflammation during infection.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Dorota Satala
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
12
|
Dagnino APA, Campos MM, Silva RBM. Kinins and Their Receptors in Infectious Diseases. Pharmaceuticals (Basel) 2020; 13:ph13090215. [PMID: 32867272 PMCID: PMC7558425 DOI: 10.3390/ph13090215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Kinins and their receptors have been implicated in a series of pathological alterations, representing attractive pharmacological targets for several diseases. The present review article aims to discuss the role of the kinin system in infectious diseases. Literature data provides compelling evidence about the participation of kinins in infections caused by diverse agents, including viral, bacterial, fungal, protozoan, and helminth-related ills. It is tempting to propose that modulation of kinin actions and production might be an adjuvant strategy for management of infection-related complications.
Collapse
|
13
|
Moonlighting Proteins at the Candidal Cell Surface. Microorganisms 2020; 8:microorganisms8071046. [PMID: 32674422 PMCID: PMC7409194 DOI: 10.3390/microorganisms8071046] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022] Open
Abstract
The cell wall in Candida albicans is not only a tight protective envelope but also a point of contact with the human host that provides a dynamic response to the constantly changing environment in infection niches. Particularly important roles are attributed to proteins exposed at the fungal cell surface. These include proteins that are stably and covalently bound to the cell wall or cell membrane and those that are more loosely attached. Interestingly in this regard, numerous loosely attached proteins belong to the class of “moonlighting proteins” that are originally intracellular and that perform essentially different functions in addition to their primary housekeeping roles. These proteins also demonstrate unpredicted interactions with non-canonical partners at an a priori unexpected extracellular location, achieved via non-classical secretion routes. Acting both individually and collectively, the moonlighting proteins contribute to candidal virulence and pathogenicity through their involvement in mechanisms critical for successful host colonization and infection, such as the adhesion to host cells, interactions with plasma homeostatic proteolytic cascades, responses to stress conditions and molecular mimicry. The documented knowledge of the roles of these proteins in C. albicans pathogenicity has utility for assisting the design of new therapeutic, diagnostic and preventive strategies against candidiasis.
Collapse
|
14
|
Peptidylarginine Deiminase of Porphyromonas gingivalis Modulates the Interactions between Candida albicans Biofilm and Human Plasminogen and High-Molecular-Mass Kininogen. Int J Mol Sci 2020; 21:ijms21072495. [PMID: 32260245 PMCID: PMC7177930 DOI: 10.3390/ijms21072495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Microorganisms that create mixed-species biofilms in the human oral cavity include, among others, the opportunistic fungus Candida albicans and the key bacterial pathogen in periodontitis, Porphyromonas gingivalis. Both species use arsenals of virulence factors to invade the host organism and evade its immune system including peptidylarginine deiminase that citrullinates microbial and host proteins, altering their function. We assessed the effects of this modification on the interactions between the C. albicans cell surface and human plasminogen and kininogen, key components of plasma proteolytic cascades related to the maintenance of hemostasis and innate immunity. Mass spectrometry was used to identify protein citrullination, and microplate tests to quantify the binding of modified plasminogen and kininogen to C. albicans cells. Competitive radioreceptor assays tested the affinity of citrullinated kinins to their specific cellular receptors. The citrullination of surface-exposed fungal proteins reduced the level of unmodified plasminogen binding but did not affect unmodified kininogen binding. However, the modification of human proteins did not disrupt their adsorption to the unmodified fungal cells. In contrast, the citrullination of kinins exerted a significant impact on their interactions with cellular receptors reducing their affinity and thus affecting the role of kinin peptides in the development of inflammation.
Collapse
|
15
|
Karkowska-Kuleta J, Satala D, Bochenska O, Rapala-Kozik M, Kozik A. Moonlighting proteins are variably exposed at the cell surfaces of Candida glabrata, Candida parapsilosis and Candida tropicalis under certain growth conditions. BMC Microbiol 2019; 19:149. [PMID: 31269895 PMCID: PMC6609379 DOI: 10.1186/s12866-019-1524-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adaptability to different environmental conditions is an essential characteristic of pathogenic microorganisms as it facilitates their invasion of host organisms. The most external component of pathogenic yeast-like fungi from the Candida genus is the multilayered cell wall. This structure is composed mainly of complex polysaccharides and proteins that can undergo dynamic changes to adapt to the environmental conditions of colonized niches. RESULTS We utilized cell surface shaving with trypsin and a shotgun proteomic approach to reveal the surface-exposed proteins of three important non-albicans Candida species-C. glabrata, C. parapsilosis and C. tropicalis. These proteinaceous components were identified after the growth of the fungal cells in various culture media, including artificial saliva, artificial urine and vagina-simulative medium under aerobic conditions and anaerobically in rich YPD medium. Several known proteins involved in cell wall maintenance and fungal pathogenesis were identified at the cell surface as were a number of atypical cell wall components-pyruvate decarboxylase (Pdc11), enolase (Eno1) and glyceraldehyde-3-phosphate dehydrogenase (Tdh3) which are so-called 'moonlighting' proteins. Notably, many of these proteins showed significant upregulation at the cell surface in growth media mimicking the conditions of infection compared to defined synthetic medium. CONCLUSIONS Moonlighting proteins are expressed under diverse conditions at the cell walls of the C. glabrata, C. parapsilosis and C. tropicalis fungal pathogens. This indicates a possible universal surface-associated role of these factors in the physiology of these fungi and in the pathology of the infections they cause.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Dorota Satala
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
16
|
Karkowska-Kuleta J, Bartnicka D, Zawrotniak M, Zielinska G, Kieronska A, Bochenska O, Ciaston I, Koziel J, Potempa J, Baster Z, Rajfur Z, Rapala-Kozik M. The activity of bacterial peptidylarginine deiminase is important during formation of dual-species biofilm by periodontal pathogen Porphyromonas gingivalis and opportunistic fungus Candida albicans. Pathog Dis 2018; 76:4969680. [PMID: 29668945 PMCID: PMC6251568 DOI: 10.1093/femspd/fty033] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/11/2018] [Indexed: 12/19/2022] Open
Abstract
Porphyromonas gingivalis, an anaerobic Gram-negative bacterium critically involved in the development of human periodontitis, belongs to the late colonizers of the oral cavity. The success of this pathogen in the host colonization and infection results from the presence of several virulence factors, including extracellular peptidylarginine deiminase (PPAD), an enzyme that converts protein arginine residues to citrullines. A common opportunistic fungal pathogen of humans, Candida albicans, is also frequently identified among microorganisms that reside at subgingival sites. The aim of the current work was to verify if protein citrullination can influence the formation of mixed biofilms by both microorganisms under hypoxic and normoxic conditions. Quantitative estimations of the bacterial adhesion to fungal cells demonstrated the importance of PPAD activity in this process, since the level of binding of P. gingivalis mutant strain deprived of PPAD was significantly lower than that observed for the wild-type strain. These results were consistent with mass spectrometric detection of the citrullination of selected surface-exposed C. albicans proteins. Furthermore, a viability of P. gingivalis cells under normoxia increased in the presence of fungal biofilm compared with the bacteria that formed single-species biofilm. These findings suggest a possible protection of these strict anaerobes under unfavorable aerobic conditions by C. albicans during mixed biofilm formation.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Dominika Bartnicka
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Gabriela Zielinska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Anna Kieronska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Izabela Ciaston
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| | - Zbigniew Baster
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland
| |
Collapse
|
17
|
Abstract
The name human contact system is related to its mode of action, as "contact" with artificial negatively charged surfaces triggers its activation. Today, it is generally believed that the contact system is an inflammatory response mechanism not only against artificial material but also against misfolded proteins and foreign organisms. Upon activation, the contact system is involved in at least two distinct (patho)physiologic processes:i. the trigger of the intrinsic coagulation via factor XI and ii. the cleavage of high molecular weight kininogen with release of bradykinin and antimicrobial peptides (AMPs). Bradykinin is involved in the regulation of inflammatory processes, vascular permeability, and blood pressure. Due to the release of AMPs, the contact system is regarded as a branch of the innate immune defense against microorganisms. There is an increasing list of pathogens that interact with contact factors, in addition to bacteria also fungi and viruses bind and activate the system. In spite of that, pathogens have developed their own mechanisms to activate the contact system, resulting in manipulation of this host immune response. In this up-to-date review, we summarize present research on the interaction of pathogens with the human contact system, focusing particularly on bacterial and viral mechanisms that trigger inflammation via contact system activation.
Collapse
Affiliation(s)
- Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Juliane Köhler
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
18
|
Sui X, Yan L, Jiang YY. The vaccines and antibodies associated with Als3p for treatment of Candida albicans infections. Vaccine 2017; 35:5786-5793. [DOI: 10.1016/j.vaccine.2017.08.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/14/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022]
|
19
|
Hasim S, Allison DP, Retterer ST, Hopke A, Wheeler RT, Doktycz MJ, Reynolds TB. β-(1,3)-Glucan Unmasking in Some Candida albicans Mutants Correlates with Increases in Cell Wall Surface Roughness and Decreases in Cell Wall Elasticity. Infect Immun 2017; 85:e00601-16. [PMID: 27849179 PMCID: PMC5203643 DOI: 10.1128/iai.00601-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/08/2016] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is among the most common human fungal pathogens, causing a broad range of infections, including life-threatening systemic infections. The cell wall of C. albicans is the interface between the fungus and the innate immune system. The cell wall is composed of an outer layer enriched in mannosylated glycoproteins (mannan) and an inner layer enriched in β-(1,3)-glucan and chitin. Detection of C. albicans by Dectin-1, a C-type signaling lectin specific for β-(1,3)-glucan, is important for the innate immune system to recognize systemic fungal infections. Increased exposure of β-(1,3)-glucan to the immune system occurs when the mannan layer is altered or removed in a process called unmasking. Nanoscale changes to the cell wall during unmasking were explored in live cells with atomic force microscopy (AFM). Two mutants, the cho1Δ/Δ and kre5Δ/Δ mutants, were selected as representatives that exhibit modest and strong unmasking, respectively. Comparisons of the cho1Δ/Δ and kre5Δ/Δ mutants to the wild type reveal morphological changes in their cell walls that correlate with decreases in cell wall elasticity. In addition, AFM tips functionalized with Dectin-1 revealed that the forces of binding of Dectin-1 to all of the strains were similar, but the frequency of binding was highest for the kre5Δ/Δ mutant, decreased for the cho1Δ/Δ mutant, and rare for the wild type. These data show that nanoscale changes in surface topology are correlated with increased Dectin-1 adhesion and decreased cell wall elasticity. AFM, using tips functionalized with immunologically relevant molecules, can map epitopes of the cell wall and increase our understanding of pathogen recognition by the immune system.
Collapse
Affiliation(s)
- Sahar Hasim
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - David P Allison
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Scott T Retterer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Alex Hopke
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
20
|
Falsetta ML, Foster DC, Woeller CF, Pollock SJ, Bonham AD, Haidaris CG, Phipps RP. A Role for Bradykinin Signaling in Chronic Vulvar Pain. THE JOURNAL OF PAIN 2016; 17:1183-1197. [PMID: 27544818 DOI: 10.1016/j.jpain.2016.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/27/2016] [Accepted: 07/31/2016] [Indexed: 12/19/2022]
Abstract
Chronic vulvar pain is alarmingly common in women of reproductive age and is often accompanied by psychological distress, sexual dysfunction, and a significant reduction in quality of life. Localized provoked vulvodynia (LPV) is associated with intense vulvar pain concentrated in the vulvar vestibule (area surrounding vaginal opening). To date, the origins of vulvodynia are poorly understood, and treatment for LPV manages pain symptoms, but does not resolve the root causes of disease. Until recently, no definitive disease mechanisms had been identified; our work indicates LPV has inflammatory origins, although additional studies are needed to understand LPV pain. Bradykinin signaling is one of the most potent inducers of inflammatory pain and is a candidate contributor to LPV. We report that bradykinin receptors are expressed at elevated levels in LPV patient versus healthy control vestibular fibroblasts, and patient vestibular fibroblasts produce elevated levels of proinflammatory mediators with bradykinin stimulation. Inhibiting expression of one or both bradykinin receptors significantly reduces proinflammatory mediator production. Finally, we determined that bradykinin activates nuclear factor (NF)κB signaling (a major inflammatory pathway), whereas inhibition of NFκB successfully ablates this response. These data suggest that therapeutic agents targeting bradykinin sensing and/or NFκB may represent new, more specific options for LPV therapy. PERSPECTIVE There is an unmet need for the development of more effective vulvodynia therapies. As we explore the mechanisms by which human vulvar fibroblasts respond to proinflammatory/propain stimuli, we move closer to understanding the origins of chronic vulvar pain and identifying new therapeutic targets, knowledge that could significantly improve patient care.
Collapse
Affiliation(s)
- Megan L Falsetta
- Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - David C Foster
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, New York
| | - Collynn F Woeller
- Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - Stephen J Pollock
- Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - Adrienne D Bonham
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, New York
| | | | - Richard P Phipps
- Department of Environmental Medicine, University of Rochester, Rochester, New York; Department of Obstetrics and Gynecology, University of Rochester, Rochester, New York; Department of Microbiology and Immunology, University of Rochester, Rochester, New York.
| |
Collapse
|
21
|
Vitali A, Vavala E, Marzano V, Leone C, Castagnola M, Iavarone F, Angiolella L. Cell wall composition and biofilm formation of azoles-susceptible and -resistant Candida glabrata strains. J Chemother 2016; 29:164-172. [PMID: 27439026 DOI: 10.1080/1120009x.2016.1199507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the present study, three strains of Candida glabrata have been investigated to shed light on the mechanisms involved in azole resistance during adherence and biofilm formation. In particular, a clinical isolate, susceptible to azole-based drugs, DSY562 and two different resistant mutagenic strains deriving from DSY562, SFY114 and SFY115, have been analysed with different approaches for their cell wall composition and properties. A proteomic analysis revealed that the expression of six cell wall-related proteins and biofilm formation varied between the strains. The SFY114 and SFY115 strains resulted to be less hydrophobic than the susceptible parental counterpart DSY562, on the other hand they showed a higher amount in total cell wall polysaccharides fraction in the total cell wall. Accordingly to the results obtained from the hydrophobicity and adherence assays, in the resistant strain SFY115 the biofilm formation decreased compared to the parental strain DSY562. Finally, the total glucose amount in resistant SFY115 was about halved in comparison to other strains. Taken together all these data suggest that azole drugs may affect the cell wall composition of C. glabrata, in relation to the different pathogenic behaviours.
Collapse
Affiliation(s)
- Alberto Vitali
- a CNR-ICRM, c/o Institute of Biochemistry and Clinical Biochemistry , Catholic University , Largo F. Vito 1, Rome 00168 , Italy
| | - Elisabetta Vavala
- b Department of Public Health and Infectious Diseases , "Sapienza" University of Rome , P.le Aldo Moro 5, Rome 00161 , Italy
| | - Valeria Marzano
- c Institute of Biochemistry and Clinical Biochemistry , Catholic University , Largo F. Vito 1, Rome 00168 , Italy
| | - Claudia Leone
- b Department of Public Health and Infectious Diseases , "Sapienza" University of Rome , P.le Aldo Moro 5, Rome 00161 , Italy
| | - Massimo Castagnola
- c Institute of Biochemistry and Clinical Biochemistry , Catholic University , Largo F. Vito 1, Rome 00168 , Italy
| | - Federica Iavarone
- c Institute of Biochemistry and Clinical Biochemistry , Catholic University , Largo F. Vito 1, Rome 00168 , Italy
| | - Letizia Angiolella
- b Department of Public Health and Infectious Diseases , "Sapienza" University of Rome , P.le Aldo Moro 5, Rome 00161 , Italy
| |
Collapse
|
22
|
Nimrichter L, de Souza MM, Del Poeta M, Nosanchuk JD, Joffe L, Tavares PDM, Rodrigues ML. Extracellular Vesicle-Associated Transitory Cell Wall Components and Their Impact on the Interaction of Fungi with Host Cells. Front Microbiol 2016; 7:1034. [PMID: 27458437 PMCID: PMC4937017 DOI: 10.3389/fmicb.2016.01034] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/20/2016] [Indexed: 12/02/2022] Open
Abstract
Classic cell wall components of fungi comprise the polysaccharides glucans and chitin, in association with glycoproteins and pigments. During the last decade, however, system biology approaches clearly demonstrated that the composition of fungal cell walls include atypical molecules historically associated with intracellular or membrane locations. Elucidation of mechanisms by which many fungal molecules are exported to the extracellular space suggested that these atypical components are transitorily located to the cell wall. The presence of extracellular vesicles (EVs) at the fungal cell wall and in culture supernatants of distinct pathogenic species suggested a highly functional mechanism of molecular export in these organisms. Thus, the passage of EVs through fungal cell walls suggests remarkable molecular diversity and, consequently, a potentially variable influence on the host antifungal response. On the basis of information derived from the proteomic characterization of fungal EVs from the yeasts Cryptoccocus neoformans and Candida albicans and the dimorphic fungi Histoplasma capsulatum and Paracoccidioides brasiliensis, our manuscript is focused on the clear view that the fungal cell wall is much more complex than previously thought.
Collapse
Affiliation(s)
- Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro Brazil
| | - Marcio M de Souza
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro Brazil
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NYUSA; Veterans Administration Medical Center, Northport, NYUSA
| | - Joshua D Nosanchuk
- Department of Microbiology and Immunology and Medicine, Albert Einstein College of Medicine, Bronx, NY USA
| | - Luna Joffe
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro Brazil
| | - Patricia de M Tavares
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro Brazil
| | - Marcio L Rodrigues
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil; Fundação Oswaldo Cruz, Centro de Desenvolvimento Tecnológico em Saúde, Rio de JaneiroBrazil
| |
Collapse
|
23
|
Serrano-Fujarte I, López-Romero E, Cuéllar-Cruz M. Moonlight-like proteins of the cell wall protect sessile cells of Candida from oxidative stress. Microb Pathog 2015; 90:22-33. [PMID: 26550764 DOI: 10.1016/j.micpath.2015.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/23/2015] [Accepted: 10/04/2015] [Indexed: 11/25/2022]
Abstract
Biofilms of Candida species are associated with high morbidity and hospital mortality. Candida forms biofilms by adhering to human host epithelium through cell wall proteins (CWP) and simultaneously neutralizing the reactive oxygen species (ROS) produced during the respiratory burst by phagocytic cells. The purpose of this paper is to identify the CWP of Candida albicans, Candida glabrata, Candida krusei and Candida parapsilosis expressed after exposure to different concentrations of H2O2 using a proteomic approach. CWP obtained from sessile cells, both treated and untreated with the oxidizing agent, were resolved by one and two-dimensional (2D-PAGE) gels and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Some of these proteins were identified and found to correspond to moonlighting CWP such as: (i) glycolytic enzymes, (ii) heat shock, (iii) OSR proteins, (iv) general metabolic enzymes and (v) highly conserved proteins, which are up- or down-regulated in the presence or absence of ROS. We also found that the expression of these CWP is different for each Candida species. Moreover, RT-PCR assays allowed us to demonstrate that transcription of the gene coding for Eno1, one of the moonlight-like CWP identified in response to the oxidant agent, is differentially regulated. To our knowledge this is the first demonstration that, in response to oxidative stress, each species of Candida, differentially regulates the expression of moonlighting CWP, which may protect the organism from the ROS generated during phagocytosis. Presumptively, these proteins allow the pathogen to adhere and form a biofilm, and eventually cause invasive candidiasis in the human host. We propose that, in addition to the antioxidant mechanisms present in Candida, the moonlighting CWP also confer protection to these pathogens from oxidative stress.
Collapse
Affiliation(s)
- Isela Serrano-Fujarte
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico
| | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico
| | - Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
24
|
Kozik A, Karkowska-Kuleta J, Zajac D, Bochenska O, Kedracka-Krok S, Jankowska U, Rapala-Kozik M. Fibronectin-, vitronectin- and laminin-binding proteins at the cell walls of Candida parapsilosis and Candida tropicalis pathogenic yeasts. BMC Microbiol 2015; 15:197. [PMID: 26438063 PMCID: PMC4595241 DOI: 10.1186/s12866-015-0531-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/25/2015] [Indexed: 11/18/2022] Open
Abstract
Background Candida parapsilosis and C. tropicalis increasingly compete with C. albicans—the most common fungal pathogen in humans—as causative agents of severe candidiasis in immunocompromised patients. In contrast to C. albicans, the pathogenic mechanisms of these two non-albicans Candida species are poorly understood. Adhesion of Candida yeast to host cells and the extracellular matrix is critical for fungal invasion of hosts. Methods The fungal proteins involved in interactions with extracellular matrix proteins were isolated from mixtures of β-1,3-glucanase– or β-1,6-glucanase–extractable cell wall-associated proteins by use of affinity chromatography and chemical cross-linking methods, and were further identified by liquid chromatography-coupled tandem mass spectrometry. Results In the present study, we characterized the binding of three major extracellular matrix proteins—fibronectin, vitronectin and laminin—to C. parapsilosis and C. tropicalis pseudohyphae. The major individual compounds of the fungal cell wall that bound fibronectin, vitronectin and laminin were found to comprise two groups: (1) true cell wall components similar to C. albicans adhesins from the Als, Hwp and Iff/Hyr families; and (2) atypical (cytoplasm-derived) surface-exposed proteins, including malate synthase, glucose-6-phosphate isomerase, 6-phosphogluconate dehydrogenase, enolase, fructose-1,6-bisphosphatase, transketolase, transaldolase and elongation factor 2. Discussion The adhesive abilities of two investigated non-albicans Candida species toward extracellular matrix proteins were comparable to those of C. albicans suggesting an important role of this particular virulence attribute in the pathogenesis of infections caused by C. tropicalis and C. parapsilosis. Conclusions Our results reveal new insight into host–pathogen interactions during infections by two important, recently emerging, fungal pathogens.
Collapse
Affiliation(s)
- Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Justyna Karkowska-Kuleta
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Dorota Zajac
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Urszula Jankowska
- Department of Structural Biology, Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Maria Rapala-Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
25
|
Zhou J, Liao H, Li S, Zhou C, Huang Y, Li X, Liang C, Yu X. Molecular identification, immunolocalization, and characterization of Clonorchis sinensis triosephosphate isomerase. Parasitol Res 2015; 114:3117-24. [DOI: 10.1007/s00436-015-4530-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/06/2015] [Indexed: 01/05/2023]
|
26
|
Longo LVG, Nakayasu ES, Pires JHS, Gazos-Lopes F, Vallejo MC, Sobreira TJP, Almeida IC, Puccia R. Characterization of Lipids and Proteins Associated to the Cell Wall of the Acapsular Mutant Cryptococcus neoformans Cap 67. J Eukaryot Microbiol 2015; 62:591-604. [PMID: 25733123 DOI: 10.1111/jeu.12213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 01/02/2023]
Abstract
Cryptococcus neoformans is an opportunistic human pathogen that causes life-threatening meningitis. In this fungus, the cell wall is exceptionally not the outermost structure due to the presence of a surrounding polysaccharide capsule, which has been highly studied. Considering that there is little information about C. neoformans cell wall composition, we aimed at describing proteins and lipids extractable from this organelle, using as model the acapsular mutant C. neoformans cap 67. Purified cell wall preparations were extracted with either chloroform/methanol or hot sodium dodecyl sulfate. Total lipids fractionated in silica gel 60 were analyzed by electrospray ionization tandem mass spectrometry (ESI-MS/MS), while trypsin digested proteins were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). We detected 25 phospholipid species among phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and phosphatidic acid. Two glycolipid species were identified as monohexosyl ceramides. We identified 192 noncovalently linked proteins belonging to different metabolic processes. Most proteins were classified as secretory, mainly via nonclassical mechanisms, suggesting a role for extracellular vesicles (EV) in transwall transportation. In concert with that, orthologs from 86% of these proteins have previously been reported both in fungal cell wall and/or in EV. The possible role of the presently described structures in fungal-host relationship is discussed.
Collapse
Affiliation(s)
- Larissa V G Longo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, EPM-UNIFESP, São Paulo, 04023-062, São Paulo, Brazil
| | - Ernesto S Nakayasu
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, 79968-0519, Texas, USA
| | - Jhon H S Pires
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, EPM-UNIFESP, São Paulo, 04023-062, São Paulo, Brazil
| | - Felipe Gazos-Lopes
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, 79968-0519, Texas, USA
| | - Milene C Vallejo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, EPM-UNIFESP, São Paulo, 04023-062, São Paulo, Brazil
| | - Tiago J P Sobreira
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, 13083-970, São Paulo, Brazil
| | - Igor C Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, 79968-0519, Texas, USA
| | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, EPM-UNIFESP, São Paulo, 04023-062, São Paulo, Brazil
| |
Collapse
|
27
|
|
28
|
Kinin release from human kininogen by 10 aspartic proteases produced by pathogenic yeast Candida albicans. BMC Microbiol 2015; 15:60. [PMID: 25879450 PMCID: PMC4357070 DOI: 10.1186/s12866-015-0394-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/19/2015] [Indexed: 12/15/2022] Open
Abstract
Background Candida albicans yeast produces 10 distinct secreted aspartic proteases (Saps), which are some of the most important virulence factors of this pathogenic fungus. One of the suggested roles of Saps is their deregulating effect on various proteolytic cascades that constitute the major homeostatic systems in human hosts, including blood coagulation, fibrinolysis, and kallikrein-kinin systems. This study compared the characteristics of the action of all 10 Saps on human kininogens, which results in generating proinflammatory bradykinin-related peptides (kinins). Results Recombinant forms of Saps, heterologously overexpressed in Pichia pastoris were applied. Except for Sap7 and Sap10, all Saps effectively cleaved the kininogens, with the highest hydrolytic activity toward the low-molecular-mass form (LK). Sap1–6 and 8 produced a biologically active kinin—Met-Lys-bradykinin—and Sap3 was exceptional in terms of the kinin-releasing yield (>60% LK at pH 5.0 after 24 hours). Des-Arg1-bradykinin was released from LK by Sap9 at a comparably high yield, but this peptide was assumed to be biologically inactive because it was unable to interact with cellular B2-type kinin receptors. However, the collaborative actions of Sap9 and Sap1, −2, −4–6, and −8 on LK rerouted kininogen cleavage toward the high-yield release of the biologically active Met-Lys-bradykinin. Conclusions Our present results, together with the available data on the expression of individual SAP genes in candidal infection models, suggest a biological potential of Saps to produce kinins at the infection foci. The kinin release during candidiasis can involve predominant and complementary contributions of two different Sap3- and Sap9-dependent mechanisms.
Collapse
|
29
|
Vargas G, Rocha JDB, Oliveira DL, Albuquerque PC, Frases S, Santos SS, Nosanchuk JD, Gomes AMO, Medeiros LCAS, Miranda K, Sobreira TJP, Nakayasu ES, Arigi EA, Casadevall A, Guimaraes AJ, Rodrigues ML, Freire-de-Lima CG, Almeida IC, Nimrichter L. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell Microbiol 2014; 17:389-407. [PMID: 25287304 DOI: 10.1111/cmi.12374] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 09/08/2014] [Accepted: 09/22/2014] [Indexed: 12/14/2022]
Abstract
The release of extracellular vesicles (EV) by fungal organisms is considered an alternative transport mechanism to trans-cell wall passage of macromolecules. Previous studies have revealed the presence of EV in culture supernatants from fungal pathogens, such as Cryptococcus neoformans, Histoplasma capsulatum, Paracoccidioides brasiliensis, Sporothrix schenckii, Malassezia sympodialis and Candida albicans. Here we investigated the size, composition, kinetics of internalization by bone marrow-derived murine macrophages (MO) and dendritic cells (DC), and the immunomodulatory activity of C. albicans EV. We also evaluated the impact of EV on fungal virulence using the Galleria mellonella larvae model. By transmission electron microscopy and dynamic light scattering, we identified two populations ranging from 50 to 100 nm and 350 to 850 nm. Two predominant seroreactive proteins (27 kDa and 37 kDa) and a group of polydispersed mannoproteins were observed in EV by immunoblotting analysis. Proteomic analysis of C. albicans EV revealed proteins related to pathogenesis, cell organization, carbohydrate and lipid metabolism, response to stress, and several other functions. The major lipids detected by thin-layer chromatography were ergosterol, lanosterol and glucosylceramide. Short exposure of MO to EV resulted in internalization of these vesicles and production of nitric oxide, interleukin (IL)-12, transforming growth factor-beta (TGF-β) and IL-10. Similarly, EV-treated DC produced IL-12p40, IL-10 and tumour necrosis factor-alpha. In addition, EV treatment induced the up-regulation of CD86 and major histocompatibility complex class-II (MHC-II). Inoculation of G. mellonella larvae with EV followed by challenge with C. albicans reduced the number of recovered viable yeasts in comparison with infected larvae control. Taken together, our results demonstrate that C. albicans EV were immunologically active and could potentially interfere with the host responses in the setting of invasive candidiasis.
Collapse
Affiliation(s)
- Gabriele Vargas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Karkowska-Kuleta J, Kozik A. Moonlighting proteins as virulence factors of pathogenic fungi, parasitic protozoa and multicellular parasites. Mol Oral Microbiol 2014; 29:270-83. [PMID: 25131723 DOI: 10.1111/omi.12078] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2014] [Indexed: 01/03/2023]
Abstract
The delicate balance between eukaryotic pathogens and their human hosts during the initiation and development of infection is a complex process involving many diverse interactions. Different infectious agents, including pathogenic fungi, parasitic protozoa and multicellular parasites, directly interact through their cell surface with epithelial or endothelial cells of the human host as well as various proteinaceous host ligands such as extracellular matrix or plasma proteins. Eukaryotic pathogens possess a number of virulence factors but a relatively recently recognized and particularly interesting group of factors capable of enhancing virulence is the set of so-called 'moonlighting proteins'. This term was coined for a relatively large collection of housekeeping enzymes lacking special targeting motifs that would determine their extracellular localization, but that are often present at the cell surface of pathogen. Several such enzymes with key metabolic functions in glycolysis, the pentose phosphate cycle or other fundamental intracellular processes perform entirely new, non-catalytic roles often associated with adhesion to host ligands. Our current study summarizes some of the current knowledge of interesting moonlighting proteins which play putative or confirmed roles as virulence factors in pathogenic fungi, parasitic protozoa and multicellular parasites.
Collapse
Affiliation(s)
- J Karkowska-Kuleta
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
31
|
Longo LV, da Cunha JP, Sobreira TJ, Puccia R. Proteome of cell wall-extracts from pathogenic Paracoccidioides brasiliensis: Comparison among morphological phases, isolates, and reported fungal extracellular vesicle proteins. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Lopez CM, Wallich R, Riesbeck K, Skerka C, Zipfel PF. Candida albicans uses the surface protein Gpm1 to attach to human endothelial cells and to keratinocytes via the adhesive protein vitronectin. PLoS One 2014; 9:e90796. [PMID: 24625558 PMCID: PMC3953207 DOI: 10.1371/journal.pone.0090796] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 02/05/2014] [Indexed: 12/02/2022] Open
Abstract
Candida albicans is a major cause of invasive fungal infections worldwide. Upon infection and when in contact with human plasma as well as body fluids the fungus is challenged by the activated complement system a central part of the human innate immune response. C. albicans controls and evades host complement attack by binding several human complement regulators like Factor H, Factor H-like protein 1 and C4BP to the surface. Gpm1 (Phosphoglycerate mutase 1) is one fungal Factor H/FHL1 -binding protein. As Gpm1 is surface exposed, we asked whether Gpm1 also contributes to host cell attachment. Here, we show by flow cytometry and by laser scanning microscopy that candida Gpm1 binds to human umbilical vein endothelial cells (HUVEC) to keratinocytes (HaCaT), and also to monocytic U937 cells. Wild type candida did bind, but the candida gpm1Δ/Δ knock-out mutant did not bind to these human cells. In addition Gpm1when attached to latex beads also conferred attachment to human endothelial cells. When analyzing Gpm1-binding to a panel of extracellular matrix proteins, the human glycoprotein vitronectin was identified as a new Gpm1 ligand. Vitronectin is a component of the extracellular matrix and also a regulator of the terminal complement pathway. Vitronectin is present on the surface of HUVEC and keratinocytes and acts as a surface ligand for fungal Gpm1. Gpm1 and vitronectin colocalize on the surface of HUVEC and HaCaT as revealed by laser scanning microscopy. The Gpm1 vitronectin interaction is inhibited by heparin and the interaction is also ionic strength dependent. Taken together, Gpm1 the candida surface protein binds to vitronectin and mediates fungal adhesion to human endothelial cells. Thus fungal Gpm1 and human vitronectin represent a new set of proteins that are relevant for fungal attachment to human cells interaction. Blockade of the Gpm1 vitronectin interaction might provide a new target for therapy.
Collapse
Affiliation(s)
- Crisanto M. Lopez
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Reinhard Wallich
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Kristian Riesbeck
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Malmö, Sweden
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
- Friedrich Schiller University, Jena, Germany
- * E-mail:
| |
Collapse
|
33
|
Bras G, Bochenska O, Rapala-Kozik M, Guevara-Lora I, Faussner A, Kamysz W, Kozik A. Release of biologically active kinin peptides, Met-Lys-bradykinin and Leu-Met-Lys-bradykinin from human kininogens by two major secreted aspartic proteases of Candida parapsilosis. Peptides 2013; 48:114-23. [PMID: 23954712 DOI: 10.1016/j.peptides.2013.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 02/06/2023]
Abstract
In terms of infection incidence, the yeast Candida parapsilosis is the second after Candida albicans as causative agent of candidiases in humans. The major virulence factors of C. parapsilosis are secreted aspartic proteases (SAPPs) which help the pathogen to disseminate, acquire nutrients and dysregulate the mechanisms of innate immunity of the host. In the current work we characterized the action of two major extracellular proteases of C. parapsilosis, SAPP1 and SAPP2, on human kininogens, proteinaceous precursors of vasoactive and proinflammatory bradykinin-related peptides, collectively called the kinins. The kininogens, preferably the form with lower molecular mass, were effectively cleaved by SAPPs, with the release of two uncommon kinins, Met-Lys-bradykinin and Leu-Met-Lys-bradykinin. While optimal at acidic pH (4-5), the kinin release yield was only 2-3-fold lower at neutral pH. These peptides were able to interact with cellular kinin receptors of B2 subtype and to stimulate the human endothelial cells HMEC-1 to increased secretion of proinflammatory interleukins (ILs), IL-1β and IL-6. The analysis of the stability of SAPP-generated kinins in plasma suggested that they are biologically equivalent to bradykinin, the best agonist of B2 receptor subtype and can be quickly converted to des-Arg(9)-bradykinin, the agonist of inflammation-inducible B1 receptors.
Collapse
Affiliation(s)
- Grazyna Bras
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | | | | | | | | | | |
Collapse
|
34
|
Bocheńska O, Rąpała-Kozik M, Wolak N, Braś G, Kozik A, Dubin A, Aoki W, Ueda M, Mak P. Secreted aspartic peptidases of Candida albicans liberate bactericidal hemocidins from human hemoglobin. Peptides 2013; 48:49-58. [PMID: 23927842 DOI: 10.1016/j.peptides.2013.07.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 10/26/2022]
Abstract
Secreted aspartic peptidases (Saps) are a group of ten acidic hydrolases considered as key virulence factors of Candida albicans. These enzymes supply the fungus with nutrient amino acids as well as are able to degrade the selected host's proteins involved in the immune defense. Our previous studies showed that the human menstrual discharge is exceptionally rich in bactericidal hemoglobin (Hb) fragments - hemocidins. However, to date, the genesis of such peptides is unclear. The presented study demonstrates that the action of C. albicans isozymes Sap1-Sap6, Sap8 and Sap9, but not Sap7 and Sap10, toward human hemoglobin leads to limited proteolysis of this protein and generates a variety of antimicrobial hemocidins. We have identified these peptides and checked their activity against selected microorganisms representative for human vagina. We have also demonstrated that the process of Hb hydrolysis is most effective at pH 4.0, characteristic for vagina, and the liberated peptides showed pronounced killing activity toward Lactobacillus acidophilus, and to a lower degree, Escherichia coli. However, only a very weak activity toward Staphylococcus aureus and C. albicans was noticed. These findings provide interesting new insights into pathophysiology of human vaginal candidiasis and suggest that C. albicans may be able to compete with the other microorganisms of the same physiological niche using the microbicidal peptides generated from the host protein.
Collapse
Affiliation(s)
- Oliwia Bocheńska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zinsser VL, Farnell E, Dunne DW, Timson DJ. Triose phosphate isomerase from the blood flukeSchistosoma mansoni: Biochemical characterisation of a potential drug and vaccine target. FEBS Lett 2013; 587:3422-7. [DOI: 10.1016/j.febslet.2013.09.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/04/2013] [Accepted: 09/11/2013] [Indexed: 11/26/2022]
|
36
|
Evolutionary Analysis of the Contact System Indicates that Kininogen Evolved Adaptively in Mammals and in Human Populations. Mol Biol Evol 2013; 30:1397-408. [DOI: 10.1093/molbev/mst054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|