1
|
Wang W, Chen M, Li H, Wu X, He C, Zhang C, Zhang H, Zheng H. Genome-wide analysis of the cytochrome P450 gene family in Pacific oyster Crassostrea gigas and their expression profiles during gonad development. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101291. [PMID: 39018793 DOI: 10.1016/j.cbd.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
The cytochrome P450 (CYP) gene superfamily plays a significant role in various physiological processes, producing different compounds such as hormones, fatty acids, and biomolecules. However, little information is known their roles during gonad development in Pacific oyster (Crassostrea gigas). In this study, total of 116 CgCYP (Crassostrea gigas cytochrome P450) genes were identified and their expression pattern was analyzed for the first time. The relative molecular weights of these CgCYP genes ranged from 63.52 to 113.41 kDa, and the length of encoded amino acids ranged from 103 to 993. And total 26 cis-acting elements of these CgCYP genes were identified. GO and KEGG enrichment analysis showed some CgCYP genes are essential for the metabolism of male and female sex hormones. Additionally, expression anslysis showed 69 CgCYP genes were over-expressed in early gonad development and triploid infertile individuals. More importantly, expression levels of CgCYP1, CgCYP15, CgCYP34, CgCYP46, CgCYP69, CgCYP87, CgCYP88, and CgCYP103, were found to be significantly higher in female gonad, suggesting their important roles in female gonad development. The results of this study will provide a better understanding of the CgCYP genes in the gonad development of Pacific oyster.
Collapse
Affiliation(s)
- Weili Wang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Meizhen Chen
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Huiqi Li
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Xuanbing Wu
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Cheng He
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Chuanxu Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China.
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China.
| |
Collapse
|
2
|
Graciano RCD, Oliveira RS, Yazbeck GM. Fishing for the gonadotropin releasing hormone from the genome of Salminus brasiliensis (Characiformes: Bryconidae). BRAZ J BIOL 2024; 84:e283170. [PMID: 39476006 DOI: 10.1590/1519-6984.283170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/13/2024] [Indexed: 11/07/2024] Open
Abstract
The technological development of tools that enable the spawning of different native species is paramount to enable ex situ conservation initiatives, as well as providing means for commercial hatchery of threatened fish which, in turn, relieve fisheries pressure over wild stocks. Neotropical migratory freshwater fish depend on hormonal induction for spawning in hatcheries, through expensive methods of limited efficiency. Salminus brasiliensis is one of the largest Neotropical freshwater fish, a piscivorous top-predator, prized in angling, highly valued in the market, and appreciated in gastronomy. Teleost fish have either, two or three GnRH paralogous genes: GnRH1, GnRH2 and the GnRH3. The expression products of these paralogous isoforms consist of a larger prepro-GnRH polypeptide, which undergoes post-translational proteolytic processing to yield the active decapeptide hormone. There is increasing interest in characterizing and understanding these neuropeptides, because of its practical application in hatchery spawning. We present the characterization of GnRH1's coding sequence for the prepro-GnRH1 polypeptide of S. brasiliensis. An annotation from a genomic assembly was used for searching for GnRH paralogues, based on data from anonymous predicted transcripts. The sequence retrieved for GnRH1 was then used as a query for searching the uncharacterized GnRH paralogues from full genomes of Characiformes deposited at NCBI. The S. brasiliensis GnRH1 gene sequence retrieved was targeted for PCR and submitted to Sanger sequencing, allowing for its confirmation. It spans 423 bp (exon 1: 128 bp; intron: 161 bp; and exon 2: 1134 bp), with open reading frames coding for 264 and 88 amino acids, respectively. The different variants retrieved for the prepro-GnRH (1, 2 and 3) from Characiformes genomes and deposited sequences from NCBI grouped in three distinct clades in a neighbor joining tree, each forming a monophyletic branch and with the S. brasiliensis sequences nested within the expected groups. Here we observed a variation at a proteolytic site (GKR→GRR), reported as highly conserved in vertebrates up to now, that can potentially alter the cleavage site and modify the peptide topology. This work has characterized, for the first time, the sequence of the GnRH1 coding for its prepro-GnRH peptide, for a member of the Charaficormes order. This will help to promote research and development of tools for broodstock spawning and environmental management of S. brasiliensis and related migratory fish.
Collapse
Affiliation(s)
- R C D Graciano
- Universidade Federal de São João Del Rei - UFSJ, Laboratório de Recursos Genéticos, Programa de Pós-graduação em Biotecnologia, São João Del Rei, MG, Brasil
| | - R S Oliveira
- Universidade Federal de São João Del Rei - UFSJ, Departamento de Ciência da Computação, São João Del Rei, MG, Brasil
| | - G M Yazbeck
- Universidade Federal de São João Del Rei - UFSJ, Laboratório de Recursos Genéticos, Programa de Pós-graduação em Biotecnologia, São João Del Rei, MG, Brasil
- Universidade Federal de São João Del Rei - UFSJ, Departamento de Zootecnia, Laboratório de Recursos Genéticos, São João Del Rei, MG, Brasil
| |
Collapse
|
3
|
Kim MA, Kim TH, Kannan P, Kho KH, Park K, Sohn YC. Functional Characterization of Gonadotropin-Releasing Hormone and Corazonin Signaling Systems in Pacific Abalone: Toward Reclassification of Invertebrate Neuropeptides. Neuroendocrinology 2023; 114:64-89. [PMID: 37703838 DOI: 10.1159/000533662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION The proposed evolutionary origins and corresponding nomenclature of bilaterian gonadotropin-releasing hormone (GnRH)-related neuropeptides have changed tremendously with the aid of receptor deorphanization. However, the reclassification of the GnRH and corazonin (CRZ) signaling systems in Lophotrochozoa remains unclear. METHODS We characterized GnRH and CRZ receptors in the mollusk Pacific abalone, Haliotis discus hannai (Hdh), by phylogenetic and gene expression analyses, bioluminescence-based reporter, Western blotting, substitution of peptide amino acids, in vivo neuropeptide injection, and RNA interference assays. RESULTS Two Hdh CRZ-like receptors (Hdh-CRZR-A and Hdh-CRZR-B) and three Hdh GnRH-like receptors (Hdh-GnRHR1-A, Hdh-GnRHR1-B, and Hdh-GnRHR2) were identified. In phylogenetic analysis, Hdh-CRZR-A and -B grouped within the CRZ-type receptors, whereas Hdh-GnRHR1-A/-B and Hdh-GnRHR2 clustered within the GnRH/adipokinetic hormone (AKH)/CRZ-related peptide-type receptors. Hdh-CRZR-A/-B and Hdh-GnRHR1-A were activated by Hdh-CRZ (pQNYHFSNGWHA-NH2) and Hdh-GnRH (pQISFSPNWGT-NH2), respectively. Hdh-CRZR-A/-B dually coupled with the Gαq and Gαs signaling pathways, whereas Hdh-GnRHR1-A was linked only with Gαq signaling. Analysis of substituted peptides, [I2S3]Hdh-CRZ and [N2Y3H4]Hdh-GnRH, and in silico docking models revealed that the N-terminal amino acids of the peptides are critical for the selectivity of Hdh-CRZR and Hdh-GnRHR. Two precursor transcripts for Hdh-CRZ and Hdh-GnRH peptides and their receptors were mainly expressed in the neural ganglia, and their levels increased in starved abalones. Injection of Hdh-CRZ peptide into abalones decreased food consumption, whereas Hdh-CRZR knockdown increased food consumption. Moreover, Hdh-CRZ induced germinal vesicle breakdown in mature oocytes. CONCLUSION Characterization of Hdh-CRZRs and Hdh-GnRHRs and their cognate peptides provides new insight into the evolutionary route of GnRH-related signaling systems in bilaterians.
Collapse
Affiliation(s)
- Mi Ae Kim
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Republic of Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Tae Ha Kim
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Priyadharshini Kannan
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, Republic of Korea
- Department of Biochemical Engineering, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu, Republic of Korea
| | - Keunwan Park
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, Republic of Korea
| | - Young Chang Sohn
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Republic of Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Republic of Korea
| |
Collapse
|
4
|
Tang J, Yuan M, Wang J, Li Q, Huang B, Wei L, Liu Y, Han Y, Zhang X, Wang X, Zhang M, Wang X. Identification and characterization of gonadotropin-releasing hormone (GnRH) in Zhikong scallop Chlamys farreri during gonadal development. Front Physiol 2023; 14:1180725. [PMID: 37324384 PMCID: PMC10264684 DOI: 10.3389/fphys.2023.1180725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) controls synthesis of sex steroid hormones through hypothalamic-pituitary-gonadal (HPG) axis in vertebrates. But in mollusks, research on neuroendocrine control of gonadal function, such as the function of GnRH during gonadal development is limited. In this study, we investigated the morphology and structure of the nerve ganglia of Zhikong scallop Chlamys farreri by physiological and histological observations. We also cloned the ORF and studied the expression patterns of GnRH in the scallop. Tissue expression analysis showed that GnRH was highly expressed in parietovisceral ganglion (PVG). The in situ hybridization result further confirmed that GnRH mRNA only distributed in some good-sized neurons in the posterior lobe (PL) and some pint-sized neurons in the lateral lobe (LL). In addition, by examining the expression of GnRH during gonadal development in ganglia, we found GnRH displayed higher expression in the female scallops, and showed significant high expression at the growing stage of female scallops in PVG. This study would contribute to gaining insight into the mechanism underlying reproduction regulation by GnRH in the scallop and help to provide a better understanding of reproductive neuroendocrine in mollusks.
Collapse
Affiliation(s)
- Juyan Tang
- School of Agriculture, Ludong University, Yantai, China
| | | | - Jia Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Qianqian Li
- School of Agriculture, Ludong University, Yantai, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai, China
| | - Xuekai Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaona Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
5
|
Chen ZH, Guo YW, Li XW. Recent advances on marine mollusk-derived natural products: chemistry, chemical ecology and therapeutical potential. Nat Prod Rep 2023; 40:509-556. [PMID: 35942896 DOI: 10.1039/d2np00021k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2011-2021Marine mollusks, which are well known as rich sources of diverse and biologically active natural products, have attracted significant attention from researchers due to their chemical and pharmacological properties. The occurrence of some of these marine mollusk-derived natural products in their preys, predators, and associated microorganisms has also gained interest in chemical ecology research. Based on previous reviews, herein, we present a comprehensive summary of the recent advances of interesting secondary metabolites from marine mollusks, focusing on their structural features, possible chemo-ecological significance, and promising biological activities, covering the literature from 2011 to 2021.
Collapse
Affiliation(s)
- Zi-Hui Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|
6
|
Jiang S, Miao J, Wang L, Yao L, Pan L. Transcriptomic response to GnRH down regulation by RNA interference in clam Ruditapes philippinarum, suggest possible role in reproductive function. Comp Biochem Physiol A Mol Integr Physiol 2023; 277:111367. [PMID: 36608928 DOI: 10.1016/j.cbpa.2022.111367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) plays a key role in the control of the reproductive axis in vertebrates, however, little is known about its function in reproductive endocrine regulation in molluscs. In the present study, RNA-seq was used to construct transcriptomes of Ruditapes philippinarum testis and ovaries of control and GnRH suppressed individuals using RNA interference. GnRH suppression caused 112 and 169 enriched KEGG pathways in testis and ovary, with 92 pathways in common in both comparisons. The most enriched KEGG pathways occurred in the "Oxidative phosphorylation", "Dorso-ventral axis formation", "Thyroid hormone synthesis" and "Oxytocin signaling pathway" etc. A total of 1838 genes in testis and 358 genes in ovaries were detected differentially expressed in GnRH suppressed clams. Among the differentially expressed genes, a suit of genes related to regulation of steroid hormones synthesis and gonadal development, were found in both ovary and testis with RNAi of GnRH. These results suggest that GnRH may play an important role in reproductive function in bivalves. This study provides a preliminary basis for studying the function and regulatory mechanism of GnRH in bivalves.
Collapse
Affiliation(s)
- Shanshan Jiang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Lu Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Linlin Yao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
7
|
Ojima D, Hirano-Maeda Y, Matsubara A, Amano M. Changes in gonadotropin-releasing hormone in the cerebral ganglion of the Manila clam Ruditapes philippinarum during gonadal development. Comp Biochem Physiol A Mol Integr Physiol 2022; 270:111228. [PMID: 35489608 DOI: 10.1016/j.cbpa.2022.111228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 11/28/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) plays an important role in reproduction in both vertebrates and invertebrates; however, little is known about GnRH during gonadal development in bivalves. We developed a time-resolved fluoroimmunoassay (TR-FIA) for Manila clam Ruditapes philippinarum GnRH (rpGnRH) and measured the amount of rpGnRH in the cerebral ganglion (CG) and sex steroid hormones in the hemolymph during gonadal development. The cross-reactivity of the anti-rpGnRH antibody against other forms of GnRH was <0.15%, and the displacement curve obtained for serially diluted CG extracts was parallel to the rpGnRH standard curve, confirming the suitability of the TR-FIA system. Based on histological observation, gonadal development of the clams was classified into early developing (stage 1), late developing (stage 2), ripe (stage 3), and partially spent (stage 4). In female clams, rpGnRH levels in the CG peaked at stage 1, and 17β-estradiol (E2) levels in the hemolymph peaked at stage 2. The rpGnRH levels in males and hemolymph testosterone levels in both sexes did not differ significantly across stages. Hemolymph E2 levels in males were below the detection limit for the TR-FIA. These results suggest that rpGnRH and E2 secretion in females can activate ovarian development of the Manila clam at the early and late developing stages, respectively.
Collapse
Affiliation(s)
- Daisuke Ojima
- Momoshima Field Station, Fisheries Technology Institute (FTI), Japan Fisheries Research and Education Agency (FRA), Onomichi, Hiroshima 722-0061, Japan.
| | - Yuki Hirano-Maeda
- Momoshima Field Station, Fisheries Technology Institute (FTI), Japan Fisheries Research and Education Agency (FRA), Onomichi, Hiroshima 722-0061, Japan
| | - Aoba Matsubara
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Masafumi Amano
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
8
|
Ulagesan S, Krishnan S, Nam TJ, Choi YH. A Review of Bioactive Compounds in Oyster Shell and Tissues. Front Bioeng Biotechnol 2022; 10:913839. [PMID: 35733526 PMCID: PMC9208005 DOI: 10.3389/fbioe.2022.913839] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
Oysters are saltwater bivalves with high nutritional and medicinal value that are consumed widely around the world. As well as being highly nutritious, oysters are a low-calorie, low-cholesterol source of protein and an exceptional source of zinc, which strengthens the immune system; and a rich source of bioactive compounds, which comprise various biological activities. The present review summarizes the biological applications and bioactive compounds from oyster shells, whole tissue, gill tissue, and mantle tissue. The various biological compounds present in an oyster shell, and their chemical constituents, have applications in the food, pharmaceutical, and medical industries. Bioactive peptides and proteins obtained from the whole, mantle, and gill tissues of oysters exhibit antioxidant, antimicrobial, antihypertensive, anticancer, antifatigue, anticoagulant, and anti-wrinkle effects, as well as enhance osteoblast differentiation. This review clearly shows that oysters have great potential for functional food production and that various compounds therein can have pharmaceutical applications.
Collapse
Affiliation(s)
- Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Busan, South Korea
| | - Sathish Krishnan
- School of Earth, Ocean, and Atmospheric Sciences, Goa University, Taleigao, India
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Youn-Hee Choi
- Division of Fisheries Life Sciences, Pukyong National University, Busan, South Korea
- Institute of Fisheries Sciences, Pukyong National University, Busan, South Korea
- *Correspondence: Youn-Hee Choi,
| |
Collapse
|
9
|
WANG C, CHEN Y. Preparation of peptides from oyster shells and investigation of their in vitro antioxidant activities. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.51522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Ding M, Jiang S, Miao J, Pan L. Possible roles of gonadotropin-releasing hormone (GnRH) and melatonin in the control of gonadal development of clam Ruditapes philippinarum. Comp Biochem Physiol A Mol Integr Physiol 2021; 262:111059. [PMID: 34455085 DOI: 10.1016/j.cbpa.2021.111059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022]
Abstract
Gonadotropin-releasing Hormone (GnRH) is a key reproductive endocrine regulator, and melatonin is considered as a potent candidate in the regulation of photoperiod-related reproductive endocrinology. Nevertheless, their function during gonadal development of molluscs has not been uncovered yet. In the present study, RNAi of GnRH and melatonin injection were conducted on marine bivalve manila clam Ruditapes philippinarum. Tissue section showed that gonadal development was significantly inhibited in male clams injected with GnRH dsRNA for 21 days. For GnRH RNAi treatment group, the expression levels of steroid synthetic enzyme genes 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD), cytochrome P450 (CYP3A) and melatonin receptor homolog (MTNR) gene were significantly down-regulated in female clams while significantly up-regulated in male clams. In melatonin injection group, the expression of GnRH was significantly inhibited and the expression of 3β-HSD, 17β-HSD, CYP3A and MTNR genes also increased which was in line with the GnRH dsRNA injection group in male clams. These results suggest that melatonin may affect GnRH expression and both have effects on gonadal development of bivalves. This study provides evidence for understanding the effects of melatonin and GnRH on reproductive endocrinology and gonadal development in bivalve molluscs.
Collapse
Affiliation(s)
- Min Ding
- The Key Laboratory of Mariculture Ocean University of China, Ministry of Education, Qingdao 266003, PR China
| | - Shanshan Jiang
- The Key Laboratory of Mariculture Ocean University of China, Ministry of Education, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture Ocean University of China, Ministry of Education, Qingdao 266003, PR China.
| | - Luqing Pan
- The Key Laboratory of Mariculture Ocean University of China, Ministry of Education, Qingdao 266003, PR China
| |
Collapse
|
11
|
Transcriptome Profiling of the Pacific Oyster Crassostrea gigas Visceral Ganglia over a Reproduction Cycle Identifies Novel Regulatory Peptides. Mar Drugs 2021; 19:md19080452. [PMID: 34436291 PMCID: PMC8398477 DOI: 10.3390/md19080452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
The neuropeptides involved in the regulation of reproduction in the Pacific oyster (Crassostrea gigas) are quite diverse. To investigate this diversity, a transcriptomic survey of the visceral ganglia (VG) was carried out over an annual reproductive cycle. RNA-seq data from 26 samples corresponding to VG at different stages of reproduction were de novo assembled to generate a specific reference transcriptome of the oyster nervous system and used to identify differentially expressed transcripts. Transcriptome mining led to the identification of novel neuropeptide precursors (NPPs) related to the bilaterian Eclosion Hormone (EH), crustacean female sex hormone/Interleukin 17, Nesfatin, neuroparsin/IGFBP, prokineticins, and urotensin I; to the protostome GNQQN, pleurin, prohormones 3 and 4, prothoracotropic hormones (PTTH), and QSamide/PXXXamide; to the lophotrochozoan CCWamide, CLCCY, HFAamide, and LXRX; and to the mollusk-specific NPPs CCCGS, clionin, FYFY, GNamide, GRWRN, GSWN, GWE, IWMPxxGYxx, LXRYamide, RTLFamide, SLRFamide, and WGAGamide. Among the complete repertoire of NPPs, no sex-biased expression was observed. However, 25 NPPs displayed reproduction stage-specific expression, supporting their involvement in the control of gametogenesis or associated metabolisms.
Collapse
|
12
|
Song CP, Sun LL, Zheng LB, Chi CF. Gonadotropin-releasing hormone-like gene in the cephalopod, Sepia pharaonis: characterization, expression analysis, and localization in the brain. INVERTEBR REPROD DEV 2021. [DOI: 10.1080/07924259.2021.1935335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chang-Pu Song
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Lincheng, China
| | - Lian-lian Sun
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Lincheng, China
| | - Li-bing Zheng
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Lincheng, China
| | - Chang-feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Lincheng, China
| |
Collapse
|
13
|
Fodor I, Svigruha R, Bozsó Z, Tóth GK, Osugi T, Yamamoto T, Satake H, Pirger Z. Functional characterization and related evolutionary implications of invertebrate gonadotropin-releasing hormone/corazonin in a well-established model species. Sci Rep 2021; 11:10028. [PMID: 33976353 PMCID: PMC8113230 DOI: 10.1038/s41598-021-89614-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/29/2021] [Indexed: 11/09/2022] Open
Abstract
In vertebrates, gonadotropin-releasing hormone (GnRH) peptide is the central mediator of reproduction. Homologous peptides have previously also been identified in molluscan species. However, emerging evidence suggests that these molecules might serve diverse regulatory functions and proposes to consider them as corazonin (CRZ). We previously isolated the full-length cDNA of the invGnRH/CRZ peptide (termed ly-GnRH/CRZ) in the well-established invertebrate model species, the great pond snail Lymnaea stagnalis; however, its predicted functions remain to be verified. In this study, we first confirmed the presence of the deduced active peptide from the central nervous system of L. stagnalis. Further, we performed in vivo and in vitro studies to explore the functions of ly-GnRH/CRZ. Injection of sexually mature specimens with synthetic active peptide had an inhibitory effect on locomotion and an acceleratory effect on egg-laying, but had no effect on feeding. The previously predicted modulatory effect of ly-GnRH/CRZ was supported by its identified co-localization with serotonin on the surface of the heart atria. Lastly, we demonstrated not only the presence of ly-GnRH/CRZ in the penial complex but also that ly-GnRH/CRZ-containing neurons project to the efferent penis nerve, suggesting ly-GnRH/CRZ may directly modulate the motor output of this peripheral tissue. Overall, our findings strongly support that ly-GnRH/CRZ is a multifunctional neuropeptide. These results contribute to the understanding of the GnRH superfamily and, more broadly, disciplines such as comparative endocrinology and neurobiology.
Collapse
Affiliation(s)
- István Fodor
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3., Tihany, 8237, Hungary
| | - Réka Svigruha
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3., Tihany, 8237, Hungary
| | - Zsolt Bozsó
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Gábor K Tóth
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Tatsuya Yamamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3., Tihany, 8237, Hungary.
| |
Collapse
|
14
|
Zhang M, Wei H, Liu T, Li W, Li Y, Wang S, Xing Q, Hu X, Zhang L, Bao Z. Potential GnRH and steroidogenesis pathways in the scallop Patinopecten yessoensis. J Steroid Biochem Mol Biol 2020; 204:105756. [PMID: 32979503 DOI: 10.1016/j.jsbmb.2020.105756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/15/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) controls synthesis of sex steroid hormones through hypothalamic-pituitary-gonadal (HPG) axis in vertebrates. But in mollusks, research on GnRH and steroidogenesis pathways is still limited. In this study, we first identified two gonadotropin receptor like genes (LGR and LGR5L) and four steroidogenesis-related genes (CYP17A, HSD17B12, HSD3B1 and HSD3B2) in the scallop Patinopecten yessoensis. By examining the expression of 11 genes in the ganglia and/or gonad as well as the concentration of progesterone, testosterone and estradiol in the gonad, we postulate that a potential GnRH signaling pathway (GnRH-GnRHR-GPB5-LGR/LGR5L) in the cerebral and pedal ganglia (CPG) and steroidogenesis pathway (CYP17A, HSD17B12 and HSD3B1) in the gonad are involved in regulating sex steroid hormones. E2/T index that indicates aromatase activity is higher in the ovary than testis and is positively correlated with the expression of FOXL2 in the gonad, implying the presence of aromatase in the scallop. In addition, we confirmed that expression of most of the downstream genes in the two pathways was significantly elevated after injection of mature py-GnRH peptide. This study would contribute to a new understanding of the molecular basis underlying reproduction regulation by GnRH in mollusks.
Collapse
Affiliation(s)
- Meiwei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Huilan Wei
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Tian Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Wanru Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Yajuan Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
15
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
16
|
Huang Q, Li Q, Chen H, Lin B, Chen D. Neuroendocrine immune-regulatory of a neuropeptide ChGnRH from the Hongkong oyster, Crassostrea Hongkongensis. FISH & SHELLFISH IMMUNOLOGY 2019; 93:911-916. [PMID: 31132465 DOI: 10.1016/j.fsi.2019.05.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
It is increasingly appreciated that neuroendocrine-immune interactions hold the key to understand the complex immune system. In this study, we explored the role of a reproductive regulation-related hormone, GnRH, in the regulation of immunity in Hong Kong oysters. We found that vibrio bacterial strains injection increased the expression of ChGnRH. Moreover, ChGnRH neuropeptide promotes the phagocytic ability and bacterial clearance effect of hemocytes which regarded to be the central immune organ. The content of cAMP after incubation with ChGnRH peptide was increased, which could be blocked by adenylyl cyclase inhibitor SQ 22,536. Furthermore, the stimulated effect of ChGnRH peptide on the phagocytosis and bacterial clearance was also blocked by SQ 22,536, H89 and enzastaurin, strongly demonstrating that cAMP dependent PKA and PKC signaling pathway was involved in ChGnRH mediated immune regulation. In conclusion, this study confirms the presence of neuroendocrine-immune regulatory system in marine invertebrates, which contributes to understand the complexity of oyster immune defense system.
Collapse
Affiliation(s)
- Qingsong Huang
- School of Life Sciences, Bioparmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiuhong Li
- School of Life Sciences, Bioparmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hongmei Chen
- School of Life Sciences, Bioparmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Baohua Lin
- School of Life Sciences, Bioparmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Dongbo Chen
- School of Life Sciences, Bioparmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Nagasawa K, Matsubara S, Satake H, Osada M. Functional characterization of an invertebrate gonadotropin-releasing hormone receptor in the Yesso scallop Mizuhopecten yessoensis. Gen Comp Endocrinol 2019; 282:113201. [PMID: 31199924 DOI: 10.1016/j.ygcen.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/22/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
The neuropeptide control of bivalve reproduction with particular reference to gonadotropin-releasing hormone (invGnRH) is a frontier yet to be investigated. Bivalves are unique because they have two forms of the invGnRH peptide; however, there has been no functional characterization of the peptide-receptor pair. Therefore, the identification of a cognate receptor is a preliminary step toward exploring the biological roles of invGnRHs in bivalves. In this study, we functionally characterize an invGnRH receptor (invGnRHR) of a bivalve, the Yesso scallop Mizuhopecten yessoensis. In the receptor assay, HEK293 cells were transfected to transiently express the M. yessoensis invGnRHR (my-invGnRHR), which was found to be localized on the plasma membrane, confirming that my-invGnRHR, similar to other G-protein-coupled receptors, functions as a membrane receptor. Using both forms of invGnRH as ligands in a function-receptor assay, my-invGnRH11aa-NH2 stimulated intracellular Ca2+ mobilization but not cyclic AMP production, whereas my-invGnRH12aa-OH did not induce increase in Ca2+ levels. Therefore, we concluded that my-invGnRHR is an endogenous receptor specific to my-invGnRH11aa-NH2 which is hypothesized to be the mature peptide. To the best of our knowledge, this is the first study reporting the functional characterization of a bivalve invGnRHR.
Collapse
Affiliation(s)
- Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, Japan.
| |
Collapse
|
18
|
Funayama S, Kawashima Y, Saito T, Furukawa S, Kodera Y, Moriyama S. Identification and Function of GnRH-like Peptide in the Pacific Abalone, Haliotis discus hannai. Zoolog Sci 2019; 36:339-347. [PMID: 34664905 DOI: 10.2108/zs180189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/26/2019] [Indexed: 11/17/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is an important regulator of reproductive function in various vertebrates and invertebrates. In the present study, we have identified the GnRH-like peptide cDNA and peptide from the cerebral ganglion (CG) of the Pacific abalone, Haliotis discus hannai. Pacific abalone GnRH-like peptide (hdhGnRH-like peptide) cDNA encodes precursor, which possesses the typical organization of the known mollusk GnRH-like peptide precursors, including a hydrophobic signal peptide, GnRH-like peptide, and a cleavage site followed by a GAP-like peptide region. Three hdhGnRH-like peptides, pQNYHFSNGWHAamide (hdhGnRH-11amide), pQNYHFSNGWHA (hdhGnRH-11OH), and pQNYHFSNGWHAG (hdhGnRH-12OH), were determined from the acid/acetone extract of the CG by mass spectrometry (LC-MS/MS) analysis. The hdhGnRH-like peptide mRNA expression was detected not only in the CG but also in gonads, and hdhGnRH-11amide was also detected in the extract of gonads. The mRNA expression of hdhGnRH-like peptide in the CG was lower in spawned males than in non-spawned animals, while no change in hdhGnRH-like peptide mRNA expression was shown in both ovulated and non-ovulated abalone. The hdhGnRH-11amide induces spawning and ovulation of both mature males and females in a concentration-dependent fashion following intramuscular injection. These results indicate that three hdhGnRH-like peptides are yielded from a single hdhGnRH-like peptide precursor, and that at least hdhGnRH-11amide is involved in the control of reproduction of the Pacific abalone.
Collapse
Affiliation(s)
- Shohei Funayama
- Laboratory of Functional Biology of Aquaculture, School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Yusuke Kawashima
- Department of Physics, School of Science, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan.,Department of Genome Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Tatsuya Saito
- Department of Physics, School of Science, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan.,BioMedix Co. Ltd., Tokyo 104-0033, Japan
| | | | - Yoshio Kodera
- Department of Physics, School of Science, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Shunsuke Moriyama
- Laboratory of Functional Biology of Aquaculture, School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan,
| |
Collapse
|
19
|
Schwartz J, Réalis-Doyelle E, Dubos MP, Lefranc B, Leprince J, Favrel P. Characterization of an evolutionarily conserved calcitonin signaling system in a lophotrochozoan, the Pacific oyster (Crassostrea gigas). J Exp Biol 2019; 222:jeb.201319. [DOI: 10.1242/jeb.201319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022]
Abstract
In Protostoma, the diuretic hormone 31 (DH31) signaling system was long considered as the orthologue of the chordate calcitonin (CT) signaling system. Using the Pacific oyster (Crassostrea gigas) transcriptomic database GigaTON (http://ngspipelines-sigenae.toulouse.inra.fr/), we characterized seven G-protein-coupled receptors (GPCRs) named Cragi-CTR1/7 and phylogenetically related to chordate CT receptors (CTRs) and to protostome DH31 receptors. Two CT Precursors (Cragi-CTP1 and Cragi-CTP2) containing two CT-type peptides and encoded by two distinct genes with a similar organization were also characterized. These oyster neuropeptides (Cragi-CT1/2) exhibit the two N-terminal paired cysteine residues and except CTP2 derived peptide (Cragi-CTP2dp) the C-terminal proline-amide motif typical of deuterostome CT-type peptides. All mature Cragi-CTs but Cragi-CTP2dp were detected in visceral ganglion (VG) extracts using mass spectrometry. Cell-based assays revealed that the formerly characterized oyster receptors Cg-CTR and Cragi-CTR2 were specifically activated by Cragi-CT1b and Cragi-CT2, respectively. This activation does not require the co-expression of receptor activity-modifying proteins (RAMPs). Thus, the oyster CT signaling appears functionally more closely related to the vertebrate CT/CTR signaling than to the (Calcitonin Gene Related Peptide) CGRP/CLR signaling. Gene expression profiles in different adult tissues and in oysters acclimated to brackish water suggest the potential implication of both Cg-CT-R/Cragi-CT1b and Cragi-CTR2/Cragi-CT2 in water and ionic regulations, though with apparently opposite effects. The present study represents the first comprehensive characterization of a functional CT-type signaling system in a protostome and provides evidence for its evolutionarily ancient origin and its early role in osmotic homeostasis.
Collapse
Affiliation(s)
- Julie Schwartz
- Normandie Université, UNICAEN, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032 CAEN, Cedex 5, France
| | - Emilie Réalis-Doyelle
- Normandie Université, UNICAEN, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032 CAEN, Cedex 5, France
| | - Marie-Pierre Dubos
- Normandie Université, UNICAEN, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032 CAEN, Cedex 5, France
| | - Benjamin Lefranc
- Normandie Université, UNIROUEN, INSERM, U1239, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, F-76000 Rouen, France
| | - Jérôme Leprince
- Normandie Université, UNIROUEN, INSERM, U1239, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, F-76000 Rouen, France
| | - Pascal Favrel
- Normandie Université, UNICAEN, Sorbonne Universités, MNHN, UPMC, UA, CNRS 7208, IRD 207, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CS14032, 14032 CAEN, Cedex 5, France
| |
Collapse
|
20
|
Liu Z, Li M, Yi Q, Wang L, Song L. The Neuroendocrine-Immune Regulation in Response to Environmental Stress in Marine Bivalves. Front Physiol 2018; 9:1456. [PMID: 30555334 PMCID: PMC6282093 DOI: 10.3389/fphys.2018.01456] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/26/2018] [Indexed: 12/27/2022] Open
Abstract
Marine bivalves, which include many species worldwide, from intertidal zones to hydrothermal vents and cold seeps, are important components of the ecosystem and biodiversity. In their living habitats, marine bivalves need to cope with a series of harsh environmental stressors, including biotic threats (bacterium, virus, and protozoan) and abiotic threats (temperature, salinity, and pollutants). In order to adapt to these surroundings, marine bivalves have evolved sophisticated stress response mechanisms, in which neuroendocrine regulation plays an important role. The nervous system and hemocyte are pillars of the neuroendocrine system. Various neurotransmitters, hormones, neuropeptides, and cytokines have been also characterized as signal messengers or effectors to regulate humoral and cellular immunity, energy metabolism, shell formation, and larval development in response to a vast array of environmental stressors. In this review substantial consideration will be devoted to outline the vital components of the neuroendocrine system identified in bivalves, as well as its modulation repertoire in response to environmental stressors, thereby illustrating the dramatic adaptation mechanisms of molluscs.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Functional Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Functional Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Functional Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| |
Collapse
|
21
|
Tapia-Morales S, López-Landavery EA, Giffard-Mena I, Ramírez-Álvarez N, Gómez-Reyes RJE, Díaz F, Galindo-Sánchez CE. Transcriptomic response of the Crassostrea virginica gonad after exposure to a water-accommodation fraction of hydrocarbons and the potential implications in reproduction. Mar Genomics 2018; 43:9-18. [PMID: 30409725 DOI: 10.1016/j.margen.2018.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/06/2018] [Accepted: 10/20/2018] [Indexed: 11/26/2022]
Abstract
The Crassostrea virginica oyster has biological and economic importance in the Gulf of Mexico, an area with a high extraction and production of hydrocarbons. Exposure to hydrocarbons affects the reproductive processes in bivalves. In C. virginica, the effect of hydrocarbons on the gonad of the undifferentiated organism has not been evaluated to determine the possible damage during the maturation process. To evaluate this effect, RNA-seq data was generated from C. virginica gonads exposed to a 200 μg/L of hydrocarbons at different exposure times (7, 14 and 21 days) and a control treatment (without hydrocarbons). The analysis of the gonad transcriptome showed the negative effect of hydrocarbons on maturation, with a sub-expression of 22 genes involved in different stages of this process. Additionally, genes in the immune system were down-regulated, which may indicate that exposure to hydrocarbons causes immunosuppression in bivalves. A group of oxidative stress genes was also reduced. These data contribute to a better understanding of the effect of hydrocarbons on the reproductive process in bivalves and, at the same time, allow us to identify possible biomarkers associated with hydrocarbon contamination in the gonad of C. virginica.
Collapse
Affiliation(s)
- S Tapia-Morales
- Centro de Investigación Científica y Educación Superior de Ensenada, Laboratorio de Genómica Marina, Carretera Ensenada-Tijuana, C.P. 22860 Ensenada, B. C., Mexico; Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Laboratorio de Patología Experimental Acuícola, Carretera Ensenada-Tijuana No. 3917, C.P. 22860 Ensenada, B. C., Mexico
| | - E A López-Landavery
- Centro de Investigación Científica y Educación Superior de Ensenada, Laboratorio de Genómica Marina, Carretera Ensenada-Tijuana, C.P. 22860 Ensenada, B. C., Mexico
| | - I Giffard-Mena
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Laboratorio de Patología Experimental Acuícola, Carretera Ensenada-Tijuana No. 3917, C.P. 22860 Ensenada, B. C., Mexico
| | - N Ramírez-Álvarez
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Ensenada-Tijuana No. 3917, C.P. 22860 Ensenada, B. C., Mexico
| | - R J E Gómez-Reyes
- Centro de Investigación Científica y Educación Superior de Ensenada, Laboratorio de Genómica Marina, Carretera Ensenada-Tijuana, C.P. 22860 Ensenada, B. C., Mexico
| | - F Díaz
- Centro de Investigación Científica y Educación Superior de Ensenada, Laboratorio de Genómica Marina, Carretera Ensenada-Tijuana, C.P. 22860 Ensenada, B. C., Mexico
| | - C E Galindo-Sánchez
- Centro de Investigación Científica y Educación Superior de Ensenada, Laboratorio de Genómica Marina, Carretera Ensenada-Tijuana, C.P. 22860 Ensenada, B. C., Mexico.
| |
Collapse
|
22
|
Dubos MP, Zels S, Schwartz J, Pasquier J, Schoofs L, Favrel P. Characterization of a tachykinin signalling system in the bivalve mollusc Crassostrea gigas. Gen Comp Endocrinol 2018; 266:110-118. [PMID: 29746853 DOI: 10.1016/j.ygcen.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/06/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
Abstract
Although tachykinin-like neuropeptides have been identified in molluscs more than two decades ago, knowledge on their function and signalling has so far remained largely elusive. We developed a cell-based assay to address the functionality of the tachykinin G-protein coupled receptor (Cragi-TKR) in the oyster Crassostrea gigas. The oyster tachykinin neuropeptides that are derived from the tachykinin precursor gene Cragi-TK activate the Cragi-TKR in nanomolar concentrations. Receptor activation is sensitive to Ala-substitution of critical Cragi-TK amino acid residues. The Cragi-TKR gene is expressed in a variety of tissues, albeit at higher levels in the visceral ganglia (VG) of the nervous system. Fluctuations of Cragi-TKR expression is in line with a role for TK signalling in C. gigas reproduction. The expression level of the Cragi-TK gene in the VG depends on the nutritional status of the oyster, suggesting a role for TK signalling in the complex regulation of feeding in C. gigas.
Collapse
Affiliation(s)
- Marie-Pierre Dubos
- Normandy University, Université de Caen Normandie, UMR BOREA, MNHN, UPMC, UCBN, CNRS-7208, IRD-207, Esplanade de la Paix, 14032 Caen Cedex, France
| | - Sven Zels
- Department of Biology, Functional Genomics and Proteomics Group, KU Leuven, 3000 Leuven, Belgium
| | - Julie Schwartz
- Normandy University, Université de Caen Normandie, UMR BOREA, MNHN, UPMC, UCBN, CNRS-7208, IRD-207, Esplanade de la Paix, 14032 Caen Cedex, France
| | - Jeremy Pasquier
- Normandy University, Université de Caen Normandie, UMR BOREA, MNHN, UPMC, UCBN, CNRS-7208, IRD-207, Esplanade de la Paix, 14032 Caen Cedex, France
| | - Liliane Schoofs
- Department of Biology, Functional Genomics and Proteomics Group, KU Leuven, 3000 Leuven, Belgium
| | - Pascal Favrel
- Normandy University, Université de Caen Normandie, UMR BOREA, MNHN, UPMC, UCBN, CNRS-7208, IRD-207, Esplanade de la Paix, 14032 Caen Cedex, France.
| |
Collapse
|
23
|
Abstract
Gonadotropin-releasing hormone (GnRH) was first discovered in mammals on account of its effect in triggering pituitary release of gonadotropins and the importance of this discovery was recognized forty years ago in the award of the 1977 Nobel Prize for Physiology or Medicine. Investigation of the evolution of GnRH revealed that GnRH-type signaling systems occur throughout the chordates, including agnathans (e.g. lampreys) and urochordates (e.g. sea squirts). Furthermore, the discovery that adipokinetic hormone (AKH) is the ligand for a GnRH-type receptor in the arthropod Drosophila melanogaster provided evidence of the antiquity of GnRH-type signaling. However, the occurrence of other AKH-like peptides in arthropods, which include corazonin and AKH/corazonin-related peptide (ACP), has complicated efforts to reconstruct the evolutionary history of this family of related neuropeptides. Genome/transcriptome sequencing has revealed that both GnRH-type receptors and corazonin-type receptors occur in lophotrochozoan protostomes (annelids, mollusks) and in deuterostomian invertebrates (cephalochordates, hemichordates, echinoderms). Furthermore, peptides that act as ligands for GnRH-type and corazonin-type receptors have been identified in mollusks. However, what has been lacking is experimental evidence that distinct GnRH-type and corazonin-type peptide-receptor signaling pathways occur in deuterostomes. Importantly, we recently reported the identification of two neuropeptides that act as ligands for either a GnRH-type receptor or a corazonin-type receptor in an echinoderm species - the common European starfish Asterias rubens. Discovery of distinct GnRH-type and corazonin-type signaling pathways in this deuterostomian invertebrate has demonstrated for the first time that the evolutionarily origin of these paralogous systems can be traced to the common ancestor of protostomes and deuterostomes. Furthermore, lineage-specific losses of corazonin signaling (in vertebrates, urochordates and nematodes) and duplication of the GnRH signaling system in arthropods (giving rise to the AKH and ACP signaling systems) and quadruplication of the GnRH signaling system in vertebrates (followed by lineage-specific losses or duplications) accounts for the phylogenetic distribution of GnRH/corazonin-type peptide-receptor pathways in extant animals. Informed by these new insights, here we review the history of research on the evolution of GnRH/corazonin-type neuropeptide signaling. Furthermore, we propose a standardized nomenclature for GnRH/corazonin-type neuropeptides wherein peptides are either named "GnRH" or "corazonin", with the exception of the paralogous GnRH-type peptides that have arisen by gene duplication in the arthropod lineage and which are referred to as "AKH" (or red pigment concentrating hormone, "RCPH", in crustaceans) and "ACP".
Collapse
Affiliation(s)
- Meet Zandawala
- Stockholm University, Department of Zoology, Stockholm, Sweden
| | - Shi Tian
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
24
|
Tsai PS. Gonadotropin-releasing hormone by any other name would smell as sweet. Gen Comp Endocrinol 2018; 264:58-63. [PMID: 28927877 DOI: 10.1016/j.ygcen.2017.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
The goal of this article is to discuss the nomenclature of members of the gonadotropin-releasing hormone (GnRH) superfamily. This superfamily currently consists of 5 families: (1) vertebrate GnRH, (2) adipokinetic hormone, (3) corazonin, (4) adipokinetic hormone/corazonin-related peptide and (5) invertebrate GnRH (or GnRH/corazonin). The naming of some of these peptides, especially members of the invertebrate GnRH family, may not have reflected their true evolutionary origin, leading to some confusion and controversy. Using a few examples from the invertebrate GnRH family, this article proposes several peptide-naming criteria and discusses naming challenges and problem cases. It is recommended that the invertebrate GnRH family be renamed based on the naming criteria of (1) mature peptide structure, (2) prepropeptide phylogeny, and (3) receptor phylogeny. Following this approach, the names of the peptides should reflect their phylogeny, and if possible, delineate a monophyletic group.
Collapse
Affiliation(s)
- Pei-San Tsai
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, CO 80309-0354, United States.
| |
Collapse
|
25
|
Wang L, Song X, Song L. The oyster immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:99-118. [PMID: 28587860 DOI: 10.1016/j.dci.2017.05.025] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/21/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Oysters, the common name for a number of different bivalve molluscs, are the worldwide aquaculture species and also play vital roles in the function of ecosystem. As invertebrate, oysters have evolved an integrated, highly complex innate immune system to recognize and eliminate various invaders via an array of orchestrated immune reactions, such as immune recognition, signal transduction, synthesis of antimicrobial peptides, as well as encapsulation and phagocytosis of the circulating haemocytes. The hematopoietic tissue, hematopoiesis, and the circulating haemocytes have been preliminary characterized, and the detailed annotation of the Pacific oyster Crassostrea gigas genome has revealed massive expansion and functional divergence of innate immune genes in this animal. Moreover, immune priming and maternal immune transfer are reported in oysters, suggesting the adaptability of invertebrate immunity. Apoptosis and autophagy are proved to be important immune mechanisms in oysters. This review will summarize the research progresses of immune system and the immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, neuropeptides, GABAergic and nitric oxidase system, which possibly make oysters ideal model for studying the origin and evolution of immune system and the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
- Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China.
| |
Collapse
|
26
|
Characterization and spatiotemporal expression of gonadotropin-releasing hormone in the Pacific abalone, Haliotis discus hannai. Comp Biochem Physiol A Mol Integr Physiol 2017; 209:1-9. [PMID: 28408352 DOI: 10.1016/j.cbpa.2017.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/23/2017] [Accepted: 04/03/2017] [Indexed: 11/20/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a key neuropeptide regulating reproduction in humans and other vertebrates. Recently, GnRH-like cDNAs and peptides were reported in marine mollusks, implying that GnRH-mediated reproduction is an ancient neuroendocrine system that arose prior to the divergence of protostomes and deuterostomes. Here, we evaluated the reproductive control system mediated by GnRH in the Pacific abalone Haliotis discus hannai. We cloned a prepro-GnRH cDNA (Hdh-GnRH) from the pleural-pedal ganglion (PPG) in H. discus hannai, and analyzed its spatiotemporal gene expression pattern. The open reading frame of Hdh-GnRH encodes a protein of 101 amino acids, consisting of a signal peptide, a GnRH dodecapeptide, a cleavage site, and a GnRH-associated peptide. This structure and sequence are highly similar to GnRH-like peptides reported for mollusks and other invertebrates. Quantitative polymerase chain reaction demonstrated that Hdh-GnRH mRNA was more strongly expressed in the ganglions (PPG and cerebral ganglion [CG]) than in other tissues (gonads, gills, intestine, hemocytes, muscle, and mantle) in both sexes. In females, the expression levels of Hdh-GnRH mRNA in the PPG and branchial ganglion (BG) were significantly higher at the ripe and partial spent stages than at the early and late active stages. In males, Hdh-GnRH mRNA levels in the BG showed a significant increase in the partial spent stage. Unexpectedly, Hdh-GnRH levels in the CG were not significantly different among the examined stages in both sexes. These results suggest that Hdh-GnRH mRNA expression profiles in the BG and possibly the PPG are tightly correlated with abalone reproductive activities.
Collapse
|
27
|
Dubos MP, Bernay B, Favrel P. Molecular characterization of an adipokinetic hormone-related neuropeptide (AKH) from a mollusk. Gen Comp Endocrinol 2017; 243:15-21. [PMID: 27823954 DOI: 10.1016/j.ygcen.2016.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022]
Abstract
Adipokinetic hormones (AKH) are key regulators of energy mobilization in insects. With the growing number of genome sequence available, the existence of genes encoding AKH related peptides has now been established in protostomes. Here we investigated the occurrence of a mature AKH-like neuropeptide (Cg-AKH) in the oyster Crassostrea gigas. We unambiguously elucidated the primary structure of this neuropeptide by mass spectrometry from peptidic extracts of oyster visceral ganglia. Cg-AKH mature peptide (pQVSFSTNWGS-amide) represents an additional member of the AKH family of peptides. The organization of Cg-AKH encoding gene and its corresponding transcript is also described. Cg-AKH gene was found to be expressed in the nervous system though at extremely low levels compared to other neuropeptide encoding genes such as the oyster GnRH gene. Although both reproduction and feeding are known to affect the energy balance in oysters, no significant differential expression of Cg-AKH gene could be evidenced in relation with the nutritional status or along the reproductive cycle. The possible involvement of Cg-AKH in the regulation of energy balance in oyster remains an open question.
Collapse
Affiliation(s)
- Marie-Pierre Dubos
- Normandie Univ, UNICAEN, CNRS 7208, IRD 207, UMR BOREA, Esplanade de la Paix, 14032 Caen cedex, France
| | - Benoit Bernay
- Normandie Univ, UNICAEN, SF 4206 ICORE, Esplanade de la Paix, 14032 Caen cedex, France
| | - Pascal Favrel
- Normandie Univ, UNICAEN, CNRS 7208, IRD 207, UMR BOREA, Esplanade de la Paix, 14032 Caen cedex, France.
| |
Collapse
|
28
|
Nagasawa K, Muroi K, Thitiphuree T, Minegishi Y, Itoh N, Osada M. Cloning of invertebrate gonadotropin-releasing hormone receptor ( GnRHR )-like gene in Yesso scallop, Patinopecten yessoensis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.aggene.2016.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Morthorst JE. A field study of hemolymph yolk protein levels in a bivalve (Unio tumidus) and future considerations for bivalve yolk protein as endocrine biomarker. Comp Biochem Physiol C Toxicol Pharmacol 2017; 192:16-22. [PMID: 27890716 DOI: 10.1016/j.cbpc.2016.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022]
Abstract
Induction of yolk protein in male fish is a recognized biomarker for estrogenic exposure because the estrogen-dependent induction mechanism is well investigated and there is a clear difference in yolk protein levels of unexposed males and females. Attempts have been made to use induction of bivalve yolk protein as biomarker for estrogenic exposure. However, several biomarker validation criteria have not yet been investigated e.g. an in-depth understanding of the induction mechanism and background variability is needed and reliable detection assays are yet to be developed. To obtain background knowledge about yolk protein levels freshwater bivalves (Unio tumidus) were collected in an uncontaminated Danish lake over the course of a year (33 collection dates). The hemolymph yolk protein concentration of 569 individuals was determined by a species specific enzyme-linked immunosorbent assay (ELISA) and male and female gonadal development cycles were established. The average yolk protein levels of males and females collected at each sampling date overlapped in some periods; the male and female range was 66,946 - 169,692 ng/mL and 88,731 - 681,667 ng/mL, respectively. Because male and female hemolymph yolk protein levels overlap, great care should be taken if yolk protein induction in bivalve hemolymph is considered as endocrine biomarker.
Collapse
Affiliation(s)
- Jane E Morthorst
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5220, Odense M, Denmark.
| |
Collapse
|
30
|
|
31
|
In VV, Ntalamagka N, O'Connor W, Wang T, Powell D, Cummins SF, Elizur A. Reproductive neuropeptides that stimulate spawning in the Sydney Rock Oyster (Saccostrea glomerata). Peptides 2016; 82:109-119. [PMID: 27328253 DOI: 10.1016/j.peptides.2016.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
The Sydney Rock Oyster, Saccostrea glomerata, is a socioeconomically important species in Australia, yet little is known about the molecular mechanism that regulates its reproduction. To address this gap, we have performed a combination of high throughput transcriptomic and peptidomic analysis, to identify genes and neuropeptides that are expressed in the key regulatory tissues of S. glomerata; the visceral ganglia and gonads. Neuropeptides are known to encompass a diverse class of peptide messengers that play functional roles in many aspects of an animal's life, including reproduction. Approximately 28 neuropeptide genes were identified, primarily within the visceral ganglia transcriptome, that encode precursor proteins containing numerous neuropeptides; some were confirmed through mass spectral peptidomics analysis of the visceral ganglia. Of those, 28 bioactive neuropeptides were synthesized, and then tested for their capacity to induce gonad development and spawning in S. glomerata. Egg laying hormone, gonadotropin-releasing hormone, APGWamide, buccalin, CCAP and LFRFamide were neuropeptides found to trigger spawning in ripe animals. Additional testing of APGWa and buccalin demonstrated their capacity to advance conditioning and gonadal maturation. In summary, our analysis of S. glomerata has identified neuropeptides that can influence the reproductive cycle of this species, specifically by accelerating gonadal maturation and triggering spawning. Other molluscan neuropeptides identified in this study will enable further research into understanding the neuroendocrinology of oysters, which may benefit their cultivation.
Collapse
Affiliation(s)
- Vu Van In
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia; Northern National Broodstock Center for Mariculture, Research Institute for Aquaculture No. 1, Catba Islands, Haiphong, Vietnam
| | - Nikoleta Ntalamagka
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Wayne O'Connor
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia; Industry and Investment NSW, Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, 2316, Australia
| | - Tianfang Wang
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Daniel Powell
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Scott F Cummins
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Abigail Elizur
- Centre of Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia.
| |
Collapse
|
32
|
Adamson KJ, Wang T, Rotgans BA, Kuballa AV, Storey KB, Cummins SF. Differential peptide expression in the central nervous system of the land snail Theba pisana, between active and aestivated. Peptides 2016; 80:61-71. [PMID: 26303007 DOI: 10.1016/j.peptides.2015.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 12/25/2022]
Abstract
Hypometabolism is a physiological state of dormancy entered by many animals in times of environmental stress. There are gaps in our understanding of the molecular components used by animals to achieve this metabolic state. The availability of genomic and transcriptome data can be useful to study the process of hypometabolism at the molecular level. In this study, we use the land snail Theba pisana to identify peptides that may be involved in the hypometabolic state known as aestivation. We found a total of 22 neuropeptides in the central nervous system (CNS) that were differentially produced during activity and aestivation based on mass spectral-based neuropeptidome analysis. Of these, 4 were upregulated in active animals and 18 were upregulated in aestivation. A neuropeptide known to regulate muscle contractions in a variety of molluscs, the small cardioactive peptide A (sCAPA), and a peptide of yet unknown function (termed Aestivation Associated Peptide 12) were chosen for further investigation using temporal and spatial expression analysis of the precursor gene and peptide. Both peptides share expression within regions of the CNS cerebral ganglia and suboesophageal ganglia. Relative transcript abundance suggests that regulation of peptide synthesis and secretion is post-transcriptional. In summary, we provide new insights into the molecular basis of the regulation of aestivation in land snails through CNS peptide control.
Collapse
Affiliation(s)
- K J Adamson
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - T Wang
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - B A Rotgans
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - A V Kuballa
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - K B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - S F Cummins
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia.
| |
Collapse
|
33
|
Presence of gonadotropin-releasing hormone-like peptide in the central nervous system and reproductive organs of the male blue swimming crab, Portunus pelagicus, and its effect on spermatogenesis. Cell Tissue Res 2016; 365:265-77. [DOI: 10.1007/s00441-016-2375-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 02/01/2016] [Indexed: 02/02/2023]
|
34
|
Minakata H, Tsutsui K. Oct-GnRH, the first protostomian gonadotropin-releasing hormone-like peptide and a critical mini-review of the presence of vertebrate sex steroids in molluscs. Gen Comp Endocrinol 2016; 227:109-14. [PMID: 26319132 DOI: 10.1016/j.ygcen.2015.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/07/2015] [Accepted: 07/28/2015] [Indexed: 11/21/2022]
Abstract
In protostome and deuterosome invertebrates, neurosecretory cells play major roles in the endocrine system. The optic glands of cephalopods are indicators of sexual maturation. In mature octopuses, optic glands enlarge and secrete a gonadotropic hormone. A peptide with structural features similar to that of vertebrate gonadotropin-releasing hormone (GnRH) was isolated from the octopus, Octopus vulgaris, and was named oct-GnRH. The discovery of oct-GnRH has triggered structural determinations and predictions of other mollusc GnRH-like peptides in biochemical and in silico studies. Interestingly, cephalopods studied so far are characterized by a single molecular form of oct-GnRH with a C-terminal -Pro-Gly-NH2 sequence, which is critical for gonadotropin-releasing activity in vertebrates. Other molluscan GnRH-like peptides lack the C-terminal -Pro-Gly-NH2 sequence but have -X-NH2 or -Pro-Gly although all protostome GnRH-like peptides have yet to be sequenced. In marine molluscs, relationships between GnRH-like peptides and sex steroids have been studied to verify the hypothesis that molluscs have vertebrate-type sex steroid system. However, it is currently questionable whether such sex steroids are present and whether they play endogenous roles in the reproductive system of molluscs. Because molluscs uptake and store steroids from the environment and fishes release sex steroids into the external environment, it is impossible to rule out the contamination of vertebrate sex steroids in molluscs. The function of key enzymes of steroidogenesis within molluscs remains unclear. Thus, evidence to deny the existence of the vertebrate-type sex steroid system in molluscs has been accumulated. The elucidation of substances, which regulate the maturation and maintenance of gonads and other reproductive functions in molluscs will require rigorous and progressive scientific study.
Collapse
Affiliation(s)
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| |
Collapse
|
35
|
Zatylny-Gaudin C, Cornet V, Leduc A, Zanuttini B, Corre E, Le Corguillé G, Bernay B, Garderes J, Kraut A, Couté Y, Henry J. Neuropeptidome of the Cephalopod Sepia officinalis: Identification, Tissue Mapping, and Expression Pattern of Neuropeptides and Neurohormones during Egg Laying. J Proteome Res 2015; 15:48-67. [PMID: 26632866 DOI: 10.1021/acs.jproteome.5b00463] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cephalopods exhibit a wide variety of behaviors such as prey capture, communication, camouflage, and reproduction thanks to a complex central nervous system (CNS) divided into several functional lobes that express a wide range of neuropeptides involved in the modulation of behaviors and physiological mechanisms associated with the main stages of their life cycle. This work focuses on the neuropeptidome expressed during egg-laying through de novo construction of the CNS transcriptome using an RNAseq approach (Illumina sequencing). Then, we completed the in silico analysis of the transcriptome by characterizing and tissue-mapping neuropeptides by mass spectrometry. To identify neuropeptides involved in the egg-laying process, we determined (1) the neuropeptide contents of the neurohemal area, hemolymph (blood), and nerve endings in mature females and (2) the expression levels of these peptides. Among the 38 neuropeptide families identified from 55 transcripts, 30 were described for the first time in Sepia officinalis, 5 were described for the first time in the animal kingdom, and 14 were strongly overexpressed in egg-laying females as compared with mature males. Mass spectrometry screening of hemolymph and nerve ending contents allowed us to clarify the status of many neuropeptides, that is, to determine whether they were neuromodulators or neurohormones.
Collapse
Affiliation(s)
- Céline Zatylny-Gaudin
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Valérie Cornet
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Alexandre Leduc
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Bruno Zanuttini
- Normandy University , GREYC, UMR CNRS 6072, F-14032 Caen, France
| | - Erwan Corre
- UPMC, CNRS, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France
| | | | - Benoît Bernay
- Normandy University , F-14032 Caen, France.,Post Genomic Platform PROTEOGEN, Normandy University , SF ICORE 4206, F-14032 Caen, France
| | - Johan Garderes
- Center for Marine Research, "Ruder Boskovic" Institute , HR-52210 Rovinj, Croatia
| | - Alexandra Kraut
- Univ. Grenoble Alpes , iRTSV-BGE, F-38000 Grenoble, France.,CEA, iRTSV-BGE, F-38000 Grenoble, France.,INSERM, BGE, F-38000 Grenoble, France
| | - Yohan Couté
- Univ. Grenoble Alpes , iRTSV-BGE, F-38000 Grenoble, France.,CEA, iRTSV-BGE, F-38000 Grenoble, France.,INSERM, BGE, F-38000 Grenoble, France
| | - Joël Henry
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France.,Post Genomic Platform PROTEOGEN, Normandy University , SF ICORE 4206, F-14032 Caen, France
| |
Collapse
|
36
|
Song Y, Miao J, Cai Y, Pan L. Molecular cloning, characterization, and expression analysis of a gonadotropin-releasing hormone-like cDNA in the clam, Ruditapes philippinarum. Comp Biochem Physiol B Biochem Mol Biol 2015. [DOI: 10.1016/j.cbpb.2015.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Nagasawa K, Osugi T, Suzuki I, Itoh N, Takahashi KG, Satake H, Osada M. Characterization of GnRH-like peptides from the nerve ganglia of Yesso scallop, Patinopecten yessoensis. Peptides 2015; 71:202-10. [PMID: 26238596 DOI: 10.1016/j.peptides.2015.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/24/2015] [Accepted: 07/24/2015] [Indexed: 11/23/2022]
Abstract
There is yet no firm experimental evidence that the evolutionary ancient gonadotropin-releasing hormone GnRH (i.e., GnRH1) also acts in invertebrate gametogenesis. The objective of this paper is to characterize candidate invGnRH peptides of Yesso scallop Patinopecten yessoensis (i.e., peptide identification, immunohistochemical localization, and immunoquantification) in order to reveal their bioactive form in bivalves. Using mass spectrometry (MS), we identified two invGnRH (py-GnRH) peptides from the scallop nerve ganglia: a precursor form of py-GnRH peptide (a non-amidated dodecapeptide; py-GnRH12aa-OH) and a mature py-GnRH peptide (an amidated undecapeptide; py-GnRH11aa-NH2). Immunohistochemical staining allowed the localization of both py-GnRH peptides in the neuronal cell bodies and fibers of the cerebral and pedal ganglia (CPG) and the visceral ganglion (VG). We found that the peptides showed a dimorphic distribution pattern. Notably, the broad distribution of mature py-GnRH in neuronal fibers elongating to peripheral organs suggests that it is multi-functional. Time-resolved fluorescent immunoassays (TR-FIA) enabled the quantification of each py-GnRH form in the single CPG or VG tissue obtained from one individual. In addition, we observed greater abundance of mature py-GnRH in VG compared with its level in CPG, suggesting that VG is the main producing organ of mature py-GnRH peptide and that py-GnRH may play a central regulatory role in neurons of scallops. Our study provides evidence, for the first time, for the presence of precursor and mature forms of invGnRH peptides in the nerve ganglia of an invertebrate.
Collapse
Affiliation(s)
- Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-Machi, Tsutsumidori, Aoba-Ku, Sendai, Miyagi 981 8555, Japan
| | - Tomohiro Osugi
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Iwao Suzuki
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-Machi, Tsutsumidori, Aoba-Ku, Sendai, Miyagi 981 8555, Japan
| | - Naoki Itoh
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keisuke G Takahashi
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-Machi, Tsutsumidori, Aoba-Ku, Sendai, Miyagi 981 8555, Japan
| | - Honoo Satake
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-Machi, Tsutsumidori, Aoba-Ku, Sendai, Miyagi 981 8555, Japan.
| |
Collapse
|
38
|
Transcriptomics Analysis of Crassostrea hongkongensis for the Discovery of Reproduction-Related Genes. PLoS One 2015; 10:e0134280. [PMID: 26258576 PMCID: PMC4530894 DOI: 10.1371/journal.pone.0134280] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/07/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The reproductive mechanisms of mollusk species have been interesting targets in biological research because of the diverse reproductive strategies observed in this phylum. These species have also been studied for the development of fishery technologies in molluscan aquaculture. Although the molecular mechanisms underlying the reproductive process have been well studied in animal models, the relevant information from mollusks remains limited, particularly in species of great commercial interest. Crassostrea hongkongensis is the dominant oyster species that is distributed along the coast of the South China Sea and little genomic information on this species is available. Currently, high-throughput sequencing techniques have been widely used for investigating the basis of physiological processes and facilitating the establishment of adequate genetic selection programs. RESULTS The C.hongkongensis transcriptome included a total of 1,595,855 reads, which were generated by 454 sequencing and were assembled into 41,472 contigs using de novo methods. Contigs were clustered into 33,920 isotigs and further grouped into 22,829 isogroups. Approximately 77.6% of the isogroups were successfully annotated by the Nr database. More than 1,910 genes were identified as being related to reproduction. Some key genes involved in germline development, sex determination and differentiation were identified for the first time in C.hongkongensis (nanos, piwi, ATRX, FoxL2, β-catenin, etc.). Gene expression analysis indicated that vasa, nanos, piwi, ATRX, FoxL2, β-catenin and SRD5A1 were highly or specifically expressed in C.hongkongensis gonads. Additionally, 94,056 single nucleotide polymorphisms (SNPs) and 1,699 simple sequence repeats (SSRs) were compiled. CONCLUSIONS Our study significantly increased C.hongkongensis genomic information based on transcriptomics analysis. The group of reproduction-related genes identified in the present study constitutes a new tool for research on bivalve reproduction processes. The large group of molecular markers discovered in this study will be useful for population screening and marker assisted selection programs in C.hongkongensis aquaculture.
Collapse
|
39
|
Nagasawa K, Oouchi H, Itoh N, Takahashi KG, Osada M. In Vivo Administration of Scallop GnRH-Like Peptide Influences on Gonad Development in the Yesso Scallop, Patinopecten yessoensis. PLoS One 2015; 10:e0129571. [PMID: 26030928 PMCID: PMC4451010 DOI: 10.1371/journal.pone.0129571] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/11/2015] [Indexed: 11/29/2022] Open
Abstract
Existing research on the role of gonadotropin-releasing hormone (GnRH) in bivalve reproduction is inadequate, even though a few bivalve GnRH orthologs have been cloned. The objective of this paper was to elucidate the in vivo effect of GnRH administration in Yesso scallop reproduction. We performed in vivo administration of scallop GnRH (py-GnRH) synthetic peptide into the developing gonad, and analyzed its effect on gonad development for 6 weeks during the reproductive season. The resulting sex ratio in the GnRH administered (GnRH(+)) group might be male biased, whereas the control (GnRH(-)) group had an equal sex ratio throughout the experiment. The gonad index (GI) of males in the GnRH(+) group increased from week 2 to 24.8% at week 6. By contrast the GI of the GnRH(-) group peaked in week 4 at 16.6%. No significant difference was seen in female GI between the GnRH(+) and GnRH(-) groups at any sampling point. Oocyte diameter in the GnRH(+) group remained constant (about 42–45 μm) throughout the experiment, while in the GnRH(-) group it increased from 45 to 68 μm i.e. normal oocyte growth. The number of spermatogonia in the germinal acini of males in the GnRH(+) group increased from week 4 to 6. Hermaphrodites appeared in the GnRH(+) group in weeks 2 and 4. Their gonads contained many apoptotic cells including oocytes. In conclusion, this study suggests that py-GnRH administration could have a potential to accelerate spermatogenesis and cause an inhibitory effect on oocyte growth in scallops.
Collapse
Affiliation(s)
- Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
| | - Hitoshi Oouchi
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
| | - Naoki Itoh
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Keisuke G. Takahashi
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1–1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
40
|
Huvet A, Béguel JP, Cavaleiro NP, Thomas Y, Quillien V, Boudry P, Alunno-Bruscia M, Fabioux C. Disruption of amylase genes by RNA interference affects reproduction in the Pacific oyster Crassostrea gigas. ACTA ACUST UNITED AC 2015; 218:1740-7. [PMID: 25883379 DOI: 10.1242/jeb.116699] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/12/2015] [Indexed: 12/30/2022]
Abstract
Feeding strategies and digestive capacities can have important implications for variation in energetic pathways associated with ecological and economically important traits, such as growth or reproduction in bivalve species. Here, we investigated the role of amylase in the digestive processes of Crassostrea gigas, using in vivo RNA interference. This approach also allowed us to investigate the relationship between energy intake by feeding and gametogenesis in oysters. Double-stranded (ds)RNA designed to target the two α-amylase genes A and B was injected in vivo into the visceral mass of oysters at two doses. These treatments caused significant reductions in mean mRNA levels of the amylase genes: -50.7% and -59% mRNA A, and -71.9% and -70.6% mRNA B in 15 and 75 µg dsRNA-injected oysters, respectively, relative to controls. Interestingly, reproductive knock-down phenotypes were observed for both sexes at 48 days post-injection, with a significant reduction of the gonad area (-22.5% relative to controls) and germ cell under-proliferation revealed by histology. In response to the higher dose of dsRNA, we also observed reductions in amylase activity (-53%) and absorption efficiency (-5%). Based on these data, dynamic energy budget modeling showed that the limitation of energy intake by feeding that was induced by injection of amylase dsRNA was insufficient to affect gonadic development at the level observed in the present study. This finding suggests that other driving mechanisms, such as endogenous hormonal modulation, might significantly change energy allocation to reproduction, and increase the maintenance rate in oysters in response to dsRNA injection.
Collapse
Affiliation(s)
- Arnaud Huvet
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin, Plouzané 29280, France
| | - Jean-Philippe Béguel
- Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin, Plouzané 29280, France
| | - Nathalia Pereira Cavaleiro
- Laboratório Nacional de Computação Científica, Rua Getúlio Vargas 333, 25651-071 Petrópolis, Rio de Janeiro, Brazil
| | - Yoann Thomas
- Université de Nantes, Mer Molécules Santé EA 2160, Nantes 44322, Cedex 3, France
| | - Virgile Quillien
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin, Plouzané 29280, France
| | - Pierre Boudry
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin, Plouzané 29280, France
| | - Marianne Alunno-Bruscia
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin, Plouzané 29280, France
| | - Caroline Fabioux
- Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'Environnement Marin, Plouzané 29280, France
| |
Collapse
|
41
|
Hauser F, Grimmelikhuijzen CJP. Evolution of the AKH/corazonin/ACP/GnRH receptor superfamily and their ligands in the Protostomia. Gen Comp Endocrinol 2014; 209:35-49. [PMID: 25058364 DOI: 10.1016/j.ygcen.2014.07.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/07/2014] [Accepted: 07/10/2014] [Indexed: 11/22/2022]
Abstract
In this review we trace the evolutionary connections between GnRH receptors from vertebrates and the receptors for adipokinetic hormone (AKH), AKH/corazonin-related peptide (ACP), and corazonin from arthropods. We conclude that these G protein-coupled receptors (GPCRs) are closely related and have a common evolutionary origin, which dates back to the split of Proto- and Deuterostomia, about 700 million years ago. We propose that in the protostomian lineage, the ancestral GnRH-like receptor gene duplicated as did its GnRH-like ligand gene, followed by diversification, leading to (i) a corazonin receptor gene and a corazonin-like ligand gene, and (ii) an AKH receptor gene and an AKH-like ligand gene in the Mollusca and Annelida. Subsequently, the AKH receptor and ligand genes duplicated once more, yielding the situation that we know from arthropods today, where three independent hormonal systems exist, signalling with AKH, ACP, and corazonin. Our model for the evolution of GnRH signaling in the Protostomia is a striking example of receptor-ligand co-evolution. This model has been developed using several bioinformatics tools (TBLASTN searches, phylogenetic tree analyses), which also helped us to annotate six novel AKH preprohormones and their corresponding AKH sequences from the following molluscs: the sea hare Aplysia californica (AKH sequence: pQIHFSPDWGTamide), the sea slug Tritonia diomedea (pQIHFSPGWEPamide), the fresh water snail Bithynia siamensis goniomphalos (pQIHFTPGWGSamide), the owl limpet Lottia gigantea (pQIHFSPTWGSamide), the oyster Crassostrea gigas (pQVSFSTNWGSamide), and the freshwater pearl mussel Hyriopsis cumingii (pQISFSTNWGSamide). We also found AKHs in the tardigrade Hysibius dujardini (pQLSFTGWGHamide), the rotifer Brachionus calycifloros (pQLTFSSDWSGamide), and the penis worm Priapulus caudatus (pQIFFSKGWRGamide). This is the first report, showing that AKH signaling is widespread in molluscs.
Collapse
Affiliation(s)
- Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Denmark
| | | |
Collapse
|
42
|
Stewart MJ, Favrel P, Rotgans BA, Wang T, Zhao M, Sohail M, O'Connor WA, Elizur A, Henry J, Cummins SF. Neuropeptides encoded by the genomes of the Akoya pearl oyster Pinctata fucata and Pacific oyster Crassostrea gigas: a bioinformatic and peptidomic survey. BMC Genomics 2014; 15:840. [PMID: 25277059 PMCID: PMC4200219 DOI: 10.1186/1471-2164-15-840] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oysters impart significant socio-ecological benefits from primary production of food supply, to estuarine ecosystems via reduction of water column nutrients, plankton and seston biomass. Little though is known at the molecular level of what genes are responsible for how oysters reproduce, filter nutrients, survive stressful physiological events and form reef communities. Neuropeptides represent a diverse class of chemical messengers, instrumental in orchestrating these complex physiological events in other species. RESULTS By a combination of in silico data mining and peptide analysis of ganglia, 74 putative neuropeptide genes were identified from genome and transcriptome databases of the Akoya pearl oyster, Pinctata fucata and the Pacific oyster, Crassostrea gigas, encoding precursors for over 300 predicted bioactive peptide products, including three newly identified neuropeptide precursors PFGx8amide, RxIamide and Wx3Yamide. Our findings also include a gene for the gonadotropin-releasing hormone (GnRH) and two egg-laying hormones (ELH) which were identified from both oysters. Multiple sequence alignments and phylogenetic analysis supports similar global organization of these mature peptides. Computer-based peptide modeling of the molecular tertiary structures of ELH highlights the structural homologies within ELH family, which may facilitate ELH activity leading to the release of gametes. CONCLUSION Our analysis demonstrates that oysters possess conserved molluscan neuropeptide domains and overall precursor organization whilst highlighting many previously unrecognized bivalve idiosyncrasies. This genomic analysis provides a solid foundation from which further studies aimed at the functional characterization of these molluscan neuropeptides can be conducted to further stimulate advances in understanding the ecology and cultivation of oysters.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Scott F Cummins
- School of Science and Education, Genecology Research Center, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia.
| |
Collapse
|
43
|
Bigot L, Beets I, Dubos MP, Boudry P, Schoofs L, Favrel P. Functional characterization of a short neuropeptide F-related receptor in a lophotrochozoan, the mollusk Crassostrea gigas. ACTA ACUST UNITED AC 2014; 217:2974-82. [PMID: 24948637 DOI: 10.1242/jeb.104067] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Members of the short neuropeptide F (sNPF) family of peptides and their cognate receptors play key roles in a variety of physiological processes in arthropods. In silico screening of GigasDatabase, a specific expressed sequence tag database from the Pacific oyster Crassostrea gigas, resulted in the identification of a receptor (Cg-sNPFR-like) phylogenetically closely related to sNPF receptors (sNPFRs) of insects. A reverse endocrinology approach was undertaken to identify the peptide ligand(s) of this orphan receptor. Though structurally distinct from insect sNPFs, three RFamide peptides derived from the same precursor, i.e. GSLFRFamide, SSLFRFamide and GALFRFamide, specifically activate the receptor in a dose-dependent manner, with respective EC50 values (half-maximal effective concentrations) of 1.1, 2.1 and 4.1 μmol l(-1). We found that both Cg-sNPFR-like receptor and LFRFamide encoding transcripts are expressed in the oyster central nervous system and in other tissues as well, albeit at lower levels. Mass spectrometry analysis confirmed the wide distribution of LFRFamide mature peptides in several central and peripheral tissues. The Cg-sNPFR-like receptor was more abundantly expressed in ganglia of females than of males, and upregulated in starved oysters. In the gonad area, highest receptor gene expression occurred at the start of gametogenesis, when storage activity is maximal. Our results suggest that signaling of LFRFamide peptides through the Cg-sNPFR-like receptor might play a role in the coordination of nutrition, energy storage and metabolism in C. gigas, possibly by promoting storage at the expense of reproduction.
Collapse
Affiliation(s)
- Laetitia Bigot
- Université de Caen Basse-Normandie, Biologie des Organismes Aquatiques et Ecosystèmes (BOREA), CS 14032, 14032 Caen Cedex 05, France CNRS UMR 7208, BOREA, CS 14032, 14032 Caen Cedex 05, France
| | - Isabel Beets
- Department of Biology, Functional Genomics and Proteomics Group, KU Leuven, 3000 Leuven, Belgium
| | - Marie-Pierre Dubos
- Université de Caen Basse-Normandie, Biologie des Organismes Aquatiques et Ecosystèmes (BOREA), CS 14032, 14032 Caen Cedex 05, France CNRS UMR 7208, BOREA, CS 14032, 14032 Caen Cedex 05, France
| | - Pierre Boudry
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, UMR 6539 LEMAR, 29280 Plouzané, France
| | - Liliane Schoofs
- Department of Biology, Functional Genomics and Proteomics Group, KU Leuven, 3000 Leuven, Belgium
| | - Pascal Favrel
- Université de Caen Basse-Normandie, Biologie des Organismes Aquatiques et Ecosystèmes (BOREA), CS 14032, 14032 Caen Cedex 05, France CNRS UMR 7208, BOREA, CS 14032, 14032 Caen Cedex 05, France
| |
Collapse
|
44
|
Abstract
This review covers the literature published in 2012 for marine natural products, with 1035 citations (673 for the period January to December 2012) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1241 for 2012), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
45
|
Shi Y, He M. Differential gene expression identified by RNA-Seq and qPCR in two sizes of pearl oyster (Pinctada fucata). Gene 2014; 538:313-22. [PMID: 24440293 DOI: 10.1016/j.gene.2014.01.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/03/2014] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
Abstract
Differential growth of the pearl oyster Pinctada fucata still exists in the aquaculture production. There is no systematic study of the entire transcriptome of differential gene expression in P. fucata in the literature. In this study, high-throughput Illumina/HiSeq™ 2000 RNA-Seq was used to examine the differences of gene expression in large (L) and small oysters (S). In total, 74,293 and 76,635 unigenes were generated from L and S oysters, respectively. RT quantitative PCR (qPCR) analysis showed that the differential expression pattern of 19 out of 34 selected genes was consistent with the results of RNA-Seq analysis: 14 genes (11 for growth, 1 for reproduction and 2 for shell formation) were expressed more highly in S, 5 genes (1 for growth, 1 for reproduction and 3 for the immune system) were expressed more highly in L; 3 genes associated with the immune system were opposite to it; and no difference was found for the remaining 12 genes. Another 9 shell formation-related genes in L and S were examined by qPCR: 1 gene was expressed more highly in L, 5 genes were expressed more highly in S and no difference was found for the remaining 3 genes. Some genes related to growth and development, shell formation and reproduction were expressed more highly in S compared to L. This phenomenon could be explained by "catch-up growth". The results of this study will help toward a comprehensive understanding of the complexity of differential growth between P. fucata individuals and provide valuable information for future research.
Collapse
Affiliation(s)
- Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
46
|
Matsumoto T, Masaoka T, Fujiwara A, Nakamura Y, Satoh N, Awaji M. Reproduction-related genes in the pearl oyster genome. Zoolog Sci 2013; 30:826-50. [PMID: 24125647 DOI: 10.2108/zsj.30.826] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Molluscan reproduction has been a target of biological research because of the various reproductive strategies that have evolved in this phylum. It has also been studied for the development of fisheries technologies, particularly aquaculture. Although fundamental processes of reproduction in other phyla, such as vertebrates and arthropods, have been well studied, information on the molecular mechanisms of molluscan reproduction remains limited. The recently released draft genome of the pearl oyster Pinctada fucata provides a novel and powerful platform for obtaining structural information on the genes and proteins involved in bivalve reproduction. In the present study, we analyzed the pearl oyster draft genome to screen reproduction-related genes. Analysis was mainly conducted for genes reported from other molluscs for encoding orthologs of reproduction-related proteins in other phyla. The gene search in the P. fucata gene models (version 1.1) and genome assembly (version 1.0) were performed using Genome Browser and BLAST software. The obtained gene models were then BLASTP searched against a public database to confirm the best-hit sequences. As a result, more than 40 gene models were identified with high accuracy to encode reproduction-related genes reported for P. fucata and other molluscs. These include vasa, nanos, doublesex- and mab-3-related transcription factor, 5-hydroxytryptamine (5-HT) receptors, vitellogenin, estrogen receptor, and others. The set of reproduction-related genes of P. fucata identified in the present study constitute a new tool for research on bivalve reproduction at the molecular level.
Collapse
Affiliation(s)
- Toshie Matsumoto
- 1 Aquaculture Technology Division, National Research Institute of Aquaculture, Fisheries Research Agency, Minami-lse, Watarai, Mie 516-0193, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Guévélou E, Huvet A, Galindo-Sánchez CE, Milan M, Quillien V, Daniel JY, Quéré C, Boudry P, Corporeau C. Sex-Specific Regulation of AMP-Activated Protein Kinase (AMPK) in the Pacific Oyster Crassostrea gigas1. Biol Reprod 2013; 89:100. [DOI: 10.1095/biolreprod.113.109728] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
48
|
Saetan J, Senarai T, Tamtin M, Weerachatyanukul W, Chavadej J, Hanna PJ, Parhar I, Sobhon P, Sretarugsa P. Histological organization of the central nervous system and distribution of a gonadotropin-releasing hormone-like peptide in the blue crab, Portunus pelagicus. Cell Tissue Res 2013; 353:493-510. [PMID: 23733265 DOI: 10.1007/s00441-013-1650-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 04/22/2013] [Indexed: 12/24/2022]
Abstract
We present a detailed histological description of the central nervous system (CNS: brain, subesophageal ganglion, thoracic ganglia, abdominal ganglia) of the blue crab, Portunus pelagicus. Because the presence of gonadotropin-releasing hormone (GnRH) in crustaceans has been disputed, we examine the presence and localization of a GnRH-like peptide in the CNS of the blue crab by using antibodies against lamprey GnRH (lGnRH)-III, octopus GnRH (octGnRH) and tunicate GnRH (tGnRH)-I. These antibodies showed no cross-reactivity with red-pigment-concentrating hormone, adipokinetic hormone, or corazonin. In the brain, strong lGnRH-III immunoreactivity (-ir) was detected in small (7-17 μm diameter) neurons of clusters 8, 9 and 10, in medium-sized (21-36 μm diameter) neurons of clusters 6, 7 and 11 and in the anterior and posterior median protocerebral neuropils, olfactory neuropil, median and lateral antenna I neuropils, tegumentary neuropil and antenna II neuropil. In the subesophageal ganglion, lGnRH-III-ir was detected in medium-sized neurons and in the subesophageal neuropil. In the thoracic and abdominal ganglia, lGnRH-III-ir was detected in medium-sized and small neurons and in the neuropils. OctGnRH-ir was observed in neurons of the same clusters with moderate staining, particularly in the deutocerebrum, whereas tGnRH-I-ir was only detected in medium-sized neurons of cluster 11 in the brain. Thus, anti-lGnRH-III shows greater immunoreactivity in the crab CNS than anti-octGnRH and anti-tGnRH-I. Moreover, our functional bioassay demonstrates that only lGnRH-III has significant stimulatory effects on ovarian growth and maturation. We therefore conclude that, although the true identity of the crab GnRH eludes us, crabs possess a putative GnRH hormone similar to lGnRH-III. The identification and characterization of this molecule is part of our ongoing research.
Collapse
Affiliation(s)
- Jirawat Saetan
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nervous control of reproduction in Octopus vulgaris: a new model. INVERTEBRATE NEUROSCIENCE 2013; 13:27-34. [DOI: 10.1007/s10158-013-0149-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 02/23/2013] [Indexed: 12/25/2022]
|
50
|
Osada M, Treen N. Molluscan GnRH associated with reproduction. Gen Comp Endocrinol 2013; 181:254-8. [PMID: 22982976 DOI: 10.1016/j.ygcen.2012.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/27/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a neuropeptide that has an essential role in the neural regulation of vertebrate reproduction. Over the past two decades there has been increasing evidence strongly indicating that members of the GnRH superfamily, which includes GnRH, adipokinetic hormone (AKH), corazonin (Crz) and adipokinetic hormone/corazonin-related peptides (ACP), are almost ubiquitous amongst bilateral animals. Moreover GnRH possibly has origins in even more ancient, non-bilateral ancestors. Current knowledge about molluscan GnRH has been accumulated regarding immunological identification, physiological function and sequence analysis. In the present review we summarized a current status of molluscan GnRH research and focus on its role in the reproduction of the molluscs. In cephalopods and gastropods the presence of a GnRH-like peptide was detected with heterologous antibodies and the identified GnRH was suggested to be involved with behavior and reproduction. Reproductive roles for GnRH have been confirmed in both bivalve and cephalopod molluscs. These findings will provide useful insights into the evolution of reproductive endocrinology.
Collapse
Affiliation(s)
- Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi 981-8555, Japan.
| | | |
Collapse
|