1
|
Functional Characterization of Spinocerebellar Ataxia Associated Dynorphin A Mutant Peptides. Biomedicines 2021; 9:biomedicines9121882. [PMID: 34944698 PMCID: PMC8698333 DOI: 10.3390/biomedicines9121882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
Mutations in the prodynorphin gene (PDYN) are associated with the development of spinocerebellar ataxia type 23 (SCA23). Pathogenic missense mutations are localized predominantly in the PDYN region coding for the dynorphin A (DynA) neuropeptide and lead to persistently elevated mutant peptide levels with neurotoxic properties. The main DynA target in the central nervous system is the kappa opioid receptor (KOR), a member of the G-protein coupled receptor family, which can elicit signaling cascades mediated by G-protein dissociation as well as β-arrestin recruitment. To date, a thorough analysis of the functional profile for the pathogenic SCA23 DynA mutants at KOR is still missing. To elucidate the role of DynA mutants, we used a combination of assays to investigate the differential activation of G-protein subunits and β-arrestin. In addition, we applied molecular modelling techniques to provide a rationale for the underlying mechanism. Our results demonstrate that DynA mutations, associated with a severe ataxic phenotype, decrease potency of KOR activation, both for G-protein dissociation as well as β-arrestin recruitment. Molecular modelling suggests that this loss of function is due to disruption of critical interactions between DynA and the receptor. In conclusion, this study advances our understanding of KOR signal transduction upon DynA wild type or mutant peptide binding.
Collapse
|
2
|
Spinocerebellar ataxia type 23 (SCA23): a review. J Neurol 2020; 268:4630-4645. [PMID: 33175256 DOI: 10.1007/s00415-020-10297-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
Spinocerebellar ataxias (SCAs), formerly known as autosomal dominant cerebellar ataxias (ADCAs), are a group of hereditary heterogeneous neurodegenerative diseases. Gait, progressive ataxia, dysarthria, and eye movement disorder are common symptoms of spinocerebellar ataxias. Other symptoms include peripheral neuropathy, cognitive impairment, psychosis, and seizures. Patients may lose their lives due to out of coordinated respiration and/or swallowing. Neurological signs cover pyramidal or extrapyramidal signs, spasm, ophthalmoplegia, hyperactive deep tendon reflexes, and so on. Different subtypes of SCAs present various clinical features. Spinocerebellar ataxia type 23 (SCA23), one subtype of the SCA family, is characterized by mutant prodynorphin (PDYN) gene. Based on literatures, this review details a series of SCA23, to improve a whole understanding of clinicians and point out the potential research direction of this dysfunction, including a history, pathophysiological mechanism, diagnosis and differential diagnosis, epigenetics, penetrance and prevalence, genetic counseling, treatment and prognosis.
Collapse
|
3
|
Satoh S, Kondo Y, Ohara S, Yamaguchi T, Nakamura K, Yoshida K. Intrafamilial phenotypic variation in spinocerebellar ataxia type 23. CEREBELLUM & ATAXIAS 2020; 7:7. [PMID: 32587707 PMCID: PMC7310450 DOI: 10.1186/s40673-020-00117-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/09/2020] [Indexed: 11/10/2022]
Abstract
Background Spinocerebellar ataxia type 23 (SCA23) is an autosomal dominant cerebellar ataxia caused by pathogenic variants in the prodynorphin gene (PDYN). The frequency of PDYN variants is reportedly very low (~ 0.1%) in several ataxia cohorts screened to date. Case presentations We found five cases of SCA23 in two families (mean age at onset: 37.8 ± 5.5 years; mean age at examination: 64.2 ± 12.3 years) with a novel PDYN variant (c.644G > A:p.R215H). We identified marked heterogeneity in the clinical features in Family 1: the proband showed clinical and neuroimaging features suggestive of multiple system atrophy with predominant parkinsonism (MSA-P). Conversely, the proband's mother with the PDYN p.R215H variant had no subjective symptoms; she had not come to medical attention before our survey, although she showed apparent cerebellar atrophy on brain magnetic resonance imaging (MRI). The other two patients in Family 1 and a patient in Family 2 showed slowly progressive cerebellar ataxia. Conclusions We here report two Japanese families with SCA23, one of which showed considerable phenotypic variation in affected members. Our findings support that SCA23 can phenotypically overlap with MSA.
Collapse
Affiliation(s)
- Shunichi Satoh
- Department of Neurology, Nagano Red Cross Hospital, 5-22-1 Wakasato, Nagano, 380-8582 Japan
| | - Yasufumi Kondo
- Department of Medicine (Neurology & Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621 Japan
| | - Shinji Ohara
- Department of Neurology, National Hospital Organization, Matsumoto Medical Center, 2-20-30 Muraicho Minami, Matsumoto, 399-8701 Japan.,Department of Neurology, Iida Hospital, 1-15 Odori, Iida, 395-8505 Japan
| | - Tomomi Yamaguchi
- Department of Molecular Genetics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621 Japan
| | - Katsuya Nakamura
- Center for Medical Genetics, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621 Japan
| | - Kunihiro Yoshida
- Department of Brain Disease Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621 Japan
| |
Collapse
|
4
|
Abstract
The name of Jan Evangelista Purkyně and the cerebellum belong inseparably together. He was the first who saw and described the largest nerve cells in the brain, de facto in the cerebellum. The most distinguished researchers of the nervous system then showed him the highest recognition by naming these neurons as Purkinje cells. Through experiments by J. E. Purkyně and his followers properly functionally was attributed to the cerebellum share in precision of motor skills. Despite ongoing and fruitful research, after a relatively long time, especially in the last two decades, scientists had to constantly replenish and re-evaluate the traditional conception of the cerebellum and formulate a new one. It started in the early 1990s, when it was found that cerebellar cortex contains more neurons than the cerebral cortex. Shortly thereafter it was gradually revealed that such enormous numbers of neural cells are not without an impact on brain functions and that the cerebellum, except its traditional role in the motor skills, also participates in higher nervous activity. These new findings were obtained thanks to the introduction of modern methods of examination into the clinical praxis, and experimental procedures using animal models of cerebellar disorders described below.
Collapse
Affiliation(s)
- F Vožeh
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| |
Collapse
|
5
|
Smeets CJLM, Jezierska J, Watanabe H, Duarri A, Fokkens MR, Meijer M, Zhou Q, Yakovleva T, Boddeke E, den Dunnen W, van Deursen J, Bakalkin G, Kampinga HH, van de Sluis B, Verbeek DS. Elevated mutant dynorphin A causes Purkinje cell loss and motor dysfunction in spinocerebellar ataxia type 23. Brain 2015; 138:2537-52. [PMID: 26169942 DOI: 10.1093/brain/awv195] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/27/2015] [Indexed: 12/30/2022] Open
Abstract
Spinocerebellar ataxia type 23 is caused by mutations in PDYN, which encodes the opioid neuropeptide precursor protein, prodynorphin. Prodynorphin is processed into the opioid peptides, α-neoendorphin, and dynorphins A and B, that normally exhibit opioid-receptor mediated actions in pain signalling and addiction. Dynorphin A is likely a mutational hotspot for spinocerebellar ataxia type 23 mutations, and in vitro data suggested that dynorphin A mutations lead to persistently elevated mutant peptide levels that are cytotoxic and may thus play a crucial role in the pathogenesis of spinocerebellar ataxia type 23. To further test this and study spinocerebellar ataxia type 23 in more detail, we generated a mouse carrying the spinocerebellar ataxia type 23 mutation R212W in PDYN. Analysis of peptide levels using a radioimmunoassay shows that these PDYN(R212W) mice display markedly elevated levels of mutant dynorphin A, which are associated with climber fibre retraction and Purkinje cell loss, visualized with immunohistochemical stainings. The PDYN(R212W) mice reproduced many of the clinical features of spinocerebellar ataxia type 23, with gait deficits starting at 3 months of age revealed by footprint pattern analysis, and progressive loss of motor coordination and balance at the age of 12 months demonstrated by declining performances on the accelerating Rotarod. The pathologically elevated mutant dynorphin A levels in the cerebellum coincided with transcriptionally dysregulated ionotropic and metabotropic glutamate receptors and glutamate transporters, and altered neuronal excitability. In conclusion, the PDYN(R212W) mouse is the first animal model of spinocerebellar ataxia type 23 and our work indicates that the elevated mutant dynorphin A peptide levels are likely responsible for the initiation and progression of the disease, affecting glutamatergic signalling, neuronal excitability, and motor performance. Our novel mouse model defines a critical role for opioid neuropeptides in spinocerebellar ataxia, and suggests that restoring the elevated mutant neuropeptide levels can be explored as a therapeutic intervention.
Collapse
Affiliation(s)
- Cleo J L M Smeets
- 1 Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Justyna Jezierska
- 1 Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Hiroyuki Watanabe
- 2 Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Anna Duarri
- 1 Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Michiel R Fokkens
- 1 Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Michel Meijer
- 3 Department of Medical Physiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Qin Zhou
- 2 Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Tania Yakovleva
- 2 Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erik Boddeke
- 3 Department of Medical Physiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Wilfred den Dunnen
- 4 Department of Pathology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Jan van Deursen
- 5 Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Georgy Bakalkin
- 3 Department of Medical Physiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Harm H Kampinga
- 6 Department of Cell Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Bart van de Sluis
- 7 Department of Paediatrics, Molecular Genetics Section, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- 1 Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Plasma membrane poration by opioid neuropeptides: a possible mechanism of pathological signal transduction. Cell Death Dis 2015; 6:e1683. [PMID: 25766322 PMCID: PMC4385918 DOI: 10.1038/cddis.2015.39] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022]
Abstract
Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.
Collapse
|
7
|
Vick JS, Askwith CC. ASICs and neuropeptides. Neuropharmacology 2015; 94:36-41. [PMID: 25592215 DOI: 10.1016/j.neuropharm.2014.12.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 11/30/2022]
Abstract
The acid sensing ion channels (ASICs) are proton-gated cation channels expressed throughout the nervous system. ASICs are activated during acidic pH fluctuations, and recent work suggests that they are involved in excitatory synaptic transmission. ASICs can also induce neuronal degeneration and death during pathological extracellular acidosis caused by ischemia, autoimmune inflammation, and traumatic injury. Many endogenous neuromodulators target ASICs to affect their biophysical characteristics and contributions to neuronal activity. One of the most unconventional types of modulation occurs with the interaction of ASICs and neuropeptides. Collectively, FMRFamide-related peptides and dynorphins potentiate ASIC activity by decreasing the proton-sensitivity of steady state desensitization independent of G protein-coupled receptor activation. By decreasing the proton-sensitivity of steady state desensitization, the FMRFamide-related peptides and dynorphins permit ASICs to remain active at more acidic basal pH. Unlike the dynorphins, some FMRFamide-related peptides also potentiate ASIC activity by slowing inactivation and increasing the sustained current. Through mechanistic studies, the modulation of ASICs by FMRFamide-related peptides and dynorphins appears to be through distinct interactions with the extracellular domain of ASICs. Dynorphins are expressed throughout the nervous system and can increase neuronal death during prolonged extracellular acidosis, suggesting that the interaction between dynorphins and ASICs may have important consequences for the prevention of neurological injury. The overlap in expression of FMRFamide-related peptides with ASICs in the dorsal horn of the spinal cord suggests that their interaction may have important consequences for the treatment of pain during injury and inflammation. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.
Collapse
Affiliation(s)
- Jonathan S Vick
- The Department of Neuroscience, The Ohio State University Wexner Medical Center, United States
| | - Candice C Askwith
- The Department of Neuroscience, The Ohio State University Wexner Medical Center, United States.
| |
Collapse
|
8
|
Cendelin J. From mice to men: lessons from mutant ataxic mice. CEREBELLUM & ATAXIAS 2014; 1:4. [PMID: 26331028 PMCID: PMC4549131 DOI: 10.1186/2053-8871-1-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/21/2014] [Indexed: 01/01/2023]
Abstract
Ataxic mutant mice can be used to represent models of cerebellar degenerative disorders. They serve for investigation of cerebellar function, pathogenesis of degenerative processes as well as of therapeutic approaches. Lurcher, Hot-foot, Purkinje cell degeneration, Nervous, Staggerer, Weaver, Reeler, and Scrambler mouse models and mouse models of SCA1, SCA2, SCA3, SCA6, SCA7, SCA23, DRPLA, Niemann-Pick disease and Friedreich ataxia are reviewed with special regard to cerebellar pathology, pathogenesis, functional changes and possible therapeutic influences, if any. Finally, benefits and limitations of mouse models are discussed.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University in Prague, Lidicka 1, 301 66 Plzen, Czech Republic ; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Plzen, Czech Republic
| |
Collapse
|
9
|
Abstract
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
10
|
Björnerås J, Gräslund A, Mäler L. Membrane Interaction of Disease-Related Dynorphin A Variants. Biochemistry 2013; 52:4157-67. [DOI: 10.1021/bi4004205] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Johannes Björnerås
- Department of Biochemistry
and Biophysics, The Arrhenius
Laboratory, Stockholm University, 10691
Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry
and Biophysics, The Arrhenius
Laboratory, Stockholm University, 10691
Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry
and Biophysics, The Arrhenius
Laboratory, Stockholm University, 10691
Stockholm, Sweden
| |
Collapse
|
11
|
Fawcett K, Mehrabian M, Liu YT, Hamed S, Elahi E, Revesz T, Koutsis G, Herscheson J, Schottlaender L, Wardle M, Morrison PJ, Morris HR, Giunti P, Wood N, Houlden H. The frequency of spinocerebellar ataxia type 23 in a UK population. J Neurol 2013; 260:856-859. [PMID: 23271220 DOI: 10.1007/s00415-012-6721-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/10/2012] [Accepted: 10/15/2012] [Indexed: 12/11/2022]
|