1
|
Ugrumov MV. Hypothalamic neurons fully or partially expressing the dopaminergic phenotype: development, distribution, functioning and functional significance. A review. Front Neuroendocrinol 2024; 75:101153. [PMID: 39128801 DOI: 10.1016/j.yfrne.2024.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
The hypothalamus is a key link in neuroendocrine regulations, which are provided by neuropeptides and dopamine. Until the late 1980 s, it was believed that, along with peptidergic neurons, hypothalamus contained dopaminergic neurons. Over time, it has been shown that besides dopaminergic neurons expressing the dopamine transporter and dopamine-synthesizing enzymes - tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) - the hypothalamus contains neurons expressing only TH, only AADC, both enzymes or only dopamine transporter. The end secretory product of TH neurons is L-3,4-dihydroxyphenylalanine, while that of AADC neurons and bienzymatic neurons lacking the dopamine transporter is dopamine. During ontogenesis, especially in the perinatal period, monoenzymatic neurons predominate in the hypothalamic neuroendocrine centers. It is assumed that L-3,4-dihydroxyphenylalanine and dopamine are released into the neuropil, cerebral ventricles, and blood vessels, participating in the regulation of target cell differentiation in the perinatal period and the functioning of target cells in adulthood.
Collapse
Affiliation(s)
- Michael V Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
2
|
Nie M, Zhang J, Bal M, Duran C, An SW, Zigman JM, Baum M, Hiremath C, Marciano DK, Wolf MTF. Ghrelin enhances tubular magnesium absorption in the kidney. Front Physiol 2024; 15:1363708. [PMID: 38638279 PMCID: PMC11024433 DOI: 10.3389/fphys.2024.1363708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/07/2024] [Indexed: 04/20/2024] Open
Abstract
Osteoporosis after bariatric surgery is an increasing health concern as the rate of bariatric surgery has risen. In animal studies mimicking bariatric procedures, bone disease, together with decreased serum levels of Ca2+, Mg2+ and the gastric hormone Ghrelin were described. Ghrelin regulates metabolism by binding to and activating the growth hormone secretagogue receptor (GHSR) which is also expressed in the kidney. As calcium and magnesium are key components of bone, we tested the hypothesis that Ghrelin-deficiency contributes to osteoporosis via reduced upregulation of the renal calcium channel TRPV5 and the heteromeric magnesium channel TRPM6/7. We expressed GHSR with TRPV5 or TRPM6/7 channel in HEK293 cells and treated them with purified Ghrelin. Whole-cell current density was analyzed by patch-clamp recording. Nephron-specific gene expression was performed by tubular microdissection followed by qPCR in wild-type (WT) mice, and immunofluorescent imaging of GHSR-eGFP mice. Tubular magnesium homeostasis was analyzed in GHSR-null and WT mice at baseline and after caloric restriction. After Ghrelin exposure, whole-cell current density did not change for TRPV5 but increased for TRPM6/7 in a dose-dependent fashion. Applying the Ghrelin-mimetic (D-Trp7, Ala8,D-Phe10)-α-MSH (6-11) amide without and with the GHSR antagonist (D-Lys3)-GHRP6, we confirmed the stimulatory role of Ghrelin towards TRPM6/7. As GHSR initiates downstream signaling via protein kinase A (PKA), we found that the PKA inhibitor H89 abrogated TRPM6/7 stimulation by Ghrelin. Similarly, transfected Gαs, but not the Gαs mutant Q227L, nor Gαi2, Gαq, or Gα13 upregulated TRPM6/7 current density. In microdissected TALs and DCTs similar levels of GHSR mRNA were detected. In contrast, TRPM6 mRNA was expressed in the DCT and also detected in the TAL at 25% expression compared to DCT. Immunofluorescent studies using reporter GHSR-eGFP mice showed a strong eGFP signal in the TAL but surprisingly displayed no eGFP signal in the DCT. In 3-, 6-, and 9-month-old GHSR-null and WT mice, baseline serum magnesium was not significantly different, but 24-h urinary magnesium excretion was elevated in 9-month-old GHSR-null mice. In calorically restricted GHSR-null mice, we detected excess urinary magnesium excretion and reduced serum magnesium levels compared to WT mice. The kidneys from calorically restricted WT mice showed upregulated gene expression of magnesiotropic genes Hnf1b, Cldn-16, Cldn-19, Fxyd-2b, and Parvalbumin compared to GHSR-null mice. Our in vitro studies show that Ghrelin stimulates TRPM6/7 via GHSR and Gαs-PKA signaling. The murine studies are consistent with Ghrelin-GHSR signaling inducing reduced urinary magnesium excretion, particularly in calorically restricted mice when Ghrelin levels are elevated. This effect may be mediated by Ghrelin-upregulation of TRPM6 in the TAL and/or upregulation of other magnesiotropic genes. We postulate that rising Ghrelin levels with hunger contribute to increased renal Mg2+ reabsorption to compensate for lack of enteral Mg2+ uptake.
Collapse
Affiliation(s)
- Mingzhu Nie
- Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jing Zhang
- Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Manjot Bal
- Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Claudia Duran
- Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sung Wan An
- Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Pediatric Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | - Jeffrey M. Zigman
- Department of Internal Medicine, Center for Hypothalamic Research, UTSW Medical Center, Dallas, TX, United States
| | - Michel Baum
- Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chitkale Hiremath
- Department of Internal Medicine, Nephrology, and Department of Cell Biology, UTSW Medical Center, Dallas, TX, United States
| | - Denise K. Marciano
- Department of Internal Medicine, Nephrology, and Department of Cell Biology, UTSW Medical Center, Dallas, TX, United States
| | - Matthias T. F. Wolf
- Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Pediatric Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:11059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059&set/a 934136356+984013925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus-pituitary-gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
|
4
|
Schalla MA, Stengel A. The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:ijms222011059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus–pituitary–gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
Affiliation(s)
- Martha A. Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
5
|
Patel R, Smith JT. Novel actions of kisspeptin signaling outside of GnRH-mediated fertility: a potential role in energy balance. Domest Anim Endocrinol 2020; 73:106467. [PMID: 32278499 DOI: 10.1016/j.domaniend.2020.106467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023]
Abstract
Kisspeptin, encoded by Kiss1 gene expressing neurons in the hypothalamus, is a requisite for fertility and now appears critical in the regulation of energy balance. Kisspeptin neurons, particularly those in the arcuate nucleus (ARC), receive information directly and indirectly from a diverse array of brain regions including the bed nucleus of the stria terminalis, amygdala, interpeduncular nucleus, hippocampus, and cortex. On the other hand, kisspeptin neuron projections clearly extend to GnRH neuron cell bodies in rodents, sheep, and primates and beyond to other-non-GnRH-brain areas. Kiss1r, the kisspeptin receptor, is expressed on GnRH neurons and also in additional brain areas and peripheral tissues, indicating a nonreproductive role. Kisspeptin neurons clearly receive signals pertinent to deviations in energy balance but are now recognized as a novel neuroendocrine player in the fine balance of energy intake and expenditure. Mice that have a dysfunctional gene for Kiss1r develop an obese and diabetic phenotype. The mechanism behind this altered metabolic state is still mostly unknown; however, Kiss1r expression in the pancreas and brown adipose tissue is clearly functional and required for normal glucose tolerance and energy expenditure, respectively. Kisspeptin neurons in the ARC also participate in the generation of circadian rhythms, specifically those concerning food intake and metabolism, offering a potential explanation for the obesity in Kiss1r knockout mice. Overall, the discoveries of new mechanistic roles for kisspeptin in both normal and pathophysiologic states of energy balance may lead to further understating of obesity prevalence and novel therapeutic targets and interventions.
Collapse
Affiliation(s)
- R Patel
- School of Human Sciences, M309, The University of Western Australia, 35 Stirling Highway Crawley, Perth, Western Australia, Australia 6009
| | - J T Smith
- School of Human Sciences, M309, The University of Western Australia, 35 Stirling Highway Crawley, Perth, Western Australia, Australia 6009.
| |
Collapse
|
6
|
Response of the expression of oxytocin neurons to ghrelin in female mice. Exp Brain Res 2020; 238:1085-1095. [PMID: 32215671 DOI: 10.1007/s00221-020-05793-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022]
Abstract
Ghrelin is an orexigenic agonist that acts directly on neurons in the hypothalamus, controlling appetite and energy balance. Although its role in appetite-associated neurons has been described, the relationship between peripheral ghrelin stimulation and oxytocin expression in the paraventricular nucleus is not fully understood. We evaluated the suppressive function of ghrelin in oxytocin-positive paraventricular nucleus neurons in ovariectomized C57BL/6 mice 2 h after ghrelin injection. The results showed that, in intact mice, peripheral ghrelin stimulation activated estrogen receptor alpha-expressing neurons during the estrous cycle and that agouti-related peptide mRNA expression was remarkably increased. Agouti-related peptide neuron axons co-localized with oxytocin neurons in the paraventricular nucleus. Moreover, the response of oxytocin-positive paraventricular nucleus neurons to ghrelin was suppressed in the proestrus period, while ghrelin decreased the serum concentration of estradiol in the proestrus phase. These data suggest that ghrelin may suppress oxytocin-positive neuron expression via the arcuate nucleus agouti-related peptide circuit, with the possible influence of estradiol in the murine estrous cycle. Unraveling the mechanism of ghrelin-induced oxytocin expression in the hypothalamus paraventricular nucleus broadens the horizon for ghrelin-related appetite research.
Collapse
|
7
|
Di Natale MR, Soch A, Ziko I, De Luca SN, Spencer SJ, Sominsky L. Chronic predator stress in female mice reduces primordial follicle numbers: implications for the role of ghrelin. J Endocrinol 2019; 241:201-219. [PMID: 30959480 DOI: 10.1530/joe-19-0109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022]
Abstract
Chronic stress is a known suppressor of female reproductive function. However, attempts to isolate single causal links between stress and reproductive dysfunction have not yet been successful due to their multi-faceted aetiologies. The gut-derived hormone ghrelin regulates stress and reproductive function and may therefore be pivotal in the neuroendocrine integration of the hypothalamic-pituitary-adrenal (HPA) and -gonadal (HPG) axes. Here, we hypothesised that chronic stress disrupts ovarian follicle maturation and that this effect is mediated by a stress-induced increase in acyl ghrelin and activation of the growth hormone secretatogue receptor (GHSR). We gave C57BL/6J female mice 30 min daily chronic predator stress for 4 weeks, or no stress, and gave them daily GHSR antagonist (d-Lys3-GHRP-6) or saline. Exposure to chronic predator stress reduced circulating corticosterone, elevated acyl ghrelin levels and led to significantly depleted primordial follicle numbers. GHSR antagonism stress-dependently altered the expression of genes regulating ovarian responsiveness to gonadotropins and was able to attenuate the stress-induced depletion of primordial follicles. These findings suggest that chronic stress-induced elevations of acyl ghrelin may be detrimental for ovarian follicle maturation.
Collapse
Affiliation(s)
- Madeleine R Di Natale
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Alita Soch
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Ilvana Ziko
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Simone N De Luca
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Sominsky L, Jasoni CL, Twigg HR, Spencer SJ. Hormonal and nutritional regulation of postnatal hypothalamic development. J Endocrinol 2018; 237:R47-R64. [PMID: 29545398 DOI: 10.1530/joe-17-0722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/15/2018] [Indexed: 12/24/2022]
Abstract
The hypothalamus is a key centre for regulation of vital physiological functions, such as appetite, stress responsiveness and reproduction. Development of the different hypothalamic nuclei and its major neuronal populations begins prenatally in both altricial and precocial species, with the fine tuning of neuronal connectivity and attainment of adult function established postnatally and maintained throughout adult life. The perinatal period is highly susceptible to environmental insults that, by disrupting critical developmental processes, can set the tone for the establishment of adult functionality. Here, we review the most recent knowledge regarding the major postnatal milestones in the development of metabolic, stress and reproductive hypothalamic circuitries, in the rodent, with a particular focus on perinatal programming of these circuitries by hormonal and nutritional influences. We also review the evidence for the continuous development of the hypothalamus in the adult brain, through changes in neurogenesis, synaptogenesis and epigenetic modifications. This degree of plasticity has encouraging implications for the ability of the hypothalamus to at least partially reverse the effects of perinatal mal-programming.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical SciencesRMIT University, Melbourne, Victoria, Australia
| | - Christine L Jasoni
- School of Biomedical SciencesCentre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Hannah R Twigg
- School of Biomedical SciencesCentre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sarah J Spencer
- School of Health and Biomedical SciencesRMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Avendaño MS, Vazquez MJ, Tena-Sempere M. Disentangling puberty: novel neuroendocrine pathways and mechanisms for the control of mammalian puberty. Hum Reprod Update 2018; 23:737-763. [PMID: 28961976 DOI: 10.1093/humupd/dmx025] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Puberty is a complex developmental event, controlled by sophisticated regulatory networks that integrate peripheral and internal cues and impinge at the brain centers driving the reproductive axis. The tempo of puberty is genetically determined but is also sensitive to numerous modifiers, from metabolic and sex steroid signals to environmental factors. Recent epidemiological evidence suggests that the onset of puberty is advancing in humans, through as yet unknown mechanisms. In fact, while much knowledge has been gleaned recently on the mechanisms responsible for the control of mammalian puberty, fundamental questions regarding the intimate molecular and neuroendocrine pathways responsible for the precise timing of puberty and its deviations remain unsolved. OBJECTIVE AND RATIONALE By combining data from suitable model species and humans, we aim to provide a comprehensive summary of our current understanding of the neuroendocrine mechanisms governing puberty, with particular focus on its central regulatory pathways, underlying molecular basis and mechanisms for metabolic control. SEARCH METHODS A comprehensive MEDLINE search of articles published mostly from 2003 to 2017 has been carried out. Data from cellular and animal models (including our own results) as well as clinical studies focusing on the pathophysiology of puberty in mammals were considered and cross-referenced with terms related with central neuroendocrine mechanisms, metabolic control and epigenetic/miRNA regulation. OUTCOMES Studies conducted during the last decade have revealed the essential role of novel central neuroendocrine pathways in the control of puberty, with a prominent role of kisspeptins in the precise regulation of the pubertal activation of GnRH neurosecretory activity. In addition, different transmitters, including neurokinin-B (NKB) and, possibly, melanocortins, have been shown to interplay with kisspeptins in tuning puberty onset. Alike, recent studies have documented the role of epigenetic mechanisms, involving mainly modulation of repressors that target kisspeptins and NKB pathways, as well as microRNAs and the related binding protein, Lin28B, in the central control of puberty. These novel pathways provide the molecular and neuroendocrine basis for the modulation of puberty by different endogenous and environmental cues, including nutritional and metabolic factors, such as leptin, ghrelin and insulin, which are known to play an important role in pubertal timing. WIDER IMPLICATIONS Despite recent advancements, our understanding of the basis of mammalian puberty remains incomplete. Complete elucidation of the novel neuropeptidergic and molecular mechanisms summarized in this review will not only expand our knowledge of the intimate mechanisms responsible for puberty onset in humans, but might also provide new tools and targets for better prevention and management of pubertal deviations in the clinical setting.
Collapse
Affiliation(s)
- M S Avendaño
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
| | - M J Vazquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
| | - M Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| |
Collapse
|
10
|
Sominsky L, Hodgson DM, McLaughlin EA, Smith R, Wall HM, Spencer SJ. Linking Stress and Infertility: A Novel Role for Ghrelin. Endocr Rev 2017; 38:432-467. [PMID: 28938425 DOI: 10.1210/er.2016-1133] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Infertility affects a remarkable one in four couples in developing countries. Psychological stress is a ubiquitous facet of life, and although stress affects us all at some point, prolonged or unmanageable stress may become harmful for some individuals, negatively impacting on their health, including fertility. For instance, women who struggle to conceive are twice as likely to suffer from emotional distress than fertile women. Assisted reproductive technology treatments place an additional physical, emotional, and financial burden of stress, particularly on women, who are often exposed to invasive techniques associated with treatment. Stress-reduction interventions can reduce negative affect and in some cases to improve in vitro fertilization outcomes. Although it has been well-established that stress negatively affects fertility in animal models, human research remains inconsistent due to individual differences and methodological flaws. Attempts to isolate single causal links between stress and infertility have not yet been successful due to their multifaceted etiologies. In this review, we will discuss the current literature in the field of stress-induced reproductive dysfunction based on animal and human models, and introduce a recently unexplored link between stress and infertility, the gut-derived hormone, ghrelin. We also present evidence from recent seminal studies demonstrating that ghrelin has a principal role in the stress response and reward processing, as well as in regulating reproductive function, and that these roles are tightly interlinked. Collectively, these data support the hypothesis that stress may negatively impact upon fertility at least in part by stimulating a dysregulation in ghrelin signaling.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - Deborah M Hodgson
- School of Psychology, Faculty of Science and IT, The University of Newcastle, New South Wales 2308, Australia
| | - Eileen A McLaughlin
- School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand.,School of Environmental & Life Sciences, Faculty of Science and IT, The University of Newcastle, New South Wales 2308, Australia
| | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Lookout Road, New Lambton Heights, New South Wales 2305, Australia.,Priority Research Centre in Reproductive Science, The University of Newcastle, New South Wales 2308, Australia
| | - Hannah M Wall
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| |
Collapse
|
11
|
Celik O, Celik N, Aydin S, Aygun BK, Haberal ET, Kuloglu T, Ulas M, Aktun LH, Acet M, Celik S. Ghrelin action on GnRH neurons and pituitary gonadotropes might be mediated by GnIH-GPR147 system. Horm Mol Biol Clin Investig 2016; 25:121-8. [PMID: 26684352 DOI: 10.1515/hmbci-2015-0050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/09/2015] [Indexed: 01/28/2023]
Abstract
Acylated ghrelin (AG) effect on GnRH secretion is mediated, at least in part, by GH secreta-gogue receptor (GHS-R) which is present in the GnRH neurons. As the acylation is mandatory for binding to GHS-R, unacylated isoform of ghrelin (UAG) action on gonadotropin secretion is likely to be mediated by other receptors or mediators that have not been identified yet. UAG, therefore, may act partially via a GHS-R-independent mechanism and inhibitory impact of UAG on GnRH neurons may be executed via modulation of other neuronal networks. Ghrelin and gonadotropin inhibitory hormone (GnIH), two agonistic peptides, have been known as important regulators of reproductive events. Potential impact of ghrelin on the activity of GnIH neurons is not exactly known. Both GnIH and ghrelin are potent stimulators of food intake and inhibitors of gonadotropin release. By binding G-protein coupled GnIH receptor (GnIH-R), GPR147, which is located in the human gonadotropes and GnRh neurons, GnIH exerts an inhibitory effect on both GnRH neurons and the gonadotropes. The GnIH-GPR147 system receives information regarding the status of energy reservoir of body from circulating peptides and then transfers them to the kisspeptin-GnIH-GnRH network. Due to wide distribution of this network in brain GnIH neurons may project on ghrelin neurons in the arcuate nucleus and contribute to the regulation of UAG's central effects or vice versa. Together, the unidentified ghrelin receptor in the hypothalamus and hypophysis may be GnIH-R. Therefore, it is reasonable that ghrelin may act on both hypothalamus and hypophysis via GnIH-GPR147 system to block gonadotropin synthesis and secretion.
Collapse
|
12
|
Castellano JM, Tena-Sempere M. Metabolic control of female puberty: potential therapeutic targets. Expert Opin Ther Targets 2016; 20:1181-93. [PMID: 27409160 DOI: 10.1080/14728222.2016.1212015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The onset of puberty in females is highly sensitive to the nutritional status and the amount of energy reserves of the organism. This metabolic information is sensed and transmitted to hypothalamic GnRH neurons, considered to be ultimately responsible for triggering puberty through the coordinated action of different peripheral hormones, central neurotransmitters, and molecular mediators. AREAS COVERED This article will review and discuss (i) the relevant actions of the adipose hormone leptin, as a stimulatory/permissive signal, and the gut hormone ghrelin, as an inhibitory factor, in the metabolic control of female puberty; (ii) the crucial role of the hypothalamic kisspeptin neurons, recently emerged as essential gatekeepers of puberty, in transmitting this metabolic information to GnRH neurons; and (iii) the potential involvement of key cellular energy sensors, such as mTOR, as molecular mediators in this setting. EXPERT OPINION The thorough characterization of the physiological roles of the above elements in the metabolic control of female puberty, along with the discovery of novel factors, pathways, and mechanisms involved, will promote our understanding of the complex networks connecting metabolism and puberty and, ultimately, will aid in the design of target-specific treatments for female pubertal disorders linked to conditions of metabolic stress.
Collapse
Affiliation(s)
- Juan M Castellano
- a Department of Cell Biology, Physiology and Immunology , University of Córdoba , Córdoba , Spain.,b CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III , Córdoba , Spain.,c Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofia , Córdoba , Spain
| | - Manuel Tena-Sempere
- a Department of Cell Biology, Physiology and Immunology , University of Córdoba , Córdoba , Spain.,b CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III , Córdoba , Spain.,c Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofia , Córdoba , Spain.,d FiDiPro Program, Department of Physiology , University of Turku , Turku , Finland
| |
Collapse
|
13
|
Abstract
Successfully rearing young places multiple demands on the mammalian female. These are met by a wide array of alterations in maternal physiology and behavior that are coordinated with the needs of the developing young, and include adaptations in neuroendocrine systems not directly involved in maternal behavior or lactation. In this article, attenuations in the behavioral and neuroendocrine responses to stressors, the alterations in metabolic pathways facilitating both increased food intake and conservation of energy, and the changes in fertility that occur postpartum are described. The mechanisms underlying these processes as well as the factors that contribute to them and the relative contributions of these stimuli at different times postpartum are also reviewed. The induction and maintenance of the adaptations observed in the postpartum maternal brain are dependent on mother-young interaction and, in most cases, on suckling stimulation and its consequences for the hormonal profile of the mother. The peptide hormone prolactin acting on receptors within the brain makes a major contribution to changes in metabolic pathways, suppression of fertility and the attenuation of the neuroendocrine response to stress during lactation. Oxytocin is also released, both into the circulation and in some hypothalamic nuclei, in response to suckling stimulation and this hormone has been implicated in the decrease in anxiety behavior seen in the early postpartum period. The relative importance of these hormones changes across lactation and it is becoming increasingly clear that many of the adaptations to motherhood reviewed here reflect the outcome of multiple influences. © 2016 American Physiological Society. Compr Physiol 6:1493-1518, 2016.
Collapse
Affiliation(s)
- Barbara Woodside
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Celik O, Aydin S, Celik N, Yilmaz M. Ghrelin has both indirect and direct inhibiting effect on GnRH neurons: Reply for letter to editor "Ghrelin directly affects GnRH neurons". Peptides 2016; 75:118-120. [PMID: 26589189 DOI: 10.1016/j.peptides.2015.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/16/2015] [Accepted: 10/27/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Onder Celik
- Department of Obstetrics and Gynecology, Usak, Turkey.
| | - Suleyman Aydin
- Firat University, School of Medicine, Department of Medical Biochemistry (Firat Hormones Research Group), 23119 Elazig, Turkey.
| | - Nilufer Celik
- Behcet Uz Children's Hospital, Department of Biochemistry, Izmir, Turkey
| | - Musa Yilmaz
- Firat University, School of Medicine, Department of Medical Biochemistry (Firat Hormones Research Group) 23119 Elazig, Turkey
| |
Collapse
|
15
|
Ghrelin's Role in the Hypothalamic-Pituitary-Adrenal Axis Stress Response: Implications for Mood Disorders. Biol Psychiatry 2015; 78:19-27. [PMID: 25534754 DOI: 10.1016/j.biopsych.2014.10.021] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/26/2014] [Accepted: 10/15/2014] [Indexed: 12/24/2022]
Abstract
Ghrelin is a stomach hormone normally associated with feeding behavior and energy homeostasis. Recent studies highlight that ghrelin targets the brain to regulate a diverse number of functions, including learning, memory, motivation, stress responses, anxiety, and mood. In this review, we discuss recent animal and human studies showing that ghrelin regulates the hypothalamic-pituitary-adrenal axis and affects anxiety and mood disorders, such as depression and fear. We address the neural sites of action through which ghrelin regulates the hypothalamic-pituitary-adrenal axis and associated stress-induced behaviors, including the centrally projecting Edinger-Westphal nucleus, the hippocampus, amygdala, locus coeruleus, and the ventral tegmental area. Stressors modulate many behaviors associated with motivation, fear, anxiety, depression, and appetite; therefore, we assess the potential role for ghrelin as a stress feedback signal that regulates these associated behaviors. Finally, we briefly discuss important areas for future research that will help us move closer to potential ghrelin-based therapies to treat stress responses and related disorders.
Collapse
|
16
|
Polymorphism and DNA methylation in the promoter modulate KISS1 gene expression and are associated with litter size in goats. Anim Reprod Sci 2015; 155:36-41. [DOI: 10.1016/j.anireprosci.2015.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/26/2015] [Accepted: 01/30/2015] [Indexed: 12/22/2022]
|
17
|
Hawes JE, Tesic D, Whitehouse AJ, Zosky GR, Smith JT, Wyrwoll CS. Maternal vitamin D deficiency alters fetal brain development in the BALB/c mouse. Behav Brain Res 2015; 286:192-200. [PMID: 25753408 DOI: 10.1016/j.bbr.2015.03.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 01/04/2023]
Abstract
Prenatal exposure to vitamin D is thought to be critical for optimal fetal neurodevelopment, yet vitamin D deficiency is apparent in a growing proportion of pregnant women. The aim of this study was to determine whether a mouse model of vitamin D-deficiency alters fetal neurodevelopment. Female BALB/c mice were placed on either a vitamin D control (2,195 IU/kg) or deficient (0 IU/kg) diet for 5 weeks prior to and during pregnancy. Fetal brains were collected at embryonic day (E) 14.5 or E17.5 for morphological and gene expression analysis. Vitamin D deficiency during pregnancy reduced fetal crown-rump length and head size. Moreover, lateral ventricle volume was reduced in vitamin D-deficient foetuses. Expression of neurotrophin genes brain-derived neurotrophic factor (Bdnf) and transforming growth factor-β1 (Tgf-β1) was altered, with Bdnf reduced at E14.5 and increased at E17.5 following vitamin D deficiency. Brain expression of forkhead box protein P2 (Foxp2), a gene known to be important in human speech and language, was also altered. Importantly, Foxp2 immunoreactive cells in the developing cortex were reduced in vitamin D-deficient female foetuses. At E17.5, brain tyrosine hydroxylase (TH) gene expression was reduced in females, as was TH protein localization (to identify dopamine neurons) in the substantia nigra of vitamin D-deficient female foetuses. Overall, we show that prenatal vitamin D-deficiency leads to alterations in fetal mouse brain morphology and genes related to neuronal survival, speech and language development, and dopamine synthesis. Vitamin D appears to play an important role in mouse neurodevelopment.
Collapse
Affiliation(s)
- Jazmin E Hawes
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth 6009, Australia
| | - Dijana Tesic
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth 6009, Australia
| | - Andrew J Whitehouse
- Telethon Kids Institute, The University of Western Australia, Perth 6009, Australia
| | - Graeme R Zosky
- School of Medicine, University of Tasmania, Hobart 7000, Australia
| | - Jeremy T Smith
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth 6009, Australia
| | - Caitlin S Wyrwoll
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth 6009, Australia.
| |
Collapse
|
18
|
Mani BK, Walker AK, Lopez Soto EJ, Raingo J, Lee CE, Perelló M, Andrews ZB, Zigman JM. Neuroanatomical characterization of a growth hormone secretagogue receptor-green fluorescent protein reporter mouse. J Comp Neurol 2014; 522:3644-66. [PMID: 24825838 PMCID: PMC4142102 DOI: 10.1002/cne.23627] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/15/2022]
Abstract
Growth hormone secretagogue receptor (GHSR) 1a is the only molecularly identified receptor for ghrelin, mediating ghrelin-related effects on eating, body weight, and blood glucose control, among others. The expression pattern of GHSR within the brain has been assessed previously by several neuroanatomical techniques. However, inherent limitations to these techniques and the lack of reliable anti-GHSR antibodies and reporter rodent models that identify GHSR-containing neurons have prevented a more comprehensive functional characterization of ghrelin-responsive neurons. Here we have systematically characterized the brain expression of an enhanced green fluorescence protein (eGFP) transgene controlled by the Ghsr promoter in a recently reported GHSR reporter mouse. Expression of eGFP in coronal brain sections was compared with GHSR mRNA expression detected in the same sections by in situ hybridization histochemistry. eGFP immunoreactivity was detected in several areas, including the prefrontal cortex, insular cortex, olfactory bulb, amygdala, and hippocampus, which showed no or low GHSR mRNA expression. In contrast, eGFP expression was low in several midbrain regions and in several hypothalamic nuclei, particularly the arcuate nucleus, where robust GHSR mRNA expression has been well-characterized. eGFP expression in several brainstem nuclei showed high to moderate degrees of colocalization with GHSR mRNA labeling. Further quantitative PCR and electrophysiological analyses of eGFP-labeled hippocampal cells confirmed faithful expression of eGFP within GHSR-containing, ghrelin-responsive neurons. In summary, the GHSR-eGFP reporter mouse model may be a useful tool for studying GHSR function, particularly within the brainstem and hippocampus; however, it underrepresents GHSR expression in nuclei within the hypothalamus and midbrain.
Collapse
Affiliation(s)
- Bharath K. Mani
- Division of Hypothalamic Research and Division of Endocrinology & Metabolism, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Angela K. Walker
- Division of Hypothalamic Research and Division of Endocrinology & Metabolism, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eduardo J. Lopez Soto
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, Buenos Aires, Argentina
| | - Jesica Raingo
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, Buenos Aires, Argentina
| | - Charlotte E. Lee
- Division of Hypothalamic Research and Division of Endocrinology & Metabolism, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Mario Perelló
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology, Buenos Aires, Argentina
| | - Zane B. Andrews
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jeffrey M. Zigman
- Division of Hypothalamic Research and Division of Endocrinology & Metabolism, Department of Internal Medicine and Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
19
|
Bellefontaine N, Elias CF. Minireview: Metabolic control of the reproductive physiology: insights from genetic mouse models. Horm Behav 2014; 66:7-14. [PMID: 24746731 PMCID: PMC4204395 DOI: 10.1016/j.yhbeh.2014.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 12/17/2022]
Abstract
This article is part of a Special Issue Energy Balance. Over the past two decades, and in particular over the past 5-7 years, there has been a tremendous advancement in the understanding of the metabolic control of reproductive physiology. This has been in large part due to the advancement and refinement of gene targeting tools and techniques for molecular mapping. Yet despite the emergence of exciting and often times thought-provoking data through the use of new mouse models, the heavy reliance on gene targeting strategies has become fundamental in this process and thus caution must be exercised when interpreting results. This minireview article will explore the generation of new mouse models using genetic manipulation, such as viral vector delivery and the use of the Cre/loxP system, to investigate the role of circulating metabolic hormones in the coordination of reproductive physiology. In addition, we will also highlight some of the pitfalls in the use of genetic manipulation in the current paradigms. However, it has become clear that metabolic cues employ integrated and plastic neural circuits in order to modulate the neuroendocrine reproductive axis, and despite recent advances much remains to be elucidated about this circuitry.
Collapse
Affiliation(s)
- Nicole Bellefontaine
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
Clarke IJ. Interface between metabolic balance and reproduction in ruminants: focus on the hypothalamus and pituitary. Horm Behav 2014; 66:15-40. [PMID: 24568750 DOI: 10.1016/j.yhbeh.2014.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 01/24/2023]
Abstract
This article is part of a Special Issue "Energy Balance". The interface between metabolic regulators and the reproductive system is reviewed with special reference to the sheep. Even though sheep are ruminants with particular metabolic characteristics, there is a broad consensus across species in the way that the reproductive system is influenced by metabolic state. An update on the neuroendocrinology of reproduction indicates the need to account for the way that kisspeptin provides major drive to gonadotropin releasing hormone (GnRH) neurons and also mediates the feedback effects of gonadal steroids. The way that kisspeptin function is influenced by appetite regulating peptides (ARP) is considered. Another newly recognised factor is gonadotropin inhibitory hormone (GnIH), which has a dual function in that it suppresses reproductive function whilst also acting as an orexigen. Our understanding of the regulation of food intake and energy expenditure has expanded exponentially in the last 3 decades and historical perspective is provided. The function of the regulatory factors and the hypothalamic cellular systems involved is reviewed with special reference to the sheep. Less is known of these systems in the cow, especially the dairy cow, in which a major fertility issue has emerged in parallel with selection for increased milk production. Other endocrine systems--the hypothalamo-pituitary-adrenal axis, the growth hormone (GH) axis and the thyroid hormones--are influenced by metabolic state and are relevant to the interface between metabolic function and reproduction. Special consideration is given to issues such as season and lactation, where the relationship between metabolic hormones and reproductive function is altered.
Collapse
Affiliation(s)
- Iain J Clarke
- Monash University, Department of Physiology, Wellington Road, Clayton 3168, Australia.
| |
Collapse
|
21
|
Abstract
Kisspeptin is vital for the neuroendocrine regulation of GNRH secretion. Kisspeptin neurons are now recognized as a central pathway responsible for conveying key homeostatic information to GNRH neurons. This pathway is likely to mediate the well-established link between energy balance and reproductive function. Thus, in states of severely altered energy balance (either negative or positive), fertility is compromised, as isKiss1expression in the arcuate nucleus. A number of metabolic modulators have been proposed as regulators of kisspeptin neurons including leptin, ghrelin, pro-opiomelanocortin (POMC), and neuropeptide Y (NPY). Whether these regulate kisspeptin neurons directly or indirectly will be discussed. Moreover, whether the stimulatory role of leptin on reproduction is mediated by kisspeptin directly will be questioned. Furthermore, in addition to being expressed in GNRH neurons, the kisspeptin receptor (Kiss1r) is also expressed in other areas of the brain, as well as in the periphery, suggesting alternative roles for kisspeptin signaling outside of reproduction. Interestingly, kisspeptin neurons are anatomically linked to, and can directly excite, anorexigenic POMC neurons and indirectly inhibit orexigenic NPY neurons. Thus, kisspeptin may have a direct role in regulating energy balance. Although data fromKiss1rknockout and WT mice found no differences in body weight, recent data indicate that kisspeptin may still play a role in food intake and glucose homeostasis. Thus, in addition to regulating reproduction, and mediating the effect of energy balance on reproductive function, kisspeptin signaling may also be a direct regulator of metabolism.
Collapse
|