1
|
Mehta D, Krishnani KK, Verma AK, Kumar N, Abisha R, Roy U. Hydrogel and fish mucus mediated semi-biofloc formation, nitrogenous stress mitigation and growth performance of fish in integrated bioremediation system of aquaculture. Microb Pathog 2025; 203:107487. [PMID: 40090501 DOI: 10.1016/j.micpath.2025.107487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/23/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Intensive aquaculture system tends to produce excessive ammonia and other nitrogenous metabolites and microbial load, which lead to abiotic and biotic stresses in fish. Eco-friendly alternatives such as probiotics are needed to prevent economically relevant infectious diseases for a successful disease-free harvest in aquaculture. In the present study, 90-days experiments were conducted at two stocking densities 80 and 160 per m3 fish (7.15 ± 0.05 g) coupled with xanthan gum (ED1) and sweet potato powder (ED2) for mitigation of priority stresses in Labeo rohita. Highest average body weight (17.71 ± 0.15 g), average daily gain (0.12 ± 0.01 g), specific growth rate (1.02 ± 0.01 g day-1), percentage weight gain (150.73 ± 1.01) and feed efficiency ratio (1.00 ± 0.01) were found in 80 fish per m3 coupled with ED2. Bacterial counts (2.6 × 106 CFU ml-1) and removal efficiency of total ammonia-N (97.6 %) and nitrite-N (99.99 %) were significantly(P < 0.05) higher in 160 fish per m3 coupled with ED2. Maturation of biofloc bacterial biomass and bio-stimulatory effects were found to be the major mechanism. Fish mucus was found to be bactericidal mostly against fish pathogenic bacteria Aeromonas hydrophila and Edwardsiella tarda due to antagonistic effect of probiotic microbiome of green slime. Bacteria as safe candidate probionts in fish health management have been isolated and identified as Bacillus spp based on 16S rDNA and FAME approaches. Low level of catalase and SOD was observed in gill, muscle and liver in treatments, indicating stress alleviation to the culture organisms. For the first time, coupling of fish green slime with hydrogel has newly been coined an integrated hydrogel-mucus-based bioremediation system. The investigation of fish mucus has a very important biological and environmental roles in potential applications in species diversification and climate-resilient aquaculture and culture-based fisheries.
Collapse
Affiliation(s)
- Divya Mehta
- ICAR-Central Institute of Fisheries Education, Andheri West, Mumbai, 400061, India
| | | | - Ajit Kumar Verma
- ICAR-Central Institute of Fisheries Education, Andheri West, Mumbai, 400061, India
| | - Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - R Abisha
- ICAR-Central Institute of Fisheries Education, Andheri West, Mumbai, 400061, India
| | - Udipta Roy
- ICAR-Regional Research and Training Centre of ICAR-CIFE, Motipur, Muzaffarpur, India
| |
Collapse
|
2
|
Zhang Y, Li Y, Zhu F. The role of ALF4 in the immune response of Scylla paramamosain against Vibrio alginolyticus and white spot syndrome virus (WSSV). FISH & SHELLFISH IMMUNOLOGY 2025; 163:110384. [PMID: 40320056 DOI: 10.1016/j.fsi.2025.110384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
Anti-lipopolysaccharide factor (ALF) is an essential antimicrobial peptide involved in crustacean innate immunity. In this study, we identified a specific homolog ALF4 found in Scylla paramamosain based on mRNA sequences provided by National Center for Biotechnology Information (NCBI), silenced its expression using RNA interference technology, and explored its immunological function. ALF4 knockdown significantly altered the activities of multiple immune-related enzymes and increased intracellular reactive oxygen species (ROS), hemocyte apoptosis, and phagocytosis. Furthermore, the expression of ALF4 was markedly up-regulated in hemocytes following infection with the pathogenic bacterium Vibrio alginolyticus or white spot syndrome virus (WSSV), and ALF4 knockdown increased the mortality in challenged mud crabs. These findings demonstrate the critical role of ALF4 in antibacterial and antiviral responses in S. paramamosain, offering new insights into its broader significance in crustacean immunity and potential strategies for disease control in aquaculture.
Collapse
Affiliation(s)
- Yunchao Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Yilin Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
3
|
Zhang H, Wang Y, Zhu Y, Huang P, Gao Q, Li X, Chen Z, Liu Y, Jiang J, Gao Y, Huang J, Qin Z. Machine learning and genetic algorithm-guided directed evolution for the development of antimicrobial peptides. J Adv Res 2025; 68:415-428. [PMID: 38431124 PMCID: PMC11785909 DOI: 10.1016/j.jare.2024.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION Antimicrobial peptides (AMPs) are valuable alternatives to traditional antibiotics, possess a variety of potent biological activities and exhibit immunomodulatory effects that alleviate difficult-to-treat infections. Clarifying the structure-activity relationships of AMPs can direct the synthesis of desirable peptide therapeutics. OBJECTIVES In this study, the lipopolysaccharide-binding domain (LBD) was identified through machine learning-guided directed evolution, which acts as a functional domain of the anti-lipopolysaccharide factor family of AMPs identified from Marsupenaeus japonicus. METHODS LBDA-D was identified as an output of this algorithm, in which the original LBDMj sequence was the input, and the three-dimensional solution structure of LBDB was determined using nuclear magnetic resonance. Furthermore, our study involved a comprehensive series of experiments, including morphological studies and in vitro and in vivo antibacterial tests. RESULTS The NMR solution structure showed that LBDB possesses a circular extended structure with a disulfide crosslink at the terminus and two 310-helices and exhibits a broad antimicrobial spectrum. In addition, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that LBDB induced the formation of a cluster of bacteria wrapped in a flexible coating that ruptured and consequently killed the bacteria. Finally, coinjection of LBDB, Vibrio alginolyticus and Staphylococcus aureus in vivo improved the survival of M. japonicus, demonstrating the promising therapeutic role of LBDB for treating infectious disease. CONCLUSIONS The findings of this study pave the way for the rational drug design of activity-enhanced peptide antibiotics.
Collapse
Affiliation(s)
- Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Yihan Wang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Yanran Zhu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Pengtao Huang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Qiandi Gao
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Xiaojie Li
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Zhaoying Chen
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Yu Liu
- International Academic Center of Complex Systems, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jiakun Jiang
- Center for Statistics and Data Science, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Yuan Gao
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jiaquan Huang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China.
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
4
|
Sun L, Jia M, Zhu K, Hao Z, Shen J, Wang S. The Efficacy of Cecropin Against Multidrug-Resistant Bacteria Is Linked to the Destabilization of Outer Membrane Structure LPS of Gram-Negative Bacteria. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10424-y. [PMID: 39708190 DOI: 10.1007/s12602-024-10424-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
The escalating prevalence of antibiotic-resistant bacteria has emerged as a formidable threat to global health, and the quest for alternative antimicrobial agents is imperative. Cecropins, a class of antimicrobial peptides (AMPs), have garnered attention due to their potent bactericidal properties. This investigation delves into the antibacterial prowess of Cecropin A (CA) and Cecropin AD (CAD), showcasing their robust activity against Gram-negative bacteria, inclusive of multidrug-resistant bacteria. The bactericidal efficacy of CA and CAD is characterized by a dose-responsive paradigm, affirming their potential as therapeutic agents. These peptides exhibit minimal cytotoxicity and hemolytic effects, underscoring their safety profile. Advanced experimentation has elucidated that cecropins could disrupt the outer bacterial membrane, targeting lipid A, a pivotal constituent of the lipopolysaccharides (LPS) in the outer membrane as their antimicrobial bullseye. The affinity of cecropins for LPS and their antimicrobial action underscore the therapeutic potential of these peptides in targeting Gram-negative bacterial infections. These insights accentuate the promise of cecropins as viable "antibiotic substitutes," paving the path for their expanded application in combating antibiotic resistance.
Collapse
Affiliation(s)
- Luying Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Minyi Jia
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, China
| | - Shaolin Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya, China.
| |
Collapse
|
5
|
Ravichandran G, Sarkar P, Chen TW, Almaary KS, Elshikh MS, Elumalai P, Ramasamy H, Karuppiah K, Arockiaraj J. Antibacterial Effect of a Short Peptide, VV18, from Calcineurin-A of Macrobrachium rosenbergii: Antibiofilm Agent Against Escherichia coli and a Bacterial Membrane Disruptor in Pseudomonas aeruginosa. Int J Pept Res Ther 2022; 28:22. [DOI: 10.1007/s10989-021-10332-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 11/26/2022]
|
6
|
Xiang X, Jiang Q, Shao W, Li J, Zhou Y, Chen L, Deng S, Zheng B, Chen Y. Protective Effects of Shrimp Peptide on Dextran Sulfate Sodium-Induced Colitis in Mice. Front Nutr 2021; 8:773064. [PMID: 34901119 PMCID: PMC8652227 DOI: 10.3389/fnut.2021.773064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease, an intestinal relapsing inflammatory disease, not only impairs gastrointestinal function but also increases the chances of developing colon cancer. Currently, the effects of shrimp peptide (SP) in mice model of ulcerative colitis (UC) are still unclear. In particular, it is uncertain whether SP affects the gut flora with UC mice. In this study, we investigated the anti-inflammatory effects of SP on a dextran sulfate sodium (DSS)-induced mouse model of UC. Firstly, the molecular weight of SP was mainly distributed in the range of 180-1,000 Da (61.95% proportion), and the amino acid composition showed that SP contained 17 amino acids, of which, the essential amino acids accounted for 54.50%. In vivo, oral SP significantly attenuated the severity of colitis, such as diarrhea, weight loss, and rectal bleeding. Furthermore, treatment with SP remarkably ameliorated intestinal barrier integrity, thus lowering the levels of the inflammatory cytokines and ameliorating antioxidant indices and intestinal injury indicators in the serum and colon. Lastly, the cecal contents were used to sequence and analyze the 16S rRNA genes of bacteria. Results suggested that treatment with SP could restore the balance of intestinal flora in modeled mice by regulating the abundance of pathogenic and beneficial bacteria. Furthermore, SP could significantly improve intestinal flora dysfunction in mice with UC. In summary, our findings show that SP has a prophylactic and therapeutic effect in UC in vivo, thereby highlighting its broad medicinal applications.
Collapse
Affiliation(s)
- Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Biological Resources Innovation and Development of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Biological Resources Innovation and Development of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Wan Shao
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, China
| | - Jinhong Li
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Biological Resources Innovation and Development of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yufang Zhou
- Zhejiang Marine Development Research Institute, Zhoushan, China
| | - Lin Chen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shanggui Deng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, China
| | - Bin Zheng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, China
| | - Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Biological Resources Innovation and Development of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| |
Collapse
|
7
|
Fernández-Alacid L, Firmino JP, Sanahuja I, Madrid C, Polo J, de Borba MR, Balsalobre C, Gisbert E, Ibarz A. Impact of dietary porcine blood by-products in meagre (Argyrosomus regius) physiology, evaluated by welfare biomarkers and the antibacterial properties of the skin mucus. FISH & SHELLFISH IMMUNOLOGY 2021; 118:241-250. [PMID: 34530078 DOI: 10.1016/j.fsi.2021.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Tools are required for quick and easy preliminary evaluation of functional feeds efficiency on fisheries. The analysis of skin mucus biomarkers is a recent alternative approach providing a faster feed-back from the laboratory which is characterized by being less invasive, more rapid and with reduced costs. The effect of replacing fishmeal and fish protein hydrolysates by means of two porcine by-products, the porcine spray-dried plasma (SDPP) and pig protein hydrolysate (PPH), in compound diets (50.4% crude protein, 16.2% crude protein, 22.1 MJ/kg feed) was evaluated in juvenile meagre (Argyrosomus regius) during a two-months period. To determine the impact of these dietary replacements, growth and food performance were measured together with digestive enzymes activities and filet proximal composition. Additionally, skin mucus was collected and characterized by determining main mucus biomarkers (protein, glucose, lactate, cortisol, and antioxidant capacity) and its antibacterial properties, measured by the quick in vitro co-culture challenges. In comparison to the control group, the inclusion of PPH and SDPP, in meagre diets reduced growth (7.4-8.8% in body weight), increased feed conversion ratios (9.0-10.0%), results that were attributed to a reduction in feed intake values (24.2-33.0%) (P < 0.05). Porcine blood by-products did not modify the activity of gastric and pancreatic digestive enzymes as well as those involved in nutrient absorption (alkaline phosphatase) nor liver oxidative stress condition (P > 0.05). In contrast, a reduction in fillet lipid content associated to an increase in fillet protein levels were found in fish fed SDPP and PPH diets (P < 0.05). As compared to the control diet, the dietary replacement did not alter the levels of the skin mucus biomarkers related to stress (cortisol and antioxidant capacity) or nutritional status (soluble protein, glucose and lactate) (P > 0.05). Interestingly, regardless of the worst performance in somatic growth, meagre fed diets containing both tested porcine by-products showed a significantly improved antibacterial capacity of their skin mucus. This enhancement was more prominent for fish fed with the PPH diet, which may be attributed to a higher content of immunomodulatory bioactive compounds in PPH. Further research will be necessary to provide insights on how the inclusion of SDPP and PPH, at the expense of dietary fishmeal and fish protein hydrolysates, affects feed intake and growth performance in meagre. However, the use of skin mucus biomarkers has been demonstrated to be an excellent methodology for a preliminary characterization of the functional feeds, in particular for their prophylactic properties by the study of mucus antibacterial activity.
Collapse
Affiliation(s)
- Laura Fernández-Alacid
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona. Avda. Diagonal 643, 08028, Barcelona, Spain.
| | - Joana P Firmino
- IRTA-SCR, Aquaculture Program, 43540, Sant Carles de La Ràpita, Spain
| | - Ignasi Sanahuja
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona. Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Cristina Madrid
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona. Avda. Diagonal 643. 08028 Barcelona, Spain
| | - Javier Polo
- APC Europe SL, Avda. Sant Julià 246-258, 08403, Granollers, Spain
| | - Maude R de Borba
- Federal University of Southern Frontier (UFFS), Campus Laranjeiras do Sul, Paraná, Brazil
| | - Carlos Balsalobre
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona. Avda. Diagonal 643. 08028 Barcelona, Spain
| | - Enric Gisbert
- IRTA-SCR, Aquaculture Program, 43540, Sant Carles de La Ràpita, Spain.
| | - Antoni Ibarz
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona. Avda. Diagonal 643, 08028, Barcelona, Spain
| |
Collapse
|
8
|
Ravichandran G, Raju SV, Sarkar P, N. T. S, Al Olayan EM, Aloufi AS, Elokaby MA, Arshad A, Mala K, Arockiaraj J. Bestrophin‐derived peptide, WP17, elicits cell wall disruption‐mediated bactericidal activity against Micrococcus luteus and anti‐neoplastic effect against murine melanoma cells. Pept Sci (Hoboken) 2021; 113. [DOI: 10.1002/pep2.24220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/06/2021] [Indexed: 01/10/2023]
Abstract
AbstractThe cDNa sequence of Bestrophin‐1 (BEST‐1) was identified from a previously constructed transcriptome data set of freshwater prawn Macrobrachium rosenbergii (Mr). Basal and temporal gene expression analysis of MrBEST‐1 showed its antimicrobial immune effectiveness during viral and bacterial infections. The protein sequence encoded by cDNA of MrBEST‐1 was examined and a short antimicrobial molecule, named WP17 was identified using a bioinformatics tool. Further, the antibacterial ability of the identified WP17 peptide was evaluated against a number of bacterial strains, in which the peptide showed potential bactericidal activity against Micrococcus luteus (MTCC 6164), Staphylococcus aureus (ATCC 9144), Escherichia coli (ATCC 9637), Klebsiella pneumonia (CI 7376) and Bacillus subtilis (ATCC 6051). Based on the results, further assays focused on M. luteus MTCC 6164. The mode of action of MrWP17 on M. luteus MTCC 6164 was analyzed using FACS and FESEM. Toxicity analysis suggested that WP17 impaired the viability of cells in murine melanoma cells (B16F10); however, no cytotoxicity was observed against kidney embryonic cells (HEK293), even at higher concentrations. Similarly, the gene expression analysis of WP17 peptide treated murine cells elicited an extrinsic apoptotic pathway. In the present study, we have demonstrated the involvement of MrBEST‐1 in immune mechanisms through its short peptide molecule that has potential antimicrobial activity.
Collapse
Affiliation(s)
- Gayathri Ravichandran
- SRM Research Institute, SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Stefi V. Raju
- SRM Research Institute, SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Purabi Sarkar
- SRM Research Institute, SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Saraswathi N. T.
- Molecular Biophysics Lab School of Chemical and Biotechnology, SASTRA Deemed to be University Thanjavur Tamil Nadu India
| | - Ebtesam M. Al Olayan
- Department of Zoology College of Science, King Saud University Riyadh Saudi Arabia
| | - Abeer S. Aloufi
- Department of Zoology College of Science, King Saud University Riyadh Saudi Arabia
| | - Mohamed A. Elokaby
- Aquaculture Division National Institute of Oceanography and Fisheries (NIOF) Alexandria Egypt
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Port Dickson Negeri Sembilan Malaysia
- Department of Aquaculture, Faculty of Agriculture University Putra Malaysia Serdang Selangor Malaysia
| | - Kanchana Mala
- Department of Medical Research Medical College Hospital & Research Centre, SRM Institute of Science & Technology Chennai Tamil Nadu India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology Chennai Tamil Nadu India
| |
Collapse
|
9
|
Huang Y, Ren Q. Innate immune responses against viral pathogens in Macrobrachium. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103966. [PMID: 33338519 DOI: 10.1016/j.dci.2020.103966] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/27/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Some members of genus Macrobrachium are important economically prawns and valuable objects for studying the innate immune defense mechanism of crustaceans. Studies have focused on immune responses against bacterial and fungal infections and have expanded to include antiviral immunity over the past two decades. Similar to all living organisms, prawns are exposed to viruses, including white spot syndrome virus, Macrobrachium rosenbergii nodavirus, and Decapod iridescent virus 1 and develop effective defense mechanisms. Here, we review current understanding of the antiviral host defense in two species of Macrobrachium. The main antiviral defense of Macrobrachium is the activation of intracellular signaling cascades, leading to the activation of cellular responses (apoptosis) and humoral responses (immune-related signaling pathways, antimicrobial and antiviral peptides, lectins, and prophenoloxidase-activating system).
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Qian Ren
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
10
|
Raju SV, Sarkar P, Kumar P, Arockiaraj J. Piscidin, Fish Antimicrobial Peptide: Structure, Classification, Properties, Mechanism, Gene Regulation and Therapeutical Importance. Int J Pept Res Ther 2021; 27:91-107. [DOI: 10.1007/s10989-020-10068-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/28/2020] [Indexed: 01/02/2023]
|
11
|
Anju M, Archana K, Nair A, Philip R. An anti-lipopolysaccharide factor Md-ALF from the Indian flower tail shrimp, Metapenaeus dobsoni: Molecular and phylogenetic characterization. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Zhang H, Cheng W, Zheng L, Wang P, Liu Q, Li Z, Li T, Wei Y, Mao Y, Yu X. Identification of a group D anti-lipopolysaccharide factor (ALF) from kuruma prawn (Marsupenaeus japonicus) with antibacterial activity against Vibrio parahaemolyticus. FISH & SHELLFISH IMMUNOLOGY 2020; 102:368-380. [PMID: 32360914 DOI: 10.1016/j.fsi.2020.04.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Anti-lipopolysaccharide factor (ALF), which belongs to the antimicrobial peptide (AMP) family, has become a relatively new weapon to combat severe infections and has been demonstrated to be active against bacteria, fungi and some viruses. In the present study, a new ALF of group D (MjALF-D; GenBank accession No. MN416688) from Marsupenaeus japonicus was detected. MjALF-D encodes a polypeptide with 124 aa, and the peptide contains a 26-residue signal peptide and a lipopolysaccharide-binding domain (LBD). The structure of MjALF-D was found to consist of three α-helices, four β-sheets and random coils. qRT-PCR analysis revealed that MjALF-D expression was primarily observed in the stomach and was universally upregulated in both the gill and stomach after challenge by lipopolysaccharide (LPS) and Vibrio parahaemolyticus. Moreover, rMjALF-D can inhibit the growth of V. parahaemolyticus. rMjALF-D could destroy the bacterial membrane and lead to cytoplasmic leakage investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which may be the mechanism by which rMjALF-D inhibits V. parahaemolyticus. Additionally, rMjALF-D showed distinct binding or antibacterial ability after direct incubation with V. parahaemolyticus or bacterial genomic DNA and a certain effect on the protein expression of it. Together, these results indicated that rMjALF-D possessed the antibacterial activity against V. parahaemolyticus and the potential involvement in the innate immune response of M. japonicus.
Collapse
Affiliation(s)
- Heqian Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenzhi Cheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, China
| | - Libing Zheng
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Panpan Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, China
| | - Qinghui Liu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Tianjiao Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, China
| | - Yiming Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, China.
| | - Xiangyong Yu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Tongsri P, Meng K, Liu X, Wu Z, Yin G, Wang Q, Liu M, Xu Z. The predominant role of mucosal immunoglobulin IgT in the gills of rainbow trout (Oncorhynchus mykiss) after infection with Flavobacterium columnare. FISH & SHELLFISH IMMUNOLOGY 2020; 99:654-662. [PMID: 32001351 DOI: 10.1016/j.fsi.2020.01.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/12/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Columnaris disease, induced by Flavobacterium columnare, seriously affects the health of freshwater fish species and damages the mucosal tissues, such as the fins, skin, and gills. Teleosts represent the first bony vertebrate to contain both innate and adaptive immune responses against pathogens. So far, three immunoglobulin isotypes (IgM, IgD, and IgT/IgZ) have been identified in teleost fish, and IgT in mucosal tissues of teleost fish was reported to perform a similar function to IgA in mammals during parasitic infection. However, very limited information is known about the function of IgT in gill mucosal tissues during bacterial infection. In the present study, rainbow trout (Oncorhynchus mykiss) was infected with F. columnare (Fc) via immersion. After Fc infection, the gill structure of rainbow trout showed serious hyperplasia symptoms on the secondary lamellae at 12 h post infection (hpi). Moreover, the mRNA expression levels of NOS2 and cathelicidin-1 were significantly upregulated immediately at 12 hpi and showed high expression throughout the experiment. IgT and IgM showed much higher mRNA expression levels at 28 days post infection (dpi) and 75 dpi, while IgD only showed high mRNA expression levels at 28 dpi. Importantly, the accumulation of IgT+ B cells and strong bacteria-specific IgT responses were detected in the gill lamellae of both infected fish (28 dpi) and survivor fish (75 dpi). Overall, our results suggest that IgT and IgT+ B cells play a central role in the adaptive immune responses of fish gill mucosa against bacterial infection.
Collapse
Affiliation(s)
- Pajongjit Tongsri
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Kaifeng Meng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xia Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhengben Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guangmei Yin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China.
| |
Collapse
|
14
|
Abstract
Anti-lipopolysaccharide factors (ALFs) are a type of antimicrobial peptide (AMP) which show broad-spectrum antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, fungi and viruses. In this chapter, we review the discovery and classification of this kind of antimicrobial peptide in crustaceans. The structure and function, as well as the mechanism of antibacterial and antiviral activities of ALFs will be summarized and discussed. We will then describe the expression and regulation of various ALF genes in different crustacean species. Finally, the application prospects of ALFs in drug development and disease-resistant genetic breeding will be pointed out and discussed. The review will also discuss several key questions such as the systematic classification and expression regulation of the ALF genes, as well as the future application of ALFs and ALF-derived peptides.
Collapse
Affiliation(s)
- Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
15
|
Kumaresan V, Palanisamy R, Pasupuleti M, Arockiaraj J. Impacts of environmental and biological stressors on immune system of Macrobrachium rosenbergii. REVIEWS IN AQUACULTURE 2017; 9:283-307. [DOI: 10.1111/raq.12139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/14/2015] [Indexed: 10/16/2023]
Abstract
AbstractMacrobrachium rosenbergiicommonly called giant freshwater prawn is a widely farmed crustacean in freshwater. Similar to other aquatic organisms, their growth and well‐being is influenced by various physical, chemical and biological factors. We discuss about the critical growth limiting factors as well as disease causing agents and the potential immune molecules ofM. rosenbergiithat are proved to involve in preventing and/or responding to those limiting factors.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai Tamil Nadu India
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai Tamil Nadu India
| | - Mukesh Pasupuleti
- Lab PCN 206 Microbiology Division CSIR‐Central Drug Research Institute Lucknow Uttar Pradesh India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai Tamil Nadu India
| |
Collapse
|
16
|
Ravichandran G, Kumaresan V, Bhatt P, Arasu MV, Al-Dhabi NA, Arockiaraj J. A Cumulative Strategy to Predict and Characterize Antimicrobial Peptides (AMPs) from Protein Database. Int J Pept Res Ther 2017; 23:281-290. [DOI: 10.1007/s10989-016-9559-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Arasu A, Kumaresan V, Ganesh MR, Pasupuleti M, Arasu MV, Al-Dhabi NA, Arockiaraj J. Bactericidal activity of fish galectin 4 derived membrane-binding peptide tagged with oligotryptophan. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 71:37-48. [PMID: 28126555 DOI: 10.1016/j.dci.2017.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/22/2017] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
Galectins belong to the family of galactoside-binding proteins which act as pathogen recognition receptors by recognizing and binding to the carbohydrate present in the bacterial membranes. In this study, a Galectin-4 sequence was identified from the constructed cDNA library of Channa striatus and its structural features were reported. Gene expression analysis revealed that CsGal4 was highly expressed in liver and strongly induced by Epizootic Ulcerative Syndrome (EUS) causing pathogens such as Aphanomyces invadans, Aeromonas hydrophila and a viral analogue, poly I:C. To understand the antimicrobial role of putative dimerization site of CsGal4, the region was chemically synthesized and its bactericidal effect was determined. G4 peptide exhibited a weak bactericidal activity against Vibrio harveyi, an important aquaculture pathogen. We have also determined the bactericidal activity of the dimerization site by tagging pentamer oligotryptophan (W5) at the C-terminal of G4 peptide. Flow cytometry analysis revealed that G4W induced drastic reduction in cell counts than G4. Electron microscopic images showed membrane blebbings in V. harveyi which indicated the membrane disrupting activity of G4W. Interestingly, both the peptides did not exhibit any hemolytic activity and cytotoxicity towards peripheral blood cells of Channa striatus and the activity was specific only towards the bacterial membrane. Our results suggested that addition of W5 at the C-terminal of membrane-binding peptide remarkably improved its membrane disrupting activity.
Collapse
Affiliation(s)
- Abirami Arasu
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India; Department of Microbiology, SRM Arts & Science College, Kattankulathur 603 203, Chennai, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Munuswamy-Ramanujam Ganesh
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow-226031, Uttar Pradesh, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
18
|
KR12 peptide associated with cyclodextrin: Antimicrobial and antitumor activities. Biointerphases 2016; 11:04B307. [PMID: 27907988 DOI: 10.1116/1.4968880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to determine the physical properties and antimicrobial and antiproliferative effects of the KR12 peptide complexed with 2-hydroxypropyl-β-cyclodextrin (Hp-βCd) in vitro. The KR12:Hp-βCd composition was evaluated for particle size and its zeta (ζ)-potential in the presence and absence of cells. Antimicrobial activity against Streptococcus mutans, Actinobacillus actinomycetemcomitans, and Porphyromonas gingivalis for the peptide alone or associated was evaluated by minimal inhibitory concentration. The cytotoxicity of the peptide and composition toward fibroblasts, Caco-2 cells, and A431 cells was determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; thiazolyl blue assay and hemolysis assay. Membrane integrity was analyzed by the lactate dehydrogenase assay. KR12:Hp-βCd decreased the peptide concentration required for the antimicrobial effect. Moreover, this composition was able to modify cell surface parameters, such as ζ-potential, and alter the degree of hemolysis induced by KR12. However, the KR12:Hp-βCd and KR12 alone alter the zeta potential of cells to a similar extent, suggesting a similar level of membrane interaction. The peptide alone inhibited the proliferation of Caco-2 and A431 cells more efficiently than KR12:Hp-βCd (p < 0.001), but did not show significant cytotoxic effects via the dehydrogenase lactate assay. Both substances were effective in inhibiting the growth of odontopathogenic bacteria, as well as inhibiting Caco-2 epithelial cells. These observations highlight the potential antimicrobial and antiproliferative effects of KR12 peptide alone or associated with Hp-βCd.
Collapse
|
19
|
Ravichandran G, Kumaresan V, Arasu MV, Al-Dhabi NA, Ganesh MR, Mahesh A, Dhayalan A, Pasupuleti M, Arockiaraj J. Pellino-1 derived cationic antimicrobial prawn peptide: Bactericidal activity, toxicity and mode of action. Mol Immunol 2016; 78:171-182. [PMID: 27648859 DOI: 10.1016/j.molimm.2016.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/09/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
The antimicrobial peptides (AMPs) are multifunctional molecules which represent significant roles in the innate immune system. These molecules have been well known for decades because of their role as natural antibiotics in both invertebrates and vertebrates. The development of multiple drug resistance against conventional antibiotics brought a greater focus on AMPs in recent years. The cationic peptides, in particular, proven as host defense peptides and are considered as effectors of innate immunity. Among the various innate immune molecules, functions of pellino-1 (Peli-1) have been recently studied for its remarkable role in specific immune functions. In our study, we have identified Peli-1 from the cDNA library of freshwater prawn Macrobrachium rosenbergii (Mr) and analyzed its features using various in-silico methods. Real time PCR analysis showed an induced expression of MrPeli-1 during white spot syndrome virus (WSSV), bacteria (Vibrio harveyi) and lipopolysaccharide (LPS) from Escherichia coli challenge. Also, a cationic AMP named MrDN was derived from MrPeli-1 protein sequence and its activity was confirmed against various pathogenic bacteria. The mode of action of MrDN was determined to be its membrane permeabilization ability against Bacillus cereus ATCC 2106 as well as its DNA binding ability. Further, scanning electron microscopic (SEM) images showed the membrane disruption and leakage of cellular components of B. cereus cells induced by MrDN. The toxicity of MrDN against normal cells (HEK293 cells) was demonstrated by MTT and hemolysis assays. Overall, the results demonstrated the innate immune function of MrPeli-1 with a potential cationic AMP in prawn.
Collapse
Affiliation(s)
- Gayathri Ravichandran
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India; SRM Research Institute, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Munuswamy-Ramanujam Ganesh
- Interdisciplinary Institute of Indian System of Medicine, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Arun Mahesh
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Arunkumar Dhayalan
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
20
|
Chaurasia MK, Ravichandran G, Nizam F, Arasu MV, Al-Dhabi NA, Arshad A, Harikrishnan R, Arockiaraj J. In-silico analysis and mRNA modulation of detoxification enzymes GST delta and kappa against various biotic and abiotic oxidative stressors. FISH & SHELLFISH IMMUNOLOGY 2016; 54:353-363. [PMID: 27109581 DOI: 10.1016/j.fsi.2016.04.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
This study reports the comprehensive comparative information of two different detoxification enzymes such as glutathione S-transferases (GSTs) delta and kappa from freshwater giant prawn Macrobrachium rosenbergii (designated as MrGSTD and MrGSTK) by investigating their in-silico characters and mRNA modulation against various biotic and abiotic oxidative stressors. The physico-chemical properties of these cDNA and their polypeptide structure were analyzed using various bioinformatics program. The analysis indicated the variation in size of the polypeptides, presence or absence of domains and motifs and structure. Homology and phylogenetic analysis revealed that MrGSTD shared maximum identity (83%) with crustaceans GST delta, whereas MrGSTK fell in arthropods GST kappa. It is interesting to note that MrGSTD and MrGSTK shared only 21% identity; it indicated their structural difference. Structural analysis indicated that MrGSTD to be canonical dimer like shape and MrGSTK appeared to be butterfly dimer like shape, in spite of four β-sheets being conserved in both GSTs. Tissue specific gene expression analysis showed that both MrGSTD and MrGSTK are highly expressed in immune organs such as haemocyte and hepatopancreas, respectively. To understand the role of mRNA modulation of MrGSTD and MrGSTK, the prawns were inducted with oxidative stressors such as bacteria (Vibrio harveyi), virus [white spot syndrome virus (WSSV)] and heavy metal, cadmium (Cd). The analysis revealed an interesting fact that both MrGSTD and MrGSTK showed higher (P < 0.05) up-regulation at 48 h post-challenge, except MrGSTD stressed with bacteria, where it showed up-regulation at 24 h post-challenge. Overall, the results suggested that GSTs are diverse in their structure and possibly conferring their potential involvement in immune protection in crustaceans. However, further study is necessary to focus their functional differences at proteomic level.
Collapse
Affiliation(s)
- Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Gayathri Ravichandran
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India; SRM Research Institute, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Faizal Nizam
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aziz Arshad
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
21
|
Chaurasia MK, Nizam F, Ravichandran G, Arasu MV, Al-Dhabi NA, Arshad A, Elumalai P, Arockiaraj J. Molecular importance of prawn large heat shock proteins 60, 70 and 90. FISH & SHELLFISH IMMUNOLOGY 2016; 48:228-238. [PMID: 26631804 DOI: 10.1016/j.fsi.2015.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
Considering the importance of heat shock proteins (HSPs) in the innate immune system of prawn, a comparative molecular approach was proposed to study the crustacean large HSPs 60, 70 and 90. Three different large HSPs were identified from freshwater prawn Macrobrachium rosenbergii (Mr) cDNA library during screening. The structural and functional characteristic features of HSPs were studied using various bioinformatics tools. Also, their gene expression and mRNA regulation upon various pathogenic infections was studied by relative quantification using 2(-ΔΔCT) method. MrHSP60 contains a long chaperonin 60 domain at 46-547 which carries a chaperonin 60 signature motif between 427 and 438, whereas MrHSP70 contains a long HSP70 domain at 21-624 and MrHSP90 carries a HSP90 domain at 188-719. The two dimensional analysis showed that MrHSP60 contains more amino acids (52%) in helices, whereas MrHSP70 (40.6%) and MrHSP90 (51.8%) carried more residues in coils. Gene expression results showed significant (P < 0.05) expression of MrHSP60, 70 and 90 in haemocyte, gill and hepatopancreas, respectively. Further, the expression level was up-regulated upon bacterial (Aeromonas hydrophilla and Vibrio harveyi) and viral [white spot syndrome virus (WSSV) and M. rosenbergii nodo virus (MrNV)] infections during various time periods. The gene expression results exhibited the potential involvement of these three HSPs in the immune system of prawn. The study indicated the potentiality of these molecules, thereby protecting cells against pathogens as well as severe cellular and environmental stresses in crustaceans.
Collapse
Affiliation(s)
- Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Faizal Nizam
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Gayathri Ravichandran
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India; SRM Research Institute, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Aziz Arshad
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Preetham Elumalai
- School of Aquatic Food Products and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682 506, Kerala, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
22
|
Arockiaraj J, Chaurasia MK, Kumaresan V, Palanisamy R, Harikrishnan R, Pasupuleti M, Kasi M. Macrobrachium rosenbergii mannose binding lectin: synthesis of MrMBL-N20 and MrMBL-C16 peptides and their antimicrobial characterization, bioinformatics and relative gene expression analysis. FISH & SHELLFISH IMMUNOLOGY 2015; 43:364-374. [PMID: 25575476 DOI: 10.1016/j.fsi.2014.12.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/26/2014] [Accepted: 12/26/2014] [Indexed: 06/04/2023]
Abstract
Mannose-binding lectin (MBL), an antimicrobial protein, is an important component of innate immune system which recognizes repetitive sugar groups on the surface of bacteria and viruses leading to activation of the complement system. In this study, we reported a complete molecular characterization of cDNA encoded for MBL from freshwater prawn Macrobrachium rosenbergii (Mr). Two short peptides (MrMBL-N20: (20)AWNTYDYMKREHSLVKPYQG(39) and MrMBL-C16: (307)GGLFYVKHKEQQRKRF(322)) were synthesized from the MrMBL polypeptide. The purity of the MrMBL-N20 (89%) and MrMBL-C16 (93%) peptides were confirmed by MS analysis (MALDI-ToF). The purified peptides were used for further antimicrobial characterization including minimum inhibitory concentration (MIC) assay, kinetics of bactericidal efficiency and analysis of hemolytic capacity. The peptides exhibited antimicrobial activity towards all the Gram-negative bacteria taken for analysis, whereas they showed the activity towards only a few selected Gram-positive bacteria. MrMBL-C16 peptides produced the highest inhibition towards both the Gram-negative and Gram-positive bacteria compared to the MrMBL-N20. Both peptides do not produce any inhibition against Bacillus sps. The kinetics of bactericidal efficiency showed that the peptides drastically reduced the number of surviving bacterial colonies after 24 h incubation. The results of hemolytic activity showed that both peptides produced strong activity at higher concentration. However, MrMBL-C16 peptide produced the highest activity compared to the MrMBL-N20 peptide. Overall, the results indicated that the peptides can be used as bactericidal agents. The MrMBL protein sequence was characterized using various bioinformatics tools including phylogenetic analysis and structure prediction. We also reported the MrMBL gene expression pattern upon viral and bacterial infection in M. rosenbergii gills. It could be concluded that the prawn MBL may be one of the important molecule which is involved in antimicrobial mechanism. Moreover, MrMBL derived MrMBL-N20 and MrMBL-C16 peptides are important antimicrobial peptides for the recognition and eradication of viral and bacterial pathogens.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| | - Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, 631 501 Kanchipuram, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, 226031 Lucknow, Uttar Pradesh, India
| | - Marimuthu Kasi
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling Bedong, 08100 Bedong, Kedah, Malaysia
| |
Collapse
|
23
|
Tassanakajon A, Somboonwiwat K, Amparyup P. Sequence diversity and evolution of antimicrobial peptides in invertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:324-341. [PMID: 24950415 DOI: 10.1016/j.dci.2014.05.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 06/03/2023]
Abstract
Antimicrobial peptides (AMPs) are evolutionarily ancient molecules that act as the key components in the invertebrate innate immunity against invading pathogens. Several AMPs have been identified and characterized in invertebrates, and found to display considerable diversity in their amino acid sequence, structure and biological activity. AMP genes appear to have rapidly evolved, which might have arisen from the co-evolutionary arms race between host and pathogens, and enabled organisms to survive in different microbial environments. Here, the sequence diversity of invertebrate AMPs (defensins, cecropins, crustins and anti-lipopolysaccharide factors) are presented to provide a better understanding of the evolution pattern of these peptides that play a major role in host defense mechanisms.
Collapse
Affiliation(s)
- Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piti Amparyup
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
24
|
Chaurasia MK, Palanisamy R, Bhatt P, Kumaresan V, Gnanam AJ, Pasupuleti M, Kasi M, Harikrishnan R, Arockiaraj J. A prawn core histone 4: derivation of N- and C-terminal peptides and their antimicrobial properties, molecular characterization and mRNA transcription. Microbiol Res 2015; 170:78-86. [PMID: 25271126 DOI: 10.1016/j.micres.2014.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/19/2014] [Accepted: 08/27/2014] [Indexed: 11/30/2022]
Abstract
This study investigates the complete molecular characterization including bioinformatics characterization, gene expression, synthesis of N and C terminal peptides and their antimicrobial activity of the core histone 4 (H4) from freshwater giant prawn Macrobrachium rosenbergii (Mr). A cDNA encoding MrH4 was identified from the constructed cDNA library of M. rosenbergii during screening and the sequence was obtained using internal sequencing primers. The MrH4 coding region possesses a polypeptide of 103 amino acids with a calculated molecular weight of 11kDa and an isoelectric point of 11.5. The bioinformatics analysis showed that the MrH4 polypeptide contains a H4 signature at (15)GAKRH(19). Multiple sequence alignment of MrH4 showed that the N-terminal (21-42) and C-terminal (87-101) antimicrobial peptide regions and the pentapeptide or H4 signature (15-19) are highly conserved including in humans. The phylogenetic tree formed two separate clades of vertebrate and invertebrate H4, wherein MrH4 was located within the arthropod monophyletic clade of invertebrate H4 groups. Three-dimensional model of MrH4 was established using I-TASSER program and the model was validated using Ramachandran plot analysis. Schiffer-Edmundson helical wheel modeling was used to predict the helix propensity of N (21-42) and C (87-101) terminal derived Mr peptides. The highest gene expression was observed in gills and is induced by viral [white spot syndrome baculovirus (WSBV) and M. rosenbergii nodovirus (MrNV)] and bacterial (Aeromonas hydrophila and Vibrio harveyi) infections. The N and C terminal peptides were synthesized and their antimicrobial and hemolytic properties were examined. Both peptides showed activity against the tested Gram negative and Gram positive bacteria; however, the highest activity was noticed against Gram negative bacteria. Among the two peptides used in this study, C-terminal peptide yielded better results than the N-terminal peptide. Therefore, C terminal peptide can be recommended for the development of an antimicrobial agent.
Collapse
Affiliation(s)
- Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology and Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology and Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Prasanth Bhatt
- Division of Fisheries Biotechnology and Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology and Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Annie J Gnanam
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712, USA
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Marimuthu Kasi
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling Bedong, 08100 Bedong, Kedah, Malaysia
| | - Ramaswamy Harikrishnan
- PG and Research Department of Biotechnology, Bharath College of Science and Management, Thanjavur 613 005, Tamil Nadu, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology and Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| |
Collapse
|