1
|
Gong B, Wang T, Sun L. Evolution and therapeutic potential of glucagon-like peptide 2 analogs. Biochem Pharmacol 2025; 233:116758. [PMID: 39842552 DOI: 10.1016/j.bcp.2025.116758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Glucagon-like peptide 2 (GLP-2) is a proglucagon-derived peptide released by intestinal endocrine cells. However, its therapeutic potential is limited by rapid inactivation via dipeptidyl peptidase-IV. The elucidation of three-dimensional structures of G-protein-coupled receptors, including GLP-2 receptor, has facilitated the rational design of novel peptide therapeutics. Recent studies have explored various structural modifications based on the structure of GLP-2, such as amino acid substitution, lipidation, and fusion with proteins, to extend the half-life of GLP-2 and enhance its biological activity. One promising avenue involves the development of multifunctional molecules targeting multiple pharmacological systems to boost therapeutic efficacy. This paper reviews the recent advancements in understanding GLP-2, including its physiological roles and structure-activity relationships, and evaluates the development prospects of GLP-2 analogs.
Collapse
Affiliation(s)
- Binbin Gong
- College of Medicine, Jiaxing University, Jiaxing 314001, PR China; College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, PR China
| | - Ting Wang
- College of Medicine, Jiaxing University, Jiaxing 314001, PR China
| | - Lidan Sun
- College of Medicine, Jiaxing University, Jiaxing 314001, PR China; Taizhou Hospital, Zhejiang University, Taizhou 317000, PR China.
| |
Collapse
|
2
|
Atanga R, Singh V, In JG. Intestinal Enteroendocrine Cells: Present and Future Druggable Targets. Int J Mol Sci 2023; 24:ijms24108836. [PMID: 37240181 DOI: 10.3390/ijms24108836] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Enteroendocrine cells are specialized secretory lineage cells in the small and large intestines that secrete hormones and peptides in response to luminal contents. The various hormones and peptides can act upon neighboring cells and as part of the endocrine system, circulate systemically via immune cells and the enteric nervous system. Locally, enteroendocrine cells have a major role in gastrointestinal motility, nutrient sensing, and glucose metabolism. Targeting the intestinal enteroendocrine cells or mimicking hormone secretion has been an important field of study in obesity and other metabolic diseases. Studies on the importance of these cells in inflammatory and auto-immune diseases have only recently been reported. The rapid global increase in metabolic and inflammatory diseases suggests that increased understanding and novel therapies are needed. This review will focus on the association between enteroendocrine changes and metabolic and inflammatory disease progression and conclude with the future of enteroendocrine cells as potential druggable targets.
Collapse
Affiliation(s)
- Roger Atanga
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Varsha Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie G In
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
3
|
Gadgaard S, Windeløv JA, Schiellerup SP, Holst JJ, Hartmann B, Rosenkilde MM. Long-acting agonists of human and rodent GLP-2 receptors for studies of the physiology and pharmacological potential of the GLP-2 system. Biomed Pharmacother 2023; 160:114383. [PMID: 36780786 DOI: 10.1016/j.biopha.2023.114383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide-2 (GLP-2) is secreted postprandially from enteroendocrine Lcells and has anabolic action on gut and bone. Short-acting teduglutide is the only approved GLP-2 analog for the treatment of short-bowel syndrome (SBS). To improve the therapeutic effect, we created a series of lipidated GLP-2R agonists. EXPERIMENTAL APPROACH Six GLP-2 analogs were studied in vitro for cAMP accumulation, β-arrestin 1 and 2 recruitment, affinity, and internalization. The trophic actions on intestine and bone were examined in vivo in rodents. KEY RESULTS Lipidations at lysines introduced at position 12, 16, and 20 of hGLP-2(1-33) were well-tolerated with less than 2.2-fold impaired potency and full efficacy at the hGLP-2R in cAMP accumulation. In contrast, N- and C-terminal (His1 and Lys30) lipidations impaired potency by 4.2- and 45-fold and lowered efficacy to 77% and 85% of hGLP-2, respectively. All variants were similarly active on the rat and mouse GLP-2Rs and the three most active variants displayed increased selectivity for hGLP-2R over hGLP-1R activation, compared to native hGLP-2. Impact on arrestin recruitment and receptor internalization followed that of Gαs-coupling, except for lipidation in position 20, where internalization was more impaired, suggesting desensitization protection. A highly active variant (C16 at position 20) with low internalization and a half-life of 9.5 h in rats showed improved gut and bone tropism with increased weight of small intestine in mice and decreased CTX levels in rats. CONCLUSION AND IMPLICATION We present novel hGLP-2 agonists suitable for in vivo studies of the GLP-2 system to uncover its pharmacological potential.
Collapse
Affiliation(s)
- Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Bainan Biotech, Copenhagen, Denmark
| | | | - Sine P Schiellerup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
4
|
Melo FJ, Pinto-Lopes P, Estevinho MM, Magro F. The Role of Dipeptidyl Peptidase 4 as a Therapeutic Target and Serum Biomarker in Inflammatory Bowel Disease: A Systematic Review. Inflamm Bowel Dis 2021; 27:1153-1165. [PMID: 33295607 DOI: 10.1093/ibd/izaa324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The roles dipeptidyl peptidase 4 (DPP4), aminopeptidase N (APN), and their substrates in autoimmune diseases are being increasingly recognized. However, their significance in inflammatory bowel diseases (IBD) is not entirely understood. This systematic review aims to discuss the pathophysiological processes related to these ectopeptidases while comparing findings from preclinical and clinical settings. METHODS This review was conducted according to the PRISMA guidelines. We performed a literature search in PubMed, SCOPUS, and Web of Science to identify all reports from inception until February 2020. The search included validated animal models of intestinal inflammation and studies in IBD patients. Quality assessment was performed using SYRCLE's risk of bias tool and CASP qualitative and cohort checklists. RESULTS From the 45 included studies, 36 were performed in animal models and 12 in humans (3 reports included both). Overall, the methodological quality of preclinical studies was acceptable. In animal models, DPP4 and APN inhibition significantly improved intestinal inflammation.Glucagon-like peptide (GLP)-1 and GLP-2 analogs and GLP-2-relase-inducing drugs also showed significant benefits in recovery from inflammatory damage. A nonsignificant trend toward disease remission with the GLP-2 analog teduglutide was observed in the sole interventional human study. All human studies reported an inverse correlation between soluble DPP4/CD26 levels and disease severity, in accordance with the proposal of DPP4 as a biomarker for IBD. CONCLUSIONS The use of DPP4 inhibitors and analogs of its substrates has clear benefits in the treatment of experimentally induced intestinal inflammation. Further research is warranted to validate their potential diagnostic and therapeutic applications in IBD patients.
Collapse
Affiliation(s)
- Francisco Jorge Melo
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Pedro Pinto-Lopes
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal.,Department of Internal Medicine, Tâmega e Sousa Hospital Center, Padre Américo Hospital, Penafiel, Portugal
| | - Maria Manuela Estevinho
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal.,Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal
| | - Fernando Magro
- Department of Biomedicine, Unity of Pharmacology and Therapeutics, Faculty of Medicine of the University of Porto, Porto, Portugal.,Unit of Clinical Pharmacology, São João Hospital Center, Porto, Portugal
| |
Collapse
|
5
|
Mogilevski T, Burgell R, Aziz Q, Gibson PR. Review article: the role of the autonomic nervous system in the pathogenesis and therapy of IBD. Aliment Pharmacol Ther 2019; 50:720-737. [PMID: 31418887 DOI: 10.1111/apt.15433] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/25/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND There is a growing body of evidence implicating a role for the brain-gut axis in the pathogenesis of inflammation in patients with IBD. AIMS To perform a narrative review of published literature regarding the association of the autonomic nervous system and intestinal inflammation and to describe the rationale for and emerging use of autonomic manipulation as a therapeutic agent METHODS: Current relevant literature was summarised and critically examined. RESULTS There is substantial pre-clinical and clinical evidence for a multifaceted anti-inflammatory effect of the vagus at both systemic and local intestinal levels. It acts via acetylcholine-mediated activation of α-7-acetylcholine receptors involving multiple cell types in innate and adaptive immunity and the enteric nervous system with subsequent protective influences on the intestinal barrier, inflammatory mechanisms and the microbiome. In patients with IBD, there is evidence for a sympatho-vagal imbalance, functional enteric neuronal depletion and hyporeactivity of the hypothalamic-pituitary-adrenal axis. Direct or transcutaneous vagal neuromodulation up-regulates the cholinergic anti-inflammatory pathway in pre-clinical and clinical models with down-regulation of systemic and local intestinal inflammation. This is supported by two small studies in Crohn's disease although remains to be investigated in ulcerative colitis. CONCLUSIONS Modulating the cholinergic anti-inflammatory pathway influences inflammation both systemically and at a local intestinal level. It represents a potentially underutilised anti-inflammatory therapeutic strategy. Given the likely pathogenic role of the autonomic nervous system in patients with IBD, vagal neuromodulation, an apparently safe and successful means of increasing vagal tone, warrants further clinical exploration.
Collapse
Affiliation(s)
- Tamara Mogilevski
- Centre for Neuroscience, Surgery and Trauma, Barts and the London School of Medicine and Dentistry, Blizard Institute, Wingate Institute of Neurogastroenterology, London, UK.,Barts Health NHS Trust, London, UK.,Department of Gastroenterology, Monash University and Alfred Health, Melbourne, Australia
| | - Rebecca Burgell
- Department of Gastroenterology, Monash University and Alfred Health, Melbourne, Australia
| | - Qasim Aziz
- Centre for Neuroscience, Surgery and Trauma, Barts and the London School of Medicine and Dentistry, Blizard Institute, Wingate Institute of Neurogastroenterology, London, UK.,Barts Health NHS Trust, London, UK
| | - Peter R Gibson
- Department of Gastroenterology, Monash University and Alfred Health, Melbourne, Australia
| |
Collapse
|
6
|
Zhang T, Shi L, Xu Y, Li Y, Li S, Guan B, Qi Z, Zhang Y, Liu L. Purified PEGylated human glucagon-like peptide-2 reduces the severity of irradiation-induced acute radiation enteritis in rats. JOURNAL OF RADIATION RESEARCH 2019; 60:7-16. [PMID: 30247656 PMCID: PMC6373673 DOI: 10.1093/jrr/rry076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Radiation-induced acute intestinal injury after abdominal and pelvic irradiation is a common and serious problem in the clinical setting. Glucagon-like peptide-2 (GLP-2), a 33-amino acid peptide, exerts diverse effects related to the regulation of gastrointestinal growth and function. However, GLP-2 is relatively unstable in vivo. The aim of the present study was to improve GLP-2 stability in vivo and to evaluate its therapeutic effect on acute radiation enteritis. We generated long-lasting intestinal protection peptides by conjugating human GLP-2 (hGLP-2) peptides to polyethyleneglycol (PEG) to produce mPEGylation hGLP-2 (Mono-PEG-hGLP-2) through an enzymatic site-specific transglutamination reaction. Mono-PEG-hGLP-2 synthesized under optimal reaction conditions and separated by one-step ion-exchange chromatography was found to be resistant to degradation in vitro. Pretreatment with Mono-PEG-hGLP-2 reduced the severity of radiation-induced intestinal injury, oxidative stress, and the expression of NF-κB in rats with irradiation-induced acute radiation enteritis. The enhanced biological potency of Mono-PEG-hGLP-2 highlights its potential as a therapeutic agent for intestinal diseases.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, PR China
| | - Lei Shi
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, PR China
| | - Yuan Xu
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, PR China
| | - Yang Li
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, PR China
| | - Shicao Li
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, PR China
| | - Bo Guan
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, PR China
| | - Zhihua Qi
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, PR China
| | - Ye Zhang
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, PR China
| | - Linna Liu
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, PR China
| |
Collapse
|
7
|
Yang PY, Zou H, Lee C, Muppidi A, Chao E, Fu Q, Luo X, Wang D, Schultz PG, Shen W. Stapled, Long-Acting Glucagon-like Peptide 2 Analog with Efficacy in Dextran Sodium Sulfate Induced Mouse Colitis Models. J Med Chem 2018. [PMID: 29528634 DOI: 10.1021/acs.jmedchem.7b00768] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucagon-like peptide 2 (GLP-2) is a hormone that has been shown to stimulate intestinal growth and attenuate intestinal inflammation. Despite being efficacious in a variety of animal models of disease, its therapeutic potential is hampered by the short half-life in vivo. We now describe a highly potent, stapled long-acting GLP-2 analog, peptide 10, that has a more than 10-fold longer half-life than teduglutide and improved intestinotrophic and anti-inflammatory effects in mouse models of DSS-induced colitis.
Collapse
Affiliation(s)
- Peng-Yu Yang
- California Institute for Biomedical Research , La Jolla , California 92037 , United States.,Department of Chemistry, The Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Huafei Zou
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Candy Lee
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Avinash Muppidi
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Elizabeth Chao
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Qiangwei Fu
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Xiaozhou Luo
- Department of Chemistry, The Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Danling Wang
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Peter G Schultz
- California Institute for Biomedical Research , La Jolla , California 92037 , United States.,Department of Chemistry, The Skaggs Institute for Chemical Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Weijun Shen
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| |
Collapse
|
8
|
Qi KK, Lv JJ, Wu J, Xu ZW. Therapeutic effects of different doses of polyethylene glycosylated porcine glucagon-like peptide-2 on ulcerative colitis in male rats. BMC Gastroenterol 2017; 17:34. [PMID: 28259136 PMCID: PMC5336612 DOI: 10.1186/s12876-017-0593-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/01/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Polyethylene glycosylated (PEGylated) porcine glucagon-like peptide-2 (pGLP-2) considerably increases half-life and stability compared with the native pGLP-2, but the effective dose for intestinal damage is still unclear. This study aims to evaluate the available dose of polyethylene glycosylated porcine glucagon-like peptide-2 (PEG-pGLP-2), a modified, long-acting form of pGLP-2 in an experimental rat model of ulcerative colitis. METHODS Thirty-five male rats were randomly assigned into five groups: control, dextran sodium sulphate (DSS), DSS + PEG-pGLP-2(L), DSS + PEG-pGLP-2(M) and DSS + PEG-pGLP-2(H). Rats in control group received only water; other rats were fed with 5% (w/v) DSS and intraperitoneally administered with 12.5, 25 and 100 nmol/kg PEG-pGLP-2 daily for 6 days. RESULTS Compared with the control treatment, DSS treatment significantly (p < 0.05) decreased body weight change, colonic length, duodenal villus height and expression of zonula occludens-1, whereas significantly (p < 0.05) increased colonic damage score and expression of claudin-1, interleukin (IL)-1, IL-7, IL-10, interferon-γ and tumour necrosis factor (TNF)-α in colon. However, the three doses of PEG-pGLP-2 all reduced these effects; these treatments significantly (p < 0.05) increased body weight change and duodenal villus height, whereas significantly (p < 0.05) decreased colonic damage score and expression of IL-1, IL-7 and TNF-α in colon. Specifically, low-dose (12.5 nmol/kg/d) PEG-pGLP-2 was effective. CONCLUSIONS These results indicated that PEG-pGLP-2 is a novel and potentially effective therapy for intestinal healing in a relatively low dose.
Collapse
Affiliation(s)
- Ke-Ke Qi
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Jianggan, Hangzhou, 310021, China
| | - Jia-Jia Lv
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Jianggan, Hangzhou, 310021, China
| | - Jie Wu
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Jianggan, Hangzhou, 310021, China
| | - Zi-Wei Xu
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Jianggan, Hangzhou, 310021, China.
| |
Collapse
|
9
|
Qi KK, Sun YQ, Wan J, Deng B, Men XM, Wu J, Xu ZW. Effect of porcine glucagon-like peptides-2 on tight junction in GLP-2R + IPEC-J2 cell through the PI3
k/Akt/mTOR/p70S6K
signalling pathway. J Anim Physiol Anim Nutr (Berl) 2017; 101:1242-1248. [DOI: 10.1111/jpn.12644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/16/2016] [Indexed: 01/27/2023]
Affiliation(s)
- K. K. Qi
- Institute of Animal Science; Zhejiang Academy of Agricultural Sciences; Hangzhou China
| | - Y. Q. Sun
- Institute of Animal Science; Zhejiang Academy of Agricultural Sciences; Hangzhou China
| | - J. Wan
- Institute of Animal Science; Zhejiang Academy of Agricultural Sciences; Hangzhou China
| | - B. Deng
- Institute of Animal Science; Zhejiang Academy of Agricultural Sciences; Hangzhou China
| | - X. M. Men
- Institute of Animal Science; Zhejiang Academy of Agricultural Sciences; Hangzhou China
| | - J. Wu
- Institute of Animal Science; Zhejiang Academy of Agricultural Sciences; Hangzhou China
| | - Z. W. Xu
- Institute of Animal Science; Zhejiang Academy of Agricultural Sciences; Hangzhou China
| |
Collapse
|
10
|
Singh S, Dulai PS, Zarrinpar A, Ramamoorthy S, Sandborn WJ. Obesity in IBD: epidemiology, pathogenesis, disease course and treatment outcomes. Nat Rev Gastroenterol Hepatol 2017; 14:110-121. [PMID: 27899815 PMCID: PMC5550405 DOI: 10.1038/nrgastro.2016.181] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Incidence of IBD is rising in parallel with overweight and obesity. Contrary to conventional belief, about 15-40% of patients with IBD are obese, which might contribute to the development of IBD. Findings from cross-sectional and retrospective cohort studies are conflicting on the effect of obesity on natural history and course of IBD. Most studies are limited by small sample size, low event rates, non-validated assessment of disease activity and lack robust longitudinal follow-up and have incomplete adjustment for confounding factors. The effect of obesity on the efficacy of IBD-related therapy remains to be studied, though data from other autoimmune diseases suggests that obesity results in suboptimal response to therapy, potentially by promoting rapid clearance of biologic agents leading to low trough concentrations. These data provide a rationale for using weight loss interventions as adjunctive therapy in patients with IBD who are obese. Obesity also makes colorectal surgery technically challenging and might increase the risk of perioperative complications. In this Review, we highlight the existing literature on the epidemiology of obesity in IBD, discuss its plausible role in disease pathogenesis and effect on disease course and treatment response, and identify high-priority areas of future research.
Collapse
Affiliation(s)
- Siddharth Singh
- Division of Gastroenterology, Department of Medicine, University of California San Diego, USA,Division of Biomedical Informatics, Department of Medicine, University of California San Diego, USA
| | - Parambir S. Dulai
- Division of Gastroenterology, Department of Medicine, University of California San Diego, USA
| | - Amir Zarrinpar
- Division of Gastroenterology, Department of Medicine, University of California San Diego, USA
| | - Sonia Ramamoorthy
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92193, USA
| | - William J. Sandborn
- Division of Gastroenterology, Department of Medicine, University of California San Diego, USA
| |
Collapse
|
11
|
Michalak A, Mosińska P, Fichna J. Common links between metabolic syndrome and inflammatory bowel disease: Current overview and future perspectives. Pharmacol Rep 2016; 68:837-46. [PMID: 27238750 DOI: 10.1016/j.pharep.2016.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MS) features a constellation of central obesity, dyslipidemia, impaired glucose metabolism and often hypertension joined by insulin resistance and chronic inflammation. All these elements greatly raise patient's risk of cardiovascular disease and type 2 diabetes, resulting in an increased mortality. Metabolic syndrome affects approximately 20-25% of the world's adult population and thus it is essential to study its pathophysiology and seek new pharmacological targets. There is a thoroughly studied link between MS and inflammatory diseases of the gastrointestinal (GI) system, i.e. steatohepatitis. However, recent findings also indicate similarities in pathophysiological features between MS and inflammatory bowel disease (IBD), including adipose tissue dysregulation, inadequate immune response, and inflammation. In this review we aim to outline the pathophysiology of MS and emphasize the aspects revealed recently, such as mineralocorticoid activity, involvement of sex hormones and an accompanying increase in prolactin secretion. More importantly, we focus on the common links between MS and IBD. Finally, we describe new strategies and drug targets that may be utilized in MS therapy, namely adiponectin mimetics, GLP-1-based multi agonists, ABCA1 agonists and possible role of miRNA. We also discuss the possible utility of selected agents as adjuvants in IBD therapy.
Collapse
Affiliation(s)
- Arkadiusz Michalak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland.
| |
Collapse
|
12
|
Zietek T, Rath E. Inflammation Meets Metabolic Disease: Gut Feeling Mediated by GLP-1. Front Immunol 2016; 7:154. [PMID: 27148273 PMCID: PMC4840214 DOI: 10.3389/fimmu.2016.00154] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/08/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic diseases, such as obesity and diabetes, cardiovascular, and inflammatory bowel diseases (IBD) share common features in their pathology. Metabolic disorders exhibit strong inflammatory underpinnings and vice versa, inflammation is associated with metabolic alterations. Next to cytokines and cellular stress pathways, such as the unfolded protein response (UPR), alterations in the enteroendocrine system are intersections of various pathologies. Enteroendocrine cells (EEC) have been studied extensively for their ability to regulate gastrointestinal motility, secretion, and insulin release by release of peptide hormones. In particular, the L-cell-derived incretin hormone glucagon-like peptide 1 (GLP-1) has gained enormous attention due to its insulinotropic action and relevance in the treatment of type 2 diabetes (T2D). Yet, accumulating data indicate a critical role for EEC and in particular for GLP-1 in metabolic adaptation and in orchestrating immune responses beyond blood glucose control. EEC sense the lamina propria and luminal environment, including the microbiota via receptors and transporters. Subsequently, mediating signals by secreting hormones and cytokines, EEC can be considered as integrators of metabolic and inflammatory signaling. This review focuses on L cell and GLP-1 functions in the context of metabolic and inflammatory diseases. The effects of incretin-based therapies on metabolism and immune system are discussed and the interrelation and common features of metabolic and immune-mediated disorders are highlighted. Moreover, it presents data on the impact of inflammation, in particular of IBD on EEC and discusses the potential role of the microbiota as link between nutrients, metabolism, immunity, and disease.
Collapse
Affiliation(s)
- Tamara Zietek
- Department of Nutritional Physiology, Technische Universität München , Freising , Germany
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München , Freising , Germany
| |
Collapse
|
13
|
Connor EE, Evock-Clover CM, Walker MP, Elsasser TH, Kahl S. COMPARATIVE GUT PHYSIOLOGY SYMPOSIUM: Comparative physiology of glucagon-like peptide-2: Implications and applications for production and health of ruminants. J Anim Sci 2016; 93:492-501. [PMID: 26020740 DOI: 10.2527/jas.2014-8577] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Glucagon-like peptide-2 (GLP-2) is a 33-amino acid peptide derived from proteolytic cleavage of proglucagon by prohormone convertase 1/3 in enteroendocrine L cells. Studies conducted in humans, in rodent models, and in vitro indicate that GLP-2 is secreted in response to the presence of molecules in the intestinal lumen, including fatty acids, carbohydrates, amino acids, and bile acids, which are detected by luminal chemosensors. The physiological actions of GLP-2 are mediated by its G protein-coupled receptor expressed primarily in the intestinal tract on enteric neurons, enteroendocrine cells, and myofibroblasts. The biological activity of GLP-2 is further regulated by dipeptidyl peptidase IV, which rapidly cleaves the N-terminus of GLP-2 that is responsible for GLP-2 receptor activation. Within the gut, GLP-2 increases nutrient absorption, crypt cell proliferation, and mesenteric blood flow and decreases gut permeability and motility, epithelial cell apoptosis, and inflammation. Outside the gut, GLP-2 reduces bone resorption, can suppress appetite, and is cytoprotective in the lung. Thus, GLP-2 has been studied intensively as a therapeutic to improve intestinal function of humans during parenteral nutrition and following small bowel resection and, more recently, as a treatment for osteoporosis and obesity-related disorders and to reduce cellular damage associated with inflammation of the gut and lungs. Recent studies demonstrate that many biological actions and properties of GLP-2 in ruminants are similar to those in nonruminants, including the potential to reduce intestinal nitro-oxidative stress in calves caused by parasitic diseases such as coccidiosis. Because of its beneficial impacts on nutrient absorption, gut healing, and normal gut development, GLP-2 therapy offers significant opportunities to improve calf health and production efficiency. However, GLP-2 therapies require an extended time course to achieve desired physiological responses, as well as daily administration because of the hormone's short half-life. Thus, practical means of administration and alternative strategies to enhance basal GLP-2 secretion (e.g., through specific feed additives), which are more likely to achieve consumer acceptance, are needed. Opportunities to address these challenges are discussed.
Collapse
|
14
|
The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease. Biochem Soc Trans 2015; 43:727-33. [PMID: 26551720 PMCID: PMC4613519 DOI: 10.1042/bst20150090] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 12/17/2022]
Abstract
The intestinal epithelium plays a crucial role in maintaining barrier function and immune homeostasis, a failure of which results in disease. This review focuses on the epithelial enteroendocrine cells and the crosstalk that exists with immune cells during inflammation. The intestinal epithelium represents one of our most important interfaces with the external environment. It must remain tightly balanced to allow nutrient absorption, but maintain barrier function and immune homoeostasis, a failure of which results in chronic infection or debilitating inflammatory bowel disease (IBD). The intestinal epithelium mainly consists of absorptive enterocytes and secretory goblet and Paneth cells and has recently come to light as being an essential modulator of immunity as opposed to a simple passive barrier. Each epithelial sub-type can produce specific immune modulating factors, driving innate immunity to pathogens as well as preventing autoimmunity. The enteroendocrine cells comprise just 1% of this epithelium, but collectively form the bodies’ largest endocrine system. The mechanisms of enteroendocrine cell peptide secretion during feeding, metabolism and nutrient absorption are well studied; but their potential interactions with the enriched numbers of surrounding immune cells remain largely unexplored. This review focuses on alterations in enteroendocrine cell number and peptide secretion during inflammation and disease, highlighting the few in depth studies which have attempted to dissect the immune driven mechanisms that drive these phenomena. Moreover, the emerging potential of enteroendocrine cells acting as innate sensors of intestinal perturbation and secreting peptides to directly orchestrate immune cell function will be proposed. In summary, the data generated from these studies have begun to unravel a complex cross-talk between immune and enteroendocrine cells, highlighting the emerging immunoendocrine axis as a potential target for therapeutic strategies for infections and inflammatory disorders of the intestine.
Collapse
|
15
|
Wu J, Qi K, Xu Z, Wan J. Glucagon-like peptide-2-loaded microspheres as treatment for ulcerative colitis in the murine model. J Microencapsul 2015. [PMID: 26218715 DOI: 10.3109/02652048.2015.1065923] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide-2 (GLP-2) is an intestinal hormone that promotes intestinal growth, but the rapid degradation by dipeptidyl peptidase-IV limits its applications. PLGA microsphere is a well-developed drug delivery system, while seldom been studied as a solution for prolonging in vivo effects of GLP-2. In this study, we encapsulated porcine GLP-2 (pGLP-2) into microspheres and investigated its therapeutic effects in dextran sulfate sodium (DSS)-treated mice. pGLP-2 microspheres showed 20.36% in initial burst and constant release for at least 9 d. In the DSS-treated mice, a single injection of GLP-2 microspheres significantly increased the body weight, colonic length, small intestinal weight and mRNA expression of Occludin, decreased the colonic damage score, mRNA expression of IL-6, IL-10, TNF-α and IFN-γ. In conclusion, pGLP-2 microspheres were resistant to degradation and decreased the severity of DSS-induced ulcerative colitis which suggested that GLP-2-loaded microspheres could be a proper candidate for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Jie Wu
- a Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences , Hangzhou , People's Republic of China
| | | | | | | |
Collapse
|
16
|
PEGylated porcine glucagon-like peptide-2 improved the intestinal digestive function and prevented inflammation of weaning piglets challenged with LPS. Animal 2015; 9:1481-9. [PMID: 25963800 DOI: 10.1017/s1751731115000749] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This study was conducted to determine the effects on intestinal function, anti-inflammatory role and possible mechanism of polyethylene glycosylated (PEGylated) porcine glucagon-like peptide-2 (pGLP-2), a long-acting form of pGLP-2, in weaning piglets challenged with Escherichia coli lipopolysaccharide (LPS). We divided 18 weaned piglets on day 21 into three groups (control, LPS and LPS+PEG-pGLP-2; n=6). The piglets from the LPS+PEG-pGLP-2 group were injected with PEG-pGLP-2 at 10 nmol/kg BW from 5 to 7 days of the trials daily. On 8th day, the piglets in the LPS and LPS+PEG-pGLP-2 groups were intraperitoneally administered with 100 µg LPS/kg. The control group was administered with the same volume of saline solution. The piglets were then sacrificed on day 28. Afterwards, serum, duodenum, jejunum and ileum samples were collected for analysis of structural and functional endpoints. LPS+PEG-pGLP-2 treatment increased (P<0.05) lactase activities in the duodenum and the jejunum compared with LPS treatment. LPS+PEG-pGLP-2 treatment also significantly increased sucrase activity in the jejunum compared with LPS treatment. Furthermore, LPS treatment increased (P<0.05) the mRNA expression levels of interleukin (IL)-8, tumour necrosis factor-α (TNF-α) and IL-10 in the ileum compared with the control treatment. By contrast, LPS+PEG-pGLP-2 treatment decreased (P<0.05) the mRNA expression levels of IL-8, IL-10 and TNF-α in the ileum compared with the LPS treatment. LPS treatment also increased (P<0.05) the mRNA expression level of GLP-2 receptor (GLP-2R) and the percentage of GLP-2R-positive cells in the ileum; by comparison, these results were (P<0.05) reduced by LPS+PEG-pGLP-2 treatment. Moreover, LPS+PEG-pGLP-2 treatment increased (P<0.05) the content of serum keratinocyte growth factor compared with the control group and the LPS group. The protective effects of PEG-pGLP-2 on intestinal digestive function were associated with the release of GLP-2R mediator (keratinocyte growth factor) and the decrease in the expressions of intestinal pro-inflammatory cytokines.
Collapse
|
17
|
Sahu KK, Minz S, Kaurav M, Pandey RS. Proteins and peptides: The need to improve them as promising therapeutics for ulcerative colitis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:642-53. [PMID: 25379956 DOI: 10.3109/21691401.2014.975239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present review briefly describes the nature, type and pathogenesis of ulcerative colitis, and explores the potential use of peptides and proteins in the treatment of inflammatory bowel disease, especially ulcerative colitis. Intestinal absorption and the barrier mechanism of peptide and protein drugs are also discussed, with special emphasis on various strategies which make these drugs better therapeutics having high specificity, potency and molecular targeting ability. However, the limitation of such therapeutics are oral administration, poor pharmacokinetic profile and decreased bioavailability. The recent findings illustrated in this review will be helpful in designing the peptide/protein drugs as a promising treatment of choice for ulcerative colitis.
Collapse
Affiliation(s)
- Kantrol Kumar Sahu
- a Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya , Bilaspur, C.G. , India
| | - Sunita Minz
- a Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya , Bilaspur, C.G. , India
| | - Monika Kaurav
- a Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya , Bilaspur, C.G. , India
| | - Ravi Shankar Pandey
- a Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya , Bilaspur, C.G. , India
| |
Collapse
|
18
|
Qi KK, Wu J, Xu ZW. Effects of PEGylated porcine glucagon-like peptide-2 therapy in weaning piglets challenged with lipopolysaccharide. Peptides 2014; 58:7-13. [PMID: 24874708 DOI: 10.1016/j.peptides.2014.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 11/21/2022]
Abstract
This study aims to evaluate the therapeutic effect of polyethylene glycosylated porcine glucagon-like peptide-2 (pGLP-2), a long-acting form of pGLP-2, in lipopolysaccharide (LPS)-challenged piglets. Eighteen 21-day-old weaning piglets were randomly assigned into three groups: control (saline solution), LPS (100 μg/kg LPS), and PEG-pGLP-2 (10 nmol/kg PEG-pGLP-2+100 μg/kg LPS). All treatments were administered intraperitoneally. Compared with the control treatment, LPS treatment significantly decreased (P<0.05) the villus heights of the duodenum and jejunum, as well as the villus height/crypt depth ratio of the jejunum. However, PEG-pGLP-2 therapy reduced these effects (P>0.05). Specifically, PEG-pGLP-2 infusion significantly increased the villus height/crypt depth ratio of the duodenum (P<0.05) compared with LPS treatment. Compared with the control treatment, LPS treatment significantly increased (P<0.05) the mRNA expression levels of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in the jejunum. However, PEG-pGLP-2 therapy reduced these effects (P<0.05). Specifically, PEG-pGLP-2 infusion significantly decreased (P<0.05) the mRNA expression levels of interleukin (IL)-8 and TNF-α in the duodenum and jejunum, IL-10 in the duodenum, and IFN-γ in the jejunum compared with the LPS treatment. LPS treatment increased the caspase-3 activity of the ileum mucosal (P<0.05), and this effect was significantly reduced by PEG-pGLP-2 treatment. These results indicate that PEG-pGLP-2 infusion alleviates the severity of intestinal injury in weaning piglets by reducing the secretion of inflammatory cytokines and the caspase-3 activity, and increasing the villus height/crypt depth ratio.
Collapse
Affiliation(s)
- Ke-ke Qi
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, People's Republic of China
| | - Jie Wu
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, People's Republic of China
| | - Zi-wei Xu
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, People's Republic of China.
| |
Collapse
|