1
|
Gao J, Su X, Zhang Y, Ma X, Ren B, Lei P, Jin J, Ma W. Mast cell activation induced by tamoxifen citrate via MRGPRX2 plays a potential adverse role in breast cancer treatment. Biochem Pharmacol 2025; 233:116760. [PMID: 39832668 DOI: 10.1016/j.bcp.2025.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Breast cancer is the most common malignant tumor endangering women's life and health. Tamoxifen citrate (TAM) is the first-line drug of adjuvant endocrine therapy for estrogen receptor-positive (ER+) breast cancer patients. Some sporadic cases have described rare adverse reactions of TAM with potentially life-threatening dermatological manifestations, which were associated with skin allergy. Mas related G protein-coupled receptor X2 (MRGPRX2) on human mast cells is the key target for skin allergy. We aimed to investigate the mechanism of TAM-induced allergic reactions and their potential effects on TAM treatment for breast cancer. In our study, TAM can specifically bind with MRGPRX2, which was mainly driven by hydrophobic force. TAM formed hydrogen bonds with TRP243, TRP248, and GLU164 residues in MRGPRX2. TAM induced calcium mobilization and degranulation of mast cells via MRGPRX2. Besides, TAM induced passive cutaneous anaphylaxis and active systemic anaphylaxis in C57BL/6 mice. The release of β-hexosaminidase, histamine, tumor necrosis factor-α, monocyte chemoattractant protein 1, and interleukin-8 were increased by TAM in vitro and in vivo. Furthermore, we found that MCF-7 and T-47D breast cancer cells can recruit mast cells to adjacent cancerous tissues. Besides, mast cell activation induced by TAM via MRGPRX2 significantly promoted the proliferation and migration of MCF-7 and T-47D cells, which can be effectively reversed by mast cell membrane stabilizer clarithromycin and MRGPRX2 silencing. This study proposed an anti-allergic therapeutic strategy for breast cancer treatment with TAM, while also the potential of MRGPRX2 as an adjunctive target.
Collapse
Affiliation(s)
- Jiapan Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China
| | - Xinyue Su
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China
| | - Yuxiu Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China
| | - Xiaoyu Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China
| | - Bingxi Ren
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China
| | - Panpan Lei
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China
| | - Jiming Jin
- First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Weina Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China.
| |
Collapse
|
2
|
Moral-Sanz J, Fernandez-Rojo MA, Colmenarejo G, Kurdyukov S, Brust A, Ragnarsson L, Andersson Å, Vila SF, Cabezas-Sainz P, Wilhelm P, Vela-Sebastian A, Fernández-Carrasco I, Chin YKY, López-Mancheño Y, Smallwood TB, Clark RJ, Fry BG, King GF, Ramm GA, Alewood PF, Lewis RJ, Mulvenna JP, Boyle GM, Sanchez LE, Neely GG, Miles JJ, Ikonomopoulou MP. The structural conformation of the tachykinin domain drives the anti-tumoral activity of an octopus peptide in melanoma BRAF V600E. Br J Pharmacol 2022; 179:4878-4896. [PMID: 35818835 DOI: 10.1111/bph.15923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Over the past decades, targeted therapies and immunotherapy have vastly improved survival and reduced the morbidity of patients with BRAF-mutated melanoma. However, drug resistance and relapse hinder overall success. Therefore, there is an urgent need for novel compounds with therapeutic efficacy against BRAF- melanoma. This prompted us to investigate the antiproliferative profile of a tachykinin-peptide from the Octopus kaurna, Octpep-1 in melanoma. EXPERIMENTAL APPROACH We evaluated the cytotoxicity of Octpep-1 by MTT assay. Mechanistic insights on viability and cellular damage caused by Octpep-1 were gained via flow cytometry and bioenergetics. Structural and pharmacological characterization was conducted by molecular modelling, molecular biology, CRISPR/Cas9 technology, high-throughput mRNA and calcium flux analysis. In-vivo efficacy was validated in two independent xerograph animal models (mice and zebrafish). KEY RESULTS Octpep-1 selectively reduced the proliferative capacity of human melanoma BRAFV600E -mutated cells with minimal effects on fibroblasts. In melanoma-treated cells, Octpep-1 increased ROS with unaltered mitochondrial membrane potential and promoted non-mitochondrial and mitochondrial respiration with inefficient ATP coupling. Despite similarities with tachykinin peptides, knock-out or pharmacological blockade of tachykinin receptors suggested that Octpep-1 acts via a tachykinin-independent mechanism. Molecular modelling revealed that the cytotoxicity of Octpep-1 depends upon the α-helix and polyproline conformation in the C-terminal region of the peptide. Indeed, a truncated form of the C-terminal end of Octpep-1 displayed enhanced potency and efficacy against melanoma. Octpep-1 reduced the progression of tumors in xenograft melanoma mice and zebrafish, confirming its therapeutic potential in human BRAF-mutated melanoma. CONCLUSION AND IMPLICATIONS We unravel the intrinsic anti-tumoral properties of a tachykinin peptide, possessing a pharmacology independent of tachykinin-receptors. This peptide mediates the selective cytotoxicity in BRAF-mutated melanoma in-vitro and prevents tumor progression in-vivo, providing the foundation for a potential therapy against melanoma.
Collapse
Affiliation(s)
- Javier Moral-Sanz
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain
| | - Manuel A Fernandez-Rojo
- Hepatic Regenerative Medicine Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain.,Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Queensland, Australia.,Diamantina Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Gonzalo Colmenarejo
- Biostatistics & Bioinformatics Unit, Madrid Institute for Advances Studies in Food, Madrid, Spain
| | - Sergey Kurdyukov
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Andreas Brust
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Lotten Ragnarsson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Åsa Andersson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Sabela F Vila
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain.,Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Lugo, Spain
| | - Pablo Cabezas-Sainz
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Lugo, Spain
| | - Patrick Wilhelm
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Ana Vela-Sebastian
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain
| | | | - Yanni K Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia
| | - Yaiza López-Mancheño
- Hepatic Regenerative Medicine Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain
| | - Taylor B Smallwood
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Richard J Clark
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Bryan G Fry
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, QLD, Australia
| | - Grant A Ramm
- Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jason P Mulvenna
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Glen M Boyle
- Department of Cell and Molecular Biology, Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Laura E Sanchez
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Lugo, Spain
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - John J Miles
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,James Cook University, Centre for Biodiscovery and Molecular Development of Therapeutics and Centre for Biosecurity in Tropical Infectious Diseases, Cairns, Australia.,The Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia.,Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| | - Maria P Ikonomopoulou
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,Department of Cell and Molecular Biology, Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Mutukuru M, Vijayakumar TM. Substance P/NK1R Antagonistic Effect of 17-Trifluoromethyl Phenyl Trinor Prostaglandin F2α in Breast Cancer. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Scheau C, Draghici C, Ilie MA, Lupu M, Solomon I, Tampa M, Georgescu SR, Caruntu A, Constantin C, Neagu M, Caruntu C. Neuroendocrine Factors in Melanoma Pathogenesis. Cancers (Basel) 2021; 13:cancers13092277. [PMID: 34068618 PMCID: PMC8126040 DOI: 10.3390/cancers13092277] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Melanoma is a very aggressive and fatal malignant tumor. While curable if diagnosed in its early stages, advanced melanoma, despite the complex therapeutic approaches, is associated with one of the highest mortality rates. Hence, more and more studies have focused on mechanisms that may contribute to melanoma development and progression. Various studies suggest a role played by neuroendocrine factors which can act directly on tumor cells, modulating their proliferation and metastasis capability, or indirectly through immune or inflammatory processes that impact disease progression. However, there are still multiple areas to explore and numerous unknown features to uncover. A detailed exploration of the mechanisms by which neuroendocrine factors can influence the clinical course of the disease could open up new areas of biomedical research and may lead to the development of new therapeutic approaches in melanoma. Abstract Melanoma is one of the most aggressive skin cancers with a sharp rise in incidence in the last decades, especially in young people. Recognized as a significant public health issue, melanoma is studied with increasing interest as new discoveries in molecular signaling and receptor modulation unlock innovative treatment options. Stress exposure is recognized as an important component in the immune-inflammatory interplay that can alter the progression of melanoma by regulating the release of neuroendocrine factors. Various neurotransmitters, such as catecholamines, glutamate, serotonin, or cannabinoids have also been assessed in experimental studies for their involvement in the biology of melanoma. Alpha-MSH and other neurohormones, as well as neuropeptides including substance P, CGRP, enkephalin, beta-endorphin, and even cellular and molecular agents (mast cells and nitric oxide, respectively), have all been implicated as potential factors in the development, growth, invasion, and dissemination of melanoma in a variety of in vitro and in vivo studies. In this review, we provide an overview of current evidence regarding the intricate effects of neuroendocrine factors in melanoma, including data reported in recent clinical trials, exploring the mechanisms involved, signaling pathways, and the recorded range of effects.
Collapse
Affiliation(s)
- Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.)
| | - Carmen Draghici
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mihaela Adriana Ilie
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mihai Lupu
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Iulia Solomon
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mircea Tampa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Simona Roxana Georgescu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
- Correspondence:
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 076201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.)
- Department of Dermatology, “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
5
|
Abstract
Background::Human tumor cells lines and tumor samples overexpress the neurokinin-1 receptor (NK-1R). Substance P (SP), after binding to NK-1Rs, induces tumor cell proliferation, an antiapoptotic effect and promotes angiogenesis and the migration of cancer cells for invasion and metastasis.Methods: :In contrast, NK-1R antagonists block the previous pathophysiological actions mediated by SP. These antagonists promote the death of tumor cells by apoptosis. Peptide and non-peptide NK-1R antagonists have been reported.Results: :Peptide NK-1R antagonists show chemical modifications of the SP molecule (L-amino acids being replaced by D-amino acids), whereas non-peptide NK-1R antagonists include numerous compounds with different chemical compositions while showing similar stereochemical features (affinity for the NK- 1R). Currently, there are more than 300 NK-1R antagonists.Conclusion::In combination therapy with classic cytostatics, NK-1R antagonists have additive or synergic effects and minimize the side-effects of cytostatics. The effect of NK-1R antagonists as broad-spectrum anticancer drugs is reviewed and the use of these antagonists for the treatment of cancer is suggested.
Collapse
Affiliation(s)
- Miguel Muñoz
- Research Laboratory on Neuropeptides, Virgen del Rocío University Hospital (IBIS), Sevilla, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL) University of Salamanca, Salamanca, Spain
| |
Collapse
|
6
|
Majkowska-Pilip A, Halik PK, Gniazdowska E. The Significance of NK1 Receptor Ligands and Their Application in Targeted Radionuclide Tumour Therapy. Pharmaceutics 2019; 11:E443. [PMID: 31480582 PMCID: PMC6781293 DOI: 10.3390/pharmaceutics11090443] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
To date, our understanding of the Substance P (SP) and neurokinin 1 receptor (NK1R) system shows intricate relations between human physiology and disease occurrence or progression. Within the oncological field, overexpression of NK1R and this SP/NK1R system have been implicated in cancer cell progression and poor overall prognosis. This review focuses on providing an update on the current state of knowledge around the wide spectrum of NK1R ligands and applications of radioligands as radiopharmaceuticals. In this review, data concerning both the chemical and biological aspects of peptide and nonpeptide ligands as agonists or antagonists in classical and nuclear medicine, are presented and discussed. However, the research presented here is primarily focused on NK1R nonpeptide antagonistic ligands and the potential application of SP/NK1R system in targeted radionuclide tumour therapy.
Collapse
Affiliation(s)
- Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland.
| | - Paweł Krzysztof Halik
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Ewa Gniazdowska
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|
7
|
Niu XL, Hou JF, Li JX. The NK1 receptor antagonist NKP608 inhibits proliferation of human colorectal cancer cells via Wnt signaling pathway. Biol Res 2018; 51:14. [PMID: 29843798 PMCID: PMC5975706 DOI: 10.1186/s40659-018-0163-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
Background Neurokinin1 (NK1) receptor has played a vital role in the development of tumor. However, NKP608 as a NK1 receptor antagonist whether has the effect of the resistance of colorectal cancer is still unclear. Thereby, in this study, we investigated the role of NKP608 on human colorectal cancer and explored the underlying mechanism. Methods The cell proliferation of colorectal cancer cells was detected by cell counting kit-8 (CCK8) assay, cell migration and invasion were assessed by transwell assay, the apoptotic ratio of cells was assessed by Annexin V-fluorescein isothiocyanate/propidium iodide stained and flow cytometry. The involvement of molecular mechanisms was examined by western blot. Results In this study, we found that NKP608 inhibited the proliferation, migration/invasion of HCT116 cells. In addition, NKP608 reduced expressions of Wnt-3a, β-catenin, Cyclin D1, and (vascular endothelial growth factor) VEGF while induced expression of E-Cadherin. Furthermore, flow cytometry analyzed that NKP608 induced apoptosis of HCT116 cells, consistently, western blotting detecting of apoptosis-related proteins revealed that NKP608 downregulated Bcl-2 while upregulated Bax and Active-Caspase-3. Conclusions Taken together, our results demonstrated that NKP608 inhibited colorectal cancer cell proliferation, migration and invasion via suppressing the Wnt/β-catenin signaling pathway. Therefore, NKP608 might represent a promising therapeutic agent in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Xiao-Ling Niu
- Department of Traditional Chinese Medicine, Shanghai Pudong New Area Zhoupu Hospital, Shanghai, 201318, People's Republic of China
| | - Jian-Feng Hou
- Department of Hepatobiliary Surgery, The First Hospital of Yulin City, Yulin, 719000, Shaanxi, People's Republic of China
| | - Jing-Xiang Li
- Anorectal Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Hai Yun Cang on the 5th Zip, Dongcheng District, Beijing, 100700, People's Republic of China.
| |
Collapse
|
8
|
Zhang Y, Li X, Li J, Hu H, Miao X, Song X, Yang W, Zeng Q, Mou L, Wang R. Human hemokinin-1 promotes migration of melanoma cells and increases MMP-2 and MT1-MMP expression by activating tumor cell NK1 receptors. Peptides 2016; 83:8-15. [PMID: 27458061 DOI: 10.1016/j.peptides.2016.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/11/2016] [Accepted: 07/21/2016] [Indexed: 01/25/2023]
Abstract
Receptors and their regulatory peptides are aberrantly expressed in tumors, suggesting a potential tumor therapy target. Human hemokinin-1 (hHK-1) is a tachykinin peptide ligand of the neurokinin-1 (NK1) receptor which is overexpressed in melanoma and other tumor tissues. Here, we investigated the role of hHK-1 and the NK1 receptor in melanoma cell migration. NK1 receptor expression was associated with melanoma metastatic potential. Treatment with hHK-1 significantly enhanced A375 and B16F10 melanoma cell migration and an NK1 receptor antagonist L732138 blocked this effect. MMP-2 and MT1-MMP expression were up-regulated in hHK-1-treated melanoma cells and cell signaling data suggested that hHK-1 induced phosphorylation of ERK1/2, JNK and p38 by way of PKC or PKA. Kinase activation led to increased MMP-2 and MT1-MMP expression and melanoma cell migration induced by hHK-1. Thus, hHK-1 and the NK1 receptor are critical to melanoma cell migration and each may be a promising chemotherapeutic target.
Collapse
Affiliation(s)
- Yixin Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, PR China
| | - Xiaofang Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, PR China
| | - Jingyi Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, PR China
| | - Hui Hu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, PR China
| | - Xiaokang Miao
- Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, PR China
| | - Xiaoyun Song
- Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, PR China
| | - Wenle Yang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, PR China
| | - Qian Zeng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, PR China
| | - Lingyun Mou
- Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, PR China.
| | - Rui Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, PR China.
| |
Collapse
|
9
|
Muñoz M, Coveñas R, Esteban F, Redondo M. The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs. J Biosci 2015; 40:441-63. [DOI: 10.1007/s12038-015-9530-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|