1
|
Toprak U, İnak E, Nauen R. Lipid Metabolism as a Target Site in Pest Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39466572 DOI: 10.1007/5584_2024_822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Lipid metabolism is essential to insect life as insects use lipids for their development, reproduction, flight, diapause, and a wide range of other functions. The central organ for insect lipid metabolism is the fat body, which is analogous to mammalian adipose tissue and liver, albeit less structured. Various other systems including the midgut, brain, and neural organs also contribute functionally to insect lipid metabolism. Lipid metabolism is under the control of core lipogenic [e.g. acetyl-CoA-carboxylase (ACC), fatty acid synthase (FAS), perilipin 2 (LSD2)], and lipolytic (lipases, perilipin 1) enzymes that are primarily expressed in the fat body, as well as hormones [insulin-like peptides (ILP), adipokinetic hormone (AKH)], transcription factors (SREBPs, foxO, and CREB), secondary messengers (calcium) and post-translational modifications (phosphorylation). Essential roles of the fat body, together with the fact that proper coordination of lipid metabolism is critical for insects, render lipid metabolism an attractive target site in pest control. In the current chapter, we focus on pest control tactics that target insect lipid metabolism. Various classes of traditional chemical insecticides [e.g. organophosphates, pyrethroids, neonicotinoids, and chitin synthesis inhibitors (Sects. 2.1 and 2.2)] have been shown to interfere with lipid metabolism, albeit it is not their primary site of action. However, the discovery of "lipid biosynthesis inhibitors", tetronic and tetramic acid derivatives commonly known as ketoenols (Sect. 2.3), was a milestone in applied entomology as they directly target lipid biosynthesis, particularly in sucking pests. Spirodiclofen, spiromesifen, and spirotetramat targeting ACC act against various insect and mite pests, while spiropidion and spidoxamat have been introduced to the market only recently. Efforts have concentrated on the development of chemical alternatives, such as hormone agonists and antagonists (Sect. 2.4), dsRNA-based pesticides that depend on RNA interference, which have great potential in pest control (Sect. 2.5) and other eco-friendly alternatives (Sect. 2.6).
Collapse
Affiliation(s)
- Umut Toprak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey.
| | - Emre İnak
- Faculty of Agriculture, Department of Plant Protection Ankara, Molecular Entomology Lab, Ankara University, Ankara, Turkey
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Monheim, Germany.
| |
Collapse
|
2
|
Liang P, Guo M, Wang D, Li T, Li R, Li D, Cheng S, Zhen C, Zhang L. Molecular and functional characterization of heat-shock protein 70 in Aphis gossypii under thermal and xenobiotic stresses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105774. [PMID: 38458681 DOI: 10.1016/j.pestbp.2024.105774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/22/2023] [Accepted: 01/08/2024] [Indexed: 03/10/2024]
Abstract
Aphis gossypii, a globally distributed and economically significant pest of several crops, is known to infest a wide range of host plants. Heat shock proteins (Hsps), acting as molecular chaperones, are essential for the insect's environmental stress responses. The present study investigated the molecular characteristics and expression patterns of AgHsp70, a heat shock protein gene, in Aphis gossypii. Our phylogenetic analysis revealed that AgHsp70 shared high similarity with homologs from other insects, suggesting a conserved function across species. The developmental expression profiles of AgHsp70 in A. gossypii showed that the highest transcript levels were observed in the fourth instar nymphs, while the lowest levels were detected in the third instar nymphs. Heat stress and exposure to four different xenobiotics (2-tridecanone, tannic acid, gossypol, and flupyradifurone (4-[(2,2-difluoroethyl)amino]-2(5H)-furanone)) significantly up-regulated AgHsp70 expression. Knockdown of AgHsp70 using RNAi obviously increased the susceptibility of cotton aphids to 2-tridecanone, gossypol and flupyradifurone. Dual-luciferase reporter assays revealed that gossypol and flupyradifurone significantly enhanced the promoter activity of AgHsp70 at a concentration of 10 mg/L. Furthermore, we identified the transcription factor heat shock factor (HSF) as a regulator of AgHsp70, as silencing AgHSF reduced AgHsp70 expression. Our results shed light on the role of AgHsp70 in xenobiotic adaptation and thermo-tolerance.
Collapse
Affiliation(s)
- Pingzhuo Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Mingyu Guo
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Dan Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Ting Li
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, United States
| | - Ren Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Dapeng Li
- The Museum of Chinese Gardens and Landscape Architecture, Beijing 100072, China
| | - Shenhang Cheng
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Congai Zhen
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Lei Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Lv Y, Pan Y, Li J, Ding Y, Yu Z, Yan K, Shang Q. The C2H2 zinc finger transcription factor CF2-II regulates multi-insecticide resistance-related gut-predominant ABC transporters in Aphis gossypii Glover. Int J Biol Macromol 2023; 253:126765. [PMID: 37683749 DOI: 10.1016/j.ijbiomac.2023.126765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Clarifying the molecular mechanisms of cotton aphid resistance to various insecticides is crucial for the long-term safe application of insecticides in chemical control. ATP-binding cassette (ABC) transporters mediate the membrane transport of various substrates (including exogenous substances). Experiments confirmed that ABCB5, ABCF2, and MRP12 contributed to high levels of resistance to spirotetramat, cyantraniliprole, thiamethoxam or imidacloprid. Binding sites of the C2H2 zinc finger transcription factor CF2-II was predicted to be located in the promoters of ABCB5, ABCF2, and MRP12. The expression levels of ABCB5, ABCF2, and MRP12 were significantly upregulated after silencing CF2-II. The results of dual-luciferase reporter assays demonstrated a negative regulatory relationship between CF2-II and ABC transporter promoters. Furthermore, yeast one-hybrid (Y1H) and electrophoresis mobility shift assays (EMSAs) revealed that CF2-II inhibited the expression of ABC transporter genes through interaction with binding sites [ABCF2.p (-1149/-1140) or MRP12.p (-1189/-1181)]. The above results indicated that ABCB5, ABCF2, and MRP12 were negatively regulated by the transcription factor CF2-II, which will help us further understand the mechanism of transcriptional adaption of multi-insecticides resistant related ABC transporters in response to xenobiotics.
Collapse
Affiliation(s)
- Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Zihan Yu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
4
|
Sabra SG, Abbas N, Hafez AM. First monitoring of resistance and corresponding mechanisms in the green peach aphid, Myzus persicae (Sulzer), to registered and unregistered insecticides in Saudi Arabia. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105504. [PMID: 37532324 DOI: 10.1016/j.pestbp.2023.105504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/10/2023] [Accepted: 06/18/2023] [Indexed: 08/04/2023]
Abstract
Insecticides are widely used as the primary management strategy for controlling Myzus persicae, the devastating pest ravaging various vegetables, fruits, crops, and ornamentals. This study examined the susceptibility of M. persicae field populations to bifenthrin, fosthiazate, acetamiprid, spirotetramat, afidopyropen, and flonicamid while exploring the possible metabolic mechanisms of resistance. The study findings revealed that M. persicae field populations exhibited susceptible-to-moderate resistance to bifenthrin (resistance ratio (RR) = 0.94-19.65) and acetamiprid (RR = 1.73-12.91), low-to-moderate resistance to fosthiazate (RR = 3.67-17.00), and susceptible-to-low resistance to spirotetramat (RR = 0.70-6.68). However, all M. persicae field populations were susceptible to afidopyropen (RR = 0.44-2.25) and flonicamid (RR = 0.40-2.08). As determined by the biochemical assays, carboxylesterases were involved in the resistance cases to bifenthrin and fosthiazate, whereas cytochrome P450 monooxygenases were implicated in the resistance cases to acetamiprid. However, glutathione S-transferases were not implicated in the documented resistance of M. persicae field populations. Overall, the susceptibility of M. persicae field populations to flonicamid and afidopyropen-two unregistered insecticides in Saudi Arabia-suggests their potential as promising chemicals that can expand the various alternatives available for controlling this devastating pest. Although the detected moderate levels of resistance to bifenthrin, fosthiazate, and acetamiprid indicate a shift in the selection pressure of insecticides for M. persicae due to Saudi regulations, which have resulted in eventual obsolescence of conventional insecticides in favor of novel insecticides. Finally, rotational use of aforementioned insecticides can help in managing insecticide resistance in M. persicae.
Collapse
Affiliation(s)
- Safwat G Sabra
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Naeem Abbas
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulwahab M Hafez
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
5
|
Liu J, Liu Y, Li Q, Lu Y. Heat shock protein 70 and Cathepsin B genes are involved in the thermal tolerance of Aphis gossypii. PEST MANAGEMENT SCIENCE 2023; 79:2075-2086. [PMID: 36700477 DOI: 10.1002/ps.7384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Elevated temperature can directly affect the insect pest population dynamics. Many experimental studies have indicated that high temperatures affect the biological and ecological characteristics of the widely distributed crop pest Aphis gossypii, but the molecular mechanisms underlying its response to heat stress remain unstudied. Here, we used transcriptomic analysis to explore the key genes and metabolic pathways involved in the regulation of thermotolerance in A. gossypii at 29 °C, 32 °C, and 35 °C. RESULTS The results of bioinformatics analysis show that few genes were consistently differentially expressed among the higher temperature treatments compared to 29 °C, and a moderate temperature increase of 3 °C can elicit gene expression changes that help A. gossypii adapt to warmer temperatures. Based on KEGG pathway enrichment analysis, we found that genes encoding four heat shock protein 70 s (Hsp70s) and nine cathepsin B (CathB) proteins were significantly upregulated at 35 °C compared with 32 °C. Genes related to glutathione production were also highly enriched between 32 °C and 29 °C. Silencing of two Hsp70s (ApHsp70A1-1 and ApHsp68) and two CathBs (ApCathB01 and ApCathB02) with RNA interference using a nanocarrier-based transdermal dsRNA delivery system significantly increased sensitivity of A. gossypii to high temperatures. CONCLUSION A. gossypii is able to fine-tune its response across a range of temperatures, and Hsp70 and CathB genes are essential for adaption of A. gossypii to warmer temperatures. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinping Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Zhang C, Liu P, Sun L, Cao C. Integration of miRNA and mRNA expression profiles in Asian spongy moth Lymantria dispar in response to cyantraniliprole. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105364. [PMID: 36963953 DOI: 10.1016/j.pestbp.2023.105364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The Asian spongy moth, Lymantria dispar, is a worldwide forest pest that damages >500 plant species. Nowadays, chemical control is the most widely used method because of its rapidity and effectiveness, but the insecticide resistance is a growing concern for spongy moth. As important post-transcriptional regulators of gene expression, whether microRNAs (miRNAs) are involved in insecticide tolerance is little known in spongy moth. Therefore, an integrated analysis of miRNA and mRNA was performed on L. dispar larvae treated with cyantraniliprole. Compared to the control group, a total of 432 differentially expressed genes (DEGs) and 23 differentially expressed miRNAs (DEMs) were identified in L. dispar larvae under cyantraniliprole exposure. Among them, twelve DEGs encoding detoxification enzymes/proteins were further analyzed. Twenty-one genes related to insecticide tolerance were predicted by 11 DEMs, of which 25 miRNA-mRNA interactions were identified. In the miRNA-mRNA network, novel-miR-4 and mmu-miR-3475-3p were involved in the response of L. dispar to cyantraniliprole stress by regulating five genes associated with detoxification, respectively. The P450 gene CYP4C1 (c34384.graph_c0) was the only DEG related to detoxification in the network, which was regulated by novel-miR-4. The expression levels of ten DEMs were confirmed by quantitative reverse transcription PCR (RT-qPCR) and the trends were consistent with miRNA-seq. This study identified some candidate miRNAs and mRNAs related to cyantraniliprole tolerance in L. dispar, which provides valuable transcriptomic information for revealing the molecular mechanisms of insect tolerance and developing novel insecticides.
Collapse
Affiliation(s)
- Chenshu Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Peng Liu
- Jinan State-Owned Liubu Forest Farms, Jinan 250100, PR China
| | - Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
7
|
Niu R, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Gao X, Luo J, Cui J. Evaluation of Hamiltonella on Aphis gossypii fitness based on life table parameters and RNA sequencing. PEST MANAGEMENT SCIENCE 2023; 79:306-314. [PMID: 36151951 DOI: 10.1002/ps.7200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Insect endosymbionts are widespread in nature and known to play key roles in regulating host biology. As a secondary endosymbiont, bacteria in the genus Hamiltonella help cotton aphids (Aphis gossypii) defend against parasitism by parasitoid wasps, however, the potential negative impacts of these bacteria on cotton aphid biology remain largely unclear. RESULTS This study aims to evaluate the potential impacts of Hamiltonella on the growth and development of cotton aphids based on life table parameters and RNA sequencing. The results showed that infection with Hamiltonella resulted in smaller body type and lower body weight in aphids. Compared to the control group, there were significant differences in the finite and intrinsic rates of increase and mean generation time. Furthermore, the RNA sequencing data revealed that the genes related to energy synthesis and nutrient metabolism pathways were significantly downregulated and genes related to molting and nervous system pathways were significantly upregulated in the Hamiltonella population. CONCLUSION Our results confirm that Hamiltonella retarded the growth and development of cotton aphids accompanied by the downregulation of genes related to energy synthesis and nutrient metabolism, which provides new insights into aphid-symbiont interactions and may support the development of improved aphid management strategies. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruichang Niu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiangzhen Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kaixin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dongyang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lin Niu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
8
|
Lv Y, Wen S, Ding Y, Gao X, Chen X, Yan K, Yang F, Pan Y, Shang Q. Functional Validation of the Roles of Cytochrome P450s in Tolerance to Thiamethoxam and Imidacloprid in a Field Population of Aphis gossypii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14339-14351. [PMID: 36165284 DOI: 10.1021/acs.jafc.2c04867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Field populations of Aphis gossypii (SDR) have evolved high resistance to neonicotinoids, including thiamethoxam and imidacloprid. Synergism bioassays and transcriptomic comparison of the SDR and susceptible (SS) strains revealed that the cytochrome P450s may contribute to the neonicotinoid resistance evolution. The transcripts of some P450s were constitutively overexpressed in the SDR strain, and many genes showed expression plasticity under insecticide exposure. Drosophila that ectopically expressed CYPC6Y9, CYP4CK1, CYP6DB1, and CYP6CZ1 showed greater resistance (>8.0-fold) to thiamethoxam, and Drosophila that expressed CYPC6Y9, CYP6CY22, CYP6CY18, and CYP6D subfamily genes showed greater resistance (>5-fold) to imidacloprid. Five P450 genes that caused thiamethoxam resistance also conferred resistance to α-cypermethrin. Furthermore, the knockdown of CYP4CK1, CYP6CY9, CYP6CY18, CYPC6Y22, CYP6CZ1, and CYP6DB1 dramatically increased the sensitivity of the SDR strain to thiamethoxam or imidacloprid. These results indicate the involvement of multiple P450 genes, rather than one key gene, in neonicotinoid resistance in field populations.
Collapse
Affiliation(s)
- Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Shuyun Wen
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, P.R. China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Fengting Yang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
9
|
Lv Y, Yan K, Gao X, Chen X, Li J, Ding Y, Zhang H, Pan Y, Shang Q. Functional Inquiry into ATP-Binding Cassette Transporter Genes Contributing to Spirotetramat Resistance in Aphis gossypii Glover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13132-13142. [PMID: 36194468 DOI: 10.1021/acs.jafc.2c04263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
ATP-binding cassette (ABC) transporters regulate the efflux of a broad spectrum of substrates to extracellular transporting, which play an important role in the detoxification process in arthropods. Here, we described a comprehensive approach to explore the involvement of ABC transporters in spirotetramat resistance in cotton aphids. In this study, synergism bioassays showed 17.05% and 35.42% increases in the toxicity to spirotetramat with the ABC inhibitor verapamil in adult and 3rd instar nymph aphids of the SR strain, respectively. In a competitive assay based on the microinjection of a fluorescent ABC transporter substrate, verapamil (a general ABC inhibitor) and spirotetramat significantly inhibited the elimination of Texas Red. Based on transcriptome data of midguts of spirotetramat-susceptible (SS) and -resistant (SR) strains, the expression levels of ABCB4, ABCB5, ABCF2, MRP11, and MRP12 were significantly upregulated in the SR strain midgut compared to that of the SS strain. Gene functional analysis based on ectopic expression and RNA interference (RNAi) proved that ABCB4, ABCB5, ABCF2, MRP11, and MRP12 were involved in the tolerance of cotton aphids to spirotetramat. Moreover, the upregulated ABCF2, ABCB4, and ABCB5 in the midgut of the SR strain contributed more to the resistance of spirotetramat in in vitro functional analysis. In summary, these results demonstrate that candidate ABC transporter genes in the midgut tissue were involved in spirotetramat resistance, which will help reveal the relationship between ABC transporters and the development of spirotetramat resistance in field populations.
Collapse
Affiliation(s)
- Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Hang Zhang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
10
|
Peng T, Liu X, Tian F, Xu H, Yang F, Chen X, Gao X, Lv Y, Li J, Pan Y, Shang Q. Functional investigation of lncRNAs and target cytochrome P450 genes related to spirotetramat resistance in Aphis gossypii Glover. PEST MANAGEMENT SCIENCE 2022; 78:1982-1991. [PMID: 35092151 DOI: 10.1002/ps.6818] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/07/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Spirotetramat is a tetramic acid derivative insecticide with novel modes of action for controlling Aphis gossypii Glover in the field. Previous studies have shown that long noncoding RNAs (lncRNAs) and cytochrome P450 monooxygenases (P450s) are involved in the detoxification process. However, the functions of lncRNAs in regulating P450 gene expression in spirotetramat resistance in A. gossypii are unknown. RESULTS In this study, we found CYP4CJ1, CYP6CY7 and CYP6CY21 expression levels to be significantly upregulated in a spirotetramat-resistant (SR) strain compared with a susceptible (SS) strain. Furthermore, knockdown of CYP4CJ1, CYP6CY7 and CYP6CY21 increased nymph and adult mortality in the SR strain following exposure to spirotetramat. Drosophila ectopically expressing CYP380C6, CYP4CJ1, CYP6DA2, CYP6CY7 and CYP6CY21 showed significantly decreased mortality after spirotetramat exposure, and CYP380C6, CYP4CJ1 and CYP6CY21 are putative targets of six lncRNAs. Silencing of lncRNAs MSTRG.36649.2/5 and MSTRG.71880.1 changed CYP6CY21 and CYP380C6 expression, altering the sensitivity of the SR strain to spirotetramat. Moreover, MSTRG.36649.2/5 did not compete for microRNA (miRNA) binding to regulate CYP6CY21 expression. CONCLUSION Our results confirm that CYP380C6, CYP4CJ1, CYP6DA2, CYP6CY7 and CYP6CY21 are potentially involved in the development of spirotetramat resistance in A. gossypii, and MSTRG.36649.2/5 and MSTRG.71880.1 probably regulate CYP6CY21 and CYP380C6 expression other than through the "sponge effect" of competing for miRNA binding. Our results provide a favorable molecular basis for studying cotton aphid P450 genes and lncRNA functions in spirotetramat resistance development.
Collapse
Affiliation(s)
- Tianfei Peng
- College of Plant Science, Jilin University, Changchun, China
| | - Xuemei Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun, China
| | - Hongfei Xu
- College of Plant Science, Jilin University, Changchun, China
| | - Fengting Yang
- College of Plant Science, Jilin University, Changchun, China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun, China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun, China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun, China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
11
|
Calvo‐Agudo M, Tooker JF, Dicke M, Tena A. Insecticide-contaminated honeydew: risks for beneficial insects. Biol Rev Camb Philos Soc 2022; 97:664-678. [PMID: 34802185 PMCID: PMC9299500 DOI: 10.1111/brv.12817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
Honeydew is the sugar-rich excretion of phloem-feeding hemipteran insects such as aphids, mealybugs, whiteflies, and psyllids, and can be a main carbohydrate source for beneficial insects in some ecosystems. Recent research has revealed that water-soluble, systemic insecticides contaminate honeydew excreted by hemipterans that feed on plants treated with these insecticides. This contaminated honeydew can be toxic to beneficial insects, such as pollinators, parasitic wasps and generalist predators that feed on it. This route of exposure has now been demonstrated in three plant species, for five systemic insecticides and four hemipteran species; therefore, we expect this route to be widely available in some ecosystems. In this perspective paper, we highlight the importance of this route of exposure by exploring: (i) potential pathways through which honeydew might be contaminated with insecticides; (ii) hemipteran families that are more likely to excrete contaminated honeydew; and (iii) systemic insecticides with different modes of action that might contaminate honeydew through the plant. Furthermore, we analyse several model scenarios in Europe and/or the USA where contaminated honeydew could be problematic for beneficial organisms that feed on this ubiquitous carbohydrate source. Finally, we explain why this route of exposure might be important when exotic, invasive, honeydew-producing species are treated with systemic insecticides. Overall, this review opens a new area of research in the field of ecotoxicology to understand how insecticides can reach non-target beneficial insects. In addition, we aim to shed light on potential undescribed causes of insect declines in ecosystems where honeydew is an important carbohydrate source for insects, and advocate for this route of exposure to be included in future environmental risk assessments.
Collapse
Affiliation(s)
- Miguel Calvo‐Agudo
- Centro de Protección Vegetal y BiotecnologíaInstituto Valenciano de Investigaciones Agrarias (IVIA)Carretera de Moncada‐Náquera Km. 4,546113MoncadaValenciaSpain
- Laboratory of EntomologyWageningen UniversityPO Box 166700AAWageningenThe Netherlands
| | - John F. Tooker
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPA16802U.S.A.
| | - Marcel Dicke
- Laboratory of EntomologyWageningen UniversityPO Box 166700AAWageningenThe Netherlands
| | - Alejandro Tena
- Centro de Protección Vegetal y BiotecnologíaInstituto Valenciano de Investigaciones Agrarias (IVIA)Carretera de Moncada‐Náquera Km. 4,546113MoncadaValenciaSpain
| |
Collapse
|
12
|
Ijaz M, Shad SA. Stability and fitness cost associated with spirotetramat resistance in Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae). PEST MANAGEMENT SCIENCE 2022; 78:572-578. [PMID: 34596320 DOI: 10.1002/ps.6665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Dusky cotton bug, Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae) is an important pest of cotton and causing economic losses to this crop. It also remains active round the year, infesting a number of host plants. Spirotetramat is a systemic insecticide and is effective against many sucking insect pests. A field collected population of O. hyalinipennis was reared in the laboratory under continuous spirotetramat selection pressure for 21 generations for the development of resistance to spirotetramat. The Spiro-Sel population was further reared for seven generations without insecticide exposure to assess the stability of spirotetramat resistance. Leaf dip method was used for the bioassays and selection. In this study, the impact of spirotetramat resistance on its stability and life history traits of Spiro-Sel, C1 (15 Spiro-Sel♀ × 15 UNSEL ♂) and C2 (15 Spiro-Sel♂ × 15 UNSEL ♀) O. hyalinipennis was assessed. RESULTS Spiro-Sel (G21 ) population developed 2333-fold and 20.83-fold resistance compared with the susceptible and unselected (UNSEL) populations, respectively. Resistance to spirotetramat was unstable after seven generations (G28 ) when reared without exposure to any insecticide. A significant reduction in overall nymphal survival, fecundity, egg hatching and net reproductive rate of Spiro-Sel population was observed when compared with UNSEL population. Intrinsic rate of natural increase, biotic potential and mean relative growth rate were also lower in Spiro-Sel population compared to UNSEL population. The Spiro-Sel, C1 and C2 population had a relative fitness of 0.44, 0.51 and 0.44, respectively. CONCLUSION Results of our study suggested that fitness cost is involved in the development of spirotetramat resistance. Unstable resistance and high fitness cost may provide great benefits to limit the evolution of resistance to spirotetramat in O. hyalinipennis. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mamuna Ijaz
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sarfraz A Shad
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
13
|
Peng T, Pan Y, Tian F, Xu H, Yang F, Chen X, Gao X, Li J, Wang H, Shang Q. Identification and the potential roles of long non-coding RNAs in regulating acetyl-CoA carboxylase ACC transcription in spirotetramat-resistant Aphis gossypii. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104972. [PMID: 34802522 DOI: 10.1016/j.pestbp.2021.104972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) represent the largest class of non-coding transcripts. They act a pivotal part in various insect developmental processes and stress responses. However, the investigation of lncRNA functions in insecticide resistant remains at an early phase. Herein, we conducted whole-transcriptome RNA sequencing for two cotton aphid (Aphis gossypii Glover) strains, i.e., insecticide-susceptible (SS) and spirotetramat-resistant (SR). We discovered 6059 lncRNAs in the RNA-Seq data, and 874 lncRNAs showed differential expression. In addition, 5 lncRNAs among 874 lncRNAs were predicted as targets of acetyl-CoA carboxylase (ACC). Reverse transcription real-time quantitative PCR (RT-qPCR) combined with RNA interference (RNAi) confirmed that selected ACC lncRNA was related to the expression of ACC. Moreover, we also identified two transcription factors, i.e., C/EBP and C/EBPzeta, that regulate the transcription level of ACC lncRNA. These results provide a good basis for the study of cotton aphid lncRNA functions in insecticide resistance development.
Collapse
Affiliation(s)
- Tianfei Peng
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Hongfei Xu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fengting Yang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Haibao Wang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
14
|
Amezian D, Nauen R, Le Goff G. Transcriptional regulation of xenobiotic detoxification genes in insects - An overview. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104822. [PMID: 33838715 DOI: 10.1016/j.pestbp.2021.104822] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 03/02/2021] [Indexed: 05/21/2023]
Abstract
Arthropods have well adapted to the vast array of chemicals they encounter in their environment. Whether these xenobiotics are plant allelochemicals or anthropogenic insecticides one of the strategies they have developed to defend themselves is the induction of detoxification enzymes. Although upregulation of detoxification enzymes and efflux transporters in response to specific inducers has been well described, in insects, yet, little is known on the transcriptional regulation of these genes. Over the past twenty years, an increasing number of studies with insects have used advanced genetic tools such as RNAi, CRISPR/Cas9 and reporter gene assays to dissect the genomic grounds of their xenobiotic response and hence contributed substantially in improving our knowledge on the players involved. Xenobiotics are partly recognized by various "xenobiotic sensors" such as membrane-bound or nuclear receptors. This initiates a molecular reaction cascade ultimately leading to the translocation of a transcription factor to the nucleus that recognizes and binds to short sequences located upstream their target genes to activate transcription. To date, a number of signaling pathways were shown to mediate the upregulation of detoxification enzymes in arthropods and to play a role in either metabolic resistance to insecticides or host-plant adaptation. These include nuclear receptors AhR/ARNT and HR96, GPCRs, CncC and MAPK/CREB. Recent work reveals that upregulation and activation of some components of these pathways as well as polymorphism in the binding motifs of transcription factors are linked to insects' adaptive processes. The aim of this mini-review is to summarize and describe recent work that shed some light on the main regulatory routes of detoxification gene expression in insects.
Collapse
Affiliation(s)
- Dries Amezian
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany.
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903 Sophia Antipolis, France.
| |
Collapse
|
15
|
Margaritopoulos JT, Kati AN, Voudouris CC, Skouras PJ, Tsitsipis JA. Long-term studies on the evolution of resistance of Myzus persicae (Hemiptera: Aphididae) to insecticides in Greece. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:1-16. [PMID: 32539892 DOI: 10.1017/s0007485320000334] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aphid Myzus persicae s.l. (Hemiptera: Aphididae) is an important pest of many crops worldwide with a complex life cycle, intensely controlled by chemical pesticides, and has developed resistance to almost all used insecticides. In Greece, the aphid exhibits high genetic variation and adaptability and it is a classic example of evolution in the making. We have been studying M. persicae for over 20 years, on different host plants and varying geographical areas, analyzing its bio-ecology and the ability to develop resistance to insecticides. In this review, we present new and historical data on the effectiveness of insecticides from seven chemical groups used to control the aphid in Greece and the incidence of seven resistance mechanisms, including the new fast-spreading R81T point mutation of the postsynaptic nicotinic acetylcholine receptor. Thousands of samples were tested by biological, biochemical and molecular assays. The aphid populations were found to have developed and maintain resistance at medium to high levels to organophosphates, carbamates, pyrethroids and neonicotinoids for decades. In the latter group, a marked increase is recorded during an ~10-year period. The data analyzed and the extensive bibliography, advocate the difficulty to control the aphid making the design and application of IPM/IRM programs a challenge. We discuss principles and recommendations for the management of resistance, including the use of compounds such as flonicamid, spirotetramat, flupyradifurone and sulfoxaflor. We emphasize that resistance is a dynamic phenomenon, changing in time and space, requiring, therefore, continuous monitoring.
Collapse
Affiliation(s)
- John T Margaritopoulos
- Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization-DEMETER, Volos, Greece
| | - A N Kati
- Plant Pathology Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - C Ch Voudouris
- Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization-DEMETER, Volos, Greece
| | - P J Skouras
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Technologies, University of Peloponnese, Antikalamos, Greece
| | | |
Collapse
|
16
|
Pan Y, Wen S, Chen X, Gao X, Zeng X, Liu X, Tian F, Shang Q. UDP-glycosyltransferases contribute to spirotetramat resistance in Aphis gossypii Glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104565. [PMID: 32448419 DOI: 10.1016/j.pestbp.2020.104565] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyze the conjugation of small lipophilic endogenous and exogenous compounds with sugars to produce water-soluble glycosides, playing an important role in insect endobiotic regulation and xenobiotic detoxification. In this study, two UGT-inhibitors, sulfinpyrazone and 5-nitrouracil, significantly increased spirotetramat toxicity against third instar nymphs of resistant Aphis gossypii, whereas there were no synergistic effects in apterous adult aphids, suggesting UGT involvement in spirotetramat resistance in cotton aphids. Furthermore, the UHPLC-MS/MS was employed to determine the content of spirotetramat and its four metabolites (S-enol, S-glu, S-mono, S-keto) in the honeydew of resistant cotton aphids under spirotetramat treatment. No residual spirotetramat was detected in the honeydew, while its four metabolites were detected at a S-enol: S-glu: S-mono: S-keto ratio of 69.30: 6.54: 1.44: 1.00. Therefore, glycoxidation plays a major role in spirotetramat inactivation and excretion in resistant aphids. Compared with the susceptible strain, the transcriptional levels of UGT344M2 were significantly upregulated in nymphs and adults of the resistant strain. RNA interference of UGT344M2 dramatically increased spirotetramat toxicity in nymphs, but no such effect were found in the resistant adult aphids. Overall, UGT-mediated glycoxidation were found to be involved in spirotetramat resistance. The suppression of UGT344M2 significantly increased the sensitivity of resistant nymphs to spirotetramat, suggesting that UGT344M2 upregulation might be associated with spirotetramat detoxification. This study provides an overview of the involvement of metabolic factors, UGTs, in the development of spirotetramat resistance.
Collapse
Affiliation(s)
- Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shuyuan Wen
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Xiaochun Zeng
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuemei Liu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China; School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
17
|
Ullah F, Gul H, Tariq K, Desneux N, Gao X, Song D. Thiamethoxam induces transgenerational hormesis effects and alteration of genes expression in Aphis gossypii. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104557. [PMID: 32359559 DOI: 10.1016/j.pestbp.2020.104557] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Insecticide induced-hormesis, a bi-phasic phenomenon characterized by low dose stimulation and high dose inhibition following exposure to insecticide, is crucial to insect pest resurgence. In this study, the effects of low or sublethal concentrations of thiamethoxam on biological traits and genes expression were investigated for Aphis gossypii Glover following 72 h exposures. Leaf-Dip bioassay results showed that thiamethoxam was very toxic against adult A. gossypii with an LC50 of 1.175 mg L-1. The low lethal (LC15) and sublethal (LC5) concentrations of thiamethoxam significantly reduced longevity and fecundity of the directly exposed aphids. However, stimulatory effects on pre-adult stage, longevity, and fertility were observed in the progeny generation (F1) of A. gossypii, when parental aphids (F0) were exposed to LC15 of thiamethoxam. Subsequently, biological traits such as intrinsic rate of increase (r), finite rate of increase (λ), and net reproductive rate (R0) increased significantly to F1 individuals due to LC15 treatment. No significant responses were observed for LC5 of thiamethoxam. The LC15 of thiamethoxam significantly increased the expression level of vitellogenin and ecdysone receptors genes in progeny generation, while no effects were observed for treatment with LC5. Additionally, the expression levels of P450 genes including CYP6CY14, CYP6CZ1, CYP6DC1, CYP6CY9, and CYP6DD1 were up-regulated in the exposed aphids. Taken together, our results show the hormetic effects of thiamethoxam on F1 individuals, which might be due to the intermittent changes in expression of genes involved in fertility, growth and insecticide detoxification in A. gossypii.
Collapse
Affiliation(s)
- Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hina Gul
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Kaleem Tariq
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan; Entomology and Nematology Department, Steinmetz Hall, University of Florida, Gainesville, FL 32611, United States of America; USDA/ARS, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dunlun Song
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
18
|
Ding YR, Yan ZT, Si FL, Li XD, Mao QM, Asghar S, Chen B. Mitochondrial genes associated with pyrethroid resistance revealed by mitochondrial genome and transcriptome analyses in the malaria vector Anopheles sinensis (Diptera: Culicidae). PEST MANAGEMENT SCIENCE 2020; 76:769-778. [PMID: 31392850 DOI: 10.1002/ps.5579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/03/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Insecticides are still the main method of mosquito control, but mosquito resistance presents a large obstacle. The function of mitochondrial genes in the evolution of insecticide resistance is still poorly understood. Pyrethroid is the most commonly used insecticide, and Anopheles sinensis is an important malaria vector in China and Southeast Asia. In this study, we investigated the mitochondrial genes associated with pyrethroid resistance through their genetic and expression variation based on analyses of transcriptomes and 36 individuals with resequencing in three geographical populations in China. RESULTS The nucleotide diversity (Pi) in 18 resistant individuals was much lower than that in 18 susceptible individuals, which suggests that some sites experienced purifying selection subject to pyrethroid stress. Ka/Ks and amino acid analyses showed that ND4 experienced positive selection and had 23 amino acid mutations due to pyrethroid stress. These mutations might change the ND4 structure and function and thus alter the efficiency of the respiratory chain. ND5 was significantly upregulated, and ATP8 was significantly downregulated in these three pyrethroid resistant populations, which suggests that these two genes function in the production and maintenance of pyrethroid resistance. There are differences in mitochondrial genes involved in pyrethroid resistance among these three populations. CONCLUSION This is the first study to reveal the association of mitochondrial genes in the evolution of insecticide resistance through amino acid mutation and expression patterns and can help us further understand insecticide resistance mechanisms. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Ran Ding
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Zhen-Tian Yan
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Xu-Dong Li
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Qi-Meng Mao
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Sana Asghar
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
19
|
Transcriptome Analysis and Identification of Insecticide Tolerance-Related Genes after Exposure to Insecticide in Sitobion avenae. Genes (Basel) 2019; 10:genes10120951. [PMID: 31757092 PMCID: PMC6947367 DOI: 10.3390/genes10120951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/07/2023] Open
Abstract
Aphids cause serious losses to the production of wheat. The grain aphid, Sitobion avenae, which is the dominant species of aphid in all wheat regions of China, is resistant to a variety of insecticides, including imidacloprid and chlorpyrifos. However, the resistance and mechanism of insecticide tolerance of S. avenae are still unclear. Therefore, this study employed transcriptome analysis to compare the expression patterns of stress response genes under imidacloprid and chlorpyrifos treatment for 15 min, 3 h, and 36 h of exposure. S. avenae adult transcriptome was assembled and characterized first, after which samples treated with insecticides for different lengths of time were compared with control samples, which revealed 60–2267 differentially expressed unigenes (DEUs). Among these DEUs, 31–790 unigenes were classified into 66–786 categories of gene ontology (GO) functional groups, and 24–760 DEUs could be mapped into 54–268 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Finally, 11 insecticide-tolerance-related unigenes were chosen to confirm the relative expression by quantitative real-time polymerase chain reaction (qRT-PCR) in each treatment. Most of the results between qRT-PCR and RNA sequencing (RNA-Seq) are well-established. The results presented herein will facilitate molecular research investigating insecticide resistance in S. avenae, as well as in other wheat aphids.
Collapse
|
20
|
Pan Y, Peng T, Xu P, Zeng X, Tian F, Song J, Shang Q. Transcription Factors AhR/ARNT Regulate the Expression of CYP6CY3 and CYP6CY4 Switch Conferring Nicotine Adaptation. Int J Mol Sci 2019; 20:E4521. [PMID: 31547315 PMCID: PMC6770377 DOI: 10.3390/ijms20184521] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/08/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023] Open
Abstract
Nicotine is one of the most toxic secondary plant metabolites in nature and it is highly toxic to herbivorous insects. The overexpression of CYP6CY3 and its homologous isozyme CYP6CY4 in Myzus persicae nicotianae is correlated with nicotine tolerance. The expanded (AC)n repeat in promoter is the cis element for CYP6CY3 transcription. These repeat sequences are conserved in the CYP6CY3 gene from Aphis gossypii and the homologous P450 genes in Acyrthosiphon pisum. The potential transcriptional factors that may regulate CYP6CY3 were isolated by DNA pulldown and sequenced in order to investigate the underlying transcriptional regulation mechanism of CYP6CY3. These identified transcriptional factors, AhR and ARNT, whose abundance was highly correlated with an abundance of the CYP6CY3 gene, were validated. RNAi and co-transfection results further confirm that AhR and ARNT play a major role in the transcriptional regulation of the CYP6CY3 gene. When the CYP6CY3 transcript is destabilized by AhR/ARNT RNAi, the transcription of the CYP6CY4 is dramatically up-regulated, indicating a compensatory mechanism between the CYP6CY3 and CYP6CY4 genes. Our present study sheds light on the CYP6CY3 and CYP6CY4 mediated nicotine adaption of M. persicae nicotianae to tobacco. The current studies shed light on the molecular mechanisms that underlie the genotypic and phenotypic changes that are involved in insect host shifts and we conclude that AhR/ARNT regulate the expression of CYP6CY3 and CYP6CY4 cooperatively, conferring the nicotine adaption of M. persicae nicotianae to tobacco.
Collapse
Affiliation(s)
- Yiou Pan
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Tianfei Peng
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Pengjun Xu
- Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiaochun Zeng
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jiabao Song
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Qingli Shang
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450001, China.
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
21
|
Chen X, Xia J, Shang Q, Song D, Gao X. UDP-glucosyltransferases potentially contribute to imidacloprid resistance in Aphis gossypii glover based on transcriptomic and proteomic analyses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:98-106. [PMID: 31400791 DOI: 10.1016/j.pestbp.2019.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/25/2019] [Accepted: 06/02/2019] [Indexed: 06/10/2023]
Abstract
The cotton aphid, Aphis gossypii Glover, is a destructive global crop pest. Control of A. gossypii has relied heavily on the application of chemical insecticides. The cotton aphid has developed resistance to numerous insecticides, including imidacloprid, which has been widely used to control cotton pests in China since the 1990s. Our objective was to investigate the potential role of UDP-glycosyltransferases (UGTs) in imidacloprid resistance based on transcriptomic and proteomic analyses of field-originated imidacloprid-resistant (IMI_R) and -susceptible (IMI_S) A. gossypii clones. The transcriptomic and proteomic analyses revealed that 12 out of 512 differentially expressed genes and three out of 510 differentially expressed proteins were predicted as UDP-glycosyltransferase (UGT). Based on quantitative real-time PCR analysis, nine UGT genes, UGT343A4, UGT344A15, UGT344A16, UGT344B4, UGT344C7, UGT344C9, UGT344N4, UGT 24541, and UGT7630, were up-regulated in the IMI_R clone compared to the IMI_S clone. Meanwhile, UGT344A16, UGT344B4, UGT344C7, and UGT344N4 were overexpressed at the protein level based on western blot analysis. Furthermore, knockdown of UGT344B4 or UGT344C7 using RNA interference (RNAi) significantly increased sensitivity to imidacloprid in the IMI_R clone. In conclusion, UGTs potentially contributed to imidacloprid resistance in A. gossypii originating from cotton-growing regions of China. These results provide insights into the way we study insecticide resistance in cotton aphids.
Collapse
Affiliation(s)
- Xuewei Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jin Xia
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Dunlun Song
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
Pan Y, Chai P, Zheng C, Xu H, Wu Y, Gao X, Xi J, Shang Q. Contribution of cytochrome P450 monooxygenase CYP380C6 to spirotetramat resistance in Aphis gossypii Glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 148:182-189. [PMID: 29891371 DOI: 10.1016/j.pestbp.2018.04.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
The cytochrome P450 monooxygenases play a key role in detoxification mechanism for spirotetramat resistance in Aphis gossypii Glover. However, only one P450 genes (CYP6DA2), among thirty-five P450 genes identified from Aphis gossypii transcriptome database, has been reported to play important role in spirotetramat resistance in previous resistance level until now. In this study, after the confirmation of the rise of resistance level and important roles of P450s in spirotetramat resistance by the synergism analysis, the gene expression changes were determined for P450 genes in spirotetramat susceptible and resistant strains. Compared with the susceptible strain, CYP6CY4, CYP6CY14, CYP6CY18 and CYP6DC1 in CYP3 Clade were up-regulated in resistant nymphs, with the CYP6CY14, CYP6CY4, CYP6DC1, and CYP6CY18 increased to 2.54-, 1.51-, 1.31- and 1.29-fold, respectively. Eight genes in CYP3 Clade, three genes in CYP4 Clade and one gene in Mito Clade were down-regulated. In resistant adult aphids, CYP380C6 in CYP4 Clade, CYP353B1 in CYP2 Clade, and CYP307A1 in Mito Clade were up-regulated under spirotetramat stress, with the CYP380C6, CYP353B1 and CYP307A1 increased to 2.89-, 1.91-, and 1.38-fold, respectively. In contrast, the other P450 genes were almost down-regulated, especially these P450 genes in CYP3 Clade, CYP4 Clade and Mito Clade. RNA interference of CYP380C6 significantly increased the sensitivity of the resistant adults and nymphs to spirotetramat, while suppression of CYP6CY14 could not increase the toxicity of spirotetramat. These results indicate the possible involvement of the CYP380C6 genes in spirotetramat resistance at present very high resistance levels. Screening the expression changes of P450 genes under different spirotetramat resistance levels in the genome-scale will provide an overall view on the possible metabolic factors in the resistance development. The results may facilitate further work to validate the roles of P450 in spirotetramat resistance with heterologous expression.
Collapse
Affiliation(s)
- Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Pujin Chai
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Chao Zheng
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Hongfei Xu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yongqiang Wu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
23
|
Chen X, Tie M, Chen A, Ma K, Li F, Liang P, Liu Y, Song D, Gao X. Pyrethroid resistance associated with M918 L mutation and detoxifying metabolism in Aphis gossypii from Bt cotton growing regions of China. PEST MANAGEMENT SCIENCE 2017; 73:2353-2359. [PMID: 28544677 DOI: 10.1002/ps.4622] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The cotton aphid, Aphis gossypii (Glover), is a destructive pest that affects numerous crops throughout the world. Pyrethroid resistance has become endemic in A. gossypii populations in the cotton growing areas of China due to wide- spread application of insecticides. To assess the extent of pyrethroid resistance, bioassays were conducted on field populations collected from several cotton cultivation areas from 2010 to 2015. The frequency of a known resistance-associated sodium channel mutation (M918 L) in A. gossypii was evaluated and the bioassay of bifenthrin with or without the synergist was performed to illuminate the mechanisms underlying resistance to pyrethroids. RESULTS The field populations exhibited very high levels of resistance to both beta-cypermethrin and deltamethrin. Pretreatment with synergists, DEF and PBO, significantly increased the toxicity of bifenthrin to cotton aphid populations collected from Bt cotton fields in China. Further, 96.8-100% of individuals with the M918 L mutation (including both RR and RS individuals) were observed in various populations, and only 2.8-3.2% of individuals with wild-type homozygotes (SS) were detected. CONCLUSION The mutation M918 L in the voltage-gated sodium channel along with detoxifying metabolism was contributed to the pyrethroid resistance in the field populations of Aphis gossypii from cotton growing regions of China. And insecticides with different modes of action should be recommended for the control of A. gossypii in the future. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuewei Chen
- Department of Entomology, China Agricultural University, Beijing, China
| | - Minyuan Tie
- Department of Entomology, China Agricultural University, Beijing, China
| | - Anqi Chen
- Department of Entomology, China Agricultural University, Beijing, China
| | - Kangsheng Ma
- Department of Entomology, China Agricultural University, Beijing, China
| | - Fen Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Pingzhuo Liang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Ying Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Dunlun Song
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Peng T, Chen X, Pan Y, Zheng Z, Wei X, Xi J, Zhang J, Gao X, Shang Q. Transcription factor aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator is involved in regulation of the xenobiotic tolerance-related cytochrome P450 CYP6DA2 in Aphis gossypii Glover. INSECT MOLECULAR BIOLOGY 2017; 26:485-495. [PMID: 28463435 DOI: 10.1111/imb.12311] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The cotton aphid, Aphis gossypii, is one of the most economically important agricultural pests worldwide as it is polyphagous and resistant to many classes of insecticides. Overexpression of the cytochrome P450 monooxygenase (P450) CYP6DA2 has previously been found to be associated with gossypol and spirotetramat tolerance in the cotton aphid. In the present study, the elements located in the promoter region (-357:-343; -250:-241; -113:-104) of CYP6DA2 were shown to control promoter activity, and gossypol induction was observed. We hypothesized that the expression of CYP6DA2 is subject to transcriptional regulation. To investigate the underlying mechanism, we assessed two transcription factors, aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT), and found that the abundance of AhR was highly correlated with CYP6DA2 abundance. RNA interference of AhR or ARNT significantly decreased the levels of the target gene as well as those of its counterpart, and both dramatically repressed CYP6DA2 expression. Cotransfection of the ARNT, AhR, or AhR plus ARNT and CYP6DA2 promoter constructs elevated CYP6DA2 promoter activity, with the AhR plus ARNT cotransfection being the most effective. Thus, these elements located in the promoter were responsible for CYP6DA2 transcription, and CYP6DA2 expression was regulated by the transcription factors AhR and ARNT.
Collapse
Affiliation(s)
- T Peng
- College of Plant Science, Jilin University, Changchun, China
| | - X Chen
- Department of Entomology, China Agricultural University, Beijing, China
| | - Y Pan
- College of Plant Science, Jilin University, Changchun, China
| | - Z Zheng
- College of Plant Science, Jilin University, Changchun, China
| | - X Wei
- College of Plant Science, Jilin University, Changchun, China
| | - J Xi
- College of Plant Science, Jilin University, Changchun, China
| | - J Zhang
- College of Plant Science, Jilin University, Changchun, China
| | - X Gao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Q Shang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
25
|
Voudouris CC, Williamson MS, Skouras PJ, Kati AN, Sahinoglou AJ, Margaritopoulos JT. Evolution of imidacloprid resistance in Myzus persicae in Greece and susceptibility data for spirotetramat. PEST MANAGEMENT SCIENCE 2017; 73:1804-1812. [PMID: 28139069 DOI: 10.1002/ps.4539] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/15/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Myzus persicae s.l. is a major crop pest globally and has evolved resistance to a range of insecticide classes making it increasingly difficult to control in some areas. Here we compare bioassay monitoring data for two important compounds, imidacloprid and spirotetramat, on field samples/clones collected in Greece. RESULTS A total of 122 aphid samples/clones from central and northern Greece were examined in dose-response bioassays with imidacloprid. There was an overall increase in the level of resistance (resistance factor = 15-40) within tobacco-collected samples from 78.7% in 2007 to 86.7% in 2015. The corresponding frequencies for peach samples were 13.3% and 6.7%. These results were confounded however by the first identification of the R81T target mutation in Greece during 2015 (4.3% as heterozygotes in peach) and 2016 (21.3% as heterozygotes in peach). No resistance to spirotetramat was found at the 60 clones collected in 2015. CONCLUSION Resistance to imidacloprid is continuing to increase within Greek M. persicae s.l. populations and the situation is likely to deteriorate further with the recent identification of the R81T resistance mutation. Resistance to spirotetramat has not been found and is therefore a good alternative to neonicotinoids for resistance management. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Costas Ch Voudouris
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
- Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization-DEMETER, Volos, Greece
| | - Martin S Williamson
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Panagiotis J Skouras
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Technologies, Technological Educational Institute of Peloponnese, Antikalamos, Greece
| | - Amalia N Kati
- Plant Pathology Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia J Sahinoglou
- Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization-DEMETER, Volos, Greece
| | - John T Margaritopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
- Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization-DEMETER, Volos, Greece
| |
Collapse
|
26
|
Pan Y, Zhu E, Gao X, Nauen R, Xi J, Peng T, Wei X, Zheng C, Shang Q. Novel mutations and expression changes of acetyl-coenzyme A carboxylase are associated with spirotetramat resistance in Aphis gossypii Glover. INSECT MOLECULAR BIOLOGY 2017; 26:383-391. [PMID: 28370744 DOI: 10.1111/imb.12300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Acetyl-coenzyme A carboxylase (ACC) catalyses the carboxylation of acetyl-coenzyme A (acetyl-CoA) to produce malonyl-CoA during the de novo synthesis of fatty acids. Spirotetramat, an inhibitor of ACC, is widely used to control a range of sucking insects, including the Aphis gossypii. In the present study, Reverse transcription quantitative real-time PCR (RT-qPCR) results demonstrated that ACC was significantly overexpressed in a laboratory-selected spirotetramat-resistant strain compared with the susceptible strain. ACC RNA interference significantly suppressed fecundity and led to cuticle formation deficiencies in resistant adults and nymphs compared with the control. The full-length ACC gene was sequenced from both resistant and susceptible cotton aphids, and a strong association was found between spirotetramat resistance and 14 amino acid substitutions in the biotin carboxylase domain and carboxyl transferase domain of the ACC gene. Furthermore, ACC activity was higher in resistant aphids than in the susceptible strain, and ACC in the resistant aphids exhibited significant insensitivity to spirotetramat and spirotetramat-enol. The results indicate that the overexpressed insensitive (mutated) ACC target played an important role in the high levels of spirotetramat resistance observed here. This association of amino acid substitution with resistance is the first report of a potential target site mechanism affecting spirotetramat in the cotton aphid.
Collapse
Affiliation(s)
- Y Pan
- College of Plant Science, Jilin University, Changchun, China
| | - E Zhu
- College of Plant Science, Jilin University, Changchun, China
| | - X Gao
- Department of Entomology, China Agricultural University, Beijing, China
| | - R Nauen
- Bayer CropScience AG, R&D Pest Control Biology, Monheim, Germany
| | - J Xi
- College of Plant Science, Jilin University, Changchun, China
| | - T Peng
- College of Plant Science, Jilin University, Changchun, China
| | - X Wei
- College of Plant Science, Jilin University, Changchun, China
| | - C Zheng
- College of Plant Science, Jilin University, Changchun, China
| | - Q Shang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
27
|
de Little SC, Umina PA. Susceptibility of Australian Myzus persicae (Hemiptera: Aphididae) to Three Recently Registered Insecticides: Spirotetramat, Cyantraniliprole, and Sulfoxaflor. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1764-1769. [PMID: 28475682 DOI: 10.1093/jee/tox132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 06/07/2023]
Abstract
The green peach aphid, Myzus persicae (Sulzer), is a significant agricultural pest that has developed resistance to a large number of insecticides globally. Within Australia, resistance has previously been confirmed for multiple chemical groups, including pyrethroids, carbamates, organophosphates, and neonicotinoids. In this study, we use leaf-dip and topical bioassays to investigate susceptibility and potential cross-resistance of 12 field-collected populations of Australian M. persicae to three recently registered insecticides: sulfoxaflor, spirotetramat, and cyantraniliprole. Despite all 12 populations carrying known resistance mechanisms to carbamates, organophosphates, and pyrethroids, and two populations also exhibiting low-level metabolic resistance to neonicotinoids, we found little evidence of variation in susceptibility to sulfoxafor, spirotetramat, or cyantraniliprole. This provides further evidence that cross-resistance to spirotetramat, cyantraniliprole, and sulfoxaflor in M. persicae is not conferred by the commonly occurring resistance mechanisms MACE, super-kdr, amplification of the E4 esterase gene, or enhanced expression and copy number of the P450 gene, CYP6CY3. Importantly, this study also established toxicity baseline data that will be important for future monitoring of insecticide responses of M. persicae from both broadacre and horticultural crops.
Collapse
Affiliation(s)
| | - Paul A Umina
- Cesar, 293 Royal Parade, Parkville, Victoria 3052, Australia
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
28
|
Chen D, Chen F, Chen C, Chen X, Mao Y. Transcriptome analysis of three cotton pests reveals features of gene expressions in the mesophyll feeder Apolygus lucorum. SCIENCE CHINA-LIFE SCIENCES 2017; 60:826-838. [PMID: 28730342 DOI: 10.1007/s11427-017-9065-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/05/2017] [Indexed: 11/27/2022]
Abstract
The green mirid bug Apolygus lucorum is an agricultural pest that is known to cause damage to more than 150 plant species. Here, we report the transcriptomes of A. lucorum at three different developmental stages (the second and fifth instar nymphs and adults). A total of 98,236 unigenes with an average length of 1,335 nt was obtained, of which 50,640 were annotated, including those encoding digestive enzymes and cytochrome P450s. Comparisons with cotton bollworm and cotton aphid transcriptomes revealed distinct features of A. lucorum as a mesophyll feeder. The gene expression dynamics varied during development from young nymphs to adults. The high-quality transcriptome data and the gene expression dynamics reported here provide valuable data for a more comprehensive understanding of the physiology and development of mirid bugs, and for mining targets for their control.
Collapse
Affiliation(s)
- Dianyang Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangyan Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyu Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yingbo Mao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
29
|
Li F, Ma KS, Liang PZ, Chen XW, Liu Y, Gao XW. Transcriptional responses of detoxification genes to four plant allelochemicals in Aphis gossypii. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:624-631. [PMID: 28334129 DOI: 10.1093/jee/tow322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Indexed: 06/06/2023]
Abstract
Aphis gossypii Glover (Hemiptera: Aphididae) can damage a variety of agricultural crops, so it is very important for cotton aphids to evolve adaptive mechanisms to various allelochemicals from host plants. Our results aim to provide a fundamental and rich resource for exploring aphid functional genes in A. gossypii. A transcriptome data set and five expression profile data sets of A. gossypii samples were analyzed by Illumina sequencing platform. In total, 53,763,866 reads were assembled into 1,963,516 contigs and 28,555 unigenes. Compared with the control, 619 genes were significantly up- or downregulated in the treatment group by 2-tridecanone. There were 516, 509, and 717 of differential expression genes in tannic acid, quercetin, and gossypol treatment groups, respectively. Furthermore, there were 4 of 54 putative cytochrome P450 genes and 1 of 7 putative carboxylesterases downregulated in all treatment groups by four plant allelochemicals. When aphids fed on 2-tridecanone, tannic acid, and quercetin, only one P450 gene was upregulated. These results show that plant allelochemical stress can induce differential gene expression in A. gossypii. The differential response information of gene expression based on a large-scale sequence would be useful to reveal molecular mechanisms of adaptation for A. gossypii to plant allelochemicals.
Collapse
Affiliation(s)
- Fen Li
- Department of Entomology China Agricultural University, Beijing 100193, China (; ; ; ; ; )
| | - Kang-Sheng Ma
- Department of Entomology China Agricultural University, Beijing 100193, China (; ; ; ; ; )
| | - Ping-Zhuo Liang
- Department of Entomology China Agricultural University, Beijing 100193, China (; ; ; ; ; )
| | - Xue-Wei Chen
- Department of Entomology China Agricultural University, Beijing 100193, China (; ; ; ; ; )
| | - Ying Liu
- Department of Entomology China Agricultural University, Beijing 100193, China (; ; ; ; ; )
| | - Xi-Wu Gao
- Department of Entomology China Agricultural University, Beijing 100193, China (; ; ; ; ; )
| |
Collapse
|
30
|
Rapid evolution of symbiotic bacteria populations in spirotetramat-resistant Aphis gossypii glover revealed by pyrosequencing. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 20:151-158. [DOI: 10.1016/j.cbd.2016.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/12/2016] [Accepted: 10/19/2016] [Indexed: 01/01/2023]
|
31
|
Wei X, Zheng C, Peng T, Pan Y, Xi J, Chen X, Zhang J, Yang S, Gao X, Shang Q. miR-276 and miR-3016-modulated expression of acetyl-CoA carboxylase accounts for spirotetramat resistance in Aphis gossypii Glover. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:S0965-1748(16)30158-8. [PMID: 27989834 DOI: 10.1016/j.ibmb.2016.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Acetyl-coenzyme A carboxylase (acetyl-CoA carboxylase, ACC) catalyses the carboxylation of acetyl-CoA to produce malonyl-CoA during de novo fatty acid synthesis. A laboratory-selected spirotetramat-resistant strain (SR) of cotton aphid was used in this study. RT-qPCR results demonstrated significant increases in the levels of ACC transcript in the resistant strain compared to the susceptible strain. Depletion of overexpressed ACC transcripts by RNAi also significantly enhanced the sensitivity of the resistant aphid to spirotetramat. We hypothesized that ACC gene expression is subject to post-transcriptional regulation. To investigate the underlying mechanism, the 66 known miRNAs of Aphis gossypii were used for target prediction, eight of which were predicted to target ACC. Validation identified two miRNAs, miR-276 and miR-3016, with abundance levels that were highly inversely correlated with ACC transcript levels. This result suggests that the miRNAs miR-276 and miR-3016 may play major roles in the post-transcriptional regulation of the ACC gene. Modulation of the abundance of miR-276 and miR-3016 through addition of inhibitors/mimics of miR-276 or miR-3016 to the artificial diet significantly altered both ACC transcript levels and the tolerance of A. gossypii to spirotetramat, thus confirming the roles of these two miRNAs in the regulation of spirotetramat resistance.
Collapse
Affiliation(s)
- Xiang Wei
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Chao Zheng
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Tianfei Peng
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuewei Chen
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Juhong Zhang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Shuang Yang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China.
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
32
|
Peng T, Pan Y, Gao X, Xi J, Zhang L, Yang C, Bi R, Yang S, Xin X, Shang Q. Cytochrome P450 CYP6DA2 regulated by cap 'n'collar isoform C (CncC) is associated with gossypol tolerance in Aphis gossypii Glover. INSECT MOLECULAR BIOLOGY 2016; 25:450-9. [PMID: 27005728 DOI: 10.1111/imb.12230] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cotton plants accumulate phytotoxins, such as gossypol and related sesquiterpene aldehydes, to resist insect herbivores. The survival of insects exposed to toxic secondary metabolites depends on the detoxification metabolism mediated by limited groups of cytochrome P450. Gossypol has an antibiotic effect on Aphis gossypii, and as the concentrations of gossypol were increased in the present study, the mortality of cotton aphids increased from 4 to 28%. The fecundity of the cotton aphids exposed to gossypol was also significantly reduced compared with the control. The transcriptional levels of CYP6DA2 in cotton aphids were significantly induced when exposed to gossypol, and knockdown of the CYP6DA2 transcripts by RNA interference (RNAi) significantly increased the toxicity of gossypol to cotton aphids. To further understand the gossypol regulatory cascade, the 5'-flanking promoter sequences of CYP6DA2 were isolated with a genome walker, and the promoter was very active and was inducible by gossypol. Co-transfection of the cap 'n' collar isoform C (CncC) and CYP6DA2 promoters dramatically increased the expression of CYP6DA2, and suppression of the CncC transcripts by RNAi significantly decreased the expression levels of CYP6DA2, and significantly increased the toxicity of gossypol to cotton aphids. Thus, the transcriptional regulation of CYP6DA2 involved the transcriptional factor CncC.
Collapse
Affiliation(s)
- T Peng
- College of Plant Science, Jilin University, Changchun, China
| | - Y Pan
- College of Plant Science, Jilin University, Changchun, China
| | - X Gao
- Department of Entomology, China Agricultural University, Beijing, China
| | - J Xi
- College of Plant Science, Jilin University, Changchun, China
| | - L Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - C Yang
- College of Plant Science, Jilin University, Changchun, China
| | - R Bi
- College of Plant Science, Jilin University, Changchun, China
- Department of Entomology, Jilin Agricultural University, Changchun, China
| | - S Yang
- College of Plant Science, Jilin University, Changchun, China
| | - X Xin
- College of Plant Science, Jilin University, Changchun, China
| | - Q Shang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
33
|
Peng T, Pan Y, Gao X, Xi J, Zhang L, Ma K, Wu Y, Zhang J, Shang Q. Reduced abundance of the CYP6CY3-targeting let-7 and miR-100 miRNAs accounts for host adaptation of Myzus persicae nicotianae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:89-97. [PMID: 27318250 DOI: 10.1016/j.ibmb.2016.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Abstract
Nicotine is one of the most abundant and toxic secondary plant metabolites in nature and is defined by high toxicity to plant-feeding insects. Studies suggest that increased expression of cytochrome P450 (CYP6CY3) and the homologous CYP6CY4 genes in Myzus persicae nicotianae is correlated with tolerance to nicotine. Indeed, through expression analyses of the CYP6CY3 and CYP6CY4 genes of different M. persicae subspecies, we determined that the mRNA levels of these two genes were much higher in M. persicae nicotianae than in M. persicae sensu stricto. We hypothesized that the expression of these two genes is subject to post-transcriptional regulation. To investigate the underlying mechanism, the miRNA profile of M. persicae nicotianae was sequenced, and twenty-two miRNAs were predicted to target CYP6CY3. Validation of these miRNAs identified two miRNAs, let-7 and miR-100, whose abundance was highly inversely correlated with the abundance of the CYP6CY3 gene. This result implies that the let-7 and miR-100 miRNAs play a major role in the post-transcriptional regulation of the CYP6CY3 gene. Modulation of the abundance of let-7 and miR-100 through the addition of inhibitors/mimics of let-7 or miR-100 to artificial diet significantly altered the tolerance of M. persicae nicotianae to nicotine, further confirming the regulatory role of these two miRNAs. Interestingly, after decreasing the transcript levels of CYP6CY3 by modulating regulatory miRNAs, the transcript levels of the homologous isozyme CYP6CY4 were significantly elevated, suggesting a compensatory mechanism between the CYP6CY3 gene and its homologous CYP6CY4 gene. Our findings provide insight into the molecular drivers of insect host shifts and reveal an important source of genetic variation for adaptive evolution in insect species.
Collapse
Affiliation(s)
- Tianfei Peng
- College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Lei Zhang
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| | - Kangsheng Ma
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| | - Yongqiang Wu
- College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Juhong Zhang
- College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun, 130062, PR China.
| |
Collapse
|
34
|
Peng T, Pan Y, Yang C, Gao X, Xi J, Wu Y, Huang X, Zhu E, Xin X, Zhan C, Shang Q. Over-expression of CYP6A2 is associated with spirotetramat resistance and cross-resistance in the resistant strain of Aphis gossypii Glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 126:64-69. [PMID: 26778436 DOI: 10.1016/j.pestbp.2015.07.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 06/05/2023]
Abstract
A laboratory-selected spirotetramat-resistant strain (SR) of cotton aphid developed 579-fold and 15-fold resistance to spirotetramat in adult aphids and 3rd instar nymphs, respectively, compared with a susceptible strain (SS) [26]. The SR strain developed high-level cross-resistance to alpha-cypermethrin and bifenthrin and very low or no cross-resistance to the other tested insecticides. Synergist piperonyl butoxide (PBO) dramatically increased the toxicity of spirotetramat and alpha-cypermethrin in the resistant strain. RT-qPCR results demonstrated that the transcriptional levels of CYP6A2 increased significantly in the SR strain compared with the SS strain, which was consistent with the transcriptome results [30]. The depletion of CYP6A2 transcripts by RNAi also significantly increased the sensitivity of the resistant aphid to spirotetramat and alpha-cypermethrin. These results indicate the possible involvement of CYP6A2 in spirotetramat resistance and alpha-cypermethrin cross-resistance in the cotton aphid. These together with other cross-resistance results have implications for the successful implementation of resistance management strategies for Aphis gossypii.
Collapse
Affiliation(s)
- Tianfei Peng
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Chen Yang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yongqiang Wu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xiao Huang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - E Zhu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xuecheng Xin
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Chao Zhan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|