1
|
Khatibi N, Huang YH, Wang CK, Durek T, Gilding EK, Craik DJ. Isolation and Characterization of Insecticidal Cyclotides from Viola communis. JOURNAL OF NATURAL PRODUCTS 2025; 88:24-35. [PMID: 38747744 DOI: 10.1021/acs.jnatprod.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cyclotides are cysteine-rich plant-derived peptides composed of 28-37 amino acids with a head-to-tail cyclic backbone and a knotted arrangement of three conserved disulfide bonds. Their beneficial biophysical properties make them promising molecules for pharmaceutical and agricultural applications. The Violaceae plant family is the major cyclotide-producing family, and to date, every examined plant from this family has been found to contain cyclotides. The presence of cyclotides in Viola communis was inferred by mass spectroscopy previously, but their sequences and properties had yet to be explored. In this study, the occurrence of cyclotides in this plant was investigated using proteomics and transcriptomics. Twenty cyclotides were identified at the peptide level, including two new members from the bracelet (Vcom1) and Möbius (Vcom2) subfamilies. Structural analysis of these newly identified peptides demonstrated a similar fold compared with cyclotides from the same respective subfamilies. Biological assays of Vcom1 and Vcom2 revealed them to be cytotoxic to Sf9 insect cell lines, with Vcom1 demonstrating higher potency than Vcom2. The results suggest that they could be further explored as insecticidal agents and confirm earlier general findings that bracelet cyclotides have more potent insecticidal activity than their Möbius relatives. Seven new cyclotide-like sequences were observed in the transcriptome of V. communis, highlighting the Violaceae as a rich source for new cyclotides with potential insecticidal activity. An analysis of sequences flanking the cyclotide domain in the various precursors from V. communis and other Violaceae plants revealed new insights into cyclotide processing and suggested the possibility of two alternative classes of N-terminal processing enzymes for cyclotide biosynthesis.
Collapse
Affiliation(s)
- Negin Khatibi
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane QLD 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane QLD 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane QLD 4072, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
2
|
Li H, Tian C, Chen J, Xia Y. The fusion protein of scorpion neurotoxin BjαIT and Galanthus nivalis agglutinin (GNA) enhanced the injection insecticidal activity against silkworms, but only has lethal activity against newly hatched larva when administered orally. World J Microbiol Biotechnol 2024; 40:326. [PMID: 39299979 DOI: 10.1007/s11274-024-04140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Fusing insect derived neurotoxic peptides with Galanthus nivalis agglutinin (GNA) has been shown to enhance the insecticidal activity of the neuropeptides, especially when administered orally. This study produced a recombinant scorpion insect specific neurotoxin BjαIT, GNA, and a fusion protein BjαIT/GNA using Pichia pastoris as an expression host. Recombinant rBjαIT/GNA was found to be easily degraded during expression in yeast which and produced a main protein product with a molecular weight of approximately 14 kDa. Cytotoxicity results showed that rBjαIT, rGNA, and rBjαIT/GNA had no toxicity to mammalian NIH/3T3 cells. Adding rBjαIT or rBjαIT/GNA at a concentration as low as 1 ng/mL to insect cell culture medium inhibited the proliferation of insect Sf9 cells, with rBjαIT exhibiting stronger cytotoxicity, while 20 ng/mL rGNA did not inhibit the proliferation of Sf9 cells. Silkworm larval injection results showed that rBjαIT/GNA was the most toxic of the three proteins, followed by rBjαIT, and rGNA. When rBjαIT/GNA was injected at a concentration of 0.129 nmol/g body weight 46.7% of silkworm died within 48 h. Feeding newly hatched silkworms with rBjαIT/GNA at a leaf surface concentration of 40 µg/cm2 resulted in 76.7% mortality within 24 h. However, rBjαIT/GNA showed almost no oral insecticidal activity against second instar silkworms. The results indicated that rBjαIT/GNA has stronger injection insecticidal activity and feeding insecticidal activity than rBjαIT and rGNA individually, making it more suitable for biological control.
Collapse
Affiliation(s)
- Hongbo Li
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, 418000, China.
- Department of Biochemistry and Molecular Biology School of Medicine, Jishou University, Jishou, Hunan, 416000, China.
| | - Cheng Tian
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, 418000, China
| | - Jing Chen
- Department of Biochemistry and Molecular Biology School of Medicine, Jishou University, Jishou, Hunan, 416000, China
| | - Yuanxian Xia
- Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
3
|
Huang LY, Xu JB, Li XY, Song HN, Chen L, Zhou XL, Gao F. Palladium-Catalyzed Direct Synthesis and Insecticidal Activity of Arylmatrine Derivatives. JOURNAL OF NATURAL PRODUCTS 2022; 85:2026-2034. [PMID: 35920623 DOI: 10.1021/acs.jnatprod.2c00417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pd(OAc)2/NiXantphos efficiently catalyzed the direct arylation at the C-14 position of matrine, leading to 38 arylmatrine derivatives (1a-19a and 1b-19b) in good yields. Most of these matrine analogues showed enhanced insecticidal effects superior to the parent compound matrine. Among them, the 3,5-diphenylbenzene analogue (8b) exhibited the most potent in vivo antifeedant activity (EC50 = 0.19 mg/mL) against Spodoptera exigua (Hübner), with approximately 25-fold more activity than matrine, for which the preliminary mechanism of action was verified through enzyme inhibition activities and molecular docking. Compound 8b as well displayed in vitro antiproliferation activity on Sf9 insect cells (IC50 = 8.1 μM), and its apoptotic induction effect was illustrated by morphological observation and DNA fragment analysis. Overall, the above results provide further information on the potential of arylmatrine-type lead compounds for the prevention and control of insect pests.
Collapse
Affiliation(s)
- Lin-Yu Huang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jin-Bu Xu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Xiang-Yu Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Hai-Ning Song
- The Third People's Hospital of Chengdu, Chengdu 610031, People's Republic of China
| | - Lin Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Xian-Li Zhou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
- The Third People's Hospital of Chengdu, Chengdu 610031, People's Republic of China
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
4
|
Wang X, Qiu J, Xu Y, Pan Y, Chen H, Jia Q, Qian Y. Different cellular mechanism of imidacloprid and acetamiprid by a combined targeted lipidomics and metabolomics approach in Neuro-2a cells. Toxicol In Vitro 2022; 83:105426. [PMID: 35781001 DOI: 10.1016/j.tiv.2022.105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
As commonly used neonicotinoid insecticides for pest control, imidacloprid (IMI) and acetamiprid (ACE) posed neurotoxicity effects on living organisms. However, researches of the differences in toxicity mechanism between these two neonicotinoid insecticides are still limited. In this study, different cellular metabolism perturbations and redox homeostasis damages induced by IMI and ACE exposure in Neuro-2a cells were investigated. Distinct elevation of lactate dehydrogenase (LDH) activity and caspase 7 level demonstrated the influences on necrosis and apoptosis. There were 21 and 12 metabolites screened out as potential biomarkers after IMI and ACE exposure, including lipids and amino acids. Remarkable decrease of lipid hydroperoxides (LOOH) and increase of reactive oxygen species (ROS) generation were found only in the ACE20 group. Interference with glutathione metabolism pathway was further validated by detecting GPx (glutathion peroxidase), GSH (reduced glutathione) and GSSG (oxidized glutathione) levels. Taken together, the metabolic interferences and oxidative damages in ACE20 group were significantly different from the other three exposure groups. These results help to explore the toxicity mechanism of neonicotinoid insecticides from multiple perspectives. This study provides scientific basis for evaluating toxicity of different neonicotinoid insecticides.
Collapse
Affiliation(s)
- Xinlu Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yanyang Xu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yecan Pan
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Hongping Chen
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
5
|
Li LL, Huang JR, Xu JW, Yao WC, Yang HH, Shao L, Zhang HR, Dewer Y, Zhu XY, Zhang YN. Ligand-binding properties of odorant-binding protein 6 in Athetis lepigone to sex pheromones and maize volatiles. PEST MANAGEMENT SCIENCE 2022; 78:52-62. [PMID: 34418275 DOI: 10.1002/ps.6606] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Athetis lepigone, a noctuid moth feeding on more than 30 different crops worldwide, has evolved a sophisticated, sensitive, and specific chemosensory system to detect and discriminate exogenous chemicals. Odorant-binding proteins (OBPs) are the most important agent in insect chemosensory systems to be explored as an alternative target for environmentally friendly approaches to pest management. RESULTS To investigate the olfactory function of A. lepigone OBPs (AlepOBPs), AlepOBP6 was identified and expressed in Escherichia coli. The binding affinity of the recombinant OBP to 20 different ligands was then examined using a competitive binding approach. The results revealed that AlepOBP6 can bind to two sex pheromones and ten maize volatiles, and its conformation stability is pH dependent. We also carried out a structure-function study using different molecular approaches, including structure modeling, molecular docking, and a mutation functional assay to identify amino acid residues (M39, V68, W106, Q107, and Y114) involved in the binding of AlepOBP6 to both sex pheromones and maize volatiles in A. lepigone. CONCLUSION These results suggest that AlepOBP6 is likely involved in mediating the responses of A. lepigone to sex pheromones and maize volatiles, which may play a pivotal function in mating, feeding, and oviposition behaviors. This study not only provides new insight into the binding mechanism of OBPs to sex pheromones and host volatiles in moths, but also contributes to the discovery of novel target candidates for developing efficient behavior disruptors to control A. lepigone in the future. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lu-Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jian-Rong Huang
- Henan Key Laboratory of Crop Pest Control, MOA's Regional Key Lab of Crop IPM in Southern Part of Northern China, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Hui-Hui Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Liang Shao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Hui-Ru Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki 12618, Giza, Egypt
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
6
|
Beauveria bassiana Ribotoxin (BbRib) Induces Silkworm Cell Apoptosis via Activating Ros Stress Response. Processes (Basel) 2021. [DOI: 10.3390/pr9081470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The BbRib gene participates in the infection process of Beauveria bassiana (B. bassiana). It also helps pathogenic fungi to escape and defeat the insect host immune defense system by regulating the innate immune response. However, model insects are rarely used to study the mechanism of fungal ribosomal toxin protein. In this study, BbRib protein was produced by prokaryotic expression and injected into silkworm (Bombyx mori) larvae. The physiological and biochemical indexes of silkworm were monitored, and the pathological effects of BbRib protein on immune tissues of silkworm were examined by Hematoxylin and Eosin (HE) staining. BbRib protein can significantly affect the growth and development of the silkworm, causing poisoning, destroying the midgut and fat body and producing physiological changes. The ROS stress response in the adipose tissue and cells of the silkworm was activated to induce apoptosis. These results indicated that the BbRib gene not only participates in the infection process of B. bassiana, it also helps the pathogenic fungi escape the immune system by regulating the innate immune system of the silkworm, allowing it to break through the silkworm’s immune defense. This study reveals the potential molecular mechanism of BbRib protein to insect toxicity, and provides a theoretical basis and material basis for the development and use of novel insecticidal toxins.
Collapse
|
7
|
Fiaz M, Martínez LC, Plata-Rueda A, Cossolin JFS, Serra RS, Martins GF, Serrão JE. Behavioral and ultrastructural effects of novaluron on Aedes aegypti larvae. INFECTION GENETICS AND EVOLUTION 2021; 93:104974. [PMID: 34166815 DOI: 10.1016/j.meegid.2021.104974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 11/28/2022]
Abstract
Chitin synthesis inhibitors (CSI) are supposed to inhibit formation of chitin microfibrils in newly synthesized cuticle during molting process. Conversely, there has been comparatively few data on morphological effects of CSI on non-target insect organs. In this work, the effects of the CSI novaluron on behavior and midgut of A. aegypti were evaluated. Toxicity bioassays revealed that novaluron is toxic to A. aegypti larva with LC50 = 18.57 mg L-1 when exposed in aqueous solution for 24 h. Novaluron treated larvae were less active and spent more time resting compared to the control group. Histopathology showed that midguts of novaluron-treated larvae had cytoplasm vacuolization and damaged brush border. Cytotoxic effects in midguts of treated larvae induced necrosis, autophagy and damage to mitochondria. Despite being chitin synthesis inhibitor, novaluron did not induce alterations in the integument of A. aegypti larvae. Fluorescence microscopy revealed that the number of digestive cells were higher in novaluron-treated larvae than in control, in response to digestive cell apoptosis. The present study highlights the importance of novaluron against A. aegypti larvae by causing injuries to non-target organs, altering behaviors, inducing cell death and inhibiting cell proliferation.
Collapse
Affiliation(s)
- Muhammad Fiaz
- Department of Entomology, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil; Institute of Plant Protection, MNS-University of Agriculture, Multan 60000, Punjab, Pakistan.
| | - Luis Carlos Martínez
- Department of General Biology, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil
| | - Angelica Plata-Rueda
- Department of Entomology, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil
| | | | - Raissa Santana Serra
- Department of Entomology, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil
| | | | - José Eduardo Serrão
- Department of General Biology, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil.
| |
Collapse
|
8
|
Sun Z, Xue L, Li Y, Cui G, Sun R, Hu M, Zhong G. Rotenone-induced necrosis in insect cells via the cytoplasmic membrane damage and mitochondrial dysfunction. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104801. [PMID: 33771250 DOI: 10.1016/j.pestbp.2021.104801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/25/2020] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Rotenone, a selective inhibitor of mitochondrial complex I, has been extensively studied on kinds of neuron and neuroblast in Parkinson's disease. However, little is known about the potential mechanism of this promising botanical insecticide upon insect cells. In the article, cell proliferation of two Lepidoptera cell lines, Spodoptera litura SL-1 cells and Spodoptera frugiperda Sf9 cells, were all inhibited by rotenone in a time- and dose-dependent manner. Typical necrotic characteristics of cell morphology and ultrastructure, such as plasma membrane collapses and organelle lyses, were all observed by transmission electron microscope and scanning electron microscope. Moreover, irregular DNA degradation was also detected by DNA gel electrophoresis and Hoechst 33258 staining, while the typical apoptotic feature, DNA ladder, hadn't been observed. Flow cytometric analysis showed that rotenone-induced cell death of Sf9 and SL-1 cells accompanied with the plasma membrane potential depolarization and mitochondrial membrane potential reduction. Furthermore, the activity of Na+-K+-ATPase was detected in our study. In conclusion, rotenone could cause necrosis but not apoptosis in insect cells through a mitochondrial- and plasmic membrane-dependent pattern, which shed a light on the rotenone-induced cytotoxicity on insects.
Collapse
Affiliation(s)
- Zhipeng Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Li Xue
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510642, China
| | - Yun Li
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Gaofeng Cui
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Ranran Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Meiying Hu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Vorgia E, Lamprousi M, Denecke S, Vogelsang K, Geibel S, Vontas J, Douris V. Functional characterization and transcriptomic profiling of a spheroid-forming midgut cell line from Helicoverpa zea (Lepidoptera: Noctuidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 128:103510. [PMID: 33276037 DOI: 10.1016/j.ibmb.2020.103510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Insect cell lines have been frequently used in insect science research in recent years. Establishment of cell lines from specialized tissues like the lepidopteran midgut is expected to facilitate research efforts towards the understanding of uptake and metabolic properties, as well as the design of assays for use in pesticide discovery. However, the number of available lines from specialized tissues of insects and the level of understanding of the biological processes taking place in insect cells is far behind mammalian systems. In this study we examine two established cell lines of insect midgut origin, investigate their growth parameters and amenability to transfection and genetic manipulation, and test their potential to form spheroid-like 3D structures. Our results indicate that a midgut-derived cell line from Helicoverpa zea, RP-HzGUT-AW1, is amenable to genetic manipulation by transfection with a standard insect expression vector and has excellent ability to form spheroids. To further investigate the differentiation status of this line, we examined for expression of several candidate marker genes from different midgut cell types, enterocytes (ECs), Goblet cells (GCs), enteroendocrine cells (EEs) and intestinal stem cells (ISCs), indicating that both certain ISC and certain differentiated cell markers were present. To acquire a more detailed perspective of the differentiation landscape of the specific cells, we performed an RNAseq analysis of RP-HzGUT-AW1 grown either in 2D or 3D cultures. We hypothesize that RP-HzGUT-AW1 are in an "arrested" developmental stage between ISC and terminal differentiation. Furthermore, an enrichment of stress response and oxidoreductase genes was observed in the spheroid samples while no significant difference was evident in differentiation markers between cells grown in 2D and 3D. These results render RP-HzGUT-AW1 as the most well-characterized insect gut derived cell line so far, and lay the groundwork for future work investigating midgut cell lines application potential.
Collapse
Affiliation(s)
- Elena Vorgia
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Mantha Lamprousi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Crete, Greece
| | - Shane Denecke
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Kathrin Vogelsang
- Bayer AG, CropScience Division, R&D Pest Control, D-40789 Monheim, Germany
| | - Sven Geibel
- Bayer AG, CropScience Division, R&D Pest Control, D-40789 Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece; Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Greece
| | - Vassilis Douris
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece; Department of Biological Applications and Technology, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
10
|
Binding specificity of ostreolysin A6 towards Sf9 insect cell lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183307. [PMID: 32298680 DOI: 10.1016/j.bbamem.2020.183307] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 01/05/2023]
Abstract
Oyster mushrooms (Pleurotus spp.) have recently been shown to produce insecticidal bi-component protein complexes based on the aegerolysin proteins. A role for these proteins is thus indicated for defence and protection of the mushroom, and we propose their use as new environmentally friendly bioinsecticides. These aegerolysin-based protein complexes permeabilise artificial lipid vesicles through aegerolysin binding to an insect-specific sphingolipid, ceramide phosphoethanolamine (CPE), and they are cytotoxic for the Spodoptera frugiferda (Sf9) insect cell line. Tandem mass spectrometry analysis of the Sf9 lipidome uncovered lipids not previously reported in the literature, including in particular C14 sphingosine-based CPE molecular species, which comprised ~4 mol% of the whole lipidome. Further analysis of the lipid binding specificity of an aegerolysin from P. ostreatus, ostreolysin A6 (OlyA6), to lipid vesicles composed of commercial lipids, to lipid vesicles composed of the total lipid extract from Sf9 cells, and to HPLC-separated Sf9 cell lipid fractions containing ceramides, confirmed CPE as the main OlyA6 receptor, but also highlighted the importance of membrane cholesterol for formation of strong and stable interactions of OlyA6 with artificial and natural lipid membranes. Binding assays performed with glycan arrays and surface plasmon resonance, which included invertebrate-specific glycans, excluded these saccharides as potential additional OlyA6 receptors.
Collapse
|
11
|
Santos Junior VCD, Martínez LC, Plata-Rueda A, Fernandes FL, Tavares WDS, Zanuncio JC, Serrão JE. Histopathological and cytotoxic changes induced by spinosad on midgut cells of the non-target predator Podisus nigrispinus Dallas (Heteroptera: Pentatomidae). CHEMOSPHERE 2020; 238:124585. [PMID: 31437628 DOI: 10.1016/j.chemosphere.2019.124585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Broad-spectrum insecticides used in pest control are a risk for non-target insects. Their compatibility to the insecticide spinosad, used in agriculture and forestry as a biological control tool, needs to be evaluated. Podisus nigrispinus Dallas (Heteroptera: Pentatomidae) is a predatory bug used in the pest management of agricultural and forest systems where spinosad is also frequently applied. The aim of this study was to evaluate the toxicity, histopathology and cytotoxicity in midgut cells of P. nigrispinus exposed to spinosad. The toxicity test was performed to determine the lethal concentrations of spinosad after exposure by ingestion. The histopathology and cytotoxicity caused by spinosad were analyzed in the three midgut regions (anterior, middle and posterior) of P. nigrispinus during different exposure periods. Spinosad, at low concentrations, was toxic to P. nigrispinus [LC50 = 3.15 (3.02-3.26) μg.L-1]. Cell degeneration features such as cytoplasm vacuolization, chromatin condensation and release of cell fragments to the midgut lumen were observed in this organ. Cell death via apoptosis was found in the three midgut regions of this predator after exposure to the insecticide. Spinosad is toxic to P. nigrispinus, and causes histological and cytological damage followed by cell death in the midgut, suggesting a dangerous effect on a beneficial non-target insect.
Collapse
Affiliation(s)
| | - Luis Carlos Martínez
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Angelica Plata-Rueda
- Instituto de Ciências Agrárias, Universidade Federal de Viçosa, 38810-000, Rio Paranaíba, Minas Gerais, Brazil.
| | - Flávio Lemes Fernandes
- Instituto de Ciências Agrárias, Universidade Federal de Viçosa, 38810-000, Rio Paranaíba, Minas Gerais, Brazil.
| | | | - José Cola Zanuncio
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Synthesis and biological activities of two camptothecin derivatives against Spodoptera exigua. Sci Rep 2019; 9:18067. [PMID: 31792297 PMCID: PMC6889156 DOI: 10.1038/s41598-019-54596-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/01/2019] [Indexed: 11/29/2022] Open
Abstract
Camptothecin (CPT), a natural alkaloid isolated from Camptotheca acuminata Decne, is found to show potential insecticidal activities with unique action mechanisms by targeting at DNA-topoisomease I (Top1) complex and inducing cell apoptosis. To improve the efficacy against insect pests, two camptothecin (CPT) derivatives were synthesized through introducing two functional groups, 2-nitroaminoimidazoline and 1-chloro-2-isocyanatoethane by esterification reaction. The insecticidal activities of these two derivatives were evaluated at contact toxicity, cytotoxicity and topoisomerase I (Top1) inhibitory activities comparing with CPT and hydroxyl-camptothecin (HCPT). Results showed that compound a, synthesized by introducing 2-nitroaminoimidazoline to CPT, apparently increased contact toxicity to the third larvae of beet armyworm, Spodoptera exigua, and cytotoxicity to IOZCAS-Spex-II cells isolated from S. exigua. However, the inhibition on DNA relaxation activity of Top1 was reduced to less than 5 percentage even at high concentrations (50 and 100 μM). For introducing 1-chloro-2-isocyanatoethane to HCPT, the contact toxicity, cytotoxicity and Top1 inhibitory activity of synthesized compound b were increased significantly compared to CPT and HCPT. These results suggested that both synthesized compounds possessed high efficacy against S. exigua by targeting at Top1 (compound b) or novel mechanism of action (compound a).
Collapse
|
13
|
Shu B, Zhang J, Zeng J, Cui G, Zhong G. Stability of selected reference genes in Sf9 cells treated with extrinsic apoptotic agents. Sci Rep 2019; 9:14147. [PMID: 31578389 PMCID: PMC6775146 DOI: 10.1038/s41598-019-50667-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022] Open
Abstract
As a tightly controlled cell death process, apoptosis eliminates unwanted cells and plays a vital role in multicellular organisms. Previous study have demonstrated that apoptosis occurred in Spodoptera frugiperda cultured Sf9 cells, which triggered by diverse apoptotic stimuli, including azadirachtin, camptothecin and ultraviolet. Due to its simplicity, high sensitivity and reliable specificity, RT-qPCR has been used widespread for analyzing expression levels of target genes. However, the selection of reference genes influences the accuracy of results profoundly. In this study, eight genes were selected for analyses of their suitability as references for normalizing RT-PCR data in Sf9 cells treated with apoptotic agents. Five algorithms, including NormFinder, BestKeeper, Delta Ct method, geNorm, and RefFinder, were used for stability ranking. Based on comprehensively analysis, the expression stability of selected genes varied in cells with different apoptotic stimuli. The best choices for cells under different apoptosis conditions were listed: EF2 and EF1α for cells treated with azadirachtin; RPL13 and RPL3 for cells treated with camptothecin; EF1α and β-1-TUB for cells irradiated under ultraviolet; and EF1α and EF2 for combinational analyses of samples. Our results not only facilitate a more accurate normalization for RT-qPCR data, but also provide the reliable assurance for further studies of apoptotic mechanisms under different stimulus in Sf9 cells.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jingjing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jie Zeng
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Gaofeng Cui
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China. .,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
14
|
Reall T, Kraus S, Goodman CL, Ringbauer J, Geibel S, Stanley D. Next-generation cell lines established from the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro Cell Dev Biol Anim 2019; 55:686-693. [PMID: 31410641 DOI: 10.1007/s11626-019-00394-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/01/2019] [Indexed: 12/30/2022]
Abstract
The fall armyworm, Spodoptera frugiperda (Sf), is a polyphagous lepidopteran herbivore that consumes more than 80 plant species, including many economically important crops, such as corn, soybeans, and sorghum. While already a serious pest in the Americas, it was recently introduced into Africa, India, and China. Because of its high economic costs in the New World and the continent-wide damage potentials in Africa, research to develop advanced pest management technologies is necessary. We are supporting this need by developing novel, next-generation insect cell lines from targeted tissues. Cell lines, such as these, will boost insecticide discovery programs and lead to innovative pest management solutions. Here, we report on the establishment of 16 new cell lines from larval S. frugiperda tissues: nine from the central nervous system, three from the aorta, and four from the testes. We confirmed the identities of the cell lines by DNA amplification fingerprinting polymerase chain reaction, determined their doubling times from growth curves, and described cell types via microscopy. We also developed 16 sublines from three neuronal cell lines.
Collapse
Affiliation(s)
- Tamra Reall
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, 1503 South Providence Road, Columbia, MO, 65203, USA
| | | | - Cynthia L Goodman
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, 1503 South Providence Road, Columbia, MO, 65203, USA.
| | - Joseph Ringbauer
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, 1503 South Providence Road, Columbia, MO, 65203, USA
| | | | - David Stanley
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, 1503 South Providence Road, Columbia, MO, 65203, USA
| |
Collapse
|
15
|
Yooboon T, Kuramitsu K, Bullangpoti V, Kainoh Y, Furukawa S. Cytotoxic effects of β-asarone on Sf9 insect cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21596. [PMID: 31270854 DOI: 10.1002/arch.21596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
β-Asarone is the predominant component of the essential oil of rhizomes of Acorus calamus Linn ( Sweet flag). Although rhizome extracts from this plant have long been used for insect pest control, their cytotoxic effects on insect cells are not well understood. In this study, we evaluated the potency of β-asarone as a natural insecticide by using a Spodoptera frugiperda cell line (Sf9). To assess the cytotoxic effects of β-asarone on Sf9 cells, we observed morphologic changes in treated cells and performed a cell proliferation assay and a DNA fragmentation assay. After 24 and 48 h of treatment with β-asarone, the proliferation of the Sf9 cells was inhibited in a dose-dependent manner, with IC50 values of 0.558 mg/ml at 24 h and 0.253 mg/ml at 48 h. Morphologic changes in β-asarone-treated cells were typical of apoptosis and included loss of adhesion, cell shrinkage, and small apoptotic bodies. The DNA laddering present in β-asarone-treated SF9 cells and annexin V assay confirmed that this compound can induce apoptosis in insect cells. Together, these findings suggest that apoptosis induction may be one mechanism through which β-asarone inhibits the proliferation of insect cells and thus exerts insecticidal effects.
Collapse
Affiliation(s)
- Thitaree Yooboon
- Department of Zoology, Animal Toxicology and Physiology Specialty Research Unit, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Laboratory of Applied Entomology and Zoology, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazumu Kuramitsu
- Laboratory of Applied Entomology and Zoology, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Vasakorn Bullangpoti
- Department of Zoology, Animal Toxicology and Physiology Specialty Research Unit, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Yooichi Kainoh
- Laboratory of Applied Entomology and Zoology, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seiichi Furukawa
- Laboratory of Applied Entomology and Zoology, Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
16
|
Cui G, Shu B, Veeran S, Yuan H, Yi X, Zhong G. Natural β-carboline alkaloids regulate the PI3K/Akt/mTOR pathway and induce autophagy in insect Sf9 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 154:67-77. [PMID: 30765058 DOI: 10.1016/j.pestbp.2018.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/18/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
The β-carboline alkaloids are a large group of naturally occurring and synthetic indole alkaloids with remarkable pharmacological properties. Furthermore, these alkaloids have also been reported to be effective agents for controlling many pests and plant pathogenic nematodes. However, studies on these potential insecticidal components are scarce. The previous finding that these bioactive compounds can induce programmed cell death in cancer cell lines provided a new insight for exploration of their toxicological mechanisms on insects. In the present study, the cytotoxicity of five natural harmala alkaloids was measured, and the autophagy-inducing effect was confirmed in the Spodoptera frugiperda Sf9 cultured cell line. The results demonstrated that these alkaloids inhibited the proliferation of Sf9 cells in a dose- and time-dependent manner, and the unsaturated β-carboline alkaloids, harmine and harmol, exhibited stronger autophagy induction activity based on monodansylcadaverineand LysoTracker Red staining. Many autophagy-related genes were increased after β-carbolines treatment at the RNA level, and the protein expression of Sf-Atg8 was also confirmed to increase after treatment. In addition, the primary autophagic signaling pathway, the PI3K/Akt/mTOR pathway, was altered during the procedure. Furthermore, experiments with special inhibitors and activators were performed to confirm the effect of β-carbolines on this pathway. The results suggested that the PI3K/Akt/mTOR pathway primarily regulated harmine-induced autophagy in insect cells, and this finding may potentially benefit the application of these promising bioactivity components.
Collapse
Affiliation(s)
- Gaofeng Cui
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Benshui Shu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Sethuraman Veeran
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Haiqi Yuan
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Ren X, Zhang L, Zhang Y, Mao L, Jiang H. Oxidative stress induced by camptothecin and hydroxyl-camptothecin in IOZCAS-Spex-II cells of Spodoptera exigua Hübner. Comp Biochem Physiol C Toxicol Pharmacol 2019; 216:52-59. [PMID: 30414480 DOI: 10.1016/j.cbpc.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022]
Abstract
Camptothecin (CPT) and its derivatives show potential insecticidal activities against various insect species due to target at DNA-Topoisomerase I complex and induce apoptosis death of insect cells. Oxidative stress resulted from excessive production of reactive oxygen species (ROS) has been proved to be an important component of the mechanism of pesticide toxicity. The aim of the present study was to investigate whether CPTs promote the increasing of intracellular oxidative stress by enhancing accumulation of intracellular ROS in IOZCAS-Spex-II cells derived from Spodoptera exigua Hübner. Results demonstrated that there was a significant increase in the level of intracellular ROS accompanied by markedly increased DNA damage, lipid peroxidation and protein carbonylation after exposing to CPT and hydroxyl-camptothecin (HCPT) in IOZCAS-Spex-II cells. These results documented ROS generation induced by CPT and HCPT played an essential role in toxicity and mode of action of CPTs against insects. This research will throw new light on the critical roles of oxidative stress in CPTs- induced toxicity against insects, as well as on the exploration of using CPTs as a kind of insecticide with unique mode of action in the future.
Collapse
Affiliation(s)
- Xiaoshuang Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
18
|
Jiang Z, Zhang Z, Cui G, Sun Z, Song G, Liu Y, Zhong G. DNA Topoisomerase 1 Structure-BASED Design, Synthesis, Activity Evaluation and Molecular Simulations Study of New 7-Amide Camptothecin Derivatives Against Spodoptera frugiperda. Front Chem 2018; 6:456. [PMID: 30345269 PMCID: PMC6182061 DOI: 10.3389/fchem.2018.00456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 09/13/2018] [Indexed: 02/04/2023] Open
Abstract
Camptothecin and its derivatives (CPTs) have strong toxicity to eukaryotic cells by targeting their DNA topoisomerase 1 (Top1) protein and have been increasingly explored as potential pesticides for plant protection. However, the detailed structure-binding mechanism of the interactions between CPTs and the insect Top1 protein remains unclear, which significantly hinders the development of novel CPTs as new insecticides. Herein, a series of 7-amide camptothecin analogs based on the binding mode of camptothecin in complex with Top1 (Sf Top1)-DNA from Spodoptera frugiperda cultured cell line Sf9 were designed and synthesized. Fifteen of these compounds exhibited excellent cytotoxic activity (values of IC50 from 2.01 to 6.78 μM) compared with camptothecin (29.47 μM). The molecular simulations revealed the binding mechanism when the camptothecin parent rings were inserting parallel to DNA bases and stabling the ternary complex by π-π stacked and hydrogen-bond interactions, and further suggested that introduction of lipophilic and some electron-withdrawing groups on the amide linkage of camptothecin could be beneficial to its activity via some non-covalent interactions. Furthermore, almost all the synthesized compounds could inhibit the growth of Spodoptera litura larvae strongly (Inhibition rate from 50.20 to 79.05%), superior or comparable to camptothecin (55.69%) after 8 days of exposure. In particular, the compounds 4c, 4d, 4f, and 4j, which presented more than 70% inhibitory activities, were deserved to be developed as potential biorational pesticides. The information described here would be useful for the further design and development of potentially effective pesticides in the field of plant protection.
Collapse
Affiliation(s)
- Zhiyan Jiang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, and Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhijun Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, and Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Gaofeng Cui
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, and Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhipeng Sun
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, and Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Yingqian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Guohua Zhong
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, and Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Li H, Xia Y. Improving the secretory expression of active recombinant AaIT in Pichia pastoris by changing the expression strain and plasmid. World J Microbiol Biotechnol 2018; 34:104. [PMID: 29951705 DOI: 10.1007/s11274-018-2484-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/16/2018] [Indexed: 11/28/2022]
Abstract
Scorpion long-chain insect selective neurotoxin AaIT has the potential to be used against agricultural insect pests. However, there is still a lack of a heterologous gene expression system that can express AaIT efficiently. Here, using X33 as the host strain and pPICZαA as the expression vector, one transformant had the highest expression of recombinant AaIT (rAaIT) was obtained, and secreted as high as 240 mg/l rAaIT in fed-batch fermentation. Secretory rAaIT was purified by Ni2+-nitriloacetic affinity and CM chromatography, and 8 mg of high purity rAaIT were purified from 200 ml fed-batch fermentation cultures. Injecting silkworm (Bombyx mori Linnaeus) and Galleria mellonella larvae with rAaIT resulted in obvious neurotoxin symptoms and led to death. These results demonstrate that a large amount of anti-insect active rAaIT could be prepared efficiently.
Collapse
Affiliation(s)
- Hongbo Li
- Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China. .,The Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China.
| | - Yuxian Xia
- Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
20
|
Zhang J, Zhang Z, Shu B, Cui G, Zhong G. Cytotoxic and Apoptotic Activity of the Novel Harmine Derivative ZC-14 in Sf9 Cells. Int J Mol Sci 2018. [PMID: 29534494 PMCID: PMC5877672 DOI: 10.3390/ijms19030811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Harmine, one of the natural β-carboline alkaloids extracted from Peganum harmala L., exhibits broad spectrum but limited insecticidal ability against many pests. So there is an urgent need to synthesize novel derivatives with high efficiency. In the present study, a new synthetic compound, [1-(2-naphthyl)-3-(2-thioxo-1,3,4-oxadiazol-5-yl) β-carboline] (ZC-14), showed a strong proliferation inhibition effect against the Spodoptera frugiperda Sf9 cell line in a dose-dependent manner. Simultaneously, apoptosis induced by 7.5 μg/mL ZC-14 was confirmed with physiological and biochemical evidence, including typical apoptosis characteristics with shrinkage, apoptotic bodies, nuclear condensation/fragmentation, a clear DNA ladder, and a series of apoptotic rates. In addition, mitochondria were confirmed to be involved in apoptosis induced by ZC-14 accompanied with the loss of mitochondrial membrane potential (Δψm), the release of cytochrome c from mitochondria into the cytosol and increased expression of cleaved-caspase-3. However, harmine could not induce apoptosis at the same concentration. In summary, these data indicated that compound ZC-14 has a higher cytotoxicity than harmine against Sf9 cells. Besides, it exhibited an anti-proliferative effect in Sf9 cells via inducing apoptosis in which the mitochondrial apoptotic pathway plays a crucial role.
Collapse
Affiliation(s)
- Jingjing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Zhijun Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Benshui Shu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Gaofeng Cui
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
21
|
Transcriptome analysis of Spodoptera frugiperda Sf9 cells reveals putative apoptosis-related genes and a preliminary apoptosis mechanism induced by azadirachtin. Sci Rep 2017; 7:13231. [PMID: 29038528 PMCID: PMC5643380 DOI: 10.1038/s41598-017-12713-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022] Open
Abstract
As an important botanical pesticide, azadirachtin demonstrates broad insecticidal activity against many agricultural pests. The results of a previous study indicated the toxicity and apoptosis induction of azadirachtin in Spodoptera frugiperda Sf9 cells. However, the lack of genomic data has hindered a deeper investigation of apoptosis in Sf9 cells at a molecular level. In the present study, the complete transcriptome data for Sf9 cell line was accomplished using Illumina sequencing technology, and 97 putative apoptosis-related genes were identified through BLAST and KEGG orthologue annotations. Fragments of potential candidate apoptosis-related genes were cloned, and the mRNA expression patterns of ten identified genes regulated by azadirachtin were examined using qRT-PCR. Furthermore, Western blot analysis showed that six putative apoptosis-related proteins were upregulated after being treated with azadirachtin while the protein Bcl-2 were downregulated. These data suggested that both intrinsic and extrinsic apoptotic signal pathways comprising the identified potential apoptosis-related genes were potentially active in S. frugiperda. In addition, the preliminary results revealed that caspase-dependent or caspase-independent apoptotic pathways could function in azadirachtin-induced apoptosis in Sf9 cells.
Collapse
|
22
|
Ren X, Zhang L, Zhang Y, Mao L, Jiang H. Mitochondria response to camptothecin and hydroxycamptothecine-induced apoptosis in Spodoptera exigua cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 140:97-104. [PMID: 28755702 DOI: 10.1016/j.pestbp.2017.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/06/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Camptothecin (CPT), a natural alkaloid extracted from Camptotheca acuminata Decne, exhibits potential insecticidal activities against various insect species. Our previous studies have showed that CPTs induced apoptosis in Spodoptera exigua Hübner cell line which is mediated preliminarily by the mitochondrial pathway. In this study, changes of mitochondrial morphologic and function were investigated to characterize mitochondrial responses in CPTs induced apoptosis. After incubation IOZCAS-Spex-II cells with CPT and HCPT, mitochondria exhibited obvious changes in the size, morphology and distribution, and ultrastructural alterations characterized by disruption of cristae and membrane. The typical characteristics of apoptosis, including chromatin condensation, nucleus shrivels, and cytoplasmic vacuoles were found. CPT and HCPT induced IOZCAS-Spex-II cell apoptosis accompanied with increased dramatically cytosolic Ca2+ and reduced mitochondrial membrane potential in the dose and time-dependent pattern. Cytochrome c release induced by CPT and HCPT was partially reduced in the presence of CsA, which suggested that the opening of mitochondrial permeability transition pore. Taken together, these results suggested the role of mitochondria in regulation of insect cell apoptosis, which provided the basic information for illustrating the apoptosis pathway in insects and for using reasonably CPTs to control insect pests.
Collapse
Affiliation(s)
- Xiaoshuang Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
23
|
Shang X, Guo X, Yang F, Li B, Pan H, Miao X, Zhang J. The toxicity and the acaricidal mechanism against Psoroptes cuniculi of the methanol extract of Adonis coerulea Maxim. Vet Parasitol 2017; 240:17-23. [DOI: 10.1016/j.vetpar.2017.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 11/28/2022]
|
24
|
Chemical composition and insecticidal property of Myrsine stolonifera (Koidz.) walker (Family: Myrsinaceae) on Musca domestica (Diptera: Muscidae). Acta Trop 2017; 170:70-78. [PMID: 28237806 DOI: 10.1016/j.actatropica.2017.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 02/05/2017] [Accepted: 02/16/2017] [Indexed: 02/01/2023]
Abstract
Musca domestica is one of the most important pests of human health, and has developed strong resistance to many chemicals used for its control. One important approach for creating new pesticides is the exploration of novel compounds from plants. During a wide screening of plants with insecticidal properties that grow in southern China, we found that the methanolic extracts of Myrsine stolonifera had insecticidal activity against the adults of M. domestica. However, the insecticidal constituents and mechanisms of the M. stolonifera extracts remain unclear. The insecticidal components of the methanolic extracts of M. stolonifera were isolated with activity-guided fractionation. From the spectra of nuclear magnetic resonance (NMR) and mass spectrometry (MS), the compounds were identified as syringing (1), 2,6-dimethoxy-4-hydroxyphenol-1-O-β-d-glu (2), kaempferol-3-O-glu-rha-glu (3), and quercetin-3-O-glu-rha-glu (4). This study is the first to report the spectral data for compounds 3 and 4, and their LC50 values were 0.52mg/g sugar and 0.36mg/g sugar 24h after treatment of the adults of M. domestica, respectively. Compounds 3 and 4 (LC25) also inhibited the activities of the enzymes carboxylesterase, glutathione S-transferase, mixed function oxidase, and acetylcholine esterase of adult M. domestica, particularly mixed function oxidase and acetylcholine esterase. The cytotoxic effects of compounds 3 and 4 on cell proliferation, mitochondrial membrane potentials (MMP) and reactive oxygen species (ROS) were demonstrated on SL-1 cells. From the extracts of M. stolonifera, quercetin-3-O-glu-rha-glu and kaempferol-3-O-glu-rha-glu have displayed comparable toxicities to rotenone on M. domestica and also exhibited cytotoxic effects on SL-1 cells; therefore, the extracts of M. stolonifera and their compounds have potential as botanical insecticides to control M. domestica.
Collapse
|
25
|
Yang M, Wang B, Gao J, Zhang Y, Xu W, Tao L. Spinosad induces programmed cell death involves mitochondrial dysfunction and cytochrome C release in Spodoptera frugiperda Sf9 cells. CHEMOSPHERE 2017; 169:155-161. [PMID: 27870937 DOI: 10.1016/j.chemosphere.2016.11.065] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/22/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
Spinosad, a reduced-risk insecticide, acts on the nicotinic acetylcholine receptors and the gamma-aminobutyric acid receptor in the nervous system of target insects. However, its mechanism of action in non-neural insect cells is unclear. This study aimed to evaluate mitochondrial functional changes associated with spinosad in Spodoptera frugiperda (Sf9) insect cells. Our results indicate that in Sf9 cells, spinosad induces programmed cell death and mitochondrial dysfunction through enhanced reactive oxygen species production, mitochondrial permeability transition pore (mPTP) opening, and mitochondrial membrane potential collapse, eventually leading to cytochrome C release and apoptosis. The cytochrome C release induced by spinosad treatment was partly inhibited by the mPTP inhibitors cyclosporin A and bongkrekic acid. Subsequently, we found that spinosad downregulated Bcl-2 expression and upregulated p53 and Bax expressions, activated caspase-9 and caspase-3, and triggered PARP cleavage in Sf9 cells. These findings suggested that spinosad-induced programmed cell death was modulated by mitochondrial dysfunction and cytochrome C release.
Collapse
Affiliation(s)
- Mingjun Yang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Bo Wang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jufang Gao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yang Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
26
|
Zhu KY. Preface to the Special Issue: Insecticide Toxicology in China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 132:1-2. [PMID: 27521906 DOI: 10.1016/j.pestbp.2016.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506.
| |
Collapse
|