1
|
Coêlho ES, Everthon da Silva Ribeiro J, Oliveira PHA, Lopes WDA, Oliveira AKD, Souza MDF, Lins H, Benedito CP, Silveira LM, Barros Júnior AP, Valadão Silva D. Chemical Desiccation in the Preharvest of Cowpea: A Study of How the Time of Application Interferes in the Enzymatic and Physiological Aspects of Seedlings from Desiccated Plants. ACS OMEGA 2024; 9:34893-34904. [PMID: 39157107 PMCID: PMC11325495 DOI: 10.1021/acsomega.4c04489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
Chemical desiccation in the preharvest of grains and seeds is commonly used in production fields. Using herbicides for this purpose is a viable alternative to reduce beans' exposure to adverse crop conditions. Our objectives were to evaluate (1) the efficacy of herbicides for accelerated defoliation of cowpea, (2) the impact of herbicide application on antioxidant enzyme activity and protein and amino acid contents in seeds, and (3) the effects of different herbicide application schedules on the physiological aspects of seeds. In the first experiment, in addition to the control treatment (without herbicides), seven herbicides and two mixtures were applied at night: diquat, flumioxazin, diquat + flumioxazin, glufosinate ammonium, saflufenacil, carfentrazone, diquat + carfentrazone, atrazine, and glyphosate. Diquat and its mixtures showed greater efficacy in anticipating the harvest. Flumioxazin and diquat alone reduced amino acid content by 61.72 and 51.44%, respectively. The same trend was observed for total soluble proteins. The activity of antioxidant enzymes (CAT, POD, PPO) increased, indicating oxidative stress caused by diquat and flumioxazin. In the second experiment, we tested three application times (6 a.m., 12 p.m., 6 p.m.) with diquat, diquat + flumioxazin, and diquat + carfentrazone. The lowest damage to chlorophyll a was at 6 a.m.; other times reduced photosynthetic pigments and increased carotenoid content. Total soluble sugars decreased by 27.74% with nocturnal application of diquat + flumioxazin. Our data indicate that herbicide use for desiccation affects seed quality. These findings highlight the need for selecting appropriate herbicides and application times. Future research should explore long-term impacts on crop yield and quality.
Collapse
Affiliation(s)
- Ester
dos Santos Coêlho
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | - João Everthon da Silva Ribeiro
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | | | - Welder de Araújo
Rangel Lopes
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | - Anna Kézia
Soares de Oliveira
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | | | - Hamurábi
Anizio Lins
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | - Clarisse Pereira Benedito
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | - Lindomar Maria
da Silveira
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | - Aurélio Paes Barros Júnior
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| | - Daniel Valadão Silva
- Department
of Agronomic and Forestry Sciences, Universidade
Federal Rural do Semi-Árido, Mossoro, Rio Grande do Norte 59625-900, Brazil
| |
Collapse
|
2
|
Li Y, Qiu J, Yang J, Li Y, Zhang H, Zhao F, Tan H. Molecular Mechanism of GmSNE3 Ubiquitin Ligase-Mediated Inhibition of Soybean Nodulation by Halosulfuron Methyl. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14114-14125. [PMID: 38867659 DOI: 10.1021/acs.jafc.4c02621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In this study, the role of E3 ubiquitin ligase GmSNE3 in halosulfuron methyl (HSM) inhibiting soybean nodulation was investigated. GmSNE3 was strongly induced by HSM stress, and the overexpression of GmSNE3 significantly reduced the number of soybean nodules. Further investigation found that GmSNE3 could interact with a nodulation signaling pathway 1 protein (GmNSP1a) and GmSNE3 could mediate the degradation of GmNSP1a. Importantly, GmSNE3-mediated degradation of GmNSP1a could be promoted by HSM stress. Moreover, HSM stress and the overexpression of GmSNE3 resulted in a substantial decrease in the expression of the downstream target genes of GmNSP1a. These results revealed that HSM promotes the ubiquitin-mediated degradation of GmNSP1a by inducing GmSNE3, thereby inhibiting the regulatory effect of GmNSP1a on its downstream target genes and ultimately leading to a reduction in nodulation. Our findings will promote a better understanding of the toxic mechanism of herbicides on the symbiotic nodulation between legumes and rhizobia.
Collapse
Affiliation(s)
- Yuanfu Li
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jingsi Qiu
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jingxia Yang
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yihan Li
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Hui Zhang
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Feng Zhao
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Huihua Tan
- Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
3
|
Lu B, Meng R, Wang Y, Xiong W, Ma Y, Gao P, Ren J, Zhang L, Zhao Z, Fan G, Wen Y, Yuan X. Distinctive physiological and molecular responses of foxtail millet and maize to nicosulfuron. FRONTIERS IN PLANT SCIENCE 2024; 14:1308584. [PMID: 38293619 PMCID: PMC10824897 DOI: 10.3389/fpls.2023.1308584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
Introduction Nicosulfuron is the leading acetolactate synthase inhibitor herbicide product, and widely used to control gramineous weeds. Here, we investigated the metabolic process of nicosulfuron into foxtail millet and maize, in order to clarify the mechanism of the difference in sensitivity of foxtail millet and maize to nicosulfuron from the perspective of physiological metabolism and provide a theoretical basis for the breeding of nicosulfuron-resistant foxtail millet varieties. Methods We treated foxtail millet (Zhangzagu 10, Jingu 21) and maize (Nongda 108, Ditian 8) with various doses of nicosulfuron in both pot and field experiments. The malonaldehyde (MDA) content, target enzymes, detoxification enzymes, and antioxidant enzymes, as well as related gene expression levels in the leaf tissues of foxtail millet and maize were measured, and the yield was determined after maturity. Results The results showed that the recommended dose of nicosulfuron caused Zhangzagu 10 and Jingu 21 to fail to harvest; the yield of the sensitive maize variety (Ditian 8) decreased by 37.09%, whereas that of the resistant maize variety (Nongda 108) did not decrease. Nicosulfuron stress increased the CYP450 enzyme activity, MDA content, and antioxidant enzyme activity of foxtail millet and maize, reduced the acetolactate synthase (ALS) activity and ALS gene expression of foxtail millet and Ditian 8, and reduced the glutathione S-transferase (GST) activity and GST gene expression of foxtail millet. In conclusion, target enzymes, detoxification enzymes, and antioxidant enzymes were involved in the detoxification metabolism of nicosulfuron in plants. ALS and GST are the main factors responsible for the metabolic differences among foxtail millet, sensitive maize varieties, and resistant maize varieties. Discussion These findings offer valuable insights for exploring the target resistance (TSR) and non-target resistance (NTSR) mechanisms in foxtail millet under herbicide stress and provides theoretical basis for future research of develop foxtail millet germplasm with diverse herbicide resistance traits.
Collapse
Affiliation(s)
- Boyu Lu
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Ru Meng
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yiru Wang
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Wei Xiong
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yuchao Ma
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Peng Gao
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Jianhong Ren
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Liguang Zhang
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Zhihai Zhao
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Guangyu Fan
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Yinyuan Wen
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Xiangyang Yuan
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), Shanxi Agricultural University, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Jia Y, Kang L, Wu Y, Zhou C, Li D, Li J, Pan C. Review on Pesticide Abiotic Stress over Crop Health and Intervention by Various Biostimulants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13595-13611. [PMID: 37669447 DOI: 10.1021/acs.jafc.3c04013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Plants are essential for life on earth, and agricultural crops are a primary food source for humans. For the One Health future, crop health is crucial for safe, high-quality agricultural products and the development of future green commodities. However, the overuse of pesticides in modern agriculture raises concerns about their adverse effects on crop resistance and product quality. Recently, biostimulants, including microecological bacteria agents and nanoparticles, have garnered worldwide interest for their ability to sustain plant health and enhance crop resistance. This review analyzed the effects and mechanisms of pesticide stress on crop health. It also investigated the regulation of biostimulants on crop health and the multiomics mechanism, combining research on nanoselenium activating various crop health aspects conducted by the authors' research group. The paper helps readers understand the impact of pesticides on crop health and the positive influence of various biostimulants, especially nanomaterials and small molecules, on crop health.
Collapse
Affiliation(s)
- Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R. China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, P. R. China
| | - Jiaqi Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
5
|
Soares C, Fernandes B, Paiva C, Nogueira V, Cachada A, Fidalgo F, Pereira R. Ecotoxicological relevance of glyphosate and flazasulfuron to soil habitat and retention functions - Single vs combined exposures. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130128. [PMID: 36303338 DOI: 10.1016/j.jhazmat.2022.130128] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate (GLY) and flazasulfuron (FLA) are two non-selective herbicides commonly applied together. However, research focused on their single and combined ecotoxicological impacts towards non-target organisms is still inconclusive. Therefore, this study aimed to test their single effects on soil's habitat and retention functions, and to unravel their combined impacts to earthworms and terrestrial plants. For this, ecotoxicological assays were performed with plants (Medicago sativa), oligochaetes (Eisenia fetida) and collembola (Folsomia candida). Soil elutriates were also prepared and tested in macrophytes (Lemna minor) and microalgae (Raphidocelis subcapitata). FLA (82-413 µg kg-1) reduced earthworms' and collembola's reproduction and severely impaired M. sativa growth, being much more toxic than GLY (up to 30 mg kg-1). In fact, the latter only affected plant growth (≥ 9 mg kg-1) and earthworms (≥ 13 mg kg-1), especially at high concentrations, with no effects on collembola. Moreover, only elutriates from FLA-contaminated soils significantly impacted L. minor and R. sucapitata. The experiments revealed that the co-exposure to GLY and FLA enhanced the toxic effects of contaminated soils not only on plants but also on earthworms'. However, such increase in toxicity was dependent on GLY residual concentrations in soils. Overall, this work underpins that herbicides risk assessment should consider herbicides co-exposures, since the evaluation of single exposures is not representative of current phytosanitary practices and of the potential effects under field conditions, where residues of different compounds may persist in soils.
Collapse
Affiliation(s)
- Cristiano Soares
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Beatriz Fernandes
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine & Environmental Research, Rua dos Bragas, n. 289, 4050-123 Porto, Portugal
| | - Cristiana Paiva
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Verónica Nogueira
- CIIMAR - Interdisciplinary Centre of Marine & Environmental Research, Rua dos Bragas, n. 289, 4050-123 Porto, Portugal; Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Anabela Cachada
- CIIMAR - Interdisciplinary Centre of Marine & Environmental Research, Rua dos Bragas, n. 289, 4050-123 Porto, Portugal; Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Fidalgo
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ruth Pereira
- GreenUPorto & INOV4AGRO - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
6
|
Li X, Liao M, Huang J, Chen L, Huang H, Wu K, Pan Q, Zhang Z, Peng X. Dynamic and fluctuating generation of hydrogen peroxide via photorespiratory metabolic channeling in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1429-1446. [PMID: 36382906 DOI: 10.1111/tpj.16022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The homeostasis of hydrogen peroxide (H2 O2 ), a key regulator of basic biological processes, is a result of the cooperation between its generation and scavenging. However, the mechanistic basis of this balance is not fully understood. We previously proposed that the interaction between glycolate oxidase (GLO) and catalase (CAT) may serve as a molecular switch that modulates H2 O2 levels in plants. In this study, we demonstrate that the GLO-CAT complex in plants exists in different states, which are dynamically interchangeable in response to various stimuli, typically salicylic acid (SA), at the whole-plant level. More crucially, changes in the state of the complex were found to be closely linked to peroxisomal H2 O2 fluctuations, which were independent of the membrane-associated NADPH oxidase. Furthermore, evidence suggested that H2 O2 channeling occurred even in vitro when GLO and CAT worked cooperatively. These results demonstrate that dynamic changes in H2 O2 levels are physically created via photorespiratory metabolic channeling in plants, and that such H2 O2 fluctuations may serve as signals that are mechanistically involved in the known functions of photorespiratory H2 O2 . In addition, our study also revealed a new way for SA to communicate with H2 O2 in plants.
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Mengmeng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Jiayu Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Linru Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Haiyin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Kaixin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Qing Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Zhisheng Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Li Y, Yu H, Liu L, Liu Y, Huang L, Tan H. Transcriptomic and physiological analyses unravel the effect and mechanism of halosulfuron-methyl on the symbiosis between rhizobium and soybean. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114248. [PMID: 36332406 DOI: 10.1016/j.ecoenv.2022.114248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Halosulfuron-methyl (HSM) is a new and highly effective sulfonylurea herbicide widely used in weed control, but its residue in the environment poses a potential risk to soybean. Soybean-rhizobium symbiotic nitrogen fixation is crucial for sustainable agricultural development and ecological environment health. However, the impact of HSM on the symbiosis between soybean and rhizobium is unclear. In this study, the effects of HSM on the soybean-rhizobium symbiotic process and nitrogen fixation were investigated by means of transcriptomic and physiological analyses. Treatment with a concentration of HSM less than 0.5 mg L-1 had no effect on rhizobium growth, but significantly reduced nodules number, the biomass of soybean nodules, and nitrogenase activity in root nodules (P < 0.05). Transcriptomic analysis showed that differentially expressed genes (DEGs) involved in NH4+ assimilation were significantly downregulated (P < 0.05). In addition, the activities of NH4+ assimilation enzymes were markedly reduced. This result was further confirmed by the accumulation of NH4+ in root nodules, indicating that the inhibition of nitrogen fixation by HSM may be caused by excessive NH4+ accumulation in root nodules. Furthermore, DEGs involved in flavonoid synthesis, phytohormone biosynthesis, and phytohormone signaling transduction were significantly downregulated (P < 0.05), which was consistent with the decrease in flavonoid and phytohormone contents determined in this study. These results suggested that HSM may inhibit soybean nodulation by inhibiting flavonoid synthesis in soybean roots, disrupting the balance of plant endogenous hormones in roots during symbiosis, and blocking the transmission of hormone signals during the symbiosis. Our findings provide new insights into the effects of HSM on the legume-rhizobium nodule symbiotic process.
Collapse
Affiliation(s)
- Yuanfu Li
- Guangxi Key Laboratory for Agro-Environment and Agro, Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Huan Yu
- Guangxi Key Laboratory for Agro-Environment and Agro, Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Li Liu
- Guangxi Key Laboratory for Agro-Environment and Agro, Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yanmei Liu
- Guangxi Key Laboratory for Agro-Environment and Agro, Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Lulu Huang
- Guangxi Key Laboratory for Agro-Environment and Agro, Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Huihua Tan
- Guangxi Key Laboratory for Agro-Environment and Agro, Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
8
|
Fd Martini L, Roma-Burgos N, Tseng TM, V Fipke M, A Noldin J, A de Avila L. Acclimation to cold stress reduces injury from low temperature and bispyribac-sodium on rice. PEST MANAGEMENT SCIENCE 2021; 77:4016-4025. [PMID: 33896105 DOI: 10.1002/ps.6425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/05/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND In subtropical areas, early planting exposes rice seedlings to cold stress, impairing seedling growth and making them more vulnerable to other stresses including herbicide injury. The objectives of this work were: to evaluate the effect of cold stress on bispyribac-sodium selectivity in rice; to determine the mechanisms of cold tolerance in sensitive ('Epagri 109') and tolerant ('IRGA 424') rice cultivars; and to ascertain that cold acclimatization influences bispyribac-sodium selectivity in rice. RESULTS Prolonged cold stress caused high lipid peroxidation, increased rice injury, and stunted growth. Short-term acclimation with cold stress reduced rice injury with bispyribac-sodium. Total phenols were upregulated in rice exposed to cold stress. Prolonged cold stress increased the superoxide dismutase and catalase activity in IRGA 424. Antioxidant activity was higher in the cold-tolerant than in the cold-sensitive cultivar. Only catalase activity was responsive to bispyribac-sodium. OsRAN2, OsGSTL2, and CYP72A21 were upregulated by cold and herbicide stress in both cultivars. OsGSTL2 was upregulated more in IRGA 424 than in Epagri 109. OsFAD8 was upregulated in cold-sensitive rice exposed to short-duration cold stress but was not responsive to bispyribac-sodium. CONCLUSION Cold stress reduces bispyribac-sodium selectivity in rice. Short-term acclimation to cold stress reduces the effect of cold stress and enhances bispyribac-sodium selectivity. The tolerance of rice (IRGA 424) to cold stress is due to differential induction of protection genes CYP72A21 and OsGSTL2 associated with herbicide metabolism, together with the accumulation of total phenols and higher activity of antioxidant enzymes.
Collapse
Affiliation(s)
- Luiz Fd Martini
- Crop Protection Discovery & Development Department, Corteva Agriscience, Barueri, SP, Brazil
- Crop Protection Department, Federal University of Pelotas - UFPel, Pelotas, RS, Brazil
| | - Nilda Roma-Burgos
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Te-Ming Tseng
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS, USA
| | - Marcus V Fipke
- Crop Protection Department, Federal University of Pelotas - UFPel, Pelotas, RS, Brazil
| | - José A Noldin
- Institution for Agricultural Research and Rural Extension of Santa Catarina State/Itajaí Experimental Station - Epagri, Itajaí, SC, Brazil
| | - Luis A de Avila
- Crop Protection Department, Federal University of Pelotas - UFPel, Pelotas, RS, Brazil
| |
Collapse
|
9
|
Liu S, Cui S, Zhang X, Wang Y, Mi G, Gao Q. Synergistic Regulation of Nitrogen and Sulfur on Redox Balance of Maize Leaves and Amino Acids Balance of Grains. FRONTIERS IN PLANT SCIENCE 2020; 11:576718. [PMID: 33343592 PMCID: PMC7746645 DOI: 10.3389/fpls.2020.576718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
As a primary food crop, maize is widely grown around the world. However, the deficiency of essential amino acids, such as lysine, tryptophan, and methionine, results in poor nutritional quality of maize. In addition, the protein concentration of maize declines with the increase in yield, which further reduces the nutritional quality. Here, the photosynthesis of leaves, grain amino acid composition, and stoichiometry of N and S are explored. The results show that N and S maintained the redox balance by increasing the content of glutathione in maize leaves, thereby enhancing the photosynthetic rate and maize yield. Simultaneously, the synergy of N and S increased the grain protein concentration and promoted amino acid balance by increasing the cysteine concentration in maize grains. The maize yield, grain protein concentration, and concentration of essential amino acids, such as lysine, tryptophan, and methionine, could be simultaneously increased in the N:S ratio range of 11.0 to 12.0. Overall, the synergy of N and S simultaneously improved the maize yield and nutritional quality by regulating the redox balance of maize leaves and the amino acids balance of grains, which provides a new theoretical basis and practical method for sustainable production of maize.
Collapse
Affiliation(s)
- Shuoran Liu
- Key Laboratory of Sustainable Utilization of Soil Resources in The Commodity Grain Bases of Jilin Province, College of Resource and Environmental Sciences, Jilin Agricultural University, Changchun, China
| | - Shuai Cui
- Key Laboratory of Sustainable Utilization of Soil Resources in The Commodity Grain Bases of Jilin Province, College of Resource and Environmental Sciences, Jilin Agricultural University, Changchun, China
| | - Xue Zhang
- Key Laboratory of Sustainable Utilization of Soil Resources in The Commodity Grain Bases of Jilin Province, College of Resource and Environmental Sciences, Jilin Agricultural University, Changchun, China
| | - Yin Wang
- Key Laboratory of Sustainable Utilization of Soil Resources in The Commodity Grain Bases of Jilin Province, College of Resource and Environmental Sciences, Jilin Agricultural University, Changchun, China
| | - Guohua Mi
- College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Qiang Gao
- Key Laboratory of Sustainable Utilization of Soil Resources in The Commodity Grain Bases of Jilin Province, College of Resource and Environmental Sciences, Jilin Agricultural University, Changchun, China
| |
Collapse
|
10
|
Li Y, Zhang Q, Yu Y, Li X, Tan H. Integrated proteomics, metabolomics and physiological analyses for dissecting the toxic effects of halosulfuron-methyl on soybean seedlings (Glycine max merr.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:303-315. [PMID: 33157422 DOI: 10.1016/j.plaphy.2020.10.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Halosulfuron methyl (HSM) is a herbicide widely used to control sedge and broad-leaved weeds during crop production, but its environmental residue may damage non-target crops. Here, proteomics and metabolomics methods were used to explore the phytotoxicity mechanisms of HSM against soybean (Glycine max Merr.). Soybean seedlings were exposed to 0.01, 0.05 and 0.5 mg/L HSM for 8 d. The HSM applications significantly reduced chlorophyll and carotenoid contents in HSM-treated seedlings. Additionally, chlorophyll a fluorescence was seriously affected. The glutathione, hydrogen peroxide and malondialdehyde contents, as well as antioxidant enzyme activities, significantly increased in seedlings exposed to HSM. Furthermore, five enzymes involved in the tricarboxylic acid (TCA) cycle, α-ketoglutarate dehydrogenase, isocitrate dehydrogenase, aconitase, malic dehydrogenase and succinate dehydrogenase, were inhibited to varying degrees in HSM-treated seedlings compared with controls. Proteomics results showed multiple differentially abundant proteins involved in chlorophyll synthesis, photosystem processes and chloroplast ATP synthetase were down-regulated. Metabolomics analyses revealed that metabolites involved in the TCA cycle decreased significantly. Moreover, metabolites and proteins related to reactive oxygen species detoxification accumulated. In conclusion, the phytotoxicity mechanisms of HSM against soybean mainly act by damaging the photosynthetic machinery, inhibiting chlorophyll synthesis, interrupting the TCA cycle and causing oxidative stress. These results provide new insights into the toxicity mechanisms of sulfonylurea herbicides against non-target crops.
Collapse
Affiliation(s)
- Yuanfu Li
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Qiannan Zhang
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yinfang Yu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xuesheng Li
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| | - Huihua Tan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
11
|
A common wild rice-derived BOC1 allele reduces callus browning in indica rice transformation. Nat Commun 2020; 11:443. [PMID: 31974373 PMCID: PMC6978460 DOI: 10.1038/s41467-019-14265-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 12/20/2019] [Indexed: 12/22/2022] Open
Abstract
Callus browning, a common trait derived from the indica rice cultivar (Oryza sativa L.), is a challenge to transformation regeneration. Here, we report the map-based cloning of BROWNING OF CALLUS1 (BOC1) using a population derived from crossing Teqing, an elite indica subspecies exhibiting callus browning, and Yuanjiang, a common wild rice accession (Oryza rufipogon Griff.) that is less susceptible to callus browning. We show that BOC1 encodes a SIMILAR TO RADICAL-INDUCED CELL DEATH ONE (SRO) protein. Callus browning can be reduced by appropriate upregulation of BOC1, which consequently improves the genetic transformation efficiency. The presence of a Tourist-like miniature inverted-repeat transposable element (Tourist MITE) specific to wild rice in the promoter of BOC1 increases the expression of BOC1 in callus. BOC1 may decrease cell senescence and death caused by oxidative stress. Our study provides a gene target for improving tissue culturability and genetic transformation. Callus browning heavily affects indica rice transformation regeneration. Here, the authors show transposon insertion in the promoter of BOC1 gene, encoding a SIMILAR TO RADICAL-INDUCED CELL DEATH ONE protein, can upregulate its expression and decrease callus browning in cultivated rice by releasing oxidative stress.
Collapse
|
12
|
Caverzan A, Piasecki C, Chavarria G, Stewart CN, Vargas L. Defenses Against ROS in Crops and Weeds: The Effects of Interference and Herbicides. Int J Mol Sci 2019; 20:ijms20051086. [PMID: 30832379 PMCID: PMC6429093 DOI: 10.3390/ijms20051086] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/25/2019] [Indexed: 01/20/2023] Open
Abstract
The antioxidant defense system acts to maintain the equilibrium between the production of reactive oxygen species (ROS) and the elimination of toxic levels of ROS in plants. Overproduction and accumulation of ROS results in metabolic disorders and can lead to the oxidative destruction of the cell. Several stress factors cause ROS overproduction and trigger oxidative stress in crops and weeds. Recently, the involvement of the antioxidant system in weed interference and herbicide treatment in crops and weeds has been the subject of investigation. In this review, we address ROS production and plant mechanisms of defense, alterations in the antioxidant system at transcriptional and enzymatic levels in crops induced by weed interference, and herbicide exposure in crops and weeds. We also describe the mechanisms of action in herbicides that lead to ROS generation in target plants. Lastly, we discuss the relations between antioxidant systems and weed biology and evolution, as well as the interactive effects of herbicide treatment on these factors.
Collapse
Affiliation(s)
- Andréia Caverzan
- Faculty of Agronomy and Veterinary Medicine, Agronomy Post-Graduate Program, University of Passo Fundo (UPF), Passo Fundo 99052-900, Brazil.
| | - Cristiano Piasecki
- Department of Crop Protection, Federal University of Pelotas, Pelotas 96160-000, Brazil.
| | - Geraldo Chavarria
- Faculty of Agronomy and Veterinary Medicine, Agronomy Post-Graduate Program, University of Passo Fundo (UPF), Passo Fundo 99052-900, Brazil.
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996-4561, USA.
| | - Leandro Vargas
- Department of Weed Science, Brazilian Agricultural Research Corporation (EMBRAPA), Passo Fundo 99050-970, Brazil.
| |
Collapse
|
13
|
Luo XW, Zhang DY, Zhu TH, Zhou XG, Peng J, Zhang SB, Liu Y. Adaptation mechanism and tolerance of Rhodopseudomonas palustris PSB-S under pyrazosulfuron-ethyl stress. BMC Microbiol 2018; 18:207. [PMID: 30526497 PMCID: PMC6286529 DOI: 10.1186/s12866-018-1361-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pyrazosulfuron-ethyl is a long lasting herbicide in the agro-ecosystem and its residue is toxic to crops and other non-target organisms. A better understanding of molecular basis in pyrazosulfuron-ethyl tolerant organisms will shed light on the adaptive mechanisms to this herbicide. RESULTS Pyrazosulfuron-ethyl inhibited biomass production in Rhodopseudomonas palustris PSB-S, altered cell morphology, suppressed flagella formation, and reduced pigment biosynthesis through significant suppression of carotenoids biosynthesis. A total of 1127 protein spots were detected in the two-dimensional gel electrophoresis. Among them, 72 spots representing 56 different proteins were found to be differently expressed using MALDI-TOF/TOF-MS, including 26 up- and 30 down-regulated proteins in the pyrazosulfuron-ethyl-treated PSB-S cells. The up-regulated proteins were involved predominantly in oxidative stress or energy generation pathways, while most of the down-regulated proteins were involved in the biomass biosynthesis pathway. The protein expression profiles suggested that the elongation factor G, cell division protein FtsZ, and proteins associated with the ABC transporters were crucial for R. palustris PSB-S tolerance against pyrazosulfuron-ethyl. CONCLUSION Up-regulated proteins, including elongation factor G, cell division FtsZ, ATP synthase, and superoxide dismutase, and down-regulated proteins, including ALS III and ABC transporters, as well as some unknown proteins might play roles in R. palustris PSB-S adaptation to pyrazosulfuron-ethyl induced stresses. Functional validations of these candidate proteins should help to develope transgenic crops resistant to pyrazosulfuron-ethyl.
Collapse
Affiliation(s)
- Xiang-Wen Luo
- Key laboratory of pest management of horticultural crop of Hunan province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province People’s Republic of China
- Plant Protection College, Hunan Agricultural University, Changsha, 410128 China
| | - De-Yang Zhang
- Key laboratory of pest management of horticultural crop of Hunan province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province People’s Republic of China
- Plant Protection College, Hunan Agricultural University, Changsha, 410128 China
| | - Teng-Hui Zhu
- Plant Protection College, Hunan Agricultural University, Changsha, 410128 China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546 USA
| | - Jing Peng
- Key laboratory of pest management of horticultural crop of Hunan province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province People’s Republic of China
- Plant Protection College, Hunan Agricultural University, Changsha, 410128 China
| | - Song-Bai Zhang
- Key laboratory of pest management of horticultural crop of Hunan province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province People’s Republic of China
| | - Yong Liu
- Key laboratory of pest management of horticultural crop of Hunan province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province People’s Republic of China
- Plant Protection College, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|