1
|
Cotrin JC, Dos Santos Junior GC, Cadaxo AS, Pereira JS, Spitz M, de Rosso ALZ, Veras RP, Valente AP, Pimentel MMG, Santos-Rebouças CB. Plasma and urinary metabolomic signatures differentiate genetic and idiopathic Parkinson's disease. Brain Res 2025; 1858:149625. [PMID: 40204143 DOI: 10.1016/j.brainres.2025.149625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Parkinson's disease (PD) is marked by alpha-synuclein accumulation and progressive dopaminergic neuron loss. Using Nuclear Magnetic Resonance (NMR)-based metabolomics, we uncovered metabolic disturbances in idiopathic PD (iPD) and PD linked to LRRK2, GBA1, and PRKN variants in a Brazilian ethnically diverse cohort, free of comorbidities, in comparison to healthy, age-matched controls. In plasma, significant PD-associated metabolites included histidine, acetate, acetoacetate, glutamine, glucose, lipids and lipoproteins, N-acetyl-glycoproteins, and sarcosine. Urine samples revealed alterations in creatine, creatinine, L-asparagine, trimethylamine, 3-beta-hydroxybutyrate, isovaleric acid, glutamine, urea, glycine, choline, arginine, and cysteine in association with PD. Notably, creatine, creatinine, acetate, glucose, and histidine showed pathway influences from LRRK2, GBA1, and PRKN variants. Enrichment analyses highlighted disruptions in glyoxylate and dicarboxylate metabolism (plasma) as well as serine, threonine, and glycine metabolism (urine). Additionally, a metabolite-gene-disease interaction network identified 15 genes associated with PD that interact with key metabolites, highlighting MAPT, SNCA, RERE, and KCNN3 as key players in both plasmaandurine. NMR in saliva samples did not show significant differences between PD groups and controls. Our findings underscore PD-associated metabolites, particularly related to arginine metabolism, the urea cycle, glutamate metabolism, glucose metabolism, and gut microbiota. These pathways and gene interactions may serve as potential biomarkers for PD diagnosis and precision medicine strategies.
Collapse
Affiliation(s)
- Juliana Cordovil Cotrin
- Human Genetics Service, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Gilson Costa Dos Santos Junior
- Laboratory of Metabolomics, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - André Simões Cadaxo
- Human Genetics Service, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Joao Santos Pereira
- Movement Disorders Clinic, Neurology Service, Pedro Ernesto University Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Mariana Spitz
- Movement Disorders Clinic, Neurology Service, Pedro Ernesto University Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ana Lúcia Zuma de Rosso
- Department of Neurology, Hospital Universitário Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Peixoto Veras
- Institute of Human Aging, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ana Paula Valente
- National Center of Nuclear Magnetic Resonance, Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Márcia Mattos Gonçalves Pimentel
- Human Genetics Service, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Cíntia Barros Santos-Rebouças
- Human Genetics Service, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Ntawubizi M, Mukamuhirwa ML. A reflexion on the oxidative stress and animal welfare: a review. Trop Anim Health Prod 2024; 56:396. [PMID: 39601945 DOI: 10.1007/s11250-024-04238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
A wide range of studies have documented the role of oxidative stress in the development of chronic pathological disorders and even in the aging itself. However, its significance to modern animal health and welfare remains neglected. Oxidative stress in biological systems refers to a disturbance in the balance between pro-oxidants and antioxidants in favour of the former, leading to potential damage of biomolecules. In farm animals, oxidative stress may be involved in several pathological conditions, including those that are relevant for animal production and the general welfare of the individuals, resulting in some cases in irreversible losses. The oxidative stress concept and how it may result in disease or be prevented are complex questions with no simple answers and therefore, call professionals for deep reflection, to maintain a high standard of animal welfare and production. The aim of this review was to gather relevant information on the characteristics of pro-oxidants and antioxidant as well as their significance in animal production systems.
Collapse
Affiliation(s)
- Martin Ntawubizi
- School of Veterinary Medicine, University of Rwanda-Nyagatare Campus, P.O. Box 57, Nyagatare, Rwanda.
| | - Marie Louise Mukamuhirwa
- School of Veterinary Medicine, University of Rwanda-Nyagatare Campus, P.O. Box 57, Nyagatare, Rwanda
| |
Collapse
|
3
|
Guo HT, Lee ZX, Magalingam KB, Radhakrishnan AK, Bhuvanendran S. Carotenoids modulate antioxidant pathways in In vitro models of Parkinson's disease: A comprehensive scoping review. Neurochem Int 2024; 180:105857. [PMID: 39293662 DOI: 10.1016/j.neuint.2024.105857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and it has affected the living quality of elderly people significantly. PD is characterised by the accumulation of α-Synuclein and progressive loss of dopaminergic neurons at the substantia nigra pars compacta. In the pathogenesis of Parkinson's disease, α-Synuclein, oxidative stress, and electron transport chain (ETC) are the three main factors that contribute to the production of reactive oxygen species (ROS). Currently, there is no commercial disease-modifying agent available for PD; the first-line treatment, Levodopa (l-DOPA), could only relieve the symptoms of PD, with many side effects. Carotenoids, which encompass red, orange, and yellow pigments found in nature and contribute to the colouration of plants, have been associated with various health benefits, including anti-cancer and neuroprotective effects due to their antioxidant properties. This scoping review delves into the impact and underlying mechanisms of carotenoids on cell-based models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Han Ting Guo
- School of Science, Monash University Malaysia, Sunway, Selangor, 475000, Malaysia
| | - Zi Xin Lee
- School of Science, Monash University Malaysia, Sunway, Selangor, 475000, Malaysia
| | - Kasthuri Bai Magalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway, Selangor, 475000, Malaysia.
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway, Selangor, 475000, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway, Selangor, 475000, Malaysia
| |
Collapse
|
4
|
Piergiorge RM, Vasconcelos ATRD, Santos-Rebouças CB. Understanding the (epi)genetic dysregulation in Parkinson's disease through an integrative brain competitive endogenous RNA network. Mech Ageing Dev 2024; 219:111942. [PMID: 38762037 DOI: 10.1016/j.mad.2024.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Parkinson's disease (PD) is a rapidly growing neurodegenerative disorder characterized by dopaminergic neuron loss in the substantia nigra pars compacta (SN) and aggregation of α-synuclein. Its aetiology involves a multifaceted interplay among genetic, environmental, and epigenetic factors. We integrated brain gene expression data from PD patients to construct a comprehensive regulatory network encompassing messenger RNAs (mRNAs), microRNAs (miRNAs), circular RNAs (circRNAs) and, for the first time, RNA binding proteins (RBPs). Expression data from the SN of PD patients and controls were systematically selected from public databases to identify combined differentially expressed genes (DEGs). Brain co-expression analysis revealed modules comprising significant DEGs that function cooperatively. The relationships among co-expressed DEGs, miRNAs, circRNAs, and RBPs revealed an intricate competitive endogenous RNA (ceRNA) network responsible for post-transcriptional dysregulation in PD. Many genes in the ceRNA network, including the TOMM20 and HMGCR genes, overlap with the most relevant genes in our previous Alzheimer's disease-associated ceRNA network, suggesting common underlying mechanisms between both conditions. Moreover, in the ceRNA subnetwork, the RBP Aly/REF export factor (ALYREF), which acts as an RNA 5-methylcytosine(m5C)-binding protein, stood out. Our data sheds new light on the potential role of brain ceRNA networks in PD pathogenesis.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Almikhlafi MA, Karami MM, Jana A, Alqurashi TM, Majrashi M, Alghamdi BS, Ashraf GM. Mitochondrial Medicine: A Promising Therapeutic Option Against Various Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:1165-1183. [PMID: 36043795 PMCID: PMC10286591 DOI: 10.2174/1570159x20666220830112408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Abnormal mitochondrial morphology and metabolic dysfunction have been observed in many neurodegenerative disorders (NDDs). Mitochondrial dysfunction can be caused by aberrant mitochondrial DNA, mutant nuclear proteins that interact with mitochondria directly or indirectly, or for unknown reasons. Since mitochondria play a significant role in neurodegeneration, mitochondriatargeted therapies represent a prosperous direction for the development of novel drug compounds that can be used to treat NDDs. This review gives a brief description of how mitochondrial abnormalities lead to various NDDs such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. We further explore the promising therapeutic effectiveness of mitochondria- directed antioxidants, MitoQ, MitoVitE, MitoPBN, and dimebon. We have also discussed the possibility of mitochondrial gene therapy as a therapeutic option for these NDDs.
Collapse
Affiliation(s)
- Mohannad A. Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Mohammed M. Karami
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Thamer M. Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Majrashi
- Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
6
|
Visioli F, Mucignat-Caretta C, Anile F, Panaite SA. Traditional and Medical Applications of Fasting. Nutrients 2022; 14:nu14030433. [PMID: 35276792 PMCID: PMC8838777 DOI: 10.3390/nu14030433] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Fasting has been practiced for millennia, for religious, ethical, or health reasons. It is also commonplace among different species, from humans, to animals, to lower eukaryotes. Research on fasting is gaining traction based on recent studies that show its role in many adaptive cellular responses such as the reduction of oxidative damage and inflammation, increase of energy metabolism, and in boosting cellular protection. In this expert review, we recount the historical evolution of fasting and we critically analyze its current medical applications, including benefits and caveats. Based on the available data, we conclude that the manipulation of dietary intake, in the form of calorie restriction, intermittent fasting, dietary restriction with the exclusion of some nutrients, prolonged fasting, and so forth, is anthropologically engraved in human culture possibly because of its positive health effects. Indeed, many studies show that fasting ameliorates many biochemical parameters related to cardiovascular and cancer risk, and neurodegeneration. Mechanistic studies are plentiful, but largely limited to cell cultures or laboratory animals. Understandably, there are no controlled trials of any form of fasting that gauge the effects on [any cause] mortality. Physicians should be aware that misinformation is pervasive and that their patients often adopt dietary regimens that are far from being clinically validated. Moreover, doctors are often unaware of their patients’ religious or traditional fasting and of its potential health effects. Based on current evidence, no long-term fasting should be undertaken without medical supervision until future research will hopefully help shed further light on fasting and its effects on human health.
Collapse
Affiliation(s)
- Francesco Visioli
- Department of Molecular Medicine, University of Padova, Viale G. Colombo, 335121 Padova, Italy; (C.M.-C.); (F.A.)
- IMDEA-Food, 28049 Madrid, Spain
- Correspondence: ; Tel.: +390498276107
| | - Carla Mucignat-Caretta
- Department of Molecular Medicine, University of Padova, Viale G. Colombo, 335121 Padova, Italy; (C.M.-C.); (F.A.)
| | - Francesca Anile
- Department of Molecular Medicine, University of Padova, Viale G. Colombo, 335121 Padova, Italy; (C.M.-C.); (F.A.)
| | - Stefan-Alexandru Panaite
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, School of Hygiene and Preventive Medicine, University of Padova, 35121 Padova, Italy;
| |
Collapse
|