1
|
Karaküçük-İyidoğan A, Başaran E, Tatar-Yılmaz G, Oruç-Emre EE. Development of new chiral 1,2,4-triazole-3-thiones and 1,3,4-thiadiazoles with promising in vivo anticonvulsant activity targeting GABAergic system and voltage-gated sodium channels (VGSCs). Bioorg Chem 2024; 151:107662. [PMID: 39079390 DOI: 10.1016/j.bioorg.2024.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 08/30/2024]
Abstract
Antiepileptic drugs (AEDs) are used in the treatment of epilepsy, a neurodegenerative disease characterized by recurrent and untriggered seizures that aim to prevent seizures as a symptomatic treatment. However, they still have significant side effects as well as drug resistance. In recent years, especially 1,3,4-thiadiazoles and 1,2,4-triazoles have attracted attention in preclinical and clinical studies as important drug candidates owing to their anticonvulsant properties. Therefore, in this study, which was conducted to discover AED candidate molecules with reduced side effects at low doses, a series of chiral 2,5-disubstituted-1,3,4-thiadiazoles (4a-d) and 4,5-disubstituted-1,2,4-triazole-3 thiones (5a-d) were designed and synthesized starting from l-phenylalanine ethyl ester hydrochloride. The anticonvulsant activities of the new chiral compounds were assessed in several animal seizure models in mice and rats for initial (phase I) screening after their chemical structures including the configuration of the chiral center were elucidated using spectroscopic methods and elemental analysis. First, all chiral compounds were pre-screened using acute seizure tests induced electrically (maximal electroshock test, 6 Hz psychomotor seizure model) and induced chemically (subcutaneous metrazol seizure model) in mice and also their neurotoxicity (TOX) was determined in the rotorad assay. Two of the tested compounds were used for quantitative testing, and (S)-(+)5-[1-(4-fluorobenzamido)-2-phenylethyl]-4-(4-fluorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (5b) and (S)-(+)-(5-[1-(4-fluorobenzamido)-2-phenylethyl]-4-(4-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (5c) emerged as the most promising anticonvulsant drug candidates and also showed low neurotoxicity. The antiepileptogenic potential of these compounds was determined using a chronic seizure induced electrically corneal kindled mouse model. Furthermore, all chiral compounds were tested for their neuroprotective effect against excitotoxic kainic acid (KA) and N-methyl-d-aspartate (NMDA) induced in vitro neuroprotection assay using an organotypic hippocampal slice culture. The KA-induced neuroprotection assay results revealed that compounds 5b and 5c, which are the leading compounds for anticonvulsant activity, also had the strongest neuroprotective effects with IC50 values of 103.30 ± 1.14 and 113.40 ± 1.20 μM respectively. Molecular docking studies conducted to investigate the molecular binding mechanism of the tested compounds on the GABAA receptor showed that compound 5b exhibits a strong affinity to the benzodiazepine (BZD) binding site on GABA. It also revealed that the NaV1.3 binding interactions were consistent with the experimental data and the reported binding mode of the ICA121431 inhibitor. This suggests that compound 5b has a high affinity for these specific binding sites, indicating its potential as a ligand for modulating GABAA and NaV1.3 receptor activity. Furthermore, the ADME properties displayed that all the physicochemical and pharmacological parameters of the compounds stayed within the specified limits and revealed a high bioavailability profile.
Collapse
Affiliation(s)
| | - Eyüp Başaran
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, 27310 Gaziantep, Turkey; Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences, Batman University, 72060 Batman, Turkey
| | - Gizem Tatar-Yılmaz
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey; Department of Bioinformatics, Institue of Health Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Emine Elçin Oruç-Emre
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, 27310 Gaziantep, Turkey
| |
Collapse
|
2
|
Agarwal U, Verma S, Tonk RK. Chromenone: An emerging scaffold in anti-Alzheimer drug discovery. Bioorg Med Chem Lett 2024; 111:129912. [PMID: 39089526 DOI: 10.1016/j.bmcl.2024.129912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Alzheimer's disease (AD) presents a growing global health concern. In recent decades, natural and synthetic chromenone have emerged as promising drug candidates due to their multi-target potential. Natural chromenone, quercetin, scopoletin, esculetin, coumestrol, umbelliferone, bergapten, and methoxsalen (xanthotoxin), and synthetic chromenone hybrids comprising structures like acridine, 4-aminophenyl, 3-arylcoumarins, quinoline, 1,3,4-oxadiazole, 1,2,3-triazole, and tacrine, have been explored for their potential to combat AD. Key reactions used for synthesis of chromenone hybrids include Perkin and Pechmann condensation. The activity of chromenone hybrids has been reported against several drug targets, including AChE, BuChE, BACE-1, and MAO-A/B. This review comprehensively explores natural, semisynthetic, and synthetic chromenone, elucidating their synthetic routes, possible mode of action/drug targets and structure-activity relationships (SAR). The acquired knowledge provides valuable insights for the development of new chromenone hybrids against AD.
Collapse
Affiliation(s)
- Uma Agarwal
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India
| | - Saroj Verma
- Pharmaceutical Chemistry Division, School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India.
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India.
| |
Collapse
|
3
|
Sari S, Yurtoğlu S, Zengin M, Marcinkowska M, Siwek A, Saraç S. Azoles display promising anticonvulsant effects through possible PPAR-α activation. Neurosci Lett 2024; 828:137750. [PMID: 38548219 DOI: 10.1016/j.neulet.2024.137750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Azoles such as nafimidone, denzimol and loreclezole are known for their clinical efficacy against epilepsy, and loreclezole acts by potentiating γ-aminobutyric acid (GABA)-ergic currents. In the current study, we report a series of azole derivatives in alcohol ester and oxime ester structure showing promising anticonvulsant effects in 6 Hz and maximal electro shock (MES) models with minimal toxicity. The most promising of the series, 5f, was active in both 6 Hz and MES tests with a median effective dose (ED50) of 118.92 mg/kg in 6 Hz test and a median toxic dose (TD50) twice as high in mice. The compounds were predicted druglike and blood-brain barrier (BBB) penetrant in silico. Contrary to what was expected, the compounds showed no in vitro affinity to GABAA receptors (GABAARs) in radioligand binding assays; however, they were found structurally similar to peroxisome proliferator-activated receptors alpha (PPAR-α) agonists and predicted to show high affinity and agonist-like binding to PPAR-α in molecular docking studies. As a result, 5f emerged as a safe azole anticonvulsant with a wide therapeutic window and possible action through PPAR-α activation.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| | - Sibel Yurtoğlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Agata Siwek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Selma Saraç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Baskent University, Ankara, Turkey
| |
Collapse
|
4
|
Mokrov GV, Biryukova VE, Vorobieva TY, Pantileev AS, Grigorkevich OS, Zhmurenko LA, Rebeko AG, Bayburtskiy FS, Litvinova SA, Voronina TA, Gudasheva TA, Seredenin SB. Design, Synthesis and Anticonvulsant Activity of Cinnamoyl Derivatives of 3,4,6,7,8,9-hexahydrodibenzo[ b,d]furan-1-(2H)-one Oxime. Med Chem 2024; 20:92-107. [PMID: 37694795 DOI: 10.2174/1573406419666230908121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Epilepsy continues to be a significant global health problem and the search for new drugs for its treatment remains an urgent task. 5-HT2 and GABAA-receptors are among promising biotargets for the search for new anticonvulsants. METHODS New potential 5-HT2 and GABAA ligands in the series of substituted cinnamoyl derivatives of 3,4,6,7,8,9-hexahydrodibenzo[b,d]furan-1-(2H)-one oxime were designed using pharmacophore model and molecular docking analysis. The synthesis of new compounds was carried out from 3,4,6,7,8,9-hexahydrodibenzo[b,d]furan-1(2H)-one oxime and substituted cinnamoyl chlorides. The anticonvulsant activity of new substances has been established using the maximal electroshock seizure test. RESULTS Several synthesized substituted cinnamoyl derivatives of 3,4,6,7,8,9-hexahydrodibenzo [b,d]furan-1-(2H)-one oxime significantly reduced the severity of convulsive manifestations and completely prevented the death of animals after MES. The structure-activity relationship was investigated. The most effective compound was found to be GIZH-348 (1g) (3,4,6,7,8,9-hexahydrodibenzo[ b,d]furan-1(2Н)-one О-(4-chlorophenyl)acryloyl)oxime) at the doses of 10-20 mg/kg. CONCLUSION Molecular and pharmacophore modelling methods allowed us to create a new group of substituted cinnamoyl derivatives of 3,4,6,7,8,9-hexahydrodibenzo[b,d]furan-1-(2H)-one oxime with anticonvulsant activity.
Collapse
Affiliation(s)
- Grigory V Mokrov
- Department of Medicinal Chemistry, FSBI Zakusov Research Institute of Pharmacology, Baltiyskaya 8, Moscow, 125315 Russia
| | - Valentina E Biryukova
- Department of Medicinal Chemistry, FSBI Zakusov Research Institute of Pharmacology, Baltiyskaya 8, Moscow, 125315 Russia
| | - Tatiana Y Vorobieva
- Department of Medicinal Chemistry, FSBI Zakusov Research Institute of Pharmacology, Baltiyskaya 8, Moscow, 125315 Russia
| | - Andry S Pantileev
- Department of Medicinal Chemistry, FSBI Zakusov Research Institute of Pharmacology, Baltiyskaya 8, Moscow, 125315 Russia
| | - Oksana S Grigorkevich
- Department of Medicinal Chemistry, FSBI Zakusov Research Institute of Pharmacology, Baltiyskaya 8, Moscow, 125315 Russia
| | - Ludmila A Zhmurenko
- Department of Medicinal Chemistry, FSBI Zakusov Research Institute of Pharmacology, Baltiyskaya 8, Moscow, 125315 Russia
| | - Alexey G Rebeko
- Department of Medicinal Chemistry, FSBI Zakusov Research Institute of Pharmacology, Baltiyskaya 8, Moscow, 125315 Russia
| | - Felix S Bayburtskiy
- Department of Medicinal Chemistry, FSBI Zakusov Research Institute of Pharmacology, Baltiyskaya 8, Moscow, 125315 Russia
| | - Svetlana A Litvinova
- Department of Medicinal Chemistry, FSBI Zakusov Research Institute of Pharmacology, Baltiyskaya 8, Moscow, 125315 Russia
| | - Tatiana A Voronina
- Department of Medicinal Chemistry, FSBI Zakusov Research Institute of Pharmacology, Baltiyskaya 8, Moscow, 125315 Russia
| | - Tatiana A Gudasheva
- Department of Medicinal Chemistry, FSBI Zakusov Research Institute of Pharmacology, Baltiyskaya 8, Moscow, 125315 Russia
| | - Sergei B Seredenin
- Department of Medicinal Chemistry, FSBI Zakusov Research Institute of Pharmacology, Baltiyskaya 8, Moscow, 125315 Russia
| |
Collapse
|
5
|
Sari S, Önder S, Akkaya D, Sabuncuoğlu S, Zengin M, Barut B, Karakurt A. Azole derivatives inhibit wildtype butyrylcholinesterase and its common mutants. Drug Dev Res 2023; 84:1018-1028. [PMID: 37154110 DOI: 10.1002/ddr.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/10/2023]
Abstract
Azoles, which have been used for antifungal chemotherapy for decades, have recently been of interest for their efficacy against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). There is little known about the potential of azoles against BChE, however there is none regarding their inhibitory effects against mutants of BChE. In the current study, an azole library of 1-aryl-2-(1H-imidazol-1-yl)ethanol/ethanone oxime esters were tested against AChE and BChE, which yielded derivates more potent than the positive control, galantamine, against both isoforms. Kinetic analyses were performed for wildtype and mutant (A328F and A328Y) inhibition for the two most potent BChE inhibitors, pivalic and 3-bezoylpropanoic acid esters of 2-(1H-imidazol-1-yl)-1-(2-naphthyl)ethanol, which were found to have great affinity to the wildtype and mutant BChE types with Ki values as low as 0.173 ± 0.012 µM. The compounds were identified to show linear competitive or mixed type inhibition. Molecular modeling confirmed these kinetic data and provided further insights regarding molecular basis of BChE inhibition by the active derivatives. Thus, current study suggests new azole derivatives with promising cholinesterase inhibitory effects and reveals the first set of information to promote our understanding for the inhibitory behavior of this class against the mutant BChE forms.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Seda Önder
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Didem Akkaya
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Burak Barut
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Arzu Karakurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inönü University, Malatya, Turkey
| |
Collapse
|
6
|
Sharma A, Bharate SB. Synthesis and Biological Evaluation of Coumarin Triazoles as Dual Inhibitors of Cholinesterases and β-Secretase. ACS OMEGA 2023; 8:11161-11176. [PMID: 37008108 PMCID: PMC10061512 DOI: 10.1021/acsomega.2c07993] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Coumarin is a naturally occurring bioactive pharmacophore with wide occurrence among central nervous system (CNS)-active small molecules. 8-Acetylcoumarin, one of the natural coumarins, is a mild inhibitor of cholinesterases and β-secretase, which are vital targets of Alzheimer's disease. Herein, we synthesized a series of coumarin-triazole hybrids as potential multitargeted drug ligands (MTDLs) with better activity profiles. The coumarin-triazole hybrids occupy the cholinesterase active site gorge from the peripheral to the catalytic anionic site. The most active analogue, 10b, belonging to the 8-acetylcoumarin core, inhibits acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-secretase-1 (BACE-1) with IC50 values of 2.57, 3.26, and 10.65 μM, respectively. The hybrid, 10b, crosses the blood-brain barrier via passive diffusion and inhibits the self-aggregation of amyloid-β monomers. The molecular dynamic simulation study reveals the strong interaction of 10b with three enzymes and forming stable complexes. Overall, the results warrant a detailed preclinical investigation of the coumarin-triazole hybrids.
Collapse
Affiliation(s)
- Ankita Sharma
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandip B. Bharate
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Bhurta D, Bharate SB. Discovery of Pongol, the Furanoflavonoid, as an Inhibitor of CDK7/Cyclin H/MAT1 and Its Preliminary Structure-Activity Relationship. ACS OMEGA 2023; 8:1291-1300. [PMID: 36643464 PMCID: PMC9835647 DOI: 10.1021/acsomega.2c06733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/01/2022] [Indexed: 06/13/2023]
Abstract
Natural products have been a great source of leads for cancer drug discovery. The cyclin-dependent kinases (CDKs) play a vital role in the initiation and progression of cancer. The CDK-activating kinase, CDK7/cyclin H/MAT1, has recently gained tremendous attention in targeted cancer drug discovery. Herein, we screened a small library of pure natural products in an ADP-Glo CDK7/H kinase assay that yielded a series of furano- and naphthoflavonoids among actives. Pongol (SBN-88), the hydroxy-substituted furanoflavonoid, inhibits CDK7/H as well as CDK9/T1 with IC50 values of 0.93 and 0.83 μM, respectively, and >20-fold selectivity over CDK2/E1 (IC50 > 20 μM). The molecular docking and molecular dynamics simulation revealed that the presence of phenolic -OH in pongol is vital for kinase inhibition, as its absence resulted in a significant loss in activity (e.g., lanceolatin B). The prime MM-GBSA calculations revealed the presence of strong lipophilic and H-bonding interactions of pongol with CDKs.
Collapse
Affiliation(s)
- Deendyal Bhurta
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandip B. Bharate
- Natural
Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Chawla G, Pradhan T, Gupta O, Manaithiya A, Jha DK. An updated review on diverse range of biological activities of 1,2,4-triazole derivatives: Insight into structure activity relationship. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Bekircan O, Danış Ö, Şahin ME, Çetin M. Monoamine oxidase A and B inhibitory activities of 3,5-diphenyl-1,2,4-triazole substituted [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives. Bioorg Chem 2021; 118:105493. [PMID: 34814086 DOI: 10.1016/j.bioorg.2021.105493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/08/2021] [Accepted: 11/13/2021] [Indexed: 11/02/2022]
Abstract
Monoamine oxidase (EC 1.4.3.4, MAO) is a flavin adenine dinucleotide-containing flavoenzyme located on the outer mitochondrial membrane and catalyzes the oxidative deamination of monoaminergic neurotransmitters and dietary amines. MAO exists in humans as two isoenzymes, hMAO-A and hMAO-B, which are distinguished by their tertiary structures, preferred substrates and inhibitors, and selective inhibition of these isoenzymes are used in the treatment of different diseases such as Alzheimer's, Parkinson's and depression. In the present study, we report the design, synthesis and characterization of 3,5-diphenyl-1,2,4-triazole substituted [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives as novel and selective inhibitors of hMAO-B. Twenty one compounds (38, 39a-h, 41a-d, 42a-h) were screened for their inhibitory activity against hMAO-A and hMAO-B by using in vitro Amplex Red® reagent based fluorometric method and all compounds were found to be as selective h-MAO-B inhibitors to a different degree. The compound 42e and 42h displayed the highest inhibitory activity against hMAO-B with IC50 values of 2.51 and 2.81 µM, respectively, and more than 25-fold selectivity towards inhibition of hMAO-B. A further kinetic evaluation of the most potent derivative (42e) was also performed and a mixed mode of inhibition of hMAO-B by the compound 42e was determined (Ki = 0,26 µM). According to our findings the [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole emerged as a promising scaffold for the development of novel and selective hMAO-B inhibitors.
Collapse
Affiliation(s)
- Olcay Bekircan
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Özkan Danış
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, 34722 Istanbul, Turkey
| | - Mehmet Eren Şahin
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Mert Çetin
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, 34722 Istanbul, Turkey
| |
Collapse
|
10
|
Valipour M, Naderi N, Heidarli E, Shaki F, Motafeghi F, Talebpour Amiri F, Emami S, Irannejad H. Design, synthesis and biological evaluation of naphthalene-derived (arylalkyl)azoles containing heterocyclic linkers as new anticonvulsants: A comprehensive in silico, in vitro, and in vivo study. Eur J Pharm Sci 2021; 166:105974. [PMID: 34390829 DOI: 10.1016/j.ejps.2021.105974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
In continuation of our research to find strong and safe anticonvulsant agents, a number of (arylalkyl)azoles (AAAs) containing naphthylthiazole and naphthyloxazole scaffolds were designed and synthesized. The in vivo anticonvulsant evaluations in BALB/c mice revealed that some of them had significant anticonvulsant activity in both maximal electroshock (MES) and pentylenetetrazole (PTZ) models of epilepsy. The best profile of activity was observed with compounds containing imidazole and triazole rings (C1, C6, G1, and G6). In particular, imidazolylmethyl-thiazole C1 with median effective dose (ED50)= 7.9 mg/kg in the MES test, ED50= 27.9 mg/kg in PTZ test, and without any sign of neurotoxicity (in the rotarod test, 100 mg/kg) was the most promising compound. The patch-clamp recording was performed to study the mechanism of action of the representative compound C1 on hippocampal dentate gyrus (DG) cells. The results did not confirm any modulatory effect of C1 on the voltage-gated ion channels (VGICs) or GABAA agonism, but suggested a significant reduction of excitatory postsynaptic currents (EPSCs) frequency on hippocampal DG neurons. Sub-acute toxicity studies revealed that administration of the most active compounds (C1, C6, G1, and G6) at 100 mg/kg bw/day for two weeks did not result in any mortality or significant toxicity as evaluated by assessment of biochemical markers such as lipid peroxidation, intracellular glutathione, total antioxidant capacity, histopathological changes, and mitochondrial functions. Other pharmacological aspects of compounds including mechanistic and ADME properties were investigated computationally and/or experimentally. Molecular docking on the NMDA and AMPA targets suggested that the introduction of the heterocyclic ring in the middle of AAAs significantly affects the affinity of the compounds. The obtained results totally demonstrated that the prototype compound C1 can be considered as a new lead for the development of anticonvulsant agents.
Collapse
Affiliation(s)
- Mehdi Valipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nima Naderi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elmira Heidarli
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzaneh Motafeghi
- Department of Toxicology and Pharmacology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
11
|
Zveaghintseva M, Stingaci E, Pogrebnoi S, Smetanscaia A, Valica V, Uncu L, Ch. Kravtsov V, Melnic E, Petrou A, Glamočlija J, Soković M, Carazo A, Mladěnka P, Poroikov V, Geronikaki A, Macaev FZ. Chromenol Derivatives as Novel Antifungal Agents: Synthesis, In Silico and In Vitro Evaluation. Molecules 2021; 26:molecules26144304. [PMID: 34299579 PMCID: PMC8307147 DOI: 10.3390/molecules26144304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Herein we report the synthesis of some new 1H-1,2,4-triazole functionalized chromenols (3a-3n) via tandem reactions of 1-(alkyl/aryl)-2-(1H-1,2,4-triazole-1-yl) with salicylic aldehydes and the evaluation of their antifungal activity. In silico prediction of biological activity with computer program PASS indicate that the compounds have a high novelty compared to the known antifungal agents. We did not find any close analog among the over 580,000 pharmaceutical agents in the Cortellis Drug Discovery Intelligence database at the similarity cutoff of 70%. The evaluation of antifungal activity in vitro revealed that the highest activity was exhibited by compound 3k, followed by 3n. Their MIC values for different fungi were 22.1-184.2 and 71.3-199.8 µM, respectively. Twelve from fourteen tested compounds were more active than the reference drugs ketoconazole and bifonazole. The most sensitive fungus appeared to be Trichoderma viride, while Aspergillus fumigatus was the most resistant one. It was found that the presence of the 2-(tert-butyl)-2H-chromen-2-ol substituent on the 4th position of the triazole ring is very beneficial for antifungal activity. Molecular docking studies on C. albicans sterol 14α-demethylase (CYP51) and DNA topoisomerase IV were used to predict the mechanism of antifungal activities. According to the docking results, the inhibition of CYP51 is a putative mechanism of antifungal activity of the novel chromenol derivatives. We also showed that most active compounds have a low cytotoxicity, which allows us to consider them promising antifungal agents for the subsequent testing activity in in vivo assays.
Collapse
Affiliation(s)
- Marina Zveaghintseva
- Laboratory of Organic Synthesis, Institute of Chemistry, 3 Str. Academiei 3, MD-2028 Chișinău, Moldova; (M.Z.); (E.S.); (S.P.)
| | - Eugenia Stingaci
- Laboratory of Organic Synthesis, Institute of Chemistry, 3 Str. Academiei 3, MD-2028 Chișinău, Moldova; (M.Z.); (E.S.); (S.P.)
| | - Serghei Pogrebnoi
- Laboratory of Organic Synthesis, Institute of Chemistry, 3 Str. Academiei 3, MD-2028 Chișinău, Moldova; (M.Z.); (E.S.); (S.P.)
| | - Anastasia Smetanscaia
- Scientific Center for Drug Research, “Nicolae Testemițanu” State University of Medicine and Pharmacy, Bd. Stefan Cel Mare și Sfant 165, MD-2004 Chișinău, Moldova; (A.S.); (V.V.); (L.U.)
| | - Vladimir Valica
- Scientific Center for Drug Research, “Nicolae Testemițanu” State University of Medicine and Pharmacy, Bd. Stefan Cel Mare și Sfant 165, MD-2004 Chișinău, Moldova; (A.S.); (V.V.); (L.U.)
| | - Livia Uncu
- Scientific Center for Drug Research, “Nicolae Testemițanu” State University of Medicine and Pharmacy, Bd. Stefan Cel Mare și Sfant 165, MD-2004 Chișinău, Moldova; (A.S.); (V.V.); (L.U.)
| | - Victor Ch. Kravtsov
- Laboratory of Physical Methods of Solid State Investigation “Tadeusz Malinowski”, Institute of Applied Physics, Str. Academiei 5, MD-2028 Chișinău, Moldova; (V.C.K.); (E.M.)
| | - Elena Melnic
- Laboratory of Physical Methods of Solid State Investigation “Tadeusz Malinowski”, Institute of Applied Physics, Str. Academiei 5, MD-2028 Chișinău, Moldova; (V.C.K.); (E.M.)
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Jasmina Glamočlija
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Beograd, Serbia; (J.G.); (M.S.)
| | - Marina Soković
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Beograd, Serbia; (J.G.); (M.S.)
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (A.C.); (P.M.)
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (A.C.); (P.M.)
| | - Vladimir Poroikov
- Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, Pogodinskaya Str. 10, Bldg. 8, 119121 Moscow, Russia;
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (A.G.); (F.Z.M.); Tel.: +30-2310-99-76-16 (A.G.)
| | - Fliur Z. Macaev
- Laboratory of Organic Synthesis, Institute of Chemistry, 3 Str. Academiei 3, MD-2028 Chișinău, Moldova; (M.Z.); (E.S.); (S.P.)
- Scientific Center for Drug Research, “Nicolae Testemițanu” State University of Medicine and Pharmacy, Bd. Stefan Cel Mare și Sfant 165, MD-2004 Chișinău, Moldova; (A.S.); (V.V.); (L.U.)
- Correspondence: (A.G.); (F.Z.M.); Tel.: +30-2310-99-76-16 (A.G.)
| |
Collapse
|
12
|
Triazolo Based-Thiadiazole Derivatives. Synthesis, Biological Evaluation and Molecular Docking Studies. Antibiotics (Basel) 2021; 10:antibiotics10070804. [PMID: 34356726 PMCID: PMC8300616 DOI: 10.3390/antibiotics10070804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
The goal of this research is to investigate the antimicrobial activity of nineteen previously synthesized 3,6-disubstituted-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives. The compounds were tested against a panel of three Gram-positive and three Gram-negative bacteria, three resistant strains, and six fungi. Minimal inhibitory, bactericidal, and fungicidal concentrations were determined by a microdilution method. All of the compounds showed antibacterial activity that was more potent than both reference drugs, ampicillin and streptomycin, against all bacteria tested. Similarly, they were also more active against resistant bacterial strains. The antifungal activity of the compounds was up to 80-fold higher than ketoconazole and from 3 to 40 times higher than bifonazole, both of which were used as reference drugs. The most active compounds (2, 3, 6, 7, and 19) were tested for their inhibition of P. aeruginosa biofilm formation. Among them, compound 3 showed significantly higher antibiofilm activity and appeared to be equipotent with ampicillin. The prediction of the probable mechanism by docking on antibacterial targets revealed that E. coli MurB is the most suitable enzyme, while docking studies on antifungal targets indicated a probable involvement of CYP51 in the mechanism of antifungal activity. Finally, the toxicity testing in human cells confirmed their low toxicity both in cancerous cell line MCF7 and non-cancerous cell line HK-2.
Collapse
|
13
|
Barut B, Sari S, Sabuncuoğlu S, Özel A. Azole antifungal compounds could have dual cholinesterase inhibitory potential according to virtual screening, enzyme kinetics, and toxicity studies of an inhouse library. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Abulkhair HS, Elmeligie S, Ghiaty A, El-Morsy A, Bayoumi AH, Ahmed HEA, El-Adl K, Zayed MF, Hassan MH, Akl EN, El-Zoghbi MS. In vivo- and in silico-driven identification of novel synthetic quinoxalines as anticonvulsants and AMPA inhibitors. Arch Pharm (Weinheim) 2021; 354:e2000449. [PMID: 33559320 DOI: 10.1002/ardp.202000449] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022]
Abstract
The lack of effective therapies for epileptic patients and the potentially harmful consequences of untreated seizure incidents have made epileptic disorders in humans a major health concern. Therefore, new and more potent anticonvulsant drugs are continually sought after, to combat epilepsy. On the basis of the pharmacophoric structural specifications of effective α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonists with an efficient anticonvulsant activity, the present work reports the design and synthesis of two novel sets of quinoxaline derivatives. The anticonvulsant activity of the synthesized compounds was evaluated in vivo according to the pentylenetetrazol-induced seizure protocol, and the results were compared with those of perampanel as a reference drug. Among the synthesized compounds, 24, 28, 32, and 33 showed promising activities with ED50 values of 37.50, 23.02, 29.16, and 23.86 mg/kg, respectively. Docking studies of these compounds suggested that AMPA binding could be the mechanism of action of these derivatives. Overall, the pharmacophore-based structural optimization, in vivo and in silico docking, and druglikeness studies indicated that the designed compounds could serve as promising candidates for the development of effective anticonvulsant agents with good pharmacokinetic profiles.
Collapse
Affiliation(s)
- Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University - Egypt, New Damietta, Egypt
| | - Salwa Elmeligie
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Adel Ghiaty
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed El-Morsy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Khaled El-Adl
- Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Mohamed F Zayed
- Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Memy H Hassan
- Pharmacy Department, College of Health Sciences, Taibah University, Madinah, Saudi Arabia.,Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Eman N Akl
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University - Egypt, New Damietta, Egypt
| | - Mona S El-Zoghbi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia University, Shebin El-Koum, Egypt
| |
Collapse
|
15
|
Sari S, Avci A, Koçak E, Kart D, Sabuncuoğlu S, Doğan İS, Özdemir Z, Bozbey İ, Karakurt A, Saraç S, Dalkara S. Antibacterial azole derivatives: Antibacterial activity, cytotoxicity, and in silico mechanistic studies. Drug Dev Res 2020; 81:1026-1036. [PMID: 33216362 DOI: 10.1002/ddr.21721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/13/2020] [Accepted: 07/03/2020] [Indexed: 01/09/2023]
Abstract
Azole antifungal drugs are commonly used in antifungal chemotherapy. Antibacterial effects of some topical antifungals, such as miconazole and econazole, have lately been revealed, which suggests a promising venue in antimicrobial chemotherapy. In this study, we tested an in-house azole collection with antifungal properties for their antibacterial activity to identify dual-acting hits using the broth microdilution method. The in vitro screen yielded a number of potent derivatives against gram-positive bacteria, Enterococcus faecalis and Staphylococcus aureus. Compound 73's minimum inhibitory concentration (MIC) value less than 1 μg/ml against S. aureus; however, none of the compounds showed noteworthy activity against methicillin-resistant S. aureus (MRSA). All the active compounds were found safe at their MIC values against the healthy fibroblast cells in the in vitro cytotoxicity test. Molecular docking studies of the most active compounds using a set of docking programs with flavohemoglobin (flavoHb) structure, the proposed target of the azole antifungals with antibacterial activity, presented striking similarities regarding the binding modes and interactions between the tested compounds and the antifungal drugs with crystallographic data. In addition to being noncytotoxic, the library was predicted to be drug-like and free of pan-assay interference compounds (PAINS). As a result, the current study revealed several potential azole derivatives with both antifungal and antibacterial activities. Inhibition of bacterial flavoHb was suggested as a possible mechanism of action for the title compounds.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Ahmet Avci
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Ebru Koçak
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Didem Kart
- Department of Pharmaceutical Microbiology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - İnci Selin Doğan
- Department of Pharmaceutical Chemistry, Karadeniz Technical University Faculty of Pharmacy, Trabzon, Turkey
| | - Zeynep Özdemir
- Department of Pharmaceutical Chemistry, İnönü University Faculty of Pharmacy, Malatya, Turkey
| | - İrem Bozbey
- Department of Pharmaceutical Chemistry, Erzincan Binali Yıldırım University Faculty of Pharmacy, Erzincan, Turkey
| | - Arzu Karakurt
- Department of Pharmaceutical Chemistry, İnönü University Faculty of Pharmacy, Malatya, Turkey
| | - Selma Saraç
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Sevim Dalkara
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
16
|
Sari S, Barut B, Özel A, Saraç S. Discovery of potent α-glucosidase inhibitors through structure-based virtual screening of an in-house azole collection. Chem Biol Drug Des 2020; 97:701-710. [PMID: 33107197 DOI: 10.1111/cbdd.13805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/01/2020] [Accepted: 10/17/2020] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus, a chronic disorder characterized by hyperglycemia, is considered a pandemic of modern times. α-Glucosidase inhibitors emerged as a promising class of antidiabetic drugs with better tolerability compared with its alternatives. Azoles, although widely preferred in drug design, have scarcely been investigated for their potential against α-glucosidase. In this study, we evaluated α-glucosidase inhibitory effects 20 azole derivatives selected out of an in-house collection via structure-based virtual screening (VS) with consensus scoring approach. Seven compounds were identified with better IC50 values than acarbose (IC50 = 68.18 ± 1.01 µM), a well-known α-glucosidase inhibitor drug, which meant 35% success for our VS methodology. Compound 52, 54, 56, 59, and 81 proved highly potent with IC50 values in the range of 40-60 µM. According to the enzyme kinetics study, four of them were competitive, 56 was non-competitive inhibitor. Structure-activity relationships, quantum mechanical, and docking analyses showed that azole rings at ionized state may be key to the potency observed for the active compounds and modifications to shift the balance between the neutral and ionized states further to the latter could yield more potent derivatives.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Burak Barut
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Arzu Özel
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey.,Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| | - Selma Saraç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
17
|
Synthesis, Characterization and Bioassay of Novel Substituted 1-(3-(1,3-Thiazol-2-yl)phenyl)-5-oxopyrrolidines. Molecules 2020; 25:molecules25102433. [PMID: 32456041 PMCID: PMC7288019 DOI: 10.3390/molecules25102433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/27/2022] Open
Abstract
Thiazole derivatives attract the attention of scientists both in the field of organic synthesis and bioactivity research due to their high biological activity. In the present study, thiazole ring was obtained by the interaction of 1-(4-(bromoacetyl)phenyl)-5-oxopyrrolidine-3-carboxylic acid with thiocarbamide or benzenecarbothioamide, as well as tioureido acid. A series of substituted 1-(3-(1,3-thiazol-2-yl)phenyl)-5-oxopyrrolidines with pyrrolidinone, thiazole, pyrrole, 1,2,4-triazole, oxadiazole and benzimidazole heterocyclic fragments were synthesized and their antibacterial properties were evaluated against Gram-positive strains of Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes and Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica enteritidis. The vast majority of compounds exhibited between twofold and 16-fold increased antibacterial effect against the test-cultures when compared with Oxytetracycline.
Collapse
|
18
|
Aouad MR, Al-Mohammadi HM, Al-blewi FF, Ihmaid S, Elbadawy HM, Althagfan SS, Rezki N. Introducing of acyclonucleoside analogues tethered 1,2,4-triazole as anticancer agents with dual epidermal growth factor receptor kinase and microtubule inhibitors. Bioorg Chem 2020; 94:103446. [DOI: 10.1016/j.bioorg.2019.103446] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/03/2019] [Accepted: 11/13/2019] [Indexed: 01/17/2023]
|
19
|
Sari S, Kart D, Öztürk N, Kaynak FB, Gencel M, Taşkor G, Karakurt A, Saraç S, Eşsiz Ş, Dalkara S. Discovery of new azoles with potent activity against Candida spp. and Candida albicans biofilms through virtual screening. Eur J Med Chem 2019; 179:634-648. [DOI: 10.1016/j.ejmech.2019.06.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/18/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
|
20
|
Wang S, Liu H, Wang X, Lei K, Li G, Li X, Wei L, Quan Z. Synthesis and evaluation of anticonvulsant activities of 7‐phenyl‐4,5,6,7‐tetrahydrothieno[3,2‐
b
]pyridine derivatives. Arch Pharm (Weinheim) 2019; 352:e1900106. [DOI: 10.1002/ardp.201900106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/27/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Shiben Wang
- College of PharmacyLiaocheng University Liaocheng Shandong China
| | - Hui Liu
- College of Life SciencesLiaocheng University Liaocheng Shandong China
| | - Xuekun Wang
- College of PharmacyLiaocheng University Liaocheng Shandong China
| | - Kang Lei
- College of PharmacyLiaocheng University Liaocheng Shandong China
| | - Guangyong Li
- College of PharmacyLiaocheng University Liaocheng Shandong China
| | - Xiaojing Li
- College of PharmacyLiaocheng University Liaocheng Shandong China
| | - Lichao Wei
- College of PharmacyLiaocheng University Liaocheng Shandong China
| | - Zheshan Quan
- College of PharmacyYanbian University Yanji Jilin China
| |
Collapse
|
21
|
Sari S, Kart D, Sabuncuoğlu S, Doğan İS, Özdemir Z, Bozbey İ, Gencel M, Eşsiz Ş, Reynisson J, Karakurt A, Saraç S, Dalkara S. Antifungal screening and in silico mechanistic studies of an in-house azole library. Chem Biol Drug Des 2019; 94:1944-1955. [PMID: 31260179 DOI: 10.1111/cbdd.13587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 01/08/2023]
Abstract
Systemic Candida infections pose a serious public health problem with high morbidity and mortality. C. albicans is the major pathogen identified in candidiasis; however, non-albicans Candida spp. with antifungal resistance are now more prevalent. Azoles are first-choice antifungal drugs for candidiasis; however, they are ineffective for certain infections caused by the resistant strains. Azoles block ergosterol synthesis by inhibiting fungal CYP51, which leads to disruption of fungal membrane permeability. In this study, we screened for antifungal activity of an in-house azole library of 65 compounds to identify hit matter followed by a molecular modeling study for their CYP51 inhibition mechanism. Antifungal susceptibility tests against standard Candida spp. including C. albicans revealed derivatives 12 and 13 as highly active. Furthermore, they showed potent antibiofilm activity as well as neglectable cytotoxicity in a mouse fibroblast assay. According to molecular docking studies, 12 and 13 have the necessary binding characteristics for effective inhibition of CYP51. Finally, molecular dynamics simulations of the C. albicans CYP51 (CACYP51) homology model's catalytic site complexed with 13 were stable demonstrating excellent binding.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Didem Kart
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - İnci Selin Doğan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Zeynep Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, İnönü University, Malatya, Turkey
| | - İrem Bozbey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, İnönü University, Malatya, Turkey
| | - Melis Gencel
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| | - Şebnem Eşsiz
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| | - Jóhannes Reynisson
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.,School of Pharmacy, Keele University, Staffordshire, UK
| | - Arzu Karakurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, İnönü University, Malatya, Turkey
| | - Selma Saraç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sevim Dalkara
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
22
|
Acar MF, Sari S, Dalkara S. Synthesis, in vivo anticonvulsant testing, and molecular modeling studies of new nafimidone derivatives. Drug Dev Res 2019; 80:606-616. [DOI: 10.1002/ddr.21538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/14/2019] [Accepted: 04/01/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Mustafa F. Acar
- Faculty of Pharmacy, Department of Pharmaceutical ChemistryHacettepe University Ankara Turkey
- Server Gazi PharmacyMerkez Efendi Denizli Turkey
| | - Suat Sari
- Faculty of Pharmacy, Department of Pharmaceutical ChemistryHacettepe University Ankara Turkey
| | - Sevim Dalkara
- Faculty of Pharmacy, Department of Pharmaceutical ChemistryHacettepe University Ankara Turkey
| |
Collapse
|