1
|
Qi Y, Gong H, Shen Z, Wu L, Xu Z, Shi N, Lin K, Tian M, Xu Z, Li X, Zhao Q. TRPM8 and TRPA1 ideal targets for treating cold-induced pain. Eur J Med Chem 2025; 282:117043. [PMID: 39571458 DOI: 10.1016/j.ejmech.2024.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/10/2024]
Abstract
TRP channels are essential for detecting variations in external temperature and are ubiquitously expressed in both the peripheral and central nervous systems as integral channel proteins. They primarily mediate a range of sensory responses, including thermal sensations, nociception, mechanosensation, vision, and gustation, thus playing a critical role in regulating various physiological functions. In colder climates, individuals often experience pain associated with low temperatures, leading to significant discomfort. Within the TRP channel family, TRPM8 and TRPA1 ion channels serve as the primary sensors for cold temperature fluctuations and are integral to both cold nociception and neuropathic pain pathways. Recent advancements in the biosynthesis of inhibitors targeting TRPM8 and TRPA1 have prompted the need for a comprehensive review of their structural characteristics, biological activities, biosynthetic pathways, and chemical synthesis. This paper aims to delineate the distinct roles of TRPM8 and TRPA1 in pain perception, elucidate their respective protein structures, and compile various combinations of TRPM8 and TRPA1 antagonists and agonists. The discussion encompasses their chemical structures, structure-activity relationships (SARs), biological activities, selectivity, and therapeutic potential, with a particular focus on the conformational relationships between antagonists and the channels. This review seeks to provide in-depth insights into pharmacological strategies for managing pain associated with TRPM8 and TRPA1 activation and will pave the way for future investigations into pharmacotherapeutic approaches for alleviating cold-induced pain.
Collapse
Affiliation(s)
- Yiming Qi
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China; College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Hao Gong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zixian Shen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Limeng Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zonghe Xu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Nuo Shi
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Kexin Lin
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Meng Tian
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Zihua Xu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xiang Li
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| | - Qingchun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| |
Collapse
|
2
|
Kilinc YB, Kilinc E, Danis A, Hanci F, Turay S, Ozge A, Bolay H. Mitochondrial metabolism related markers GDF-15, FGF-21, and HIF-1α are elevated in pediatric migraine attacks. Headache 2023; 63:1076-1086. [PMID: 37596867 DOI: 10.1111/head.14618] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate the serum levels of mitochondrial metabolism/reactive oxygen species (ROS)-related peptides (hypoxia inducible factor-1α [HIF-1α], fibroblast growth factor-21 [FGF-21], growth differentiation factor-15 [GDF-15]) and key migraine-related neuropeptides (calcitonin gene-related peptide [CGRP], pituitary adenylate cyclase-activating peptide-38 [PACAP-38], substance P [SP], and vasoactive intestinal peptide [VIP]) during migraine attacks and to evaluate their diagnostic value in pediatric migraine. BACKGROUND There is increasing evidence for the important role of impairment in oxidative mitochondrial metabolism in the pathophysiology of migraine. Potential biomarkers that may reflect the relationship between migraine and mitochondrial dysfunction are unclear. METHODS A total of 68 female pediatric migraine patients without aura and 20 female healthy controls aged 8-18 years, admitted to the hospital, were enrolled in this cross-sectional study. Serum concentrations of these molecules were determined by enzyme-linked immunosorbent assays, and clinical features and their possible diagnostic value were analyzed. RESULTS Serum levels of HIF-1α (252.4 ± 51.9 [mean ± standard deviation]) pg/mL), GDF-15 (233.7 ± 24.7 pg/mL), FGF-21 (96.1 ± 13.1 pg/mL), CGRP (44.5 ± 11.3), and PACAP-38 (504.7 ± 128.9) were significantly higher in migraine patients compared to healthy controls (199.8 ± 26.8, 192.8 ± 20.7, 79.3 ± 4.1, 34.1 ± 3.5 and 361.2 ± 86.3 pg/mL, respectively). The serum levels of these peptides were also higher in patients with chronic migraine than in patients with episodic migraine, and higher in the ictal period than in the interictal period. A positive correlation was found between attack frequency and both HIF-1α and FGF-21 levels in migraine patients. Serum levels of VIP and SP were not different between the migraine patients and healthy controls. CONCLUSION Migraine attacks are accompanied by elevated HIF-1α, FGF-21, GDF-15, CGRP, and PACAP-38 in medication-naive pediatric patients with migraine. Elevated circulating mitochondrial metabolism/ROS-related peptides suggest a mitochondrial stress in pediatric migraine attacks and may have potential diagnostic value in monitoring disease progression and treatment response in children. Novel approaches intervening with mitochondrial metabolism need to be investigated.
Collapse
Affiliation(s)
| | - Erkan Kilinc
- Department of Physiology, Bolu Abant Izzet Baysal University, Medical Faculty, Bolu, Turkey
| | - Aysegul Danis
- Department of Child Neurology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Fatma Hanci
- Department of Child Neurology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Sevim Turay
- Department of Child Neurology, Duzce University, Bolu, Turkey
| | - Aynur Ozge
- Department of Neurology, Mersin University, Medical Faculty, Mersin, Turkey
| | - Hayrunnisa Bolay
- Department of Neurology and Algology, Neuroscience and Neurotechnology Center NÖROM, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Radhakrishnan A, Mukherjee T, Mahish C, Kumar PS, Goswami C, Chattopadhyay S. TRPA1 activation and Hsp90 inhibition synergistically downregulate macrophage activation and inflammatory responses in vitro. BMC Immunol 2023; 24:16. [PMID: 37391696 PMCID: PMC10314470 DOI: 10.1186/s12865-023-00549-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Transient receptor potential ankyrin 1 (TRPA1) channels are known to be actively involved in various pathophysiological conditions, including neuronal inflammation, neuropathic pain, and various immunological responses. Heat shock protein 90 (Hsp90), a cytoplasmic molecular chaperone, is well-reported for various cellular and physiological processes. Hsp90 inhibition by various molecules has garnered importance for its therapeutic significance in the downregulation of inflammation and are proposed as anti-cancer drugs. However, the possible role of TRPA1 in the Hsp90-associated modulation of immune responses remains scanty. RESULTS Here, we have investigated the role of TRPA1 in regulating the anti-inflammatory effect of Hsp90 inhibition via 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) in lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA) stimulation in RAW 264.7, a mouse macrophage cell lines and PMA differentiated THP-1, a human monocytic cell line similar to macrophages. Activation of TRPA1 with Allyl isothiocyanate (AITC) is observed to execute an anti-inflammatory role via augmenting Hsp90 inhibition-mediated anti-inflammatory responses towards LPS or PMA stimulation in macrophages, whereas inhibition of TRPA1 by 1,2,3,6-Tetrahydro-1,3-dimethyl-N-[4-(1-methylethyl)phenyl]-2,6-dioxo-7 H-purine-7-acetamide,2-(1,3-Dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7 H-purin-7-yl)-N-(4-isopropylphenyl)acetamide (HC-030031) downregulates these developments. LPS or PMA-induced macrophage activation was found to be regulated by TRPA1. The same was confirmed by studying the levels of activation markers (major histocompatibility complex II (MHCII), cluster of differentiation (CD) 80 (CD80), and CD86, pro-inflammatory cytokines (tumor necrosis factor (TNF) and interleukin 6 (IL-6)), NO (nitric oxide) production, differential expression of mitogen-activated protein kinase (MAPK) signaling pathways (p-p38 MAPK, phospho-extracellular signal-regulated kinase 1/2 (p-ERK 1/2), and phosphor-stress-activated protein kinase/c-Jun N-terminal kinase (p-SAPK/JNK)), and induction of apoptosis. Additionally, TRPA1 has been found to be an important contributor to intracellular calcium levels toward Hsp90 inhibition in LPS or PMA-stimulated macrophages. CONCLUSION This study indicates a significant role of TRPA1 in Hsp90 inhibition-mediated anti-inflammatory developments in LPS or PMA-stimulated macrophages. Activation of TRPA1 and inhibition of Hsp90 has synergistic roles towards regulating inflammatory responses associated with macrophages. The role of TRPA1 in Hsp90 inhibition-mediated modulation of macrophage responses may provide insights towards designing future novel therapeutic approaches to regulate various inflammatory responses.
Collapse
Affiliation(s)
- Anukrishna Radhakrishnan
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - Tathagata Mukherjee
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - Chandan Mahish
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - P Sanjai Kumar
- Institute of Life Sciences, Nalco Nagar Rd, NALCO Square, NALCO Nagar, Chandrasekharpur, Bhubaneswar, Odisha 751023 India
| | - Chandan Goswami
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| | - Subhasis Chattopadhyay
- National Institute of Science Education and Research, an Off-campus Centre (OCC) of Homi Bhabha National Institute, Bhubaneswar, Odisha 752050 India
| |
Collapse
|
4
|
Berra-Romani R, Brunetti V, Pellavio G, Soda T, Laforenza U, Scarpellino G, Moccia F. Allyl Isothiocianate Induces Ca 2+ Signals and Nitric Oxide Release by Inducing Reactive Oxygen Species Production in the Human Cerebrovascular Endothelial Cell Line hCMEC/D3. Cells 2023; 12:1732. [PMID: 37443764 PMCID: PMC10340171 DOI: 10.3390/cells12131732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Nitric oxide (NO) represents a crucial mediator to regulate cerebral blood flow (CBF) in the human brain both under basal conditions and in response to somatosensory stimulation. An increase in intracellular Ca2+ concentrations ([Ca2+]i) stimulates the endothelial NO synthase to produce NO in human cerebrovascular endothelial cells. Therefore, targeting the endothelial ion channel machinery could represent a promising strategy to rescue endothelial NO signalling in traumatic brain injury and neurodegenerative disorders. Allyl isothiocyanate (AITC), a major active constituent of cruciferous vegetables, was found to increase CBF in non-human preclinical models, but it is still unknown whether it stimulates NO release in human brain capillary endothelial cells. In the present investigation, we showed that AITC evoked a Ca2+-dependent NO release in the human cerebrovascular endothelial cell line, hCMEC/D3. The Ca2+ response to AITC was shaped by both intra- and extracellular Ca2+ sources, although it was insensitive to the pharmacological blockade of transient receptor potential ankyrin 1, which is regarded to be among the main molecular targets of AITC. In accord, AITC failed to induce transmembrane currents or to elicit membrane hyperpolarization, although NS309, a selective opener of the small- and intermediate-conductance Ca2+-activated K+ channels, induced a significant membrane hyperpolarization. The AITC-evoked Ca2+ signal was triggered by the production of cytosolic, but not mitochondrial, reactive oxygen species (ROS), and was supported by store-operated Ca2+ entry (SOCE). Conversely, the Ca2+ response to AITC did not require Ca2+ mobilization from the endoplasmic reticulum, lysosomes or mitochondria. However, pharmacological manipulation revealed that AITC-dependent ROS generation inhibited plasma membrane Ca2+-ATPase (PMCA) activity, thereby attenuating Ca2+ removal across the plasma membrane and resulting in a sustained increase in [Ca2+]i. In accord, the AITC-evoked NO release was driven by ROS generation and required ROS-dependent inhibition of PMCA activity. These data suggest that AITC could be exploited to restore NO signalling and restore CBF in brain disorders that feature neurovascular dysfunction.
Collapse
Affiliation(s)
- Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Giorgia Pellavio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (G.P.); (U.L.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Umberto Laforenza
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (G.P.); (U.L.)
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| |
Collapse
|
5
|
Dalenogare DP, Souza Monteiro de Araújo D, Landini L, Titiz M, De Siena G, De Logu F, Geppetti P, Nassini R, Trevisan G. Neuropathic-like Nociception and Spinal Cord Neuroinflammation Are Dependent on the TRPA1 Channel in Multiple Sclerosis Models in Mice. Cells 2023; 12:1511. [PMID: 37296632 PMCID: PMC10252670 DOI: 10.3390/cells12111511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Background: Transient receptor potential ankyrin 1 (TRPA1) activation is implicated in neuropathic pain-like symptoms. However, whether TRPA1 is solely implicated in pain-signaling or contributes to neuroinflammation in multiple sclerosis (MS) is unknown. Here, we evaluated the TRPA1 role in neuroinflammation underlying pain-like symptoms using two different models of MS. Methods: Using a myelin antigen, Trpa1+/+ or Trpa1-/- female mice developed relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) (Quil A as adjuvant) or progressive experimental autoimmune encephalomyelitis (PMS)-EAE (complete Freund's adjuvant). The locomotor performance, clinical scores, mechanical/cold allodynia, and neuroinflammatory MS markers were evaluated. Results: Mechanical and cold allodynia detected in RR-EAE, or PMS-EAE Trpa1+/+ mice, were not observed in Trpa1-/- mice. The increased number of cells labeled for ionized calcium-binding adapter molecule 1 (Iba1) or glial fibrillary acidic protein (GFAP), two neuroinflammatory markers in the spinal cord observed in both RR-EAE or PMS-EAE Trpa1+/+ mice, was reduced in Trpa1-/- mice. By Olig2 marker and luxol fast blue staining, prevention of the demyelinating process in Trpa1-/- induced mice was also detected. Conclusions: Present results indicate that the proalgesic role of TRPA1 in EAE mouse models is primarily mediated by its ability to promote spinal neuroinflammation and further strengthen the channel inhibition to treat neuropathic pain in MS.
Collapse
Affiliation(s)
- Diéssica Padilha Dalenogare
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil;
| | - Daniel Souza Monteiro de Araújo
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Lorenzo Landini
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Mustafa Titiz
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Gaetano De Siena
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Francesco De Logu
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Pierangelo Geppetti
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Romina Nassini
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Gabriela Trevisan
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil;
| |
Collapse
|
6
|
Modification of the TRP Channel TRPA1 as a Relevant Factor in Migraine-Related Intracranial Hypersensitivity. Int J Mol Sci 2023; 24:ijms24065375. [PMID: 36982450 PMCID: PMC10049246 DOI: 10.3390/ijms24065375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Recently, the transient receptor potential ankyrin 1 (TRPA1) has gained more attention in migraine-related research. The involvement of the TRPA1 receptor in migraine headaches is proposed by the fact that TRPA1 may be a target of some migraine-triggering factors. Although it is doubtful that activation of TRPA1 alone is sufficient to induce pain, behavioral studies have demonstrated that TRPA1 is involved in injury- and inflammation-induced hypersensitivity. Here, we review the functional relevance of TRPA1 in headaches and its therapeutic potential, mainly focusing on its role in the development of hypersensitivity, referring to its altered expression in pathological conditions, and its functional interaction with other TRP channels.
Collapse
|
7
|
Greco R, Demartini C, Francavilla M, Zanaboni AM, Tassorelli C. Antagonism of CGRP Receptor: Central and Peripheral Mechanisms and Mediators in an Animal Model of Chronic Migraine. Cells 2022; 11:3092. [PMID: 36231054 PMCID: PMC9562879 DOI: 10.3390/cells11193092] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Calcitonin-gene-related peptide (CGRP) plays a key role in migraine pathophysiology and more specifically in the mechanisms underlying peripheral and central sensitization. Here, we explored the interaction of CGRP with other pain mediators relevant for neuronal sensitization in an animal model of chronic migraine. Male Sprague-Dawley rats were exposed to nitroglycerin (NTG, 5 mg/kg, i.p.) or vehicle co-administered with the CGRP receptor antagonist olcegepant (2 mg/kg i.p.), or its vehicle, every other day over a 9-day period. Twenty-four hours after the last injection of NTG (or vehicle), behavioral test and ex vivo analysis were performed. Olcegepant attenuated NTG-induced trigeminal hyperalgesia in the second phase of the orofacial formalin test. Interestingly, it also reduced gene expression and protein levels of CGRP, pro-inflammatory cytokines, inflammatory-associated miRNAs (miR-155-5p, miR-382-5p, and miR-34a-5p), and transient receptor potential ankyrin channels in the medulla-pons area, cervical spinal cord, and trigeminal ganglia. Similarly, olcegepant reduced the NTG-induced increase in CGRP and inflammatory cytokines in serum. The findings show that the activation of the CGRP pathway in a migraine animal model was associated to the persistent activation of inflammatory pathways, which was paralleled by a condition of hyperalgesia. These molecular events are relevant for informing us about the mechanisms underlying chronic migraine.
Collapse
Affiliation(s)
- Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Chiara Demartini
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Miriam Francavilla
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Anna Maria Zanaboni
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
8
|
Dalenogare DP, Theisen MC, Peres DS, Fialho MFP, Andrighetto N, Barros L, Landini L, Titiz M, De Logu F, Oliveira SM, Geppetti P, Nassini R, Trevisan G. Transient receptor potential ankyrin 1 mediates headache-related cephalic allodynia in a mouse model of relapsing-remitting multiple sclerosis. Pain 2022; 163:1346-1355. [PMID: 34711761 DOI: 10.1097/j.pain.0000000000002520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/07/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Primary headache conditions are frequently associated with multiple sclerosis (MS), but the mechanism that triggers or worsens headaches in patients with MS is poorly understood. We previously showed that the proalgesic transient receptor potential ankyrin 1 (TRPA1) mediates hind paw mechanical and cold allodynia in a relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) model in mice. Here, we investigated the development of periorbital mechanical allodynia (PMA) in RR-EAE, a hallmark of headache, and if TRPA1 contributed to this response. RR-EAE induction by injection of the myelin oligodendrocyte peptide fragment35-55 (MOG35-55) and Quillaja A adjuvant (Quil A) in C57BL/6J female mice elicited a delayed and sustained PMA. The PMA at day 35 after induction was reduced by the calcitonin gene-related peptide receptor antagonist (olcegepant) and the serotonin 5-HT1B/D receptor agonist (sumatriptan), 2 known antimigraine agents. Genetic deletion or pharmacological blockade of TRPA1 attenuated PMA associated with RR-EAE. The levels of oxidative stress biomarkers (4-hydroxynonenal and hydrogen peroxide, known TRPA1 endogenous agonists) and superoxide dismutase and NADPH oxidase activities were increased in the trigeminal ganglion of RR-EAE mice. Besides, the treatment with antioxidants (apocynin or α-lipoic acid) attenuated PMA. Thus, the results of this study indicate that TRPA1, presumably activated by endogenous agonists, evokes PMA in a mouse model of relapsing-remitting MS.
Collapse
Affiliation(s)
- Diéssica P Dalenogare
- Department of Physiology and Pharmacology, Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, Brazil
| | - Maria C Theisen
- Department of Physiology and Pharmacology, Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, Brazil
| | - Diulle S Peres
- Department of Physiology and Pharmacology, Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, Brazil
| | - Maria F P Fialho
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Nathaly Andrighetto
- Department of Physiology and Pharmacology, Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, Brazil
| | - Laura Barros
- Department of Physiology and Pharmacology, Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, Brazil
| | - Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Mustafa Titiz
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Sara M Oliveira
- Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Gabriela Trevisan
- Department of Physiology and Pharmacology, Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, RS, Brazil
| |
Collapse
|
9
|
Kamal RM, Abdull Razis AF, Mohd Sukri NS, Perimal EK, Ahmad H, Patrick R, Djedaini-Pilard F, Mazzon E, Rigaud S. Beneficial Health Effects of Glucosinolates-Derived Isothiocyanates on Cardiovascular and Neurodegenerative Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030624. [PMID: 35163897 PMCID: PMC8838317 DOI: 10.3390/molecules27030624] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Abstract
Neurodegenerative diseases (NDDs) and cardiovascular diseases (CVDs) are illnesses that affect the nervous system and heart, all of which are vital to the human body. To maintain health of the human body, vegetable diets serve as a preventive approach and particularly Brassica vegetables have been associated with lower risks of chronic diseases, especially NDDs and CVDs. Interestingly, glucosinolates (GLs) and isothiocyanates (ITCs) are phytochemicals that are mostly found in the Cruciferae family and they have been largely documented as antioxidants contributing to both cardio- and neuroprotective effects. The hydrolytic breakdown of GLs into ITCs such as sulforaphane (SFN), phenylethyl ITC (PEITC), moringin (MG), erucin (ER), and allyl ITC (AITC) has been recognized to exert significant effects with regards to cardio- and neuroprotection. From past in vivo and/or in vitro studies, those phytochemicals have displayed the ability to mitigate the adverse effects of reactive oxidation species (ROS), inflammation, and apoptosis, which are the primary causes of CVDs and NDDs. This review focuses on the protective effects of those GL-derived ITCs, featuring their beneficial effects and the mechanisms behind those effects in CVDs and NDDs.
Collapse
Affiliation(s)
- Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Pharmacology, Federal University Dutse, Dutse 720101, Jigawa State, Nigeria
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Nurul Syafuhah Mohd Sukri
- Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Johor, Malaysia;
| | - Enoch Kumar Perimal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hafandi Ahmad
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Rollin Patrick
- Université d’Orléans et CNRS, ICOA, UMR 7311, BP 6759, CEDEX 02, F-45067 Orléans, France;
| | - Florence Djedaini-Pilard
- LG2A UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu—UFR des Sciences, F-80000 Amiens, France; (F.D.-P.); (S.R.)
| | - Emanuela Mazzon
- Laboratorio di Neurologia Sperimentale, IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy;
| | - Sébastien Rigaud
- LG2A UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu—UFR des Sciences, F-80000 Amiens, France; (F.D.-P.); (S.R.)
| |
Collapse
|
10
|
Hu F, Song X, Long D. Transient receptor potential ankyrin 1 and calcium: Interactions and association with disease (Review). Exp Ther Med 2021; 22:1462. [PMID: 34737802 PMCID: PMC8561754 DOI: 10.3892/etm.2021.10897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Calcium (Ca2+) is an essential signaling molecule in all cells. It is involved in numerous fundamental functions, including cell life and death. Abnormal regulation of Ca2+ homeostasis may cause human diseases. Usually known as a member of the transient receptor potential (TRP) family, TRP ankyrin 1 (TRPA1) is the only member of the ankyrin subfamily identified in mammals so far and widely expressed in cells and tissues. As it is involved in numerous sensory disorders such as pain and pruritus, TRPA1 is a potential target for the treatment of neuropathy. The functions of TRP family members are closely related to Ca2+. TRPA1 has a high permeability to Ca2+, sodium and potassium ions as a non-selective cation channel and the Ca2+ influx mediated by TRPA1 is involved in a variety of biological processes. In the present review, research on the relationship between the TRPA1 channel and Ca2+ ions and their interaction in disease-associated processes was summarised. The therapeutic potential of the TRPA1 channel is highlighted, which is expected to become a novel direction for the prevention and treatment of health conditions such as cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fangyan Hu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaohua Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
11
|
Dalenogare DP, Ritter C, Bellinaso FRA, Kudsi SQ, Pereira GC, Fialho MFP, Lückemeyer DD, Antoniazzi CTDD, Landini L, Ferreira J, Bochi GV, Oliveira SM, De Logu F, Nassini R, Geppetti P, Trevisan G. Periorbital Nociception in a Progressive Multiple Sclerosis Mouse Model Is Dependent on TRPA1 Channel Activation. Pharmaceuticals (Basel) 2021; 14:831. [PMID: 34451927 PMCID: PMC8400939 DOI: 10.3390/ph14080831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
Headaches are frequently described in progressive multiple sclerosis (PMS) patients, but their mechanism remains unknown. Transient receptor potential ankyrin 1 (TRPA1) was involved in neuropathic nociception in a model of PMS induced by experimental autoimmune encephalomyelitis (PMS-EAE), and TRPA1 activation causes periorbital and facial nociception. Thus, our purpose was to observe the development of periorbital mechanical allodynia (PMA) in a PMS-EAE model and evaluate the role of TRPA1 in periorbital nociception. Female PMS-EAE mice elicited PMA from day 7 to 14 days after induction. The antimigraine agents olcegepant and sumatriptan were able to reduce PMA. The PMA was diminished by the TRPA1 antagonists HC-030031, A-967079, metamizole and propyphenazone and was absent in TRPA1-deficient mice. Enhanced levels of TRPA1 endogenous agonists and NADPH oxidase activity were detected in the trigeminal ganglion of PMS-EAE mice. The administration of the anti-oxidants apocynin (an NADPH oxidase inhibitor) or alpha-lipoic acid (a sequestrant of reactive oxygen species), resulted in PMA reduction. These results suggest that generation of TRPA1 endogenous agonists in the PMS-EAE mouse model may sensitise TRPA1 in trigeminal nociceptors to elicit PMA. Thus, this ion channel could be a potential therapeutic target for the treatment of headache in PMS patients.
Collapse
Affiliation(s)
- Diéssica Padilha Dalenogare
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; (D.P.D.); (C.R.); (F.R.A.B.); (S.Q.K.); (G.C.P.); (C.T.d.D.A.); (G.V.B.)
| | - Camila Ritter
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; (D.P.D.); (C.R.); (F.R.A.B.); (S.Q.K.); (G.C.P.); (C.T.d.D.A.); (G.V.B.)
| | - Fernando Roberto Antunes Bellinaso
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; (D.P.D.); (C.R.); (F.R.A.B.); (S.Q.K.); (G.C.P.); (C.T.d.D.A.); (G.V.B.)
| | - Sabrina Qader Kudsi
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; (D.P.D.); (C.R.); (F.R.A.B.); (S.Q.K.); (G.C.P.); (C.T.d.D.A.); (G.V.B.)
| | - Gabriele Cheiran Pereira
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; (D.P.D.); (C.R.); (F.R.A.B.); (S.Q.K.); (G.C.P.); (C.T.d.D.A.); (G.V.B.)
| | - Maria Fernanda Pessano Fialho
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; (M.F.P.F.); (S.M.O.)
| | - Débora Denardin Lückemeyer
- Graduated Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil; (D.D.L.); (J.F.)
| | - Caren Tatiane de David Antoniazzi
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; (D.P.D.); (C.R.); (F.R.A.B.); (S.Q.K.); (G.C.P.); (C.T.d.D.A.); (G.V.B.)
| | - Lorenzo Landini
- Department of Health Science, Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, FI, Italy; (L.L.); (F.D.L.); (P.G.)
| | - Juliano Ferreira
- Graduated Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil; (D.D.L.); (J.F.)
| | - Guilherme Vargas Bochi
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; (D.P.D.); (C.R.); (F.R.A.B.); (S.Q.K.); (G.C.P.); (C.T.d.D.A.); (G.V.B.)
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; (M.F.P.F.); (S.M.O.)
| | - Francesco De Logu
- Department of Health Science, Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, FI, Italy; (L.L.); (F.D.L.); (P.G.)
| | - Romina Nassini
- Department of Health Science, Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, FI, Italy; (L.L.); (F.D.L.); (P.G.)
| | - Pierangelo Geppetti
- Department of Health Science, Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, FI, Italy; (L.L.); (F.D.L.); (P.G.)
| | - Gabriela Trevisan
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; (D.P.D.); (C.R.); (F.R.A.B.); (S.Q.K.); (G.C.P.); (C.T.d.D.A.); (G.V.B.)
| |
Collapse
|
12
|
Betrie AH, Brock JA, Harraz OF, Bush AI, He GW, Nelson MT, Angus JA, Wright CE, Ayton S. Zinc drives vasorelaxation by acting in sensory nerves, endothelium and smooth muscle. Nat Commun 2021; 12:3296. [PMID: 34075043 PMCID: PMC8169932 DOI: 10.1038/s41467-021-23198-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
Zinc, an abundant transition metal, serves as a signalling molecule in several biological systems. Zinc transporters are genetically associated with cardiovascular diseases but the function of zinc in vascular tone regulation is unknown. We found that elevating cytoplasmic zinc using ionophores relaxed rat and human isolated blood vessels and caused hyperpolarization of smooth muscle membrane. Furthermore, zinc ionophores lowered blood pressure in anaesthetized rats and increased blood flow without affecting heart rate. Conversely, intracellular zinc chelation induced contraction of selected vessels from rats and humans and depolarized vascular smooth muscle membrane potential. We demonstrate three mechanisms for zinc-induced vasorelaxation: (1) activation of transient receptor potential ankyrin 1 to increase calcitonin gene-related peptide signalling from perivascular sensory nerves; (2) enhancement of cyclooxygenase-sensitive vasodilatory prostanoid signalling in the endothelium; and (3) inhibition of voltage-gated calcium channels in the smooth muscle. These data introduce zinc as a new target for vascular therapeutics.
Collapse
Affiliation(s)
- Ashenafi H Betrie
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
- Cardiovascular Therapeutics Unit, Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences; The Institute of Cardiovascular Diseases, Tianjin University, Tianjin; Center for Drug Development, Wannan Medical College, Wuhu, Anhui, China
| | - James A Brock
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Guo-Wei He
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences; The Institute of Cardiovascular Diseases, Tianjin University, Tianjin; Center for Drug Development, Wannan Medical College, Wuhu, Anhui, China
| | - Mark T Nelson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - James A Angus
- Cardiovascular Therapeutics Unit, Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia
| | - Christine E Wright
- Cardiovascular Therapeutics Unit, Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Alvarado MG, Thakore P, Earley S. Transient Receptor Potential Channel Ankyrin 1: A Unique Regulator of Vascular Function. Cells 2021; 10:cells10051167. [PMID: 34064835 PMCID: PMC8151290 DOI: 10.3390/cells10051167] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 12/27/2022] Open
Abstract
TRPA1 (transient receptor potential ankyrin 1), the lone member of the mammalian ankyrin TRP subfamily, is a Ca2+-permeable, non-selective cation channel. TRPA1 channels are localized to the plasma membranes of various cells types, including sensory neurons and vascular endothelial cells. The channel is endogenously activated by byproducts of reactive oxygen species, such as 4-hydroxy-2-noneal, as well as aromatic, dietary molecules including allyl isothiocyanate, a derivative of mustard oil. Several studies have implicated TRPA1 as a regulator of vascular tone that acts through distinct mechanisms. First, TRPA1 on adventitial sensory nerve fibers mediates neurogenic vasodilation by stimulating the release of the vasodilator, calcitonin gene-related peptide. Second, TRPA1 is expressed in the endothelium of the cerebral vasculature, but not in other vascular beds, and its activation results in localized Ca2+ signals that drive endothelium-dependent vasodilation. Finally, TRPA1 is functionally present on brain capillary endothelial cells, where its activation orchestrates a unique biphasic propagation mechanism that dilates upstream arterioles. This response is vital for neurovascular coupling and functional hyperemia in the brain. This review provides a brief overview of the biophysical and pharmacological properties of TRPA1 and discusses the importance of the channel in vascular control and pathophysiology.
Collapse
|
14
|
Xie J, Liao B, Tang RY. Functional Application of Sulfur-Containing Spice Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12505-12526. [PMID: 33138361 DOI: 10.1021/acs.jafc.0c05002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sulfur-containing spice compounds possess diverse biological functions and play an important role in food, chemicals, pharmaceuticals, and agriculture. The development of functional spices has become increasingly popular, especially for medicinal functions for dietary health. Thus, this review focuses on the properties and functions of sulfur-containing spice compounds, including antioxidant, anti-inflammatory, antiobesity, anticancer, antibacterial, and insecticidal functions, among others. Developments over the last five years concerning the properties of sulfur-containing spice compounds are summarized and discussed.
Collapse
Affiliation(s)
- Jinxin Xie
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Benjian Liao
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ri-Yuan Tang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Hansted AK, Jensen LJ, Olesen J, Jansen-Olesen I. Localization of TRPA1 channels and characterization of TRPA1 mediated responses in dural and pial arteries in vivo after intracarotid infusion of Na 2S. Cephalalgia 2020; 40:1310-1320. [PMID: 32611244 DOI: 10.1177/0333102420937724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The Transient Receptor Potential Ankyrin 1 (TRPA1) channel might play a role in migraine. However, different mechanisms for this have been suggested. The purpose of our study was to investigate the localization and significance of TRPA1 channels in rat pial and dural arteries. METHODS Immunofluorescence microscopy was used to localize TRPA1 channels in dural arteries, pial arteries, dura mater and trigeminal ganglion. The genuine closed cranial window model was used to examine the effect of Na2S, a donor of the TRPA1 channel opener H2S, on the diameter of pial and dural arteries. Further, we performed blocking experiments with TRPA1 antagonist HC-030031, calcitonin gene-related peptide (CGRP) receptor antagonist olcegepant and KCa3.1 channel blocker TRAM-34. RESULTS TRPA1 channels were localized to the endothelium of both dural and pial arteries and in nerve fibers in dura mater. Further, we found TRPA1 expression in the membrane of trigeminal ganglia neuronal cells, some of them also staining for CGRP. Na2S caused dilation of both dural and pial arteries. In dural arteries, this was inhibited by HC-030031 and olcegepant. In pial arteries, the dilation was inhibited by TRAM-34, suggesting involvement of the KCa3.1 channel. CONCLUSION Na2S causes a TRPA1- and CGRP-dependent dilation of dural arteries and a KCa3.1 channel-dependent dilation of pial arteries in rats.
Collapse
Affiliation(s)
- Anna Koldbro Hansted
- Department of Neurology, Danish Headache Center, Rigshospitalet, Glostrup, Denmark.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lars Jørn Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Rigshospitalet, Glostrup, Denmark
| | - Inger Jansen-Olesen
- Department of Neurology, Danish Headache Center, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
16
|
Alavi MS, Shamsizadeh A, Karimi G, Roohbakhsh A. Transient receptor potential ankyrin 1 (TRPA1)-mediated toxicity: friend or foe? Toxicol Mech Methods 2019; 30:1-18. [PMID: 31409172 DOI: 10.1080/15376516.2019.1652872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transient receptor potential (TRP) channels have been widely studied during the last decade. New studies uncover new features and potential applications for these channels. TRPA1 has a huge distribution all over the human body and has been reported to be involved in different physiological and pathological conditions including cold, pain, and damage sensation. Considering its role, many studies have been devoted to evaluating the role of this channel in the initiation and progression of different toxicities. Accordingly, we reviewed the most recent studies and divided the role of TRPA1 in toxicology into the following sections: neurotoxicity, cardiotoxicity, dermatotoxicity, and pulmonary toxicity. Acetaminophen, heavy metals, tear gases, various chemotherapeutic agents, acrolein, wood smoke particulate materials, particulate air pollution materials, diesel exhaust particles, cigarette smoke extracts, air born irritants, sulfur mustard, and plasticizers are selected compounds and materials with toxic effects that are, at least in part, mediated by TRPA1. Considering the high safety of TRPA1 antagonists and their efficacy to resolve selected toxic or adverse drug reactions, the future of these drugs looks promising.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|