1
|
Zhytniakivska O, Chaturvedi T, Thomsen MH. Plant-Based Inhibitors of Protein Aggregation. Biomolecules 2025; 15:481. [PMID: 40305223 PMCID: PMC12025044 DOI: 10.3390/biom15040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
The assembly of amyloidogenic proteins and peptides into toxic oligomeric and fibrillar aggregates is closely connected to the onset and progression of more than 50 protein diseases, such as Alzheimer's disease, Parkinson's disease, prion disease, and type 2 diabetes, to name only a few. Considerable research efforts at identifying the therapeutic strategies against these maladies are currently focused on preventing and inhibiting pathogenic protein aggregation by various agents. Plant-based extracts and compounds have emerged as promising sources of potential inhibitors due to their dual role as nutraceuticals as part of healthy diets and as specific pharmaceuticals when administered at higher concentrations. In recent decades, several plant extracts and plant-extracted compounds have shown potential to modulate protein aggregation. An ever-growing body of research on plant-based amyloid inhibitors requires a detail analysis of existing data to identify potential knowledge gaps. This review summarizes the recent progress in amyloid inhibition using 17 flavonoids, 11 polyphenolic non-flavonoid compounds, 23 non-phenolic inhibitors, and 59 plant extracts, with the main emphasis on directly modulating the fibrillation of four amyloid proteins, namely amyloid-β peptide, microtubule-associated protein tau, α-synuclein, and human islet amyloid polypeptide.
Collapse
Affiliation(s)
- Olha Zhytniakivska
- AAU Energy, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022 Kharkiv, Ukraine
| | - Tanmay Chaturvedi
- AAU Energy, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | | |
Collapse
|
2
|
Alhawarri MB, Dianita R, Rawa MSA, Nogawa T, Wahab HA. Potential Anti-Cholinesterase Activity of Bioactive Compounds Extracted from Cassia grandis L.f. and Cassia timoriensis DC. PLANTS (BASEL, SWITZERLAND) 2023; 12:344. [PMID: 36679057 PMCID: PMC9862305 DOI: 10.3390/plants12020344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 06/17/2023]
Abstract
Acetylcholinesterase (AChE) inhibitors remain the primary therapeutic drug that can alleviate Alzheimer's disease's (AD) symptoms. Several Cassia species have been shown to exert significant anti-AChE activity, which can be an alternative remedy for AD. Cassia timoriensis and Cassia grandis are potential plants with anti-AChE activity, but their phytochemical investigation is yet to be further conducted. The aims of this study were to identify the phytoconstituents of C. timoriensis and C. grandis and evaluate their inhibitory activity against AChE and butyrylcholinesterase (BChE). Two compounds were isolated for the first time from C. timoriensis: arachidyl arachidate (1) and luteolin (2). Five compounds were identified from C. grandis: β-sitosterol (3), stigmasterol (4), cinnamic acid (5), 4-hydroxycinnamic acid (6), and hydroxymethylfurfural (7). Compound 2 showed significant inhibition towards AChE (IC50: 20.47 ± 1.10 µM) and BChE (IC50: 46.15 ± 2.20 µM), followed by 5 (IC50: 40.5 ± 1.28 and 373.1 ± 16.4 µM) and 6 (IC50: 43.4 ± 0.61 and 409.17 ± 14.80 µM) against AChE and BChE, respectively. The other compounds exhibited poor to slightly moderate AChE inhibitory activity. Molecular docking revealed that 2 showed good binding affinity towards TcAChE (PDB ID: 1W6R) and HsBChE (PDB ID: 4BDS). It formed a hydrogen bond with TYR121 at the peripheral anionic site (PAS, 2.04 Å), along with hydrophobic interactions with the anionic site and PAS (TRP84 and TYR121, respectively). Additionally, 2 formed three H-bonds with the binding site residues: one bond with catalytic triad, HIS438 at distance 2.05 Å, and the other two H-bonds with GLY115 and GLU197 at distances of 2.74 Å and 2.19 Å, respectively. The evidence of molecular interactions of 2 may justify the relevance of C. timoriensis as a cholinesterase inhibitor, having more promising activity than C. grandis.
Collapse
Affiliation(s)
- Maram B. Alhawarri
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia
- Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan
| | - Roza Dianita
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia
| | - Mira Syahfriena Amir Rawa
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Toshihiko Nogawa
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia
- Molecular Structure Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| |
Collapse
|
3
|
Preclinical activities of Cassia tora Linn against aging-related diseases. Expert Rev Mol Med 2022; 24:e43. [PMID: 36281483 DOI: 10.1017/erm.2022.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Globally, an aging population is increasing, and aging is a natural physiological process and a major risk factor for all age-related diseases. It seriously threatens personal health and imposes a great economic burden. Therefore, there is a growing scientific interest in strategies for well-aging with prevention and treatment of age-related diseases. The seed, root, stem or leaves of Cassia tora Linn. are useful for anti-bacteria, anti-hyperlipidemia and anti-obesity due to its pharmacological activities such as anti-inflammation and anti-oxidant both in vitro and in vivo. Nevertheless, no clinical trials have been attempted so far, therefore here we would like to understand the current preclinical activities for aging-related disease models including cataract, metabolic dysfunction and neurodegeneration, then discuss their preparation for clinical trials and perspectives.
Collapse
|
4
|
Yan QY, Lv JL, Shen XY, Ou-Yang XN, Yang JZ, Nie RF, Lu J, Huang YJ, Wang JY, Shen X. Patchouli alcohol as a selective estrogen receptor β agonist ameliorates AD-like pathology of APP/PS1 model mice. Acta Pharmacol Sin 2022; 43:2226-2241. [PMID: 35091686 PMCID: PMC9433381 DOI: 10.1038/s41401-021-00857-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022]
Abstract
Clinical evidence shows that postmenpausal women are almost twice as likely to develop Alzheimer's disease (AD) as men of the same age, and estrogen is closely related to the occurrence of AD. Estrogen receptor (ER) α is mainly expressed in the mammary gland and other reproductive organs like uterus while ERβ is largely distributed in the hippocampus and cardiovascular system, suggesting that ERβ selective agonist is a valuable drug against neurodegenerative diseases with low tendency in inducing cancers of breast and other reproductive organs. In this study we identified a natural product patchouli alcohol (PTA) as a selective ERβ agonist which improved the cognitive defects in female APP/PS1 mice, and explore the underlying mechanisms. Six-month-old female APP/PS1 mice were administered PTA (20, 40 mg · kg-1 · d-1, i.g.) for 90 days. We first demonstrated that PTA bound to ERβ with a dissociation constant (KD) of 288.9 ± 35.14 nM in microscale thermophoresis. Then we showed that PTA administration dose-dependently ameliorated cognitive defects evaluated in Morris water maze and Y-maze testes. Furthermore, PTA administration reduced amyloid plaque deposition in the hippocampus by promoting microglial phagocytosis; PTA administration improved synaptic integrity through enhancing BDNF/TrkB/CREB signaling, ameliorated oxidative stress by Catalase level, and regulated Bcl-2 family proteins in the hippocampus. The therapeutic effects of PTA were also observed in vitro: PTA (5, 10, 20 μM) dose-dependently increased phagocytosis of o-FAM-Aβ42 in primary microglia and BV2 cells through enhancing ERβ/TLR4 signaling; PTA treatment ameliorated o-Aβ25-35-induced reduction of synapse-related proteins VAMP2 and PSD95 in primary neurons through enhancing ERβ/BDNF/TrkB/CREB pathways; PTA treatment alleviated o-Aβ25-35-induced oxidative stress in primary neurons through targeting ERβ and increasing Catalase expression. Together, this study has addressed the efficacy of selective ERβ agonist in the amelioration of AD and highlighted the potential of PTA as a drug lead compound against the disease.
Collapse
Affiliation(s)
- Qiu-Ying Yan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian-Lu Lv
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xing-Yi Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xing-Nan Ou-Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan-Zhen Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rui-Fang Nie
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu-Jie Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia-Ying Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
5
|
Tuzimski T, Petruczynik A. Determination of Anti-Alzheimer's Disease Activity of Selected Plant Ingredients. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103222. [PMID: 35630702 PMCID: PMC9147832 DOI: 10.3390/molecules27103222] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases, among which one of the more common is Alzheimer’s disease, are the one of the biggest global public health challenges facing our generation because of the increasing elderly population in most countries. With the growing burden of these diseases, it is essential to discover and develop new treatment options capable of preventing and treating them. Neurodegenerative diseases, among which one of the most common is Alzheimer’s disease, are a multifactorial disease and therefore demand multiple therapeutic approaches. One of the most important therapeutic strategies is controlling the level of acetylcholine—a neurotransmitter in cholinergic synapses—by blocking the degradation of acetylcholine using acetylcholinesterase inhibitors such as tacrine, galantamine, donepezil and rivastigmine. However, these drugs can cause some adverse side effects, such as hepatotoxicity and gastrointestinal disorder. Thus, the search for new, more effective drugs is very important. In the last few years, different active constituents from plants have been tested as potential drugs in neurodegenerative disease therapy. The availability, lower price and less toxic effects of herbal medicines compared with synthetic agents make them a simple and excellent choice in the treatment of neurodegenerative diseases. The empirical approach to discovering new drugs from the systematic screening of plant extracts or plant-derived compounds is still an important strategy when it comes to finding new biologically active substances. The aim of this review is to identify new, safe and effective compounds that are potential candidates for further in vivo and clinical tests from which more effective drugs for the treatment of Alzheimer’s disease could be selected. We reviewed the methods used to determine anti-Alzheimer’s disease activity. Here, we have discussed the relevance of plant-derived compounds with in vitro activity. Various plants and phytochemical compounds have shown different activity that could be beneficial in the treatment of Alzheimer’s disorders. Most often, medicinal plants and their active components have been investigated as acetylcholinesterase and/or butyrylcholinesterase activity inhibitors, modifiers of β-amyloid processing and antioxidant agents. This study also aims to highlight species with assessed efficacy, usable plant parts and the most active plant components in order to identify species and compounds of interest for further study. Future research directions are suggested and recommendations made to expand the use of medicinal plants, their formulations and plant-derived active compounds to prevent, mitigate and treat Alzheimer’s disease.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (T.T.); (A.P.)
| | - Anna Petruczynik
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (T.T.); (A.P.)
| |
Collapse
|
6
|
Kang SH, Pandey RP, Lee CM, Sim JS, Jeong JT, Choi BS, Jung M, Ginzburg D, Zhao K, Won SY, Oh TJ, Yu Y, Kim NH, Lee OR, Lee TH, Bashyal P, Kim TS, Lee WH, Hawkins C, Kim CK, Kim JS, Ahn BO, Rhee SY, Sohng JK. Genome-enabled discovery of anthraquinone biosynthesis in Senna tora. Nat Commun 2020; 11:5875. [PMID: 33208749 PMCID: PMC7674472 DOI: 10.1038/s41467-020-19681-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Senna tora is a widely used medicinal plant. Its health benefits have been attributed to the large quantity of anthraquinones, but how they are made in plants remains a mystery. To identify the genes responsible for plant anthraquinone biosynthesis, we reveal the genome sequence of S. tora at the chromosome level with 526 Mb (96%) assembled into 13 chromosomes. Comparison among related plant species shows that a chalcone synthase-like (CHS-L) gene family has lineage-specifically and rapidly expanded in S. tora. Combining genomics, transcriptomics, metabolomics, and biochemistry, we identify a CHS-L gene contributing to the biosynthesis of anthraquinones. The S. tora reference genome will accelerate the discovery of biologically active anthraquinone biosynthesis pathways in medicinal plants.
Collapse
Affiliation(s)
- Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea.
| | - Ramesh Prasad Pandey
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chang-Muk Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Joon-Soo Sim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Jin-Tae Jeong
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 55365, Republic of Korea
| | - Beom-Soon Choi
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
| | - Myunghee Jung
- Department of Forest Science, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daniel Ginzburg
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Kangmei Zhao
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Yeisoo Yu
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
- DNACARE Co. Ltd, Seoul, 06730, Republic of Korea
| | - Nam-Hoon Kim
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Tae-Ho Lee
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Puspalata Bashyal
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Tae-Su Kim
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Woo-Haeng Lee
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Charles Hawkins
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Byoung Ohg Ahn
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Seung Yon Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
| | - Jae Kyung Sohng
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea.
| |
Collapse
|
7
|
Kang SH, Pandey RP, Lee CM, Sim JS, Jeong JT, Choi BS, Jung M, Ginzburg D, Zhao K, Won SY, Oh TJ, Yu Y, Kim NH, Lee OR, Lee TH, Bashyal P, Kim TS, Lee WH, Hawkins C, Kim CK, Kim JS, Ahn BO, Rhee SY, Sohng JK. Genome-enabled discovery of anthraquinone biosynthesis in Senna tora. Nat Commun 2020. [PMID: 33208749 DOI: 10.1101/2020.04.27.063495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Senna tora is a widely used medicinal plant. Its health benefits have been attributed to the large quantity of anthraquinones, but how they are made in plants remains a mystery. To identify the genes responsible for plant anthraquinone biosynthesis, we reveal the genome sequence of S. tora at the chromosome level with 526 Mb (96%) assembled into 13 chromosomes. Comparison among related plant species shows that a chalcone synthase-like (CHS-L) gene family has lineage-specifically and rapidly expanded in S. tora. Combining genomics, transcriptomics, metabolomics, and biochemistry, we identify a CHS-L gene contributing to the biosynthesis of anthraquinones. The S. tora reference genome will accelerate the discovery of biologically active anthraquinone biosynthesis pathways in medicinal plants.
Collapse
Affiliation(s)
- Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea.
| | - Ramesh Prasad Pandey
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chang-Muk Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Joon-Soo Sim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Jin-Tae Jeong
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 55365, Republic of Korea
| | - Beom-Soon Choi
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
| | - Myunghee Jung
- Department of Forest Science, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daniel Ginzburg
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Kangmei Zhao
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Yeisoo Yu
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
- DNACARE Co. Ltd, Seoul, 06730, Republic of Korea
| | - Nam-Hoon Kim
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Tae-Ho Lee
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Puspalata Bashyal
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Tae-Su Kim
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Woo-Haeng Lee
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Charles Hawkins
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Byoung Ohg Ahn
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Seung Yon Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
| | - Jae Kyung Sohng
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea.
| |
Collapse
|
8
|
Biochemical Constituent of Ginkgo biloba (Seed) 80% Methanol Extract Inhibits Cholinesterase Enzymes in Javanese Medaka ( Oryzias javanicus) Model. J Toxicol 2020; 2020:8815313. [PMID: 33029137 PMCID: PMC7530487 DOI: 10.1155/2020/8815313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/23/2020] [Accepted: 07/09/2020] [Indexed: 01/19/2023] Open
Abstract
Background Pathophysiological changes leading to the death of nerve cells present in the brain and spinal cord are referred to as neurodegenerative diseases. Presently, treatment of these diseases is not effective and encounters many challenges due to the cost of drug and side effects. Thus, the search for the alternative agents to replace synthetic drugs is in high demand. Therefore, the aim of this study is to evaluate the anticholinesterase properties of Ginkgo biloba seed. Methods The seed was extracted with 80% methanol. Toxicity studies and evaluation of anticholinesterase activities were carried out in adult Javanese medaka (Oryzias javanicus). Phytochemical study to identify the bioactive lead constituents of the crude extract was also carried out using high performance liquid chromatography (HPLC). Results The result shows activities with high significant differences at P < 0.001 between the treated and nontreated groups. A bioactive compound (vitaxin) was identified with the aid of HPLC method. Conclusion The presence of bioactive compound vitaxin is among the major secondary metabolites that contribute to increasing activities of this plant extract. High anticholinesterase activities and low toxicity effect of this plant show its benefit to be used as natural medicine or supplements.
Collapse
|
9
|
Liao Q, Li Q, Zhao Y, Jiang P, Yan Y, Sun H, Liu W, Feng F, Qu W. Design, synthesis and biological evaluation of novel carboline-cinnamic acid hybrids as multifunctional agents for treatment of Alzheimer’s disease. Bioorg Chem 2020; 99:103844. [DOI: 10.1016/j.bioorg.2020.103844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/08/2020] [Indexed: 01/28/2023]
|
10
|
Ravi SK, Narasingappa RB, Mundagaru R, Girish TK, Vincent B. Cassia tora extract alleviates Aβ 1-42 aggregation processes in vitro and protects against aluminium-induced neurodegeneration in rats. ACTA ACUST UNITED AC 2020; 72:1119-1132. [PMID: 32363579 DOI: 10.1111/jphp.13283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/04/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVES To examine the ability of Cassia tora extract to produce, in vitro and in vivo, beneficial effects with respect to events occurring during Alzheimer's disease. METHODS Previously characterised methanol extract of C. tora was tested for its ability to lessen Aβ42 aggregation processes in vitro and to alleviate aluminium-induced impairments in vivo in rats. KEY FINDINGS Cassia tora extract prevents the aggregation of monomeric, oligomeric and fibrillary Aβ1-42 in vitro. Moreover, the daily ingestion of 100 and 400 milligrams of the extract per kilogram of body weight for 60 days ameliorates the neurobehavioral and cognitive abilities of aluminium-treated rats in vivo. Importantly, treatments with the extract trigger a significant recovery of antioxidant enzymes function, a diminution of lipid peroxidation and acetylcholinesterase activity, a decrease of pro-inflammatory cytokines expression and an increase of brain-derived neurotrophic factor levels in both the hippocampus and the frontal cortex. Finally, we evidence that the extract is able to ameliorate the aluminium-dependent loss of neuronal integrity in the CA1 and CA3 regions of the hippocampus. CONCLUSIONS Altogether, our results reveal that methanol extract of C. tora is able to prevent typical AD-related events and therefore stands as a promising mild and natural anti-AD multitarget compound.
Collapse
Affiliation(s)
- Sunil K Ravi
- Department of Biotechnology, College of Agriculture, University of Agriculture Sciences, Bangalore, Hassan, India
| | - Ramesh B Narasingappa
- Department of Biotechnology, College of Agriculture, University of Agriculture Sciences, Bangalore, Hassan, India
| | - Ravi Mundagaru
- Pharmacology laboratory, SDM Centre for Research in Ayurveda and Allied Sciences, Kuthpady, Udupi, India
| | - Talakatta K Girish
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore, India
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|