1
|
Li M, Jin J, Zhai X, Zhu T, Zhao X, Wang D. Acute aerobic exercise ameliorates craving and attentional function in individuals with methamphetamine use disorders. Physiol Behav 2025; 290:114775. [PMID: 39631450 DOI: 10.1016/j.physbeh.2024.114775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/14/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Chronic methamphetamine use is frequently associated with impairments in the attentional network (alerting, orienting, conflict networks) and related brain regions, which significantly trigger METH-related cravings. The aim of this study is to investigate the effects of moderate-intensity acute aerobic exercise on cravings and attentional networks in individuals with methamphetamine use disorders (MUD). METHODS Using a cross-over design, this study recruited 32 male MUDs to randomly complete a 30min moderate-intensity aerobics exercise condition (65%-75% HRmax) and an assigned material reading control condition, with a 7-day washout interval. All participants completed Visual Analog Scales before, during, and after exercise, until the HR dropped to 110% of the resting heart rate, in preparation for the Attention Network Test (ANT). RESULTS The aerobic exercise significantly reduces the participants' cravings. There were no differences observed in the efficiency of alerting and orienting networks between the aerobic exercise and control conditions, however, the efficiency of conflict network was enhanced after exercise. Furthermore, the results showed a significant negative correlation between the enhancements in conflict network efficiency and the reductions in post-exercise craving scores for both conditions. CONCLUSION Moderate-intensity acute aerobic exercise significantly improves the attentional network, especially enhancing the conflict network in individuals with MUD. Additionally, the improvement of the conflict network is closely related to the reduction in cravings in individuals with MUD, suggesting that aerobic exercise may reduce cravings through improvements in cognitive function.
Collapse
Affiliation(s)
- Mengya Li
- Faculty of Sports Science, Ningbo University, Zhejiang, PR China
| | - Jianjing Jin
- Faculty of Sports Science, Ningbo University, Zhejiang, PR China
| | - Xiaohui Zhai
- Faculty of Sports Science, Ningbo University, Zhejiang, PR China
| | - Ting Zhu
- Mental Health and Guidance Center, Ningbo University, Zhejiang, PR China
| | - Xixia Zhao
- Faculty of Sports Science, Ningbo University, Zhejiang, PR China
| | - Dongshi Wang
- Faculty of Sports Science, Ningbo University, Zhejiang, PR China.
| |
Collapse
|
2
|
Lu W, Feng W, Zhen H, Jiang S, Li Y, Liu S, Ru Q, Xiao W. Unlocking the therapeutic potential of WISP-1: A comprehensive exploration of its role in age-related musculoskeletal disorders. Int Immunopharmacol 2025; 145:113791. [PMID: 39667044 DOI: 10.1016/j.intimp.2024.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/03/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
As the global population ages, the incidence of age-related musculoskeletal diseases continues to increase, driven by numerous complex and poorly understood factors. WNT-1 inducible secreted protein 1 (WISP-1), a secreted matrix protein, plays a critical role in the growth and development of the musculoskeletal system, including chondrogenesis, osteogenesis, and myogenesis. Numerous in vivo and in vitro studies have demonstrated that WISP-1 is significantly upregulated in age-related musculoskeletal conditions, such as osteoarthritis, osteoporosis, and sarcopenia, suggesting its involvement in the pathogenesis of these diseases. Regulating WISP-1 expression holds promise as a therapeutic strategy for improving musculoskeletal function, potentially offering new avenues for treating age-related musculoskeletal diseases in clinical practice. This review highlights the signaling pathways associated with WISP-1, its physiological roles within the musculoskeletal system, and its therapeutic potential in treating age-related musculoskeletal disorders.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenjie Feng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Haozu Zhen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuguang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710001, Shaanxi, China.
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
3
|
Bhattarai G, Shrestha SK, Rijal S, Kook SH, Lee JC. Supplemental Magnesium Gluconate Enhances Scaffold-Mediated New Bone Formation and Natural Bone Healing by Angiogenic- and Wnt Signal-Associated Osteogenic Activation. J Biomed Mater Res A 2025; 113:e37812. [PMID: 39462850 DOI: 10.1002/jbm.a.37812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Local implantation or supplementation of magnesium gluconate (MgG) is being investigated as an effective approach to bone repair. Although studies have highlighted the possible mechanisms in Mg ion-stimulated new bone formation, the role of MgG in healing bone defects and the signaling mechanisms are not yet completely understood. In this study, we explored how supplemental MgG has bone-specific beneficial effects by delivering MgG locally and orally in animal models. We fabricated MgG-incorporated (CMC-M) and -free chitosan (CMC) scaffolds with good microstructures and biocompatible properties. Implantation with CMC-M enhanced bone healing in rat model of mandible defects, compared with CMC, by activating Wnt signals and Wnt-related osteogenic and angiogenic molecules. Oral supplementation with MgG also stimulated bone healing in mouse model of femoral defects along with the increases in Wnt3a and angiogenic and osteogenic factors. Supplemental MgG did not alter nature bone accrual and bone marrow (BM) microenvironment in adult mouse model, but enhanced the functioning of BM stromal cells (BMSCs). Furthermore, MgG directly stimulated the induction of Wnt signaling-, angiogenesis-, and osteogenesis-related molecules in cultures of BMSCs, as well as triggered the migration of endothelial cells. These results suggest that supplemental MgG improves bone repair in a way that is synergistically enhanced by Wnt signal-associated angiogenic and osteogenic molecules. Overall, this study indicates that supplemental MgG might ameliorate oxidative damage in the BM, improve the functionality of BM stem cells, and maintain BM-microenvironmental homeostasis.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, South Korea
| | - Saroj Kumar Shrestha
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, South Korea
| | - Shankar Rijal
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, South Korea
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, South Korea
| | - Sung-Ho Kook
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, South Korea
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, South Korea
| | - Jeong-Chae Lee
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, South Korea
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
4
|
Soni N, Bissa B. Exosomes, circadian rhythms, and cancer precision medicine: New frontiers. Biochimie 2024; 227:172-181. [PMID: 39032591 DOI: 10.1016/j.biochi.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
"The environment shapes people's actions," a well-known proverb, strongly dictates that a change in our way of life changes our behavior. Circadian rhythms have been identified as a mechanism for maintaining homeostasis in the body, which, if disrupted by sleeping patterns, could result in significant metabolic alterations that adversely affect our health. The changes induced by circadian rhythm alter the secretion and cargo selection in exosomes which are nanovesicles important for intercellular communication. Exosomes were formerly known as "junk particles" but are now recognized as miniature copies of a cell's genetic material. Dysregulation of circadian rhythm has shown that it changes the gene expression of a cell to some extent and significantly alters the exosomal release. Meanwhile, cells secrete exosomes continuously to align the rhythmicity of the biological clock. In this study, we integrate circadian rhythms and exosomes with precision medicines to find better approaches to early diagnosis and treatment of disease.
Collapse
Affiliation(s)
- Naveen Soni
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Bhawana Bissa
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India.
| |
Collapse
|
5
|
Griñán-Ferré C, Servin-Muñoz IV, Palomera-Ávalos V, Martínez-Fernández C, Companys-Alemany J, Muñoz-Villanova A, Ortuño-Sahagún D, Pallàs M, Bellver-Sanchis A. Changes in Gene Expression Profile with Age in SAMP8: Identifying Transcripts Involved in Cognitive Decline and Sporadic Alzheimer's Disease. Genes (Basel) 2024; 15:1411. [PMID: 39596610 PMCID: PMC11593728 DOI: 10.3390/genes15111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The senescence-accelerated mouse 8 (SAMP8) represents a model for Alzheimer's disease (AD) research because it exhibits age-related learning and memory impairments consistent with early onset and rapid progression of senescence. To identify transcriptional changes during AD progression, in this study, we analyzed and compared the gene expression profiles involved in molecular pathways of neurodegeneration and cognitive impairment in senescence-accelerated resistant 1 (SAMR1) and SAMP8 mice. Methods: In total, 48 female SAMR1 and SAMP8 mice were randomly divided into six groups (SAMR1 and SAMP8 at 3, 7, and 9 months of age). Microarray analysis of 22,000 genes was performed, followed by functional analysis using Gene Ontology (NCBI) and examination of altered molecular pathways using the KEGG (Kyoto Encyclopedia of Genes and Genomes). Results: SAMP8 mice had 2516 dysregulated transcripts at 3 months, 2549 transcripts at 7 months, and 2453 genes at 9 months compared to SAMR1 mice of the same age. These accounted for 11.3% of the total number. This showed that with age, the gene expression of downregulated transcripts increases, and that of over-expressed transcripts decreases. Most of these genes were involved in neurodegenerative metabolic pathways associated with Alzheimer's disease: apoptosis, inflammatory response, oxidative stress, and mitochondria. The qPCR results indicated that Ndufs4, TST/Rhodanese, Wnt3, and Sema6a expression was differentially expressed during aging. Conclusions: These results further revealed significant differences in gene expression profiles at different ages between SAMR1 and SAMP8 and showed alteration in genes involved in age-related cognitive decline and mitochondrial processes, demonstrating the relevance of the SAMP8 model as a model for sporadic AD.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (C.G.-F.); (V.P.-Á.); (C.M.-F.); (J.C.-A.); (A.M.-V.); (M.P.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Iris Valeria Servin-Muñoz
- Laboratorio de Neuroinmunología Molecular, Instituto de Investigación de Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Jalisco 44340, Mexico; (I.V.S.-M.); (D.O.-S.)
| | - Verónica Palomera-Ávalos
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (C.G.-F.); (V.P.-Á.); (C.M.-F.); (J.C.-A.); (A.M.-V.); (M.P.)
| | - Carmen Martínez-Fernández
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (C.G.-F.); (V.P.-Á.); (C.M.-F.); (J.C.-A.); (A.M.-V.); (M.P.)
| | - Júlia Companys-Alemany
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (C.G.-F.); (V.P.-Á.); (C.M.-F.); (J.C.-A.); (A.M.-V.); (M.P.)
| | - Amalia Muñoz-Villanova
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (C.G.-F.); (V.P.-Á.); (C.M.-F.); (J.C.-A.); (A.M.-V.); (M.P.)
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunología Molecular, Instituto de Investigación de Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Jalisco 44340, Mexico; (I.V.S.-M.); (D.O.-S.)
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (C.G.-F.); (V.P.-Á.); (C.M.-F.); (J.C.-A.); (A.M.-V.); (M.P.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (C.G.-F.); (V.P.-Á.); (C.M.-F.); (J.C.-A.); (A.M.-V.); (M.P.)
| |
Collapse
|
6
|
de Cavanagh EMV, Inserra F, Ferder L. Renin-angiotensin system inhibitors positively impact on multiple aging regulatory pathways: Could they be used to protect against human aging? Physiol Rep 2024; 12:e16094. [PMID: 38924381 PMCID: PMC11200104 DOI: 10.14814/phy2.16094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
The renin-angiotensin system (RAS)-a classical blood pressure regulator-largely contributes to healthy organ development and function. Besides, RAS activation promotes age-related changes and age-associated diseases, which are attenuated/abolished by RAS-blockade in several mammalian species. RAS-blockers also increase rodent lifespan. In previous work, we discussed how RAS-blockade downregulates mTOR and growth hormone/IGF-1 signaling, and stimulates AMPK activity (together with klotho, sirtuin, and vitamin D-receptor upregulation), and proposed that at least some of RAS-blockade's aging benefits are mediated through regulation of these intermediaries and their signaling to mitochondria. Here, we included RAS-blockade's impact on other aging regulatory pathways, that is, TGF-ß, NF-kB, PI3K, MAPK, PKC, Notch, and Wnt, all of which affect mitochondria. No direct evidence is available on RAS/RAS-blockade-aging regulatory pathway-mitochondria interactions. However, existing results allow to conjecture that RAS-blockers neutralize mitochondrial dysfunction by acting on the discussed pathways. The reviewed evidence led us to propose that the foundation is laid for conducting clinical trials aimed at testing whether angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB)-even at subclinical doses-offer the possibility to live longer and in better health. As ACEi and ARB are low cost and well-tolerated anti-hypertension therapies in use for over 35 years, investigating their administration to attenuate/prevent aging effects seems simple to implement.
Collapse
Affiliation(s)
| | - Felipe Inserra
- Department of MedicineMaimonides UniversityBuenos AiresArgentina
- Master of Vascular Mechanics and Arterial Hypertension, Postgraduate DepartmentAustral UniversityPilarArgentina
| | - León Ferder
- Department of MedicineMaimonides UniversityBuenos AiresArgentina
| |
Collapse
|
7
|
Wetzel A, Lei SH, Liu T, Hughes MP, Peng Y, McKay T, Waddington SN, Grannò S, Rahim AA, Harvey K. Dysregulated Wnt and NFAT signaling in a Parkinson's disease LRRK2 G2019S knock-in model. Sci Rep 2024; 14:12393. [PMID: 38811759 PMCID: PMC11137013 DOI: 10.1038/s41598-024-63130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Parkinson's disease (PD) is a progressive late-onset neurodegenerative disease leading to physical and cognitive decline. Mutations of leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of PD. LRRK2 is a complex scaffolding protein with known regulatory roles in multiple molecular pathways. Two prominent examples of LRRK2-modulated pathways are Wingless/Int (Wnt) and nuclear factor of activated T-cells (NFAT) signaling. Both are well described key regulators of immune and nervous system development as well as maturation. The aim of this study was to establish the physiological and pathogenic role of LRRK2 in Wnt and NFAT signaling in the brain, as well as the potential contribution of the non-canonical Wnt/Calcium pathway. In vivo cerebral Wnt and NFATc1 signaling activity was quantified in LRRK2 G2019S mutant knock-in (KI) and LRRK2 knockout (KO) male and female mice with repeated measures over 28 weeks, employing lentiviral luciferase biosensors, and analyzed using a mixed-effect model. To establish spatial resolution, we investigated tissues, and primary neuronal cell cultures from different brain regions combining luciferase signaling activity, immunohistochemistry, qPCR and western blot assays. Results were analyzed by unpaired t-test with Welch's correction or 2-way ANOVA with post hoc corrections. In vivo Wnt signaling activity in LRRK2 KO and LRRK2 G2019S KI mice was increased significantly ~ threefold, with a more pronounced effect in males (~ fourfold) than females (~ twofold). NFATc1 signaling was reduced ~ 0.5-fold in LRRK2 G2019S KI mice. Brain tissue analysis showed region-specific expression changes in Wnt and NFAT signaling components. These effects were predominantly observed at the protein level in the striatum and cerebral cortex of LRRK2 KI mice. Primary neuronal cell culture analysis showed significant genotype-dependent alterations in Wnt and NFATc1 signaling under basal and stimulated conditions. Wnt and NFATc1 signaling was primarily dysregulated in cortical and hippocampal neurons respectively. Our study further built on knowledge of LRRK2 as a Wnt and NFAT signaling protein. We identified complex changes in neuronal models of LRRK2 PD, suggesting a role for mutant LRRK2 in the dysregulation of NFAT, and canonical and non-canonical Wnt signaling.
Collapse
Affiliation(s)
- Andrea Wetzel
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Si Hang Lei
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Tiansheng Liu
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Michael P Hughes
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Yunan Peng
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Tristan McKay
- Department of Life Sciences, Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, University College London, 86-96 Chenies Mews, London, WC1E 6HXZ, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simone Grannò
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Rue Gabrielle-Perret Gentil 4, 1205, Geneva, Switzerland
| | - Ahad A Rahim
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
8
|
Maiese K. Artificial Intelligence and Disease Signature Pathways: Driving Innovation to Elucidate Underlying Pathogenic Mechanisms. Curr Neurovasc Res 2024; 21:229-233. [PMID: 38910427 DOI: 10.2174/1567202621999240621122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
|
9
|
Maiese K. Microglia: Formidable Players in Alzheimer's Disease and Other Neurodegenerative Disorders. Curr Neurovasc Res 2024; 20:515-518. [PMID: 37888824 DOI: 10.2174/1567202620999231027155308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 10/28/2023]
|
10
|
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12:2595. [PMID: 37998330 PMCID: PMC10670256 DOI: 10.3390/cells12222595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic disorders and diabetes (DM) impact more than five hundred million individuals throughout the world and are insidious in onset, chronic in nature, and yield significant disability and death. Current therapies that address nutritional status, weight management, and pharmacological options may delay disability but cannot alter disease course or functional organ loss, such as dementia and degeneration of systemic bodily functions. Underlying these challenges are the onset of aging disorders associated with increased lifespan, telomere dysfunction, and oxidative stress generation that lead to multi-system dysfunction. These significant hurdles point to the urgent need to address underlying disease mechanisms with innovative applications. New treatment strategies involve non-coding RNA pathways with microRNAs (miRNAs) and circular ribonucleic acids (circRNAs), Wnt signaling, and Wnt1 inducible signaling pathway protein 1 (WISP1) that are dependent upon programmed cell death pathways, cellular metabolic pathways with AMP-activated protein kinase (AMPK) and nicotinamide, and growth factor applications. Non-coding RNAs, Wnt signaling, and AMPK are cornerstone mechanisms for overseeing complex metabolic pathways that offer innovative treatment avenues for metabolic disease and DM but will necessitate continued appreciation of the ability of each of these cellular mechanisms to independently and in unison influence clinical outcome.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
11
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Maiese K. Innovative therapeutic strategies for cardiovascular disease. EXCLI JOURNAL 2023; 22:690-715. [PMID: 37593239 PMCID: PMC10427777 DOI: 10.17179/excli2023-6306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
As a significant non-communicable disease, cardiovascular disease is the leading cause of death for both men and women, comprises almost twenty percent of deaths in most racial and ethnic groups, can affect greater than twenty-five million individuals worldwide over the age of twenty, and impacts global economies with far-reaching financial challenges. Multiple factors can affect the onset of cardiovascular disease that include high serum cholesterol levels, elevated blood pressure, tobacco consumption and secondhand smoke exposure, poor nutrition, physical inactivity, obesity, and concurrent diabetes mellitus. Yet, addressing any of these factors cannot completely eliminate the onset or progression of cardiovascular disorders. Novel strategies are necessary to target underlying cardiovascular disease mechanisms. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), a histone deacetylase, can limit cardiovascular injury, assist with stem cell development, oversee metabolic homeostasis through nicotinamide adenine dinucleotide (NAD+) pathways, foster trophic factor protection, and control cell senescence through the modulation of telomere function. Intimately tied to SIRT1 pathways are mammalian forkhead transcription factors (FoxOs) which can modulate cardiac disease to reduce oxidative stress, repair microcirculation disturbances, and reduce atherogenesis through pathways of autophagy, apoptosis, and ferroptosis. AMP activated protein kinase (AMPK) also is critical among these pathways for the oversight of cardiac cellular metabolism, insulin sensitivity, mitochondrial function, inflammation, and the susceptibility to viral infections such as severe acute respiratory syndrome coronavirus that can impact cardiovascular disease. Yet, the relationship among these pathways is both intricate and complex and requires detailed insight to successfully translate these pathways into clinical care for cardiovascular disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
13
|
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10:871. [PMID: 37508898 PMCID: PMC10376413 DOI: 10.3390/bioengineering10070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Almost three million individuals suffer from multiple sclerosis (MS) throughout the world, a demyelinating disease in the nervous system with increased prevalence over the last five decades, and is now being recognized as one significant etiology of cognitive loss and dementia. Presently, disease modifying therapies can limit the rate of relapse and potentially reduce brain volume loss in patients with MS, but unfortunately cannot prevent disease progression or the onset of cognitive disability. Innovative strategies are therefore required to address areas of inflammation, immune cell activation, and cell survival that involve novel pathways of programmed cell death, mammalian forkhead transcription factors (FoxOs), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and associated pathways with the apolipoprotein E (APOE-ε4) gene and severe acute respiratory syndrome coronavirus (SARS-CoV-2). These pathways are intertwined at multiple levels and can involve metabolic oversight with cellular metabolism dependent upon nicotinamide adenine dinucleotide (NAD+). Insight into the mechanisms of these pathways can provide new avenues of discovery for the therapeutic treatment of dementia and loss in cognition that occurs during MS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
14
|
Maiese K. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System. Biomolecules 2023; 13:816. [PMID: 37238686 PMCID: PMC10216724 DOI: 10.3390/biom13050816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
It is estimated that, at minimum, 500 million individuals suffer from cellular metabolic dysfunction, such as diabetes mellitus (DM), throughout the world. Even more concerning is the knowledge that metabolic disease is intimately tied to neurodegenerative disorders, affecting both the central and peripheral nervous systems as well as leading to dementia, the seventh leading cause of death. New and innovative therapeutic strategies that address cellular metabolism, apoptosis, autophagy, and pyroptosis, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), growth factor signaling with erythropoietin (EPO), and risk factors such as the apolipoprotein E (APOE-ε4) gene and coronavirus disease 2019 (COVID-19) can offer valuable insights for the clinical care and treatment of neurodegenerative disorders impacted by cellular metabolic disease. Critical insight into and modulation of these complex pathways are required since mTOR signaling pathways, such as AMPK activation, can improve memory retention in Alzheimer's disease (AD) and DM, promote healthy aging, facilitate clearance of β-amyloid (Aß) and tau in the brain, and control inflammation, but also may lead to cognitive loss and long-COVID syndrome through mechanisms that can include oxidative stress, mitochondrial dysfunction, cytokine release, and APOE-ε4 if pathways such as autophagy and other mechanisms of programmed cell death are left unchecked.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
15
|
Ehtewish H, Mesleh A, Ponirakis G, De la Fuente A, Parray A, Bensmail I, Abdesselem H, Ramadan M, Khan S, Chandran M, Ayadathil R, Elsotouhy A, Own A, Al Hamad H, Abdelalim EM, Decock J, Alajez NM, Albagha O, Thornalley PJ, Arredouani A, Malik RA, El-Agnaf OMA. Blood-Based Proteomic Profiling Identifies Potential Biomarker Candidates and Pathogenic Pathways in Dementia. Int J Mol Sci 2023; 24:8117. [PMID: 37175824 PMCID: PMC10179172 DOI: 10.3390/ijms24098117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Dementia is a progressive and debilitating neurological disease that affects millions of people worldwide. Identifying the minimally invasive biomarkers associated with dementia that could provide insights into the disease pathogenesis, improve early diagnosis, and facilitate the development of effective treatments is pressing. Proteomic studies have emerged as a promising approach for identifying the protein biomarkers associated with dementia. This pilot study aimed to investigate the plasma proteome profile and identify a panel of various protein biomarkers for dementia. We used a high-throughput proximity extension immunoassay to quantify 1090 proteins in 122 participants (22 with dementia, 64 with mild cognitive impairment (MCI), and 36 controls with normal cognitive function). Limma-based differential expression analysis reported the dysregulation of 61 proteins in the plasma of those with dementia compared with controls, and machine learning algorithms identified 17 stable diagnostic biomarkers that differentiated individuals with AUC = 0.98 ± 0.02. There was also the dysregulation of 153 plasma proteins in individuals with dementia compared with those with MCI, and machine learning algorithms identified 8 biomarkers that classified dementia from MCI with an AUC of 0.87 ± 0.07. Moreover, multiple proteins selected in both diagnostic panels such as NEFL, IL17D, WNT9A, and PGF were negatively correlated with cognitive performance, with a correlation coefficient (r2) ≤ -0.47. Gene Ontology (GO) and pathway analysis of dementia-associated proteins implicated immune response, vascular injury, and extracellular matrix organization pathways in dementia pathogenesis. In conclusion, the combination of high-throughput proteomics and machine learning enabled us to identify a blood-based protein signature capable of potentially differentiating dementia from MCI and cognitively normal controls. Further research is required to validate these biomarkers and investigate the potential underlying mechanisms for the development of dementia.
Collapse
Affiliation(s)
- Hanan Ehtewish
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Areej Mesleh
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Georgios Ponirakis
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation (QF), Doha P.O. Box 24144, Qatar
| | - Alberto De la Fuente
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Aijaz Parray
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Houari Abdesselem
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Marwan Ramadan
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Shafi Khan
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Mani Chandran
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Raheem Ayadathil
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Ahmed Elsotouhy
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
- Department of Clinical Radiology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Ahmed Own
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
- Neuroradiology Department, Hamad General Hospital, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Hanadi Al Hamad
- Geriatric and Memory Clinic, Rumailah Hospital, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Essam M. Abdelalim
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Julie Decock
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Nehad M. Alajez
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Omar Albagha
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Paul J. Thornalley
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Abdelilah Arredouani
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Rayaz A. Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation (QF), Doha P.O. Box 24144, Qatar
| | - Omar M. A. El-Agnaf
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| |
Collapse
|
16
|
Golubev DA, Zemskaya NV, Gorbunova AA, Kukuman DV, Moskalev A, Shaposhnikov MV. Studying the Geroprotective Properties of YAP/TAZ Signaling Inhibitors on Drosophila melanogaster Model. Int J Mol Sci 2023; 24:ijms24066006. [PMID: 36983079 PMCID: PMC10058302 DOI: 10.3390/ijms24066006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the main downstream effectors of the evolutionarily conserved Hippo signaling pathway. YAP/TAZ are implicated in the transcriptional regulation of target genes that are involved in a wide range of key biological processes affecting tissue homeostasis and play dual roles in the aging process, depending on the cellular and tissue context. The aim of the present study was to investigate whether pharmacological inhibitors of Yap/Taz increase the lifespan of Drosophila melanogaster. Real-time qRT-PCR was performed to measure the changes in the expression of Yki (Yorkie, the Drosophila homolog of YAP/TAZ) target genes. We have revealed a lifespan-increasing effect of YAP/TAZ inhibitors that was mostly associated with decreased expression levels of the wg and E2f1 genes. However, further analysis is required to understand the link between the YAP/TAZ pathway and aging.
Collapse
Affiliation(s)
- Denis A Golubev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Nadezhda V Zemskaya
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Anastasia A Gorbunova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Daria V Kukuman
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Mikhail V Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| |
Collapse
|
17
|
Abstract
Most colorectal cancers (CRC) are associated with activated Wnt signaling, making it the fourth most prevalent type of cancer globally. To function properly, the Wnt signaling pathway requires secreted glycoproteins known as Wnt ligands (Wnts). Humans have 19 Wnts, which suggest a complicated signaling and biological process, and we still know little about their functions in developing CRC. This review aims to describe the canonical Wnt signaling in CRC, particularly the Wnt3a expression pattern, and their association with the angiogenesis and progression of CRC. This review also sheds light on the inhibition of Wnt3a signaling in CRC. Despite some obstacles, a thorough understanding of Wnts is essential for effectively managing CRC.
Collapse
|
18
|
Liraglutide Attenuates Hepatic Oxidative Stress, Inflammation, and Apoptosis in Streptozotocin-Induced Diabetic Mice by Modulating the Wnt/ β-Catenin Signaling Pathway. Mediators Inflamm 2023; 2023:8974960. [PMID: 36756089 PMCID: PMC9899592 DOI: 10.1155/2023/8974960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/19/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023] Open
Abstract
Liraglutide has been extensively applied in the treatment of type 2 diabetes mellitus and also has hepatoprotective effects. However, the role of liraglutide treatment on liver injury in a mouse model of type 1 diabetes mellitus (T1DM) induced by streptozotocin (STZ) and its underlying mechanisms remain to be elucidated. In the present study, diabetes was initiated in experimental animals by single-dose intraperitoneal inoculation of STZ. Forty female C57BL/6J mice were equally assigned into five groups: diabetic group, insulin+diabetic group, liraglutide+diabetic group, insulin+liraglutide+diabetic group, and control group for eight weeks. Diabetic mice exhibited a significantly elevated blood glucose level and decreased body weight, and morphological changes of increased steatosis and apoptosis were observed in the liver compared with the control. Furthermore, a significant increase in the levels of malondialdehyde and inflammatory markers such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin 1β (IL-1β) and the proapoptotic proteins caspase-3 and Bax were observed in the livers of diabetic mice, together with marked increases in antioxidants superoxide dismutase (SOD) and glutathione peroxidase (GPX) as well as antiapoptotic protein Bcl-2, all of which were significantly mitigated by treatment with liraglutide, insulin, and their combinations. Interestingly, liraglutide monotherapy showed better efficacy in ameliorating liver injury in T1DM mice than insulin monotherapy, similar to the combined drug therapy. Furthermore, the expression of Wnt/β-catenin signaling pathway-associated molecules was upregulated in the liver of mice treated with liraglutide or insulin. The results of the present study suggested that liraglutide improves T1DM-induced liver injury and may have important implications for the treatment of nonalcoholic fatty liver disease (NAFLD) in patients with T1DM.
Collapse
|
19
|
Maiese K. The Metabolic Basis for Nervous System Dysfunction in Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Curr Neurovasc Res 2023; 20:314-333. [PMID: 37488757 PMCID: PMC10528135 DOI: 10.2174/1567202620666230721122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Disorders of metabolism affect multiple systems throughout the body but may have the greatest impact on both central and peripheral nervous systems. Currently available treatments and behavior changes for disorders that include diabetes mellitus (DM) and nervous system diseases are limited and cannot reverse the disease burden. Greater access to healthcare and a longer lifespan have led to an increased prevalence of metabolic and neurodegenerative disorders. In light of these challenges, innovative studies into the underlying disease pathways offer new treatment perspectives for Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Metabolic disorders are intimately tied to neurodegenerative diseases and can lead to debilitating outcomes, such as multi-nervous system disease, susceptibility to viral pathogens, and long-term cognitive disability. Novel strategies that can robustly address metabolic disease and neurodegenerative disorders involve a careful consideration of cellular metabolism, programmed cell death pathways, the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP-activated protein kinase (AMPK), growth factor signaling, and underlying risk factors such as the apolipoprotein E (APOE-ε4) gene. Yet, these complex pathways necessitate comprehensive understanding to achieve clinical outcomes that target disease susceptibility, onset, and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
20
|
Guo X, Luo J, Qi J, Zhao X, An P, Luo Y, Wang G. The Role and Mechanism of Polysaccharides in Anti-Aging. Nutrients 2022; 14:5330. [PMID: 36558488 PMCID: PMC9785760 DOI: 10.3390/nu14245330] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The elderly proportion of the population is gradually increasing, which poses a great burden to society, the economy, and the medical field. Aging is a physiological process involving multiple organs and numerous reactions, and therefore it is not easily explained or defined. At present, a growing number of studies are focused on the mechanisms of aging and potential strategies to delay aging. Some clinical drugs have been demonstrated to have anti-aging effects; however, many still have deficits with respect to safety and long-term use. Polysaccharides are natural and efficient biological macromolecules that act as antioxidants, anti-inflammatories, and immune regulators. Not surprisingly, these molecules have recently gained attention for their potential use in anti-aging therapies. In fact, multiple polysaccharides have been found to have excellent anti-aging effects in different animal models including Caenorhabditis elegans, Drosophila melanogaster, and mice. The anti-aging qualities of polysaccharides have been linked to several mechanisms, such as improved antioxidant capacity, regulation of age-related gene expression, and improved immune function. Here, we summarize the current findings from research related to anti-aging polysaccharides based on various models, with a focus on the main anti-aging mechanisms of oxidative damage, age-related genes and pathways, immune modulation, and telomere attrition. This review aims to provide a reference for further research on anti-aging polysaccharides.
Collapse
Affiliation(s)
- Xinlu Guo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jingyi Qi
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xiya Zhao
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Guisheng Wang
- Department of Radiology, the Third Medical Centre, Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
21
|
Maiese K. Pyroptosis, Apoptosis, and Autophagy: Critical Players of Inflammation and Cell Demise in the Nervous System. Curr Neurovasc Res 2022; 19:241-244. [PMID: 35909267 DOI: 10.2174/1567202619666220729093449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Maiese K. A Common Link in Neurovascular Regenerative Pathways: Protein Kinase B (Akt). Curr Neurovasc Res 2022; 19:1-4. [PMID: 35139797 DOI: 10.2174/1567202619666220209111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Maiese K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. FRONT BIOSCI-LANDMRK 2021; 26:614-627. [PMID: 34590471 PMCID: PMC8756734 DOI: 10.52586/4971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022]
Abstract
Introduction: Dementia and cognitive loss impact a significant proportion of the global population and present almost insurmountable challenges for treatment since they stem from multifactorial etiologies. Innovative avenues for treatment are highly warranted. Methods and results: Novel work with biological clock genes that oversee circadian rhythm may meet this critical need by focusing upon the pathways of the mechanistic target of rapamycin (mTOR), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), mammalian forkhead transcription factors (FoxOs), the growth factor erythropoietin (EPO), and the wingless Wnt pathway. These pathways are complex in nature, intimately associated with autophagy that can maintain circadian rhythm, and have an intricate relationship that can lead to beneficial outcomes that may offer neuroprotection, metabolic homeostasis, and prevention of cognitive loss. However, biological clocks and alterations in circadian rhythm also have the potential to lead to devastating effects involving tumorigenesis in conjunction with pathways involving Wnt that oversee angiogenesis and stem cell proliferation. Conclusions: Current work with biological clocks and circadian rhythm pathways provide exciting possibilities for the treating dementia and cognitive loss, but also provide powerful arguments to further comprehend the intimate and complex relationship among these pathways to fully potentiate desired clinical outcomes.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
24
|
|
25
|
Chen X, Gu L, Cheng X, Xing J, Zhang M. MiR-17-5p downregulation alleviates apoptosis and fibrosis in high glucose-induced human mesangial cells through inactivation of Wnt/β-catenin signaling by targeting KIF23. ENVIRONMENTAL TOXICOLOGY 2021; 36:1702-1712. [PMID: 34014023 DOI: 10.1002/tox.23280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Diabetic nephropathy (DN) remains the major cause of end-stage renal disease. MicroRNAs (miRNAs) have been reported to perform biological functions in many diseases. This investigation elucidated the biological role of miR-17-5p in DN. In this study, high glucose-cultured human mesangial cells (HMCs) were used as a cell model of DN. The miR-17-5p and KIF23 expression was measured by RT-qPCR. Cell apoptosis was detected by flow cytometry. The protein levels of apoptosis markers, fibrosis markers, and Wnt/β-catenin signaling-related genes were assessed using western blotting. The interaction of miR-17-5p with KIF23 was tested by a luciferase reporter assay. We found that miR-17-5p was upregulated in both DN patients and high glucose-treated HMCs. Silencing miR-17-5p attenuated the apoptosis and fibrosis in high glucose-treated HMCs. MiR-17-5p binds to KIF23 3'UTR and negatively regulates KIF23 expression. KIF23 knockdown could suppress the role of miR-17-5p inhibition in high glucose-treated HMCs. Additionally, inhibition of miR-17-5p activated Wnt/β-catenin signaling in HMCs through upregulating KIF23 expression. Suppression of Wnt/β-catenin signaling antagonized the effect of miR-17-5p in HMCs. In conclusion, miR-17-5p inhibition alleviates the apoptosis and fibrosis in high glucose-treated HMCs by targeting KIF23 activating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xiaoli Chen
- Department of Endocrinology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Liyan Gu
- Department of Endocrinology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xia Cheng
- Department of Endocrinology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianping Xing
- Department of Endocrinology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Minxia Zhang
- Department of Endocrinology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
26
|
Wu C, Bendriem RM, Freed WJ, Lee CT. Transcriptome analysis of human dorsal striatum implicates attenuated canonical WNT signaling in neuroinflammation and in age-related impairment of striatal neurogenesis and synaptic plasticity. Restor Neurol Neurosci 2021; 39:247-266. [PMID: 34275915 DOI: 10.3233/rnn-211161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Motor and cognitive decline as part of the normal aging process is linked to alterations in synaptic plasticity and reduction of adult neurogenesis in the dorsal striatum. Neuroinflammation, particularly in the form of microglial activation, is suggested to contribute to these age-associated changes. OBJECTIVE AND METHODS To explore the molecular basis of alterations in striatal function during aging we analyzed RNA-Seq data for 117 postmortem human dorsal caudate samples and 97 putamen samples acquired through GTEx. RESULTS Increased expression of neuroinflammatory transcripts including TREM2, MHC II molecules HLA-DMB, HLA-DQA2, HLA-DPA1, HLA-DPB1, HLA-DMA and HLA-DRA, complement genes C1QA, C1QB, CIQC and C3AR1, and MHCI molecules HLA-B and HLA-F was identified. We also identified down-regulation of transcripts involved in neurogenesis, synaptogenesis, and synaptic pruning, including DCX, CX3CL1, and CD200, and the canonical WNTs WNT7A, WNT7B, and WNT8A. The canonical WNT signaling pathway has previously been shown to mediate adult neurogenesis and synapse formation and growth. Recent findings also highlight the link between WNT/β-catenin signaling and inflammation pathways. CONCLUSIONS These findings suggest that age-dependent attenuation of canonical WNT signaling plays a pivotal role in regulating striatal plasticity during aging. Dysregulation of WNT/β-catenin signaling via astrocyte-microglial interactions is suggested to be a novel mechanism that drives the decline of striatal neurogenesis and altered synaptic connectivity and plasticity, leading to a subsequent decrease in motor and cognitive performance with age. These findings may aid in the development of therapies targeting WNT/β-catenin signaling to combat cognitive and motor impairments associated with aging.
Collapse
Affiliation(s)
- Chun Wu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Raphael M Bendriem
- Brain and Mind Research Institute, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - William J Freed
- Department of Biology, Lebanon Valley College, Annville, PA, USA
| | - Chun-Ting Lee
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
27
|
Richard D, Capellini TD. Shifting epigenetic contexts influence regulatory variation and disease risk. Aging (Albany NY) 2021; 13:15699-15749. [PMID: 34138751 PMCID: PMC8266365 DOI: 10.18632/aging.203194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022]
Abstract
Epigenetic shifts are a hallmark of aging that impact transcriptional networks at regulatory level. These shifts may modify the effects of genetic regulatory variants during aging and contribute to disease pathomechanism. However, these shifts occur on the backdrop of epigenetic changes experienced throughout an individual's development into adulthood; thus, the phenotypic, and ultimately fitness, effects of regulatory variants subject to developmental- versus aging-related epigenetic shifts may differ considerably. Natural selection therefore may act differently on variants depending on their changing epigenetic context, which we propose as a novel lens through which to consider regulatory sequence evolution and phenotypic effects. Here, we define genomic regions subjected to altered chromatin accessibility as tissues transition from their fetal to adult forms, and subsequently from early to late adulthood. Based on these epigenomic datasets, we examine patterns of evolutionary constraint and potential functional impacts of sequence variation (e.g., genetic disease risk associations). We find that while the signals observed with developmental epigenetic changes are consistent with stronger fitness consequences (i.e., negative selection pressures), they tend to have weaker effects on genetic risk associations for aging-related diseases. Conversely, we see stronger effects of variants with increased local accessibility in adult tissues, strongest in young adult when compared to old. We propose a model for how epigenetic status of a region may influence the effects of evolutionary relevant sequence variation, and suggest that such a perspective on gene regulatory networks may elucidate our understanding of aging biology.
Collapse
Affiliation(s)
- Daniel Richard
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
28
|
MicroRNA-27a targets Sfrp1 to induce renal fibrosis in diabetic nephropathy by activating Wnt/β-Catenin signalling. Biosci Rep 2021; 40:225114. [PMID: 32484208 PMCID: PMC7295625 DOI: 10.1042/bsr20192794] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) commonly causes end-stage renal disease (ESRD). Increasing evidence indicates that abnormal miRNA expression is tightly associated with chronic kidney disease (CKD). This work aimed to investigate whether miR-27a can promote the occurrence of renal fibrosis in DN by suppressing the expression of secreted frizzled-related protein 1 (Sfrp1) to activate Wnt/β-catenin signalling. Therefore, we assessed the expression levels of miR-27a, Sfrp1, Wnt signalling components, and extracellular matrix (ECM)-related molecules in vitro and in vivo. Sfrp1 was significantly down-regulated in a high-glucose environment, while miR-27a levels were markedly increased. A luciferase reporter assay confirmed that miR-27a down-regulated Sfrp1 by binding to the 3′ untranslated region directly. Further, NRK-52E cells under high-glucose conditions underwent transfection with miR-27a mimic or the corresponding negative control, miR-27a inhibitor or the corresponding negative control, si-Sfrp1, or combined miR-27a inhibitor and si-Sfrp1. Immunoblotting and immunofluorescence were performed to assess the relative expression levels of Wnt/β-catenin signalling and ECM components. The mRNA levels of Sfrp1, miR-27a, and ECM-related molecules were also detected by quantitative real-time PCR (qPCR). We found that miR-27a inhibitor inactivated Wnt/β-catenin signalling and reduced ECM deposition. Conversely, Wnt/β-catenin signalling was activated, while ECM deposition was increased after transfection with si-Sfrp1. Interestingly, miR-27a inhibitor attenuated the effects of si-Sfrp1. We concluded that miR-27a down-regulated Sfrp1 and activated Wnt/β-catenin signalling to promote renal fibrosis.
Collapse
|
29
|
Izzo C, Vitillo P, Di Pietro P, Visco V, Strianese A, Virtuoso N, Ciccarelli M, Galasso G, Carrizzo A, Vecchione C. The Role of Oxidative Stress in Cardiovascular Aging and Cardiovascular Diseases. Life (Basel) 2021; 11:60. [PMID: 33467601 PMCID: PMC7829951 DOI: 10.3390/life11010060] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Aging can be seen as process characterized by accumulation of oxidative stress induced damage. Oxidative stress derives from different endogenous and exogenous processes, all of which ultimately lead to progressive loss in tissue and organ structure and functions. The oxidative stress theory of aging expresses itself in age-related diseases. Aging is in fact a primary risk factor for many diseases and in particular for cardiovascular diseases and its derived morbidity and mortality. Here we highlight the role of oxidative stress in age-related cardiovascular aging and diseases. We take into consideration the molecular mechanisms, the structural and functional alterations, and the diseases accompanied to the cardiovascular aging process.
Collapse
Affiliation(s)
- Carmine Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Paolo Vitillo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Andrea Strianese
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Nicola Virtuoso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
- Department of Angio-Cardio-Neurology, Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
- Department of Angio-Cardio-Neurology, Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| |
Collapse
|
30
|
Maiese K. Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders. Curr Neurovasc Res 2021; 18:134-149. [PMID: 33397266 PMCID: PMC8254823 DOI: 10.2174/1567202617999210104220334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Neurodegenerative disorders impact more than one billion individuals worldwide and are intimately tied to metabolic disease that can affect another nine hundred individuals throughout the globe. Nicotinamide is a critical agent that may offer fruitful prospects for neurodegenerative diseases and metabolic disorders, such as diabetes mellitus. Nicotinamide protects against multiple toxic environments that include reactive oxygen species exposure, anoxia, excitotoxicity, ethanolinduced neuronal injury, amyloid (Aß) toxicity, age-related vascular disease, mitochondrial dysfunction, insulin resistance, excess lactate production, and loss of glucose homeostasis with pancreatic β-cell dysfunction. However, nicotinamide offers cellular protection in a specific concentration range, with dosing outside of this range leading to detrimental effects. The underlying biological pathways of nicotinamide that involve the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and mammalian forkhead transcription factors (FoxOs) may offer insight for the clinical translation of nicotinamide into a safe and efficacious therapy through the modulation of oxidative stress, apoptosis, and autophagy. Nicotinamide is a highly promising target for the development of innovative strategies for neurodegenerative disorders and metabolic disease, but the benefits of this foundation depend greatly on gaining a further understanding of nicotinamide's complex biology.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
31
|
Agmatine Attenuates Liver Ischemia Reperfusion Injury by Activating Wnt/β-catenin Signaling in Mice. Transplantation 2020; 104:1906-1916. [PMID: 32032294 DOI: 10.1097/tp.0000000000003161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Liver ischemia reperfusion injury (LIRI) is a common problem during surgical procedures of the liver. It causes severe inflammatory responses and cell death, eventually leading to serious liver damage. Agmatine (AGM) is an endogenous polyamine with analgesic, anti-inflammatory, and antiapoptotic effects. However, it is still unknown whether AGM can protect the liver from damage caused by LIRI. METHODS For the in vivo experiments, a mouse model of partial warm hepatic ischemia reperfusion was established using C57BL/6J mice and then serum transaminase concentrations were analyzed. Histopathology was used to evaluate the degree of liver injury and quantitative real-time PCR was used to measure the amount of inflammatory cytokines. For the in vitro experiments, a cellular model of cobalt chloride (CoCl2)-induced hypoxia was established using AML12 cells. Flow cytometry was performed to measure the apoptosis levels. Western blotting analysis was conducted to measure the levels of proteins involved in apoptosis and Wnt/β-catenin signaling. We also chose 2 inhibitors of the Wnt/β-catenin signaling to elucidate the relationship between AGM and the Wnt/β-catenin signaling. RESULTS AGM showed protective effects against LIRI-induced liver damage, inflammatory responses, and cell apoptosis along with alleviation of CoCl2-induced hepatocyte injury. AGM activated the Wnt/β-catenin signaling pathway during LIRI and CoCl2-induced hepatocyte injury; however, when the Wnt/β-catenin pathway was inhibited, the protective effects of AGM declined. CONCLUSIONS AGM showed protective effects against LIRI by activating the Wnt/β-catenin signaling pathway.
Collapse
|
32
|
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:1-35. [PMID: 32854851 DOI: 10.1016/bs.irn.2020.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-communicable diseases (NCDs) that involve neurodegenerative disorders and metabolic disease impact over 400 million individuals globally. Interestingly, metabolic disorders, such as diabetes mellitus, are significant risk factors for the development of neurodegenerative diseases. Given that current therapies for these NCDs address symptomatic care, new avenues of discovery are required to offer treatments that affect disease progression. Innovative strategies that fill this void involve the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR complex 1 (mTORC1), mTOR complex 2 (mTORC2), AMP activated protein kinase (AMPK), trophic factors that include erythropoietin (EPO), and the programmed cell death pathways of autophagy and apoptosis. These pathways are intriguing in their potential to provide effective care for metabolic and neurodegenerative disorders. Yet, future work is necessary to fully comprehend the entire breadth of the mTOR pathways that can effectively and safely translate treatments to clinical medicine without the development of unexpected clinical disabilities.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY, United States.
| |
Collapse
|
33
|
Xu D, Li F, Xue G, Hou K, Fang W, Li Y. Effect of Wnt signaling pathway on neurogenesis after cerebral ischemia and its therapeutic potential. Brain Res Bull 2020; 164:1-13. [PMID: 32763283 DOI: 10.1016/j.brainresbull.2020.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 12/08/2019] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Neurogenesis process in the chronic phase of ischemic stroke has become the focus of research on stroke treatment recently, mainly through the activation of related pathways to increase the differentiation of neural stem cells (NSCs) in the brain sub-ventricular zone (SVZ) and subgranular zone (SGZ) of hippocampal dentate gyrus (DG) areas into neurons, promoting neurogenesis. While there is still debate about the longevity of active adult neurogenesis in humans, the SVZ and SGZ have the capacity to upregulate neurogenesis in response to cerebral ischemia, which opens discussion about potential treatment strategies to harness this neuronal regenerative response. Wnt signaling pathway is one of the most important approaches potentially targeting on neurogenesis after cerebral ischemia, appropriate activation of which in NSCs may help to improve the sequelae of cerebral ischemia. Various therapeutic approaches are explored on preclinical stage to target endogenous neurogenesis induced by Wnt signaling after stroke onset. This article describes the composition of Wnt signaling pathway and the process of neurogenesis after cerebral ischemia, and emphatically introduces the recent studies on the mechanisms of this pathway for post-stroke neurogenesis and the therapeutic possibility of activating the pathway to improve neurogenesis after stroke.
Collapse
Affiliation(s)
- Dan Xu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Fengyang Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Gou Xue
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Kai Hou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
34
|
Abstract
Metabolic disorders, such as diabetes mellitus (DM), are increasingly becoming significant risk factors for the health of the global population and consume substantial portions of the gross domestic product of all nations. Although conventional therapies that include early diagnosis, nutritional modification of diet, and pharmacological treatments may limit disease progression, tight serum glucose control cannot prevent the onset of future disease complications. With these concerns, novel strategies for the treatment of metabolic disorders that involve the vitamin nicotinamide, the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and the cellular pathways of autophagy and apoptosis offer exceptional promise to provide new avenues of treatment. Oversight of these pathways can promote cellular energy homeostasis, maintain mitochondrial function, improve glucose utilization, and preserve pancreatic beta-cell function. Yet, the interplay among mTOR, AMPK, and autophagy pathways can be complex and affect desired clinical outcomes, necessitating further investigations to provide efficacious treatment strategies for metabolic dysfunction and DM.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022,
| |
Collapse
|
35
|
Liu L, Hu J, Yang L, Wang N, Liu Y, Wei X, Gao M, Wang Y, Ma Y, Wen D. Association of WISP1/CCN4 with Risk of Overweight and Gestational Diabetes Mellitus in Chinese Pregnant Women. DISEASE MARKERS 2020; 2020:4934206. [PMID: 32377270 PMCID: PMC7180395 DOI: 10.1155/2020/4934206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/30/2020] [Accepted: 01/17/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Obese women with gestational diabetes mellitus (GDM) have a higher risk of adverse outcomes than women with obesity or GDM alone. Our study is aimed at investigating the discriminatory power of circulatory Wnt1-inducible signaling pathway protein-1 (WISP1), a novel adipocytokine, on the copresence of prepregnancy overweight/obesity and GDM and at clarifying the relationship between the WISP1 level and clinical cardiometabolic parameters. METHODS A total of 313 participants were screened from a multicenter prospective prebirth cohort: Born in Shenyang Cohort Study (BISCS). Subjects were examined with a 2 × 2 factorial design for body mass index (BMI) ≥ 24 and GDM. Between 24 and 28 weeks of pregnancy, follow-up individuals underwent an OGTT and blood sampling for cardiometabolic characterization. RESULTS We observed that the WISP1 levels were elevated in prepregnancy overweight/obesity patients with GDM, compared with nonoverweight subjects with normal blood glucose (3.45 ± 0.89 vs. 2.91 ± 0.75 ng/mL). Multilogistic regression analyses after adjustments for potential confounding factors revealed that WISP1 was a strong and independent risk factor for prepregnancy overweight/obesity with GDM (all ORs > 1). In addition, the results of the ROC analysis indicated that WISP1 exhibited the capability to identify individuals with prepregnancy overweight/obesity and GDM (all AUC > 0.5). Finally, univariate and multivariate linear regression showed that WISP1 level was positively and independently correlated with fasting blood glucose, systolic blood pressure, and aspartate aminotransferase and was negatively correlated with HDL-C and complement C1q. CONCLUSIONS WISP1 may be critical for the prediction, diagnosis, and therapeutic strategies against obesity and GDM in pregnant women.
Collapse
Affiliation(s)
- Lei Liu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Jiajin Hu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province 110122, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Liu Yang
- Department of Obstetrics and Gynecology, Shenyang Maternity and Child Health Hospital, Shenyang, Liaoning Province 110122, China
| | - Ningning Wang
- School of Public Health, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Yang Liu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Xiaotong Wei
- School of Public Health, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Ming Gao
- School of Public Health, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Yinuo Wang
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Yanan Ma
- School of Public Health, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Deliang Wen
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province 110122, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, Liaoning Province 110122, China
| |
Collapse
|
36
|
Marchetti B, Tirolo C, L'Episcopo F, Caniglia S, Testa N, Smith JA, Pluchino S, Serapide MF. Parkinson's disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell 2020; 19:e13101. [PMID: 32050297 PMCID: PMC7059166 DOI: 10.1111/acel.13101] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/27/2019] [Accepted: 12/25/2019] [Indexed: 12/14/2022] Open
Abstract
A common hallmark of age-dependent neurodegenerative diseases is an impairment of adult neurogenesis. Wingless-type mouse mammary tumor virus integration site (Wnt)/β-catenin (WβC) signalling is a vital pathway for dopaminergic (DAergic) neurogenesis and an essential signalling system during embryonic development and aging, the most critical risk factor for Parkinson's disease (PD). To date, there is no known cause or cure for PD. Here we focus on the potential to reawaken the impaired neurogenic niches to rejuvenate and repair the aged PD brain. Specifically, we highlight WβC-signalling in the plasticity of the subventricular zone (SVZ), the largest germinal region in the mature brain innervated by nigrostriatal DAergic terminals, and the mesencephalic aqueduct-periventricular region (Aq-PVR) Wnt-sensitive niche, which is in proximity to the SNpc and harbors neural stem progenitor cells (NSCs) with DAergic potential. The hallmark of the WβC pathway is the cytosolic accumulation of β-catenin, which enters the nucleus and associates with T cell factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors, leading to the transcription of Wnt target genes. Here, we underscore the dynamic interplay between DAergic innervation and astroglial-derived factors regulating WβC-dependent transcription of key genes orchestrating NSC proliferation, survival, migration and differentiation. Aging, inflammation and oxidative stress synergize with neurotoxin exposure in "turning off" the WβC neurogenic switch via down-regulation of the nuclear factor erythroid-2-related factor 2/Wnt-regulated signalosome, a key player in the maintenance of antioxidant self-defense mechanisms and NSC homeostasis. Harnessing WβC-signalling in the aged PD brain can thus restore neurogenesis, rejuvenate the microenvironment, and promote neurorescue and regeneration.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology and Physiology SectionsMedical SchoolUniversity of CataniaCataniaItaly
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | - Cataldo Tirolo
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | | | | | - Nunzio Testa
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | - Jayden A. Smith
- Department of Clinical Neurosciences and NIHR Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Maria F. Serapide
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology and Physiology SectionsMedical SchoolUniversity of CataniaCataniaItaly
| |
Collapse
|
37
|
Maiese K. Prospects and Perspectives for WISP1 (CCN4) in Diabetes Mellitus. Curr Neurovasc Res 2020; 17:327-331. [PMID: 32216738 PMCID: PMC7529678 DOI: 10.2174/1567202617666200327125257] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 02/08/2023]
Abstract
The prevalence of diabetes mellitus (DM) continues to increase throughout the world. In the United States (US) alone, approximately ten percent of the population is diagnosed with DM and another thirty-five percent of the population is considered to have prediabetes. Yet, current treatments for DM are limited and can fail to block the progression of multi-organ failure over time. Wnt1 inducible signaling pathway protein 1 (WISP1), also known as CCN4, is a matricellular protein that offers exceptional promise to address underlying disease progression and develop innovative therapies for DM. WISP1 holds an intricate relationship with other primary pathways of metabolism that include protein kinase B (Akt), mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and mammalian forkhead transcription factors (FoxOs). WISP1 is an exciting prospect to foster vascular as well as neuronal cellular protection and regeneration, control cellular senescence, block oxidative stress injury, and maintain glucose homeostasis. However, under some scenarios WISP1 can promote tumorigenesis, lead to obesity progression with adipocyte hyperplasia, foster fibrotic hepatic disease, and lead to dysregulated inflammation with the progression of DM. Given these considerations, it is imperative to further elucidate the complex relationship WISP1 holds with other vital metabolic pathways to successfully develop WISP1 as a clinically effective target for DM and metabolic disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY10022, USA
| |
Collapse
|
38
|
Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020; 17:765-783. [PMID: 33183203 PMCID: PMC7914159 DOI: 10.2174/1567202617999201111195232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Metabolic disorders that include diabetes mellitus present significant challenges for maintaining the welfare of the global population. Metabolic diseases impact all systems of the body and despite current therapies that offer some protection through tight serum glucose control, ultimately such treatments cannot block the progression of disability and death realized with metabolic disorders. As a result, novel therapeutic avenues are critical for further development to address these concerns. An innovative strategy involves the vitamin nicotinamide and the pathways associated with the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and clock genes. Nicotinamide maintains an intimate relationship with these pathways to oversee metabolic disease and improve glucose utilization, limit mitochondrial dysfunction, block oxidative stress, potentially function as antiviral therapy, and foster cellular survival through mechanisms involving autophagy. However, the pathways of nicotinamide, SIRT1, mTOR, AMPK, and clock genes are complex and involve feedback pathways as well as trophic factors such as erythropoietin that require a careful balance to ensure metabolic homeostasis. Future work is warranted to gain additional insight into these vital pathways that can oversee both normal metabolic physiology and metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
39
|
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13:23-34. [PMID: 31794280 PMCID: PMC6959472 DOI: 10.1080/17512433.2020.1698288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Dementia is the 7th leading cause of death that imposes a significant financial and service burden on the global population. Presently, only symptomatic care exists for cognitive loss, such as Alzheimer's disease.Areas covered: Given the advancing age of the global population, it becomes imperative to develop innovative therapeutic strategies for cognitive loss. New studies provide insight to the association of cognitive loss with metabolic disorders, such as diabetes mellitus.Expert opinion: Diabetes mellitus is increasing in incidence throughout the world and affects 350 million individuals. Treatment strategies identifying novel pathways that oversee metabolic and neurodegenerative disorders offer exciting prospects to treat dementia. The mechanistic target of rapamycin (mTOR) and circadian clock gene pathways that include AMP activated protein kinase (AMPK), Wnt1 inducible signaling pathway protein 1 (WISP1), erythropoietin (EPO), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) provide novel strategies to treat cognitive loss that has its basis in metabolic cellular dysfunction. However, these pathways are complex and require precise regulation to maximize treatment efficacy and minimize any potential clinical disability. Further investigations hold great promise to treat both the onset and progression of cognitive loss that is associated with metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
40
|
Propargylamine-derived multi-target directed ligands for Alzheimer's disease therapy. Bioorg Med Chem Lett 2019; 30:126880. [PMID: 31864798 DOI: 10.1016/j.bmcl.2019.126880] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 12/22/2022]
Abstract
Current options for the treatment of Alzheimeŕs disease have been restricted to prescription of acetylcholinesterase inhibitors or N-methyl-d-aspartate receptor antagonist, memantine. Propargylamine-derived multi-target directed ligands, such as ladostigil, M30, ASS234 and contilisant, involve different pathways. Apart from acting as inhibitors of both cholinesterases and monoamine oxidases, they show improvement of cognitive impairment, antioxidant activities, enhancement of iron-chelating activities, protect against tau hyperphosphorylation, block metal-associated oxidative stress, regulate APP and Aβ expression processing by the non-amyloidogenic α-secretase pathway, suppress mitochondrial permeability transition pore opening, and coordinate protein kinase C signaling and Bcl-2 family proteins. Other hybrid propargylamine derivatives are also reported.
Collapse
|
41
|
Effects of Ginsenoside Rg1 Regulating Wnt/ β-Catenin Signaling on Neural Stem Cells to Delay Brain Senescence. Stem Cells Int 2019; 2019:5010184. [PMID: 31885611 PMCID: PMC6914998 DOI: 10.1155/2019/5010184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/04/2019] [Accepted: 11/07/2019] [Indexed: 01/02/2023] Open
Abstract
This is a study on the relationship between the protective effect of ginsenoside Rg1 on senescent neural stem cells and Wnt-β/catenin signaling pathway. Background. Recent studies have shown that overactivation of the Wnt/β-catenin signaling pathway is closely related to stem cell senescence. Whether Rg1 delays the senescence of NSCs is related to the regulation of this signaling pathway. Methods. The whole brain of Nestin-GFP transgenic newborn rat was extracted, and NSCs were extracted and cultured to P3 generation. The following indicators were detected: (1) NSC culture identification, (2) the effect of LiCl on the proliferation and survival rate of NSCs, (3) the effect of ginsenoside Rg1 on the proliferation and survival of NSCs, (4) the growth of NSCs in each group observed by an optical microscope, (5) the cell cycle of each group detected by flow cytometry, (6) the proliferative ability of each group detected by BrdU, (7) the fluorescence intensity of Nestin and Sox2 of NSCs in each group observed by a fluorescence microscope, (8) the positive rate of senescence staining analyzed by SA-β-Gal staining, (9) the localization of β-catenin in NSCs observed by laser confocal microscopy, and (10) the changes of the Wnt/β-catenin pathway-related proteins in each group detected by Western blotting. Results. LiCl activates the Wnt/β-catenin pathway and promotes mouse neural stem cell senescence. Ginsenoside Rg1 promotes proliferation of neural stem cells and inhibits Wnt/β-catenin pathway activation. Conclusions. LiCl can activate the Wnt/β-catenin signaling pathway of NSCs, and ginsenoside Rg1 can antagonize the senescence of NSCs caused by activation of the Wnt/β-catenin signaling pathway and delay brain aging.
Collapse
|
42
|
Pu W, Xu D, Zhang C, Zhao Z, Yang M. Rapid generation of functional hepatocyte-like cells from human minor salivary gland-derived stem cells. Biochem Biophys Res Commun 2019; 522:805-810. [PMID: 31791589 DOI: 10.1016/j.bbrc.2019.11.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/26/2019] [Indexed: 01/31/2023]
Abstract
Liver failure is one of the major risk factors for death worldwide, and the only effective liver transplantation is currently very limited. Adult stem cells can be induced into hepatocytes in vitro and implanted into the body to repair damaged liver. However, most of the induction time in vitro is relatively long, which is not suitable for practical application. Therefore, search for new seed cells that can rapidly differentiate into functional hepatocytes is crucial for the clinical application of cell transplantation therapy. In this study, we explored a three-step protocol to rapidly induce human minor salivary gland mesenchymal stem cells (hMSG-MSCs) into hepatocytes in vitro, and finally obtained hepatocyte-like cells within 6 days. After a series of relevant detection from gene, protein and functional levels, we confirmed that the finally induced cells were mature hepatocyte-like cells with certain hepatocyte functions to some extent. Besides, we injected the preliminary induced cells into mice with acute liver injury, showing a good repair effect on the damaged liver. All these results indicate that the hMSG-MSCs have potential to be a kind of seed cells for rapid hepatic differentiation.
Collapse
Affiliation(s)
- Wenwen Pu
- Department No.14, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Duojiao Xu
- Department of Stomatology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Chen Zhang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Mingyong Yang
- Department No.14, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China.
| |
Collapse
|
43
|
Ferreira MC, da Silva MER, Fukui RT, do Carmo Arruda-Marques M, Azhar S, dos Santos RF. Effect of TCF7L2 polymorphism on pancreatic hormones after exenatide in type 2 diabetes. Diabetol Metab Syndr 2019; 11:10. [PMID: 30700996 PMCID: PMC6347826 DOI: 10.1186/s13098-019-0401-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/17/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Glucagon-like peptide 1 (GLP-1) stimulates insulin secretion and reduces blood glucose in type 2 diabetes mellitus (T2DM). TCF7L2 rs7903146 polymorphism has been associated with decreased insulin secretion, reduced GLP-1 action, and possible impaired peripheral insulin sensitivity. OBJECTIVES To evaluate the postprandial pancreatic hormone response in patients with T2DM carriers of the TCF7L2 variant rs7903146 (CT/TT) compared with noncarriers of this variant (CC) after treatment with the GLP-1 agonist exenatide. METHODS Intervention study. Patients with T2DM (n = 162) were genotyped for the TCF7L2 rs7903146 single nucleotide polymorphism (SNP). Individuals with CT/TT and CC genotypes were compared regarding basal serum levels of glucose, glycosylated hemoglobin A1C (HbA1c), HDL, uric acid, insulin, and C-peptide. A subset of 56 individuals was evaluated during a 500-calorie mixed-meal test with measurements of glucose, insulin, proinsulin, C-peptide and glucagon before and after treatment with exenatide for 8 weeks. RESULTS Patients with genotypes CC and CT/TT presented similar glucose area under the curve (AUC) 0-180 min before treatment and a similar decrease after treatment (p < 0.001). Before exenatide, insulin levels at 30-120 min were higher in CT/TT versus CC subjects (p < 0.05). After treatment with exenatide, only CT/TT individuals demonstrated insulin reduction at 30-180 min during the meal test (p < 0.05). Patients with the CC genotype presented no differences in insulin concentrations before and after treatment. The areas under the glucagon curve between 0 and 180 min were similar before treatment and reduced after treatment in both groups (p < 0.001). CONCLUSIONS The presence of the TCF7L2 rs7903146 T allele in patients with T2DM was associated with increased secretion of insulin response to a mixed-meal test. Furthermore, after treatment with exenatide, only the carriers of the T allele showed significantly decreased postprandial plasma insulin peak levels comparing with non carriers.
Collapse
Affiliation(s)
- Mari Cassol Ferreira
- School of Medicine, Unochapeco University, Chapeco, Santa Catarina Brazil
- School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Wnt/β-Catenin Signaling Pathway Governs a Full Program for Dopaminergic Neuron Survival, Neurorescue and Regeneration in the MPTP Mouse Model of Parkinson's Disease. Int J Mol Sci 2018; 19:ijms19123743. [PMID: 30477246 PMCID: PMC6321180 DOI: 10.3390/ijms19123743] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/12/2018] [Accepted: 11/17/2018] [Indexed: 12/18/2022] Open
Abstract
Wingless-type mouse mammary tumor virus (MMTV) integration site (Wnt) signaling is one of the most critical pathways in developing and adult tissues. In the brain, Wnt signaling contributes to different neurodevelopmental aspects ranging from differentiation to axonal extension, synapse formation, neurogenesis, and neuroprotection. Canonical Wnt signaling is mediated mainly by the multifunctional β-catenin protein which is a potent co-activator of transcription factors such as lymphoid enhancer factor (LEF) and T-cell factor (TCF). Accumulating evidence points to dysregulation of Wnt/β-catenin signaling in major neurodegenerative disorders. This review highlights a Wnt/β-catenin/glial connection in Parkinson's disease (PD), the most common movement disorder characterized by the selective death of midbrain dopaminergic (mDAergic) neuronal cell bodies in the subtantia nigra pars compacta (SNpc) and gliosis. Major findings of the last decade document that Wnt/β-catenin signaling in partnership with glial cells is critically involved in each step and at every level in the regulation of nigrostriatal DAergic neuronal health, protection, and regeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD, focusing on Wnt/β-catenin signaling to boost a full neurorestorative program in PD.
Collapse
|
45
|
Maiese K. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer. Curr Neurovasc Res 2018; 14:299-304. [PMID: 28721811 DOI: 10.2174/1567202614666170718092010] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/22/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mammalian circadian clock and its associated clock genes are increasingly been recognized as critical components for a number of physiological and disease processes that extend beyond hormone release, thermal regulation, and sleep-wake cycles. New evidence suggests that clinical behavior disruptions that involve prolonged shift work and even space travel may negatively impact circadian rhythm and lead to multi-system disease. METHODS In light of the significant role circadian rhythm can hold over the body's normal physiology as well as disease processes, we examined and discussed the impact circadian rhythm and clock genes hold over lifespan, neurodegenerative disorders, and tumorigenesis. RESULTS In experimental models, lifespan is significantly reduced with the introduction of arrhythmic mutants and leads to an increase in oxidative stress exposure. Interestingly, patients with Alzheimer's disease and Parkinson's disease may suffer disease onset or progression as a result of alterations in the DNA methylation of clock genes as well as prolonged pharmacological treatment for these disorders that may lead to impairment of circadian rhythm function. Tumorigenesis also can occur with the loss of a maintained circadian rhythm and lead to an increased risk for nasopharyngeal carcinoma, breast cancer, and metastatic colorectal cancer. Interestingly, the circadian clock system relies upon the regulation of the critical pathways of autophagy, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) as well as proliferative mechanisms that involve the wingless pathway of Wnt/β-catenin pathway to foster cell survival during injury and block tumor cell growth. CONCLUSION Future targeting of the pathways of autophagy, mTOR, SIRT1, and Wnt that control mammalian circadian rhythm may hold the key for the development of novel and effective therapies against aging- related disorders, neurodegenerative disease, and tumorigenesis.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, NY. United States
| |
Collapse
|
46
|
L'Episcopo F, Tirolo C, Peruzzotti-Jametti L, Serapide MF, Testa N, Caniglia S, Balzarotti B, Pluchino S, Marchetti B. Neural Stem Cell Grafts Promote Astroglia-Driven Neurorestoration in the Aged Parkinsonian Brain via Wnt/β-Catenin Signaling. Stem Cells 2018; 36:1179-1197. [PMID: 29575325 DOI: 10.1002/stem.2827] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/19/2018] [Accepted: 03/06/2018] [Indexed: 12/16/2022]
Abstract
neuronal phenotype. Wnt/β-catenin signaling antagonism abolished mDA neurorestoration and immune modulatory effects of NSC grafts. Our work implicates an unprecedented therapeutic potential for somatic NSC grafts in the restoration of mDA neuronal function in the aged Parkinsonian brain. Stem Cells 2018;36:1179-1197.
Collapse
Affiliation(s)
| | | | - Luca Peruzzotti-Jametti
- Dept of Clinical Neurosciences, Clifford Allbutt Building - Cambridge Biosciences Campus and NIHR Biomedical Research,Centre, University of Cambridge, Hills Road, CB2 0HA Cambridge, UK
| | - Maria F Serapide
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Pharmacology and Physiology Sections, University of Catania Medical School, Catania, Italy
| | | | | | - Beatrice Balzarotti
- Dept of Clinical Neurosciences, Clifford Allbutt Building - Cambridge Biosciences Campus and NIHR Biomedical Research,Centre, University of Cambridge, Hills Road, CB2 0HA Cambridge, UK
| | - Stefano Pluchino
- Dept of Clinical Neurosciences, Clifford Allbutt Building - Cambridge Biosciences Campus and NIHR Biomedical Research,Centre, University of Cambridge, Hills Road, CB2 0HA Cambridge, UK
| | - Bianca Marchetti
- Oasi Research Institute-IRCCS, Troina, Italy.,Department of Biomedical and Biotechnological Sciences (BIOMETEC), Pharmacology and Physiology Sections, University of Catania Medical School, Catania, Italy
| |
Collapse
|
47
|
L'Episcopo F, Tirolo C, Serapide MF, Caniglia S, Testa N, Leggio L, Vivarelli S, Iraci N, Pluchino S, Marchetti B. Microglia Polarization, Gene-Environment Interactions and Wnt/β-Catenin Signaling: Emerging Roles of Glia-Neuron and Glia-Stem/Neuroprogenitor Crosstalk for Dopaminergic Neurorestoration in Aged Parkinsonian Brain. Front Aging Neurosci 2018; 10:12. [PMID: 29483868 PMCID: PMC5816064 DOI: 10.3389/fnagi.2018.00012] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/11/2018] [Indexed: 12/29/2022] Open
Abstract
Neuroinflammatory processes are recognized key contributory factors in Parkinson's disease (PD) physiopathology. While the causes responsible for the progressive loss of midbrain dopaminergic (mDA) neuronal cell bodies in the subtantia nigra pars compacta are poorly understood, aging, genetics, environmental toxicity, and particularly inflammation, represent prominent etiological factors in PD development. Especially, reactive astrocytes, microglial cells, and infiltrating monocyte-derived macrophages play dual beneficial/harmful effects, via a panel of pro- or anti-inflammatory cytokines, chemokines, neurotrophic and neurogenic transcription factors. Notably, with age, microglia may adopt a potent neurotoxic, pro-inflammatory “primed” (M1) phenotype when challenged with inflammatory or neurotoxic stimuli that hamper brain's own restorative potential and inhibit endogenous neurorepair mechanisms. In the last decade we have provided evidence for a major role of microglial crosstalk with astrocytes, mDA neurons and neural stem progenitor cells (NSCs) in the MPTP- (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-) mouse model of PD, and identified Wnt/β-catenin signaling, a pivotal morphogen for mDA neurodevelopment, neuroprotection, and neuroinflammatory modulation, as a critical actor in glia-neuron and glia-NSCs crosstalk. With age however, Wnt signaling and glia-NSC-neuron crosstalk become dysfunctional with harmful consequences for mDA neuron plasticity and repair. These findings are of importance given the deregulation of Wnt signaling in PD and the emerging link between most PD related genes, Wnt signaling and inflammation. Especially, in light of the expanding field of microRNAs and inflammatory PD-related genes as modulators of microglial-proinflammatory status, uncovering the complex molecular circuitry linking PD and neuroinflammation will permit the identification of new druggable targets for the cure of the disease. Here we summarize recent findings unveiling major microglial inflammatory and oxidative stress pathways converging in the regulation of Wnt/β-catenin signaling, and reciprocally, the ability of Wnt signaling pathways to modulate microglial activation in PD. Unraveling the key factors and conditons promoting the switch of the proinflammatory M1 microglia status into a neuroprotective and regenerative M2 phenotype will have important consequences for neuroimmune interactions and neuronal outcome under inflammatory and/or neurodegenerative conditions.
Collapse
Affiliation(s)
| | | | - Maria F Serapide
- Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| | | | | | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| | - Stefano Pluchino
- Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Bianca Marchetti
- Oasi ResearchInstitute-IRCCS, Troina, Italy.,Department of Biomedical and Biotechnological Sciences, Medical School, University of Catania, Catania, Italy
| |
Collapse
|
48
|
Maiese K. Sirtuins: Developing Innovative Treatments for Aged-Related Memory Loss and Alzheimer's Disease. Curr Neurovasc Res 2018; 15:367-371. [PMID: 30484407 PMCID: PMC6538488 DOI: 10.2174/1567202616666181128120003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
The world's population continues to age at a rapid pace. By the year 2050, individuals over the age of 65 will account for sixteen percent of the world's population and life expectancy will increase well over eighty years of age. Accompanied by the aging of the global population is a significant rise in Non-Communicable Diseases (NCDs). Neurodegenerative disorders will form a significant component for NCDs. Currently, dementia is the 7th leading cause of death and can be the result of multiple causes that include diabetes mellitus, vascular disease, and Alzheimer's Disease (AD). AD may represent at least sixty percent of these cases. Current treatment for these disorders is extremely limited to provide only some symptomatic relief at present. Sirtuins and in particular, the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), represent innovative strategies for the treatment of cognitive loss. New work has revealed that SIRT1 provides protection against memory loss through mechanisms that involve oxidative stress, Aβ toxicity, neurofibrillary degeneration, vascular injury, mitochondrial dysfunction, and neuronal loss. In addition, SIRT1 relies upon other avenues that can include trophic factors, such as erythropoietin, and signaling pathways, such as Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4). Yet, SIRT1 can have detrimental effects as well that involve tumorigenesis and blockade of stem cell differentiation and maturation that can limit reparative processes for cognitive loss. Further investigations with sirtuins and SIRT1 should be able to capitalize upon these novel targets for dementia and cognitive loss.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
49
|
Olsen JJ, Pohl SÖG, Deshmukh A, Visweswaran M, Ward NC, Arfuso F, Agostino M, Dharmarajan A. The Role of Wnt Signalling in Angiogenesis. Clin Biochem Rev 2017; 38:131-142. [PMID: 29332977 PMCID: PMC5759160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Angiogenesis is a normal biological process wherein new blood vessels form from the growth of pre-existing blood vessels. Preventing angiogenesis in solid tumours by targeting pro-angiogenic factors including vascular endothelial growth factor (VEGF), angiopoietin-1 (Ang-1), basic fibroblast growth factor (bFGF), hepatocyte growth factor, and platelet-derived growth factor (PDGF) is currently under investigation for cancer treatment. Concurrently targeting the cell signalling pathways involved in the transcriptional and post-translational regulation of these factors may provide positive therapeutic results. One such pathway is the Wnt signalling pathway. Wnt was first discovered in mice infected with mouse mammary tumour virus, and has been crucial in improving our understanding of oncogenesis and development. In this review, we summarise molecular and cellular aspects of the importance of Wnt signalling to angiogenesis, including β-catenin-dependent mechanisms of angiogenic promotion, as well as the study of Wnt antagonists, such as the secreted frizzled-related protein family (SFRPs) which have been shown to inhibit angiogenesis. The growing understanding of the underlying complexity of the biochemical pathways mediating angiogenesis is critical to the identification of new molecular targets for therapeutic applications.
Collapse
Affiliation(s)
- Jun Jun Olsen
- The School of Human Sciences, The University of Western Australia, Nedlands, WA
| | - Sebastian Öther-Gee Pohl
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, WA
| | - Abhijeet Deshmukh
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, WA
| | - Malini Visweswaran
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, WA
| | - Natalie C Ward
- School of Biomedical Sciences & Curtin Health Innovation Research Institute, Curtin University, Bentley, WA
- Medical School, University of Western Australia, Crawley, WA
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, WA
| | - Mark Agostino
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, WA
- Curtin Institute for Computation, Curtin University, Bentley, WA, Australia
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, WA
| |
Collapse
|
50
|
Gao L, Chen B, Li J, Yang F, Cen X, Liao Z, Long X. Wnt/β-catenin signaling pathway inhibits the proliferation and apoptosis of U87 glioma cells via different mechanisms. PLoS One 2017; 12:e0181346. [PMID: 28837560 PMCID: PMC5570310 DOI: 10.1371/journal.pone.0181346] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/29/2017] [Indexed: 12/11/2022] Open
Abstract
The Wnt signaling pathway is necessary for the development of the central nervous system and is associated with tumorigenesis in various cancers. However, the mechanism of the Wnt signaling pathway in glioma cells has yet to be elucidated. Small-molecule Wnt modulators such as ICG-001 and AZD2858 were used to inhibit and stimulate the Wnt/β-catenin signaling pathway. Techniques including cell proliferation assay, colony formation assay, Matrigel cell invasion assay, cell cycle assay and Genechip microarray were used. Gene Ontology Enrichment Analysis and Gene Set Enrichment Analysis have enriched many biological processes and signaling pathways. Both the inhibiting and stimulating Wnt/β-catenin signaling pathways could influence the cell cycle, moreover, reduce the proliferation and survival of U87 glioma cells. However, Affymetrix expression microarray indicated that biological processes and networks of signaling pathways between stimulating and inhibiting the Wnt/β-catenin signaling pathway largely differ. We propose that Wnt/β-catenin signaling pathway might prove to be a valuable therapeutic target for glioma.
Collapse
Affiliation(s)
- Liyang Gao
- School of Life Science, Ningxia University, Yinchuan, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hosptial of Guangdong Medical University, Zhanjiang, China
- * E-mail: (LG); (BC)
| | - Bing Chen
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- * E-mail: (LG); (BC)
| | - Jinhong Li
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fan Yang
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xuecheng Cen
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhuangbing Liao
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiao’ao Long
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|