1
|
Wang L, Li Q, Sun Y, Wang S, Fu X, Wang X, Zheng Y, Gao A, Sun Y, Li J. Tumor-derived immunoglobulin-like transcript 3 inhibition reshapes the immunosuppressive tumor microenvironment and potentiates programmed cell death ligand 1 blockade immunotherapy in lung adenocarcinoma. Transl Oncol 2025; 56:102381. [PMID: 40199156 PMCID: PMC12008602 DOI: 10.1016/j.tranon.2025.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/13/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
The low response rate of current immune checkpoint inhibitors in cancer has necessitated the development of new immune targets. Survival and public databases analyses were performed to determine the clinical significance of immunoglobulin-like transcript 3 (ILT3). The impact of ILT3 and apolipoprotein E (APOE) on tumor-associated macrophage (TAM) recruitment and polarization were evaluated by transwell assay, flow cytometry (FCM), and real-time PCR, while their impact on T cell survival and cytotoxicity was detected by CFSE, apoptotic assay, FCM and ELISA. These pro-tumoural activity of (an ortholog of ILT3 in mouse) were verified in vivo models. Survival and public databases analyses revealed that high ILT3 expression was significantly associated with worse prognosis in lung adenocarcinoma (LUAD), but not in squamous cell carcinoma. The same association was observed with its ligand, APOE. In vitro assays demonstrated that tumor-derived ILT3/APOE promoted recruitment and M2-like polarization of TAMs in LUAD and directly inhibited T cell proliferation and cytotoxicity. In vivo knockdown of gp49b enhanced anti-tumor immunity and suppressed tumor progression by counteracting TAM- and dysfunctional T cell-induced tumor microenvironment immunosuppression. Furthermore, combined inhibition of gp49b and programmed cell death ligand 1 (PD-L1) showed the most drastic tumor regression in C57BL/6 mice models. Tumor-derived ILT3 overexpression suppresses anti-tumor immunity by recruiting M2-like TAMs and impairing T cell activities, while ILT3 inhibition counteracts this immunosuppression and enhances the efficacy of PD-L1 blockade in LUAD. Thus, ILT3 could be a promising novel immunotherapeutic target for combined immunotherapy.
Collapse
Affiliation(s)
- Leirong Wang
- Phase I Clinical Research Center, Shandong University Cancer Center, Jinan, Shandong, China; Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qing Li
- Department of Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, Shandong, China
| | - Yanxin Sun
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shuyun Wang
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xuebing Fu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiufen Wang
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yan Zheng
- Jinan Center Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Aiqin Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuping Sun
- Phase I Clinical Research Center, Shandong University Cancer Center, Jinan, Shandong, China; Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Juan Li
- Phase I Clinical Research Center, Shandong University Cancer Center, Jinan, Shandong, China; Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
2
|
Li M, Wang M, Wen Y, Zhang H, Zhao G, Gao Q. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e349. [PMID: 37706196 PMCID: PMC10495745 DOI: 10.1002/mco2.349] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Macrophages play diverse roles in development, homeostasis, and immunity. Accordingly, the dysfunction of macrophages is involved in the occurrence and progression of various diseases, such as coronavirus disease 2019 and atherosclerosis. The protective or pathogenic effect that macrophages exert in different conditions largely depends on their functional plasticity, which is regulated via signal transduction such as Janus kinase-signal transducer and activator of transcription, Wnt and Notch pathways, stimulated by environmental cues. Over the past few decades, the molecular mechanisms of signaling pathways in macrophages have been gradually elucidated, providing more alternative therapeutic targets for diseases treatment. Here, we provide an overview of the basic physiology of macrophages and expound the regulatory pathways within them. We also address the crucial role macrophages play in the pathogenesis of diseases, including autoimmune, neurodegenerative, metabolic, infectious diseases, and cancer, with a focus on advances in macrophage-targeted strategies exploring modulation of components and regulators of signaling pathways. Last, we discuss the challenges and possible solutions of macrophage-targeted therapy in clinical applications. We hope that this comprehensive review will provide directions for further research on therapeutic strategies targeting macrophage signaling pathways, which are promising to improve the efficacy of disease treatment.
Collapse
Affiliation(s)
- Ming Li
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mengjie Wang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanjia Wen
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongfei Zhang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guang‐Nian Zhao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
3
|
Liu S, Zhang S, Hong L, Diao L, Cai S, Yin T, Zeng Y. Characterization of progesterone-induced dendritic cells in metabolic and immunologic reprogramming. J Reprod Immunol 2023; 159:104128. [PMID: 37579685 DOI: 10.1016/j.jri.2023.104128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
The role of maternal-fetal immune tolerance in the establishment and maintenance of pregnancy has been well established. Dendritic cells (DCs) as a crucial part of the decidual microenvironment, have high plasticity in immunogenicity and tolerogenicity. The regulatory mechanisms of DCs phenotype or function at the maternal-fetal interface, however, have not been fully developed. Studies from the field of immunometabolism have highlighted that the metabolic pathways of DCs are closely associated with their immunity. Our previous study showed that progesterone (P4) up-regulated a series of enzymes involved in DCs mitochondrial oxidative phosphorylation and fatty acid metabolism. In this study, we confirmed that P4 induced significant alternations in DCs metabolic pathways, promoting their glycolysis, mitochondrial function, and the dependency and capacity of fatty acids as mitochondrial fuel. Moreover, P4 also increased the inhibitory molecule ILT4 expression on DCs and down-regulated the CD86, which may coordinate their immune tolerance function in pregnancy. Together, our study helps to understand the role of P4 in DCs metabolic and immunologic reprogramming and may provide novel insights into the hormonal immunometabolism regulation of DCs during normal pregnancy.
Collapse
Affiliation(s)
- Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Sainan Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Hong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Songchen Cai
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China.
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China.
| |
Collapse
|
4
|
McLeish KR, Fernandes MJ. Understanding inhibitory receptor function in neutrophils through the lens of
CLEC12A. Immunol Rev 2022; 314:50-68. [PMID: 36424898 DOI: 10.1111/imr.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neutrophils are the first leukocytes recruited from the circulation in response to invading pathogens or injured cells. To eradicate pathogens and contribute to tissue repair, recruited neutrophils generate and release a host of toxic chemicals that can also damage normal cells. To avoid collateral damage leading to tissue injury and organ dysfunction, molecular mechanisms evolved that tightly control neutrophil response threshold to activating signals, the strength and location of the response, and the timing of response termination. One mechanism of response control is interruption of activating intracellular signaling pathways by the 20 inhibitory receptors expressed by neutrophils. The two inhibitory C-type lectin receptors expressed by neutrophils, CLEC12A and DCIR, exhibit both common and distinct molecular and functional mechanisms, and they are associated with different diseases. In this review, we use studies on CLEC12A as a model of inhibitory receptor regulation of neutrophil function and participation in disease. Understanding the molecular mechanisms leading to inhibitory receptor specificity offers the possibility of using physiologic control of neutrophil functions as a pharmacologic tool to control inflammatory diseases.
Collapse
Affiliation(s)
- Kenneth R. McLeish
- Department of Medicine University of Louisville School of Medicine Louisville Kentucky USA
| | - Maria J. Fernandes
- Infectious and Immune Diseases Division CHU de Québec‐Laval University Research Center Québec Québec Canada
- Department of Microbiology‐Infectious Diseases and Immunology, Faculty of Medicine Laval University Québec Québec Canada
| |
Collapse
|
5
|
Matsumura T, Totani H, Gunji Y, Fukuda M, Yokomori R, Deng J, Rethnam M, Yang C, Tan TK, Karasawa T, Kario K, Takahashi M, Osato M, Sanda T, Suda T. A Myb enhancer-guided analysis of basophil and mast cell differentiation. Nat Commun 2022; 13:7064. [PMID: 36400777 PMCID: PMC9674656 DOI: 10.1038/s41467-022-34906-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
The transcription factor MYB is a crucial regulator of hematopoietic stem and progenitor cells. However, the nature of lineage-specific enhancer usage of the Myb gene is largely unknown. We identify the Myb -68 enhancer, a regulatory element which marks basophils and mast cells. Using the Myb -68 enhancer activity, we show a population of granulocyte-macrophage progenitors with higher potential to differentiate into basophils and mast cells. Single cell RNA-seq demonstrates the differentiation trajectory is continuous from progenitors to mature basophils in vivo, characterizes bone marrow cells with a gene signature of mast cells, and identifies LILRB4 as a surface marker of basophil maturation. Together, our study leads to a better understanding of how MYB expression is regulated in a lineage-associated manner, and also shows how a combination of lineage-related reporter mice and single-cell transcriptomics can overcome the rarity of target cells and enhance our understanding of gene expression programs that control cell differentiation in vivo.
Collapse
Affiliation(s)
- Takayoshi Matsumura
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore ,grid.410804.90000000123090000Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan ,grid.410804.90000000123090000Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Haruhito Totani
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yoshitaka Gunji
- grid.410804.90000000123090000Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Masahiro Fukuda
- grid.428397.30000 0004 0385 0924Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore ,grid.274841.c0000 0001 0660 6749International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Rui Yokomori
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jianwen Deng
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Malini Rethnam
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chong Yang
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Tze King Tan
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Tadayoshi Karasawa
- grid.410804.90000000123090000Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Kazuomi Kario
- grid.410804.90000000123090000Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Masafumi Takahashi
- grid.410804.90000000123090000Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Motomi Osato
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Takaomi Sanda
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Toshio Suda
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore ,grid.274841.c0000 0001 0660 6749International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan ,grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
New Targets for Antiviral Therapy: Inhibitory Receptors and Immune Checkpoints on Myeloid Cells. Viruses 2022; 14:v14061144. [PMID: 35746616 PMCID: PMC9230063 DOI: 10.3390/v14061144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022] Open
Abstract
Immune homeostasis is achieved by balancing the activating and inhibitory signal transduction pathways mediated via cell surface receptors. Activation allows the host to mount an immune response to endogenous and exogenous antigens; suppressive modulation via inhibitory signaling protects the host from excessive inflammatory damage. The checkpoint regulation of myeloid cells during immune homeostasis raised their profile as important cellular targets for treating allergy, cancer and infectious disease. This review focuses on the structure and signaling of inhibitory receptors on myeloid cells, with particular attention placed on how the interplay between viruses and these receptors regulates antiviral immunity. The status of targeting inhibitory receptors on myeloid cells as a new therapeutic approach for antiviral treatment will be analyzed.
Collapse
|
7
|
De Louche CD, Roghanian A. Human inhibitory leukocyte Ig-like receptors: from immunotolerance to immunotherapy. JCI Insight 2022; 7:151553. [PMID: 35076022 PMCID: PMC8855791 DOI: 10.1172/jci.insight.151553] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
8
|
Vitry J, Paré G, Murru A, Charest-Morin X, Maaroufi H, McLeish KR, Naccache PH, Fernandes MJ. Regulation of the Expression, Oligomerisation and Signaling of the Inhibitory Receptor CLEC12A by Cysteine Residues in the Stalk Region. Int J Mol Sci 2021; 22:ijms221910207. [PMID: 34638548 PMCID: PMC8508511 DOI: 10.3390/ijms221910207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/26/2023] Open
Abstract
CLEC12A is a myeloid inhibitory receptor that negatively regulates inflammation in mouse models of autoimmune and autoinflammatory arthritis. Reduced CLEC12A expression enhances myeloid cell activation and inflammation in CLEC12A knock-out mice with collagen antibody-induced or gout-like arthritis. Similarly to other C-type lectin receptors, CLEC12A harbours a stalk domain between its ligand binding and transmembrane domains. While it is presumed that the cysteines in the stalk domain have multimerisation properties, their role in CLEC12A expression and/or signaling remain unknown. We thus used site-directed mutagenesis to determine whether the stalk domain cysteines play a role in CLEC12A expression, internalisation, oligomerisation, and/or signaling. Mutation of C118 blocks CLEC12A transport through the secretory pathway diminishing its cell-surface expression. In contrast, mutating C130 does not affect CLEC12A cell-surface expression but increases its oligomerisation, inducing ligand-independent phosphorylation of the receptor. Moreover, we provide evidence that CLEC12A dimerisation is regulated in a redox-dependent manner. We also show that antibody-induced CLEC12A cross-linking induces flotillin oligomerisation in insoluble membrane domains in which CLEC12A signals. Taken together, these data indicate that the stalk cysteines in CLEC12A differentially modulate this inhibitory receptor’s expression, oligomerisation and signaling, suggestive of the regulation of CLEC12A in a redox-dependent manner during inflammation.
Collapse
Affiliation(s)
- Julien Vitry
- CHU de Québec Research Center, Division of Infectious Diseases and Immunology, Laval University, Québec, QC G1V 4G2, Canada; (J.V.); (G.P.); (A.M.); (P.H.N.)
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada;
| | - Guillaume Paré
- CHU de Québec Research Center, Division of Infectious Diseases and Immunology, Laval University, Québec, QC G1V 4G2, Canada; (J.V.); (G.P.); (A.M.); (P.H.N.)
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada;
| | - Andréa Murru
- CHU de Québec Research Center, Division of Infectious Diseases and Immunology, Laval University, Québec, QC G1V 4G2, Canada; (J.V.); (G.P.); (A.M.); (P.H.N.)
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada;
| | - Xavier Charest-Morin
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada;
| | - Halim Maaroufi
- Institute of Integrative Biology and Systems, Laval University, Québec, QC G1V 0A6, Canada;
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40206, USA;
| | - Paul H. Naccache
- CHU de Québec Research Center, Division of Infectious Diseases and Immunology, Laval University, Québec, QC G1V 4G2, Canada; (J.V.); (G.P.); (A.M.); (P.H.N.)
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada;
| | - Maria J. Fernandes
- CHU de Québec Research Center, Division of Infectious Diseases and Immunology, Laval University, Québec, QC G1V 4G2, Canada; (J.V.); (G.P.); (A.M.); (P.H.N.)
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada;
- Correspondence: ; Tel.: +1-418-656-4141 (ext. 46106)
| |
Collapse
|
9
|
Sharma N, Atolagbe OT, Ge Z, Allison JP. LILRB4 suppresses immunity in solid tumors and is a potential target for immunotherapy. J Exp Med 2021; 218:212088. [PMID: 33974041 PMCID: PMC8117208 DOI: 10.1084/jem.20201811] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/25/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Immune receptors expressed on TAMs are intriguing targets for tumor immunotherapy. In this study, we found inhibitory receptor LILRB4 on a variety of intratumoral immune cell types in murine tumor models and human cancers, most prominently on TAMs. LILRB4, known as gp49B in mice, is a LILRB family receptor. Human and murine LILRB4 have two extracellular domains but differ in the number of intracellular ITIMs (three versus two). We observed a high correlation in LILRB4 expression with other immune inhibitory receptors. After tumor challenge, LILRB4−/− mice and mice treated with anti-LILRB4 antibody showed reduced tumor burden and increased survival. LILRB4−/− genotype or LILRB4 blockade increased tumor immune infiltrates and the effector (Teff) to regulatory (Treg) T cell ratio and modulated phenotypes of TAMs toward less suppressive, CD4+ T cells to Th1 effector, and CD8+ T cells to less exhausted. These findings reveal that LILRB4 strongly suppresses tumor immunity in TME and that alleviating that suppression provides antitumor efficacy.
Collapse
Affiliation(s)
- Naveen Sharma
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Zhongqi Ge
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - James P Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX.,Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX.,Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
10
|
Raggi F, Bosco MC. Targeting Mononuclear Phagocyte Receptors in Cancer Immunotherapy: New Perspectives of the Triggering Receptor Expressed on Myeloid Cells (TREM-1). Cancers (Basel) 2020; 12:cancers12051337. [PMID: 32456204 PMCID: PMC7281211 DOI: 10.3390/cancers12051337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory cells are major players in the onset of cancer. The degree of inflammation and type of inflammatory cells in the tumor microenvironment (TME) are responsible for tilting the balance between tumor progression and regression. Cancer-related inflammation has also been shown to influence the efficacy of conventional therapy. Mononuclear phagocytes (MPs) represent a major component of the inflammatory circuit that promotes tumor progression. Despite their potential to activate immunosurveillance and exert anti-tumor responses, MPs are subverted by the tumor to support its growth, immune evasion, and spread. MP responses in the TME are dictated by a network of stimuli integrated through the cross-talk between activatory and inhibitory receptors. Alterations in receptor expression/signaling can create excessive inflammation and, when chronic, promote tumorigenesis. Research advances have led to the development of new therapeutic strategies aimed at receptor targeting to induce a tumor-infiltrating MP switch from a cancer-supportive toward an anti-tumor phenotype, demonstrating efficacy in different human cancers. This review provides an overview of the role of MP receptors in inflammation-mediated carcinogenesis and discusses the most recent updates regarding their targeting for immunotherapeutic purposes. We focus in particular on the TREM-1 receptor, a major amplifier of MP inflammatory responses, highlighting its relevance in the development and progression of several types of inflammation-associated malignancies and the promises of its inhibition for cancer immunotherapy.
Collapse
|
11
|
Leukocyte immunoglobulin-like receptor B4 deficiency exacerbates acute lung injury via NF-κB signaling in bone marrow-derived macrophages. Biosci Rep 2019; 39:BSR20181888. [PMID: 31138763 PMCID: PMC6566464 DOI: 10.1042/bsr20181888] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023] Open
Abstract
Acute lung injury (ALI) is an acute inflammatory disease. Leukocyte immunoglobulin-like receptor B4 (LILRB4) is an immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing inhibitory receptor that is implicated in various pathological processes. However, the function of LILRB4 in ALI remains largely unknown. The aim of the present study was to explore the role of LILRB4 in ALI. LILRB4 knockout mice (LILRB4 KO) were used to construct a model of ALI. Bone marrow cell transplantation was used to identify the cell source of the LILRB4 deficiency-aggravated inflammatory response in ALI. The effect on ALI was analyzed by pathological and molecular analyses. Our results indicated that LILRB4 KO exacerbated ALI triggered by LPS. Additionally, LILRB4 deficiency can enhance lung inflammation. According to the results of our bone marrow transplant model, LILRB4 regulates the occurrence and development of ALI by bone marrow-derived macrophages (BMDMs) rather than by stromal cells in the lung. The observed inflammation was mainly due to BMDM-induced NF-κB signaling. In conclusion, our study demonstrates that LILRB4 deficiency plays a detrimental role in ALI-associated BMDM activation by prompting the NF-κB signal pathway.
Collapse
|
12
|
Fernandes MJ, Naccache PH. The Role of Inhibitory Receptors in Monosodium Urate Crystal-Induced Inflammation. Front Immunol 2018; 9:1883. [PMID: 30177932 PMCID: PMC6109781 DOI: 10.3389/fimmu.2018.01883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/30/2018] [Indexed: 11/13/2022] Open
Abstract
Inhibitory receptors are key regulators of immune responses. Aberrant inhibitory receptor function can either lead to an exacerbated or defective immune response. Several regulatory mechanisms involved in the inflammatory reaction induced by monosodium urate crystals (MSU) during acute gout have been identified. One of these mechanisms involves inhibitory receptors. The engagement of the inhibitory receptors Clec12A and SIRL-1 has opposing effects on the responses of neutrophils to MSU. We review the general concepts of inhibitory receptor biology and apply them to understand and compare the modulation of MSU-induced inflammation by Clec12A and SIRL-1. We also discuss gaps in our knowledge of the contribution of inhibitory receptors to the pathogenesis of gout and propose future avenues of research.
Collapse
Affiliation(s)
- Maria J Fernandes
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Paul H Naccache
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| |
Collapse
|
13
|
Rozenberg P, Reichman H, Moshkovits I, Munitz A. CD300 family receptors regulate eosinophil survival, chemotaxis, and effector functions. J Leukoc Biol 2017; 104:21-29. [PMID: 29345367 DOI: 10.1002/jlb.2mr1117-433r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022] Open
Abstract
The CD300 family of receptors is an evolutionary conserved receptor family that belongs to the Ig superfamily and is expressed predominantly by the myeloid lineage. Over the past couple of years, accumulating data have shown that eosinophils express various Ig superfamily receptors that regulate key checkpoints in their biology including their maturation, transition from the bone marrow to the peripheral blood, migration, adhesion, survival, and effector functions in response to numerous activating signals such as IL-4, IL-33, and bacteria. In this review, we will present the emerging roles of CD300 family receptors and specifically CD300a and CD300f in the regulation of these eosinophil activities. The structure and expression pattern of these molecules will be discussed and their involvement in suppressing or co-activating eosinophil functions in health and disease will be illustrated.
Collapse
Affiliation(s)
- Perri Rozenberg
- Department of Clinical Microbiology and Immunology, the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Hadar Reichman
- Department of Clinical Microbiology and Immunology, the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Itay Moshkovits
- Department of Internal Medicine "T" and the Research Center for Digestive Disorders and Liver Diseases, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, the Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Affandi AJ, Carvalheiro T, Radstake TRDJ, Marut W. Dendritic cells in systemic sclerosis: Advances from human and mice studies. Immunol Lett 2017; 195:18-29. [PMID: 29126878 DOI: 10.1016/j.imlet.2017.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
Systemic sclerosis (SSc) is a complex heterogeneous fibrotic autoimmune disease with an unknown exact etiology, and characterized by three hallmarks: fibrosis, vasculopathy, and immune dysfunction. Dendritic cells (DCs) are specialized cells in pathogen sensing with high potency of antigen presentation and capable of releasing mediators to shape the immune response. Altered DCs distributions and their impaired functions may account for their role in breaking the immune tolerance and driving inflammation in SSc, and the direct contribution of DCs in promoting endothelial dysfunction and fibrotic process has only begun to be understood. Plasmacytoid dendritic cells in particular have been implicated due to their high production of type I interferon as well as other cytokines and chemokines, including the pro-inflammatory and anti-angiogenic CXCL4. Furthermore, a deeper understanding of human and mouse DC biology has clarified their identification and function in different tissues, and novel DC subsets have only recently been discovered. In this review, we highlight key findings and recent advances exploring DC role in the pathogenesis of SSc and other related autoimmune diseases, and consideration of their potential use as targeted therapy in SSc.
Collapse
Affiliation(s)
- Alsya J Affandi
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tiago Carvalheiro
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wioleta Marut
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Reichman H, Moshkovits I, Itan M, Pasmanik-Chor M, Vogl T, Roth J, Munitz A. Transcriptome profiling of mouse colonic eosinophils reveals a key role for eosinophils in the induction of s100a8 and s100a9 in mucosal healing. Sci Rep 2017; 7:7117. [PMID: 28769105 PMCID: PMC5540981 DOI: 10.1038/s41598-017-07738-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023] Open
Abstract
Eosinophils are bone marrow-derived cells that have been largely implicated in Th2-associated diseases. Recent data highlights a key role for eosinophils in mucosal innate immune responses especially in the gastrointestinal (GI) tract, which is one of the largest eosinophil reservoirs in the body. Although eosinophils express and synthesize a plethora of proteins that can mediate their effector activities, the transcriptome signature of eosinophils in mucosal inflammation and subsequent repair has been considerably overlooked. We demonstrate that eosinophils are recruited to the colon in acute inflammatory stages where they promote intestinal inflammation and remain in substantial numbers throughout the mucosal healing process. Microarray analysis of primary colonic eosinophils that were sorted at distinct stages of mucosal inflammation and repair revealed dynamic regulation of colonic eosinophil mRNA expression. The clinically relevant genes s100a8 and s100a9 were strikingly increased in colonic eosinophils (up to 550-fold and 80-fold, respectively). Furthermore, local and systemic expression of s100a8 and s100a9 were nearly diminished in eosinophil-deficient ΔdblGATA mice, and were re-constituted upon adoptive transfer of eosinophils. Taken together, these data may provide new insight into the involvement of eosinophils in colonic inflammation and repair, which may have diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Hadar Reichman
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Israel
| | - Italy Moshkovits
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Israel
| | - Michal Itan
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 64239, Israel
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Israel.
| |
Collapse
|
16
|
Moshkovits I, Reichman H, Karo-Atar D, Rozenberg P, Zigmond E, Haberman Y, Ben Baruch-Morgenstern N, Lampinen M, Carlson M, Itan M, Denson LA, Varol C, Munitz A. A key requirement for CD300f in innate immune responses of eosinophils in colitis. Mucosal Immunol 2017; 10:172-183. [PMID: 27118491 DOI: 10.1038/mi.2016.37] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/16/2016] [Indexed: 02/04/2023]
Abstract
Eosinophils are traditionally studied in the context of type 2 immune responses. However, recent studies highlight key innate immune functions for eosinophils especially in colonic inflammation. Surprisingly, molecular pathways regulating innate immune activities of eosinophil are largely unknown. We have recently shown that the CD300f is highly expressed by colonic eosinophils. Nonetheless, the role of CD300f in governing innate immune eosinophil activities is ill-defined. RNA sequencing of 162 pediatric Crohn's disease patients revealed upregulation of multiple Cd300 family members, which correlated with the presence of severe ulcerations and inflammation. Increased expression of CD300 family receptors was also observed in active ulcerative colitis (UC) and in mice following induction of experimental colitis. Specifically, the expression of CD300f was dynamically regulated in monocytes and eosinophils. Dextran sodium sulfate (DSS)-treated Cd300f-/- mice exhibit attenuated disease activity and histopathology in comparison with DSS-treated wild type (WT). Decreased disease activity in Cd300f-/- mice was accompanied with reduced inflammatory cell infiltration and nearly abolished production of pro-inflammatory cytokines. Monocyte depletion and chimeric bone marrow transfer experiments revealed a cell-specific requirement for CD300f in innate immune activation of eosinophils. Collectively, we uncover a new pathway regulating innate immune activities of eosinophils, a finding with significant implications in eosinophil-associated gastrointestinal diseases.
Collapse
Affiliation(s)
- I Moshkovits
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H Reichman
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - D Karo-Atar
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - P Rozenberg
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Zigmond
- Research Center for Digestive Tract and Liver Diseases, Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Y Haberman
- Department of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Pediatric Gastroenterology, Hepatology and Nutrition, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - N Ben Baruch-Morgenstern
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Lampinen
- Gastroenterology Research Group, Department of Medical Sciences, University Hospital, Uppsala, Sweden
| | - M Carlson
- Gastroenterology Research Group, Department of Medical Sciences, University Hospital, Uppsala, Sweden
| | - M Itan
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - L A Denson
- Department of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - C Varol
- Research Center for Digestive Tract and Liver Diseases, Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Munitz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Reichman H, Karo-Atar D, Munitz A. Emerging Roles for Eosinophils in the Tumor Microenvironment. Trends Cancer 2016; 2:664-675. [PMID: 28741505 DOI: 10.1016/j.trecan.2016.10.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 12/30/2022]
Abstract
Eosinophils are evolutionary conserved cells largely studied in the context of allergy. Although eosinophils were first described in tumors more than 120 years ago, their roles in cancer are often overlooked. This is puzzling given their potent immune modulatory, cytotoxic, and/or tissue repair capabilities, and recent studies demonstrating key roles for eosinophils in contexts far beyond their 'classical' field (e.g., metabolism, thermogenesis, and tissue regeneration). Recent data suggest that this frequently ignored cell is emerging as a potent immune effector and immune modulator in the tumor microenvironment. This review discusses the relevance of eosinophils to tumorigenesis and the potential to harness their function in cancer therapies.
Collapse
Affiliation(s)
- Hadar Reichman
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
18
|
Ben Baruch-Morgenstern N, Mingler MK, Stucke E, Besse JA, Wen T, Reichman H, Munitz A, Rothenberg ME. Paired Ig-like Receptor B Inhibits IL-13-Driven Eosinophil Accumulation and Activation in the Esophagus. THE JOURNAL OF IMMUNOLOGY 2016; 197:707-14. [PMID: 27324131 DOI: 10.4049/jimmunol.1501873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 05/23/2016] [Indexed: 12/14/2022]
Abstract
Eosinophilic esophagitis (EoE) is a Th2 cytokine-associated disease characterized by eosinophil infiltration, epithelial cell hyperplasia, and tissue remodeling. Recent studies highlighted a major contribution for IL-13 in EoE pathogenesis. Paired Ig-like receptor B is a cell surface immune-inhibitory receptor that is expressed by eosinophils and postulated to regulate eosinophil development and migration. We report that Pirb is upregulated in the esophagus after inducible overexpression of IL-13 (CC10-Il13(Tg) mice) and is overexpressed by esophageal eosinophils. CC10-Il13(Tg)/Pirb(-/-) mice displayed increased esophageal eosinophilia and EoE pathology, including epithelial cell thickening, fibrosis, and angiogenesis, compared with CC10-Il13(Tg)/Pirb(+/+) mice. Transcriptome analysis of primary Pirb(+/+) and Pirb(-/-) esophageal eosinophils revealed increased expression of transcripts associated with promoting tissue remodeling in Pirb(-/-) eosinophils, including profibrotic genes, genes promoting epithelial-to-mesenchymal transition, and genes associated with epithelial growth. These data identify paired Ig-like receptor B as a molecular checkpoint in IL-13-induced eosinophil accumulation and activation, which may serve as a novel target for future therapy in EoE.
Collapse
Affiliation(s)
- Netali Ben Baruch-Morgenstern
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel; and
| | - Melissa K Mingler
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Emily Stucke
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - John A Besse
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Hadar Reichman
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel; and
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel; and
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| |
Collapse
|
19
|
Karo-Atar D, Bordowitz A, Wand O, Pasmanik-Chor M, Fernandez IE, Itan M, Frenkel R, Herbert DR, Finkelman FD, Eickelberg O, Munitz A. A protective role for IL-13 receptor α 1 in bleomycin-induced pulmonary injury and repair. Mucosal Immunol 2016; 9:240-53. [PMID: 26153764 PMCID: PMC4703942 DOI: 10.1038/mi.2015.56] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/14/2015] [Indexed: 02/04/2023]
Abstract
Molecular mechanisms that regulate lung repair vs. progressive scarring in pulmonary fibrosis remain elusive. Interleukin (IL)-4 and IL-13 are pro-fibrotic cytokines that share common receptor chains including IL-13 receptor (R) α1 and are key pharmacological targets in fibrotic diseases. However, the roles of IL-13Rα1 in mediating lung injury/repair are unclear. We report dysregulated levels of IL-13 receptors in the lungs of bleomycin-treated mice and to some extent in idiopathic pulmonary fibrosis patients. Transcriptional profiling demonstrated an epithelial cell-associated gene signature that was homeostatically dependent on IL-13Rα1 expression. IL-13Rα1 regulated a striking array of genes in the lung following bleomycin administration and Il13ra1 deficiency resulted in exacerbated bleomycin-induced disease. Increased pathology in bleomycin-treated Il13ra1(-/-) mice was due to IL-13Rα1 expression in structural and hematopoietic cells but not due to increased responsiveness to IL-17, IL-4, IL-13, increased IL-13Rα2 or type 1 IL-4R signaling. These data highlight underappreciated protective roles for IL-13Rα1 in lung injury and homeostasis.
Collapse
Affiliation(s)
- D Karo-Atar
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - A Bordowitz
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - O Wand
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - M Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - I E Fernandez
- Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Grosshadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - M Itan
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - R Frenkel
- Department of Math, Physics and Computer Science, University of Cincinnati, Cincinnati, Ohio, USA
| | - D R Herbert
- Division of Experimental Medicine, University of California, San Francisco, California, USA
| | - F D Finkelman
- Division of Allergy, Immunology and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA,Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - O Eickelberg
- Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Grosshadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - A Munitz
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel,()
| |
Collapse
|
20
|
Moshkovits I, Shik D, Itan M, Karo-Atar D, Bernshtein B, Hershko AY, van Lookeren Campagne M, Munitz A. CMRF35-like molecule 1 (CLM-1) regulates eosinophil homeostasis by suppressing cellular chemotaxis. Mucosal Immunol 2014; 7:292-303. [PMID: 23820751 DOI: 10.1038/mi.2013.47] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/04/2013] [Indexed: 02/04/2023]
Abstract
Eosinophil accumulation in health and disease is a hallmark characteristic of mucosal immunity and type 2 helper T cell (Th2) inflammation. Eotaxin-induced CCR3 (chemokine (C-C motif) receptor 3) signaling has a critical role in eosinophil chemotactic responses. Nevertheless, the expressions of immunoreceptor tyrosine-based inhibitory motif-bearing receptors such as CMRF35-like molecule-1 (CLM-1) and their ability to govern eosinophil migration are largely unknown. We now report that CLM-1 (but not CLM-8) is highly and distinctly expressed by colonic and adipose tissue eosinophils. Furthermore, Clm1⁻/⁻ mice display elevated baseline tissue eosinophilia. CLM-1 negatively regulated eotaxin-induced eosinophil responses including eosinophil chemotaxis, actin polymerization, calcium influx, and extracellular signal-regulated kinase (ERK)-1/2, but not p38 phosphorylation. Addition of CLM-1 ligand (e.g., phosphatidylserine) rendered wild-type eosinophils hypochemotactic in vitro and blockade of CLM-1/ligand interactions rendered wild-type eosinophils hyperchemotactic in vitro and in vivo in a model of allergic airway disease. Interestingly, suppression of cellular recruitment via CLM-1 was specific to eosinophils and eotaxin, as leukotriene B₄ (LTB₄)- and macrophage inflammatory protein-1α (MIP-1α)-induced eosinophil and neutrophil migration were not negatively regulated by CLM-1. Finally, peripheral blood eosinophils obtained from allergic rhinitis patients displayed elevated CLM-1/CD300f levels. These data highlight CLM-1 as a novel regulator of eosinophil homeostasis and demonstrate that eosinophil accumulation is constantly governed by CLM-1, which negatively regulates eotaxin-induced eosinophil responses.
Collapse
Affiliation(s)
- I Moshkovits
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - D Shik
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - M Itan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - D Karo-Atar
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - B Bernshtein
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - A Y Hershko
- Laboratory of Allergy and Clinical Immunology, Department of Medicine, The Herbert Center of Mast Cell Disorders, Meir Medical Center, Kfar Saba, Israel
| | | | - A Munitz
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
21
|
Raggi F, Blengio F, Eva A, Pende D, Varesio L, Bosco MC. Identification of CD300a as a new hypoxia-inducible gene and a regulator of CCL20 and VEGF production by human monocytes and macrophages. Innate Immun 2013; 20:721-34. [PMID: 24131792 DOI: 10.1177/1753425913507095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Peripheral blood monocytes are recruited to inflammatory and tumor lesions where they undergo terminal differentiation into macrophages. Monocytes/macrophages integrate stimulatory and inhibitory signals present in the pathologic microenvironment through a defined repertoire of cell surface receptors, and deregulated expression of these molecules may result in amplification of inflammation or establishment of immune escape mechanisms. Characterization of the expression and function of these receptors is required for a better understanding of the regulation of monocyte/macrophage activity at pathologic sites. Hypoxia is a common feature of many pathological situations and an important regulator of monocyte/macrophage pro-inflammatory responses. In this study, we identify the leukocyte membrane antigen, CD300a, a member of the CD300 superfamily of immunoregulatory receptors, as a new hypoxia-inducible gene in primary human monocytes and monocyte-derived macrophages. CD300a mRNA up-regulation by hypoxia was rapid and reversible, paralleled by increased surface protein expression, and mediated by hypoxia-inducible factor-1α. CD300a induction was also triggered by the hypoxia-mimetic agent, desferrioxamine. CD300a exhibited both activating and inhibitory potential, differentially regulating CCL20 and vascular endothelial growth factor pro-inflammatory cytokine production by monocytes/macrophages upon triggering by an agonist Ab. These results suggest that CD300a induction by the hypoxic environment represents a mechanism of regulation of monocyte/macrophage pro-inflammatory responses at pathologic sites.
Collapse
Affiliation(s)
- Federica Raggi
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, Genova, Italy
| | - Fabiola Blengio
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, Genova, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, Genova, Italy
| | | | - Luigi Varesio
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, Genova, Italy
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
22
|
Fulkerson PC, Rothenberg ME. Targeting eosinophils in allergy, inflammation and beyond. Nat Rev Drug Discov 2013; 12:117-29. [PMID: 23334207 DOI: 10.1038/nrd3838] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eosinophils can regulate local immune and inflammatory responses, and their accumulation in the blood and tissue is associated with several inflammatory and infectious diseases. Thus, therapies that target eosinophils may help control diverse diseases, including atopic disorders such as asthma and allergy, as well as diseases that are not primarily associated with eosinophils, such as autoimmunity and malignancy. Eosinophil-targeted therapeutic agents that are aimed at blocking specific steps involved in eosinophil development, migration and activation have recently entered clinical testing and have produced encouraging results and insights into the role of eosinophils. In this Review, we describe recent advances in the development of first-generation eosinophil-targeted therapies and highlight strategies for using personalized medicine to treat eosinophilic disorders.
Collapse
Affiliation(s)
- Patricia C Fulkerson
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA.
| | | |
Collapse
|
23
|
Dobrowolska H, Gill KZ, Serban G, Ivan E, Li Q, Qiao P, Suciu-Foca N, Savage D, Alobeid B, Bhagat G, Colovai AI. Expression of immune inhibitory receptor ILT3 in acute myeloid leukemia with monocytic differentiation. CYTOMETRY PART B-CLINICAL CYTOMETRY 2012; 84:21-9. [PMID: 23027709 DOI: 10.1002/cyto.b.21050] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/04/2012] [Accepted: 09/19/2012] [Indexed: 11/12/2022]
Abstract
BACKGROUND The diagnosis of AML with monocytic differentiation is limited by the lack of highly sensitive and specific monocytic markers. Immunoglobulin-like transcript 3 (ILT3) is an immune inhibitory receptor expressed by myelomonocytic cells and at high levels by tolerogenic dendritic cells. METHODS Using flow cytometry, we analyzed the expression of ILT3 in 37 patients with AML and 20 patients with no detectable disease. RESULTS We showed that ILT3 was expressed in all cases of AML displaying monocytic differentiation (FAB M4/M5; N = 18), but not in AML M1/M2 and M3 (N = 19; P < 0.0001). Co-expression of ILT3 and immature cell markers, such as CD34 and CD117, was observed in monoblastic leukemia. ILT3 expression was preserved after treatment in M4/M5 patients with refractory or relapsed disease. ILT3 expression was associated with the presence of cytogenetic abnormalities linked to an intermediate prognosis (P = 0.001). Rare CD45dimCD34+CD117+ILT3+ cells were identified in noninvolved bone marrow, suggesting that ILT3 expression is acquired at an early stage by normal myelomonocytic precursors. CONCLUSIONS ILT3 is a highly sensitive and specific marker which distinguishes AML with monocytic differentiation from other types of AML. Testing of ILT3 expression should be incorporated into the initial diagnostic work-up and monitoring of patients with AML.
Collapse
Affiliation(s)
- Hanna Dobrowolska
- Department of Pathology and Cell Biology, Columbia University Medical Center and New York Presbyterian Hospital, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang L, Kang N, Zhou J, Guo Y, Zhang X, Cui L, Ba D, He W. Downregulation of CD94/NKG2A inhibitory receptor on decreased γδ T cells in patients with systemic lupus erythematosus. Scand J Immunol 2012; 76:62-9. [PMID: 22486170 DOI: 10.1111/j.1365-3083.2012.02705.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
γδ T cells are characterized by recognizing conserved endogenous and stress-induced antigens without antigen presentation. It has been show that γδ T cells play an important role in anti-tumour/microbe responses, but their function in autoimmune diseases is yet not clear. Here, we reported the quantity and phenotype of peripheral blood γδ T cells from systemic lupus erythematosus (SLE). Both the percentages of γδ T cells in peripheral blood and among CD3(+) T cells of patients with SLE were significantly decreased, regardless of disease activity. However, activating marker CD69 and HLA-DR was upregulated, while inhibiting receptor CD94/NKG2A was downregulated in γδ T cells of patients with SLE. The expression of CD69 is negatively correlated with the quantity of γδ T cells. Moreover, the expression of CD94/NKG2A remained low even with antigen stimulation on those γδ T cells. Our results suggested that the low expression level of CD94/NKG2A upon γδ T cell activation might lead to the over-activation of γδ T cells in patients with SLE. These findings will be useful in elucidating the roles of γδ T cells in SLE pathogenesis.
Collapse
Affiliation(s)
- L Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang Y, Lu N, Xue Y, Zhang M, Li Y, Si Y, Bian X, Jia Y, Wang Y. Expression of immunoglobulin-like transcript (ILT)2 and ILT3 in human gastric cancer and its clinical significance. Mol Med Rep 2012; 5:910-6. [PMID: 22246571 PMCID: PMC3493079 DOI: 10.3892/mmr.2012.744] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/05/2011] [Indexed: 12/21/2022] Open
Abstract
Immune inhibitory receptors play an important role in organ transplantation, autoimmune diseases and cancers. Immunoglobulin-like transcript (ILT)2 and ILT3 belong to the inhibitory receptors of the ILT family, which have been reported to regulate a broad range of cellular functions involved in the immune response. They contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs), which are related to immune regulation. Although ILT receptors have been studied in dendritic cells (DCs), T cells, NK cells and other cell types, the expression and clinical significance of ILT2 and ILT3 in gastric cancer have yet to be elucidated. Here, the expression of ILT2 and ILT3 in gastric cancer cell lines and pathologic tissues, as well as their effects on the cytotoxicity of NK92MI against the gastric cancer cell lines MKNI with ILT2lowILT3low and HGC-27 with ILT2highILT3high were detected. The results suggest that ILT2 and ILT3 are expressed with diverse degrees in gastric cancer cells and tissues, and the expression of ILT2 is related with differentiation and size of tumors. Furthermore, the cytotoxic activity of NK92MI against the MKNI cell line was stronger than that against HGC-27. This study indicates that ILT2 and ILT3 play a key role in gastric cancer immune escape, and ILT2 may be a new target in the clinical diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Clinical Laboratory Medicine, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tumor-expressed collagens can modulate immune cell function through the inhibitory collagen receptor LAIR-1. Mol Immunol 2011; 49:402-6. [DOI: 10.1016/j.molimm.2011.09.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 09/08/2011] [Accepted: 09/10/2011] [Indexed: 01/13/2023]
|
27
|
Verjan Garcia N, Umemoto E, Saito Y, Yamasaki M, Hata E, Matozaki T, Murakami M, Jung YJ, Woo SY, Seoh JY, Jang MH, Aozasa K, Miyasaka M. SIRPα/CD172a regulates eosinophil homeostasis. THE JOURNAL OF IMMUNOLOGY 2011; 187:2268-77. [PMID: 21775684 DOI: 10.4049/jimmunol.1101008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Eosinophils are abundant in the lamina propria of the small intestine, but they rarely show degranulation in situ under steady-state conditions. In this study, using two novel mAbs, we found that intestinal eosinophils constitutively expressed a high level of an inhibitory receptor signal regulatory protein α (SIRPα)/CD172a and a low, but significant, level of a tetraspanin CD63, whose upregulation is closely associated with degranulation. Cross-linking SIRPα/CD172a on the surface of wild-type eosinophils significantly inhibited the release of eosinophil peroxidase induced by the calcium ionophore A23187, whereas this cross-linking effect was not observed in eosinophils isolated from mice expressing a mutated SIRPα/CD172a that lacks most of its cytoplasmic domain (SIRPα Cyto(-/-)). The SIRPα Cyto(-/-) eosinophils showed reduced viability, increased CD63 expression, and increased eosinophil peroxidase release with or without A23187 stimulation in vitro. In addition, SIRPα Cyto(-/-) mice showed increased frequencies of Annexin V-binding eosinophils and free MBP(+)CD63(+) extracellular granules, as well as increased tissue remodeling in the small intestine under steady-state conditions. Mice deficient in CD47, which is a ligand for SIRPα/CD172a, recapitulated these phenomena. Moreover, during Th2-biased inflammation, increased eosinophil cell death and degranulation were obvious in a number of tissues, including the small intestine, in the SIRPα Cyto(-/-) mice compared with wild-type mice. Collectively, our results indicated that SIRPα/CD172a regulates eosinophil homeostasis, probably by interacting with CD47, with substantial effects on eosinophil survival. Thus, SIRPα/CD172a is a potential therapeutic target for eosinophil-associated diseases.
Collapse
Affiliation(s)
- Noel Verjan Garcia
- Laboratory of Immunodynamics, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lowell CA. Src-family and Syk kinases in activating and inhibitory pathways in innate immune cells: signaling cross talk. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a002352. [PMID: 21068150 DOI: 10.1101/cshperspect.a002352] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The response of innate immune cells to growth factors, immune complexes, extracellular matrix proteins, cytokines, pathogens, cellular damage, and many other stimuli is regulated by a complex net of intracellular signal transduction pathways. The majority of these pathways are either initiated or modulated by Src-family or Syk tyrosine kinases present in innate cells. The Src-family kinases modulate the broadest range of signaling responses, including regulating immunoreceptors, C-type lectins, integrins, G-protein-coupled receptors, and many others. Src-family kinases also modulate the activity of other kinases, including the Tec-family members as well as FAK and Pyk2. Syk kinase is required for initiation of signaling involving receptors that utilize immunoreceptor tyrosine activation (ITAM) domains. This article reviews the major activating and inhibitory signaling pathways regulated by these cytoplasmic tyrosine kinases, illuminating the many examples of signaling cross talk between pathways.
Collapse
Affiliation(s)
- Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, 94143, USA.
| |
Collapse
|