1
|
Raslan MA. Natural Products for the Treatment of Drug Addiction: Narrative Review. Chem Biodivers 2022; 19:e202200702. [PMID: 36285806 DOI: 10.1002/cbdv.202200702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/25/2022] [Indexed: 12/27/2022]
Abstract
Drug addiction is considered a chronic disorder affecting the individual's life, his/her family and society. Up till now the treatment of drug addiction is considered a problematic issue. Synthetic drugs available for the treatment of drug addiction are few, of limited efficacy and associated with serious side effects. Therefore, there is a continuous search for better therapeutic agents for drug addiction. Natural products represent a promising source for drug addiction treatment. This review summaries drug addiction definition, its mechanism of action, its types, its diagnosis, factors affecting its development and different available approaches for its treatment especially the use of natural products. Six plants were discussed thoroughly in this review, including, Tabernanthe iboga Baill., Mitragyna speciosa Korth., Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep, Hypericum perforatum L., Panax ginseng C.A. Mey., and Withania somnifera (L.) Dunal.
Collapse
Affiliation(s)
- Mona A Raslan
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, 12622, Giza, Egypt
| |
Collapse
|
2
|
Jensen KL, Jensen SB, Madsen KL. A mechanistic overview of approaches for the treatment of psychostimulant dependence. Front Pharmacol 2022; 13:854176. [PMID: 36160447 PMCID: PMC9493975 DOI: 10.3389/fphar.2022.854176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Psychostimulant use disorder is a major health issue around the world with enormous individual, family-related and societal consequences, yet there are no effective pharmacological treatments available. In this review, a target-based overview of pharmacological treatments toward psychostimulant addiction will be presented. We will go through therapeutic approaches targeting different aspects of psychostimulant addiction with focus on three major areas; 1) drugs targeting signalling, and metabolism of the dopamine system, 2) drugs targeting either AMPA receptors or metabotropic glutamate receptors of the glutamate system and 3) drugs targeting the severe side-effects of quitting long-term psychostimulant use. For each of these major modes of intervention, findings from pre-clinical studies in rodents to clinical trials in humans will be listed, and future perspectives of the different treatment strategies as well as their potential side-effects will be discussed. Pharmaceuticals modulating the dopamine system, such as antipsychotics, DAT-inhibitors, and disulfiram, have shown some promising results. Cognitive enhancers have been found to increase aspects of behavioural control, and drugs targeting the glutamate system such as modulators of metabotropic glutamate receptors and AMPA receptors have provided interesting changes in relapse behaviour. Furthermore, CRF-antagonists directed toward alleviating the symptoms of the withdrawal stage have been examined with interesting resulting changes in behaviour. There are promising results investigating therapeutics for psychostimulant addiction, but further preclinical work and additional human studies with a more stratified patient selection are needed to prove sufficient evidence of efficacy and tolerability.
Collapse
|
3
|
Czoty PW, Gould RW, O'Donovan CA, Nader MA. Chronic levetiracetam (Keppra®) treatment increases the reinforcing strength of cocaine in rhesus monkeys. Pharmacol Biochem Behav 2021; 207:173217. [PMID: 34116078 DOI: 10.1016/j.pbb.2021.173217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Drugs that increase inhibitory neuronal activity in the brain have been proposed as potential medications for stimulant use disorders. OBJECTIVE The present study assessed the ability of chronically administered levetiracetam (Keppra®), a clinically available anticonvulsant drug that increases GABA by binding to synaptic vesicle glycoprotein 2A, to modulate the reinforcing strength of cocaine in monkeys. METHODS Three adult male rhesus monkeys (Macaca mulatta) self-administered cocaine intravenously each day under a progressive-ratio (PR) schedule of reinforcement. Two monkeys also responded to receive food pellets under a 50-response fixed-ratio schedule (FR 50) each morning. After determining a cocaine dose-response curve (0.001-0.3 mg/kg per injection, i.v.) in the evening, levetiracetam (5-75 mg/kg, p.o., b.i.d.) was administered for 12-16 days per dose. To model a treatment setting, cocaine self-administration sessions were conducted using the PR schedule every 4 days during levetiracetam treatment. After tapering the dose of levetiracetam over two weeks in the absence of cocaine sessions, cocaine dose-effect curves were re-determined. RESULTS Lower doses of levetiracetam produced non-systematic fluctuations in numbers of cocaine injections received in each subject, whereas the highest tested dose significantly increased the reinforcing strength of cocaine; no effects on food-maintained responding were observed. After termination of levetiracetam treatment, dose-effect curves for cocaine self-administration were shifted to the left in two monkeys. CONCLUSION These data suggest that levetiracetam is not likely to be an efficacious pharmacotherapy for cocaine dependence. Rather, sensitivity to cocaine may be increased during and after levetiracetam treatment.
Collapse
Affiliation(s)
- Paul W Czoty
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157-1083, United States of America.
| | - Robert W Gould
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157-1083, United States of America
| | - Cormac A O'Donovan
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC 27157-1083, United States of America
| | - Michael A Nader
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157-1083, United States of America
| |
Collapse
|
4
|
Wei S, Li Y, Gong Q, Liang H, Liu Q, Bernardi RE, Zhang H, Chen F, Lawrence AJ, Liang J. Brucine N‐Oxide Reduces Ethanol Intake and Preference in Alcohol‐Preferring Male Fawn‐Hooded Rats. Alcohol Clin Exp Res 2020; 44:1321-1328. [PMID: 32343845 DOI: 10.1111/acer.14344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/18/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Shoupeng Wei
- From the Department of Pharmacology (SW, QG, HL, QL) School of Basic Medicine Sciences Peking University Beijing China
| | - Yu‐ling Li
- Department of Pharmacy (Y‐LL) East Hospital Tongji University School of Medicine Shanghai China
| | - Qi Gong
- From the Department of Pharmacology (SW, QG, HL, QL) School of Basic Medicine Sciences Peking University Beijing China
| | - Hui Liang
- From the Department of Pharmacology (SW, QG, HL, QL) School of Basic Medicine Sciences Peking University Beijing China
| | - Qing Liu
- From the Department of Pharmacology (SW, QG, HL, QL) School of Basic Medicine Sciences Peking University Beijing China
| | - Rick E. Bernardi
- Institute of Psychopharmacology (REB) Central Institute of Mental Health Medical Faculty Mannheim University of Heidelberg Mannheim Germany
| | - Han‐Ting Zhang
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology (H‐TZ) West Virginia University Health Sciences Center Morgantown West Virginia
| | - Feng Chen
- The Florey Institute of Neuroscience and Mental Health (FC, AJL) University of Melbourne Parkville3010Victoria Australia
| | - Andrew J. Lawrence
- The Florey Institute of Neuroscience and Mental Health (FC, AJL) University of Melbourne Parkville3010Victoria Australia
| | - Jian‐hui Liang
- Department of Molecular and Cellular Pharmacology (J‐hL) School of Pharmaceutical Sciences Peking University Beijing China
| |
Collapse
|
5
|
Walker LC, Kastman HE, Lawrence AJ. Pattern of neural activation following yohimbine‐induced reinstatement of alcohol seeking in rats. Eur J Neurosci 2020; 51:706-720. [DOI: 10.1111/ejn.14431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/25/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Leigh C. Walker
- The Florey Institute of Neuroscience and Mental Health Parkville Victoria Australia
- Florey Department of Neuroscience and Mental Health The University of Melbourne Melbourne Victoria Australia
| | - Hanna E. Kastman
- The Florey Institute of Neuroscience and Mental Health Parkville Victoria Australia
| | - Andrew J. Lawrence
- The Florey Institute of Neuroscience and Mental Health Parkville Victoria Australia
- Florey Department of Neuroscience and Mental Health The University of Melbourne Melbourne Victoria Australia
| |
Collapse
|
6
|
Reihana PK, Blampied NM, Rucklidge JJ. Novel Mineral-Vitamin Treatment for Reduction in Cigarette Smoking: A Fully Blinded Randomized Placebo-Controlled Trial. Nicotine Tob Res 2019; 21:1496-1505. [PMID: 31665746 DOI: 10.1093/ntr/nty168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/19/2018] [Indexed: 11/14/2022]
Abstract
INTRODUCTION Many smokers do not achieve abstinence using current smoking cessation options. This randomized controlled trial (RCT) investigated a novel nutritional supplement to assist with quitting smoking. METHODS Following a baseline phase where cigarettes per day and nicotine dependence were measured, participants (n = 107) were randomized to placebo (n = 50) or micronutrient conditions (n = 57). A 4-week pre-quit phase permitted titration up to 12 capsules/day. During the quit phase (12 weeks), participants were registered with a public Quitline while consuming micronutrients or placebo. Carbon monoxide levels were measured to confirm smoking cessation. RESULTS Forty-five (42%) participants completed the trial. Treatment and placebo groups did not differ on the primary outcome of continuous abstinence at 12 weeks using intention-to-treat analysis; however, 28% of the micronutrient-treated group had quit versus 18% for placebo (odds ratio [OR] = 1.78, 95% confidence interval [CI] = 0.71 to 4.48), with number needed to treat = 10. Comparison of cigarette consumption (cigarettes per day) between micronutrient and placebo groups showed that those taking micronutrients reported reduced consumption throughout the trial, notably at pre-quit weeks 1 and 4, and at quit phase week 4. There were no serious adverse events, blinding was successful, and there were no substantive group differences in side effects or dropout rate. CONCLUSION This is the first RCT investigating the impact of micronutrients on smoking reduction, finding that micronutrients reduced harm through reduction in number of cigarettes smoked relative to placebo. The small sample and high dropout rate limit confidence in the conclusions and generalizability of the study; however, assessed by number needed to treat, micronutrients are comparable to other smoking cessation treatments but with fewer side effects. Future research using larger and longer trials including cost-effectiveness and biomarker measures is encouraged. IMPLICATIONS Micronutrients are being increasingly studied for the treatment of psychiatric conditions, but direct application of micronutrients as a treatment for addictions is novel. There is extensive evidence that micronutrients alleviate stress. Given that tobacco smoking is often used to cope with stress, taking micronutrients may moderate the stress of withdrawal and increase the chance of a successful quit attempt. This study is the first known RCT to investigate the use of micronutrients to support smoking cessation. Treatments that are safe, effective, relatively inexpensive, and readily available are needed and micronutrient supplements offer one such possible alternative.
Collapse
Affiliation(s)
- Phillipa K Reihana
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | - Neville M Blampied
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | - Julia J Rucklidge
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
7
|
Joubert J, Strydom N, Geldenhuys WJ, Greyling Y, V. Dyk S, Malan SF. Hexacyclododecylamines with Sigma-1 Receptor Affinity and Calcium Channel Modulating Ability. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2019. [DOI: 10.2174/1874104501913010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
Recent research points to the Sigma Receptor (σR) as a possible neuromodulatory system with multi-functional action and σ1Rs have been suggested as a drug target for a number of CNS conditions. Hexacyclododecylamines have shown σ1R activity and provide an advantageous scaffold for drug design that can improve the blood-brain barrier permeability of privileged structures.
Methods and Materials:
A series of oxa- and aza- hexaxcyclododecylamines were synthesised and evaluated for sigma-1 receptor activity and voltage-gated calcium channel blocking ability to determine the effect of inclusion of amine containing heterocycles.
Results & Discussion:
The compounds had promising σ1R activities (Ki = 0.067 – 11.86 µM) with the aza-hexacyclododecylamines 12, 24 and 27 showing some of the highest affinities (Ki = 0.067 µM, 0.215 µM and 0.496 µM respectively). This confirms, as observed in previous studies, that the aza compounds are more favourable for σ1R binding than their oxa counterparts. The addition of the amine heterocycle showed affinities similar to that of related structures with only two lipophilic binding regions. This indicates that the inclusion of an amine heterocycle into these structures is a viable option in the design of new σ1R ligands. Significant voltage-gated calcium channel blocking ability was also observed for 12, 24 and 27, suggesting a link between σ1R activity and intracellular calcium levels.
Conclusion:
The σ1R activity and potential effect on other receptor classes and calcium channels could prove beneficial in pharmacological application.
Collapse
|
8
|
Walker LC, Lawrence AJ. Investigational drug therapies in phase I and phase II clinical trials for alcohol use disorders. Expert Opin Investig Drugs 2018; 27:1-14. [PMID: 30019949 DOI: 10.1080/13543784.2018.1502269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Alcohol use disorder (AUD) is a complex psychiatric condition characterized by craving, compulsive seeking, loss of control of alcohol consumption as well as the emergence of negative emotional states during withdrawal. Despite the large socioeconomic burden of AUD, therapeutic treatment options lag behind. AREAS COVERED This review covers pharmacotherapies currently in phase I/II clinical trials for the treatment of AUDs listed on clinicaltrials.gov. We discuss drug therapies that modulate monoamine, GABA/Glutamate, neuropeptide and neuroimmune systems. We examine in depth preclinical and clinical evidence of a select range of these compounds and consider their utility in treating AUDs. EXPERT OPINION Current therapeutic options to treat AUD are inadequate at a population level. Currently there are 30 different compounds and one compound combination in phase I/II clinical trials for AUD. These compounds target various aspects of neurotransmitter signaling, neuroimmune modulation, and alcohol metabolism. Almost 75% of these compounds under trial are Food and Drug Administration (FDA) approved for other indications, which may save time and costs in treatment development. Further, development of therapeutics focused on genetic biomarkers and behavioral screening may improve how treatment decisions are made in the future on a case-by-case basis.
Collapse
Affiliation(s)
- Leigh C Walker
- a Florey Department of Neuroscience and Mental Health , University of Melbourne , Parkville , VIC , Australia
| | - Andrew J Lawrence
- a Florey Department of Neuroscience and Mental Health , University of Melbourne , Parkville , VIC , Australia
| |
Collapse
|
9
|
Åhman A, Jerkeman A, Blomé MA, Björkman P, Håkansson A. Mortality and causes of death among people who inject amphetamine: A long-term follow-up cohort study from a needle exchange program in Sweden. Drug Alcohol Depend 2018; 188:274-280. [PMID: 29803034 DOI: 10.1016/j.drugalcdep.2018.03.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/14/2018] [Accepted: 03/27/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Abuse of amphetamines is a worldwide problem with around 34 million users, and amphetamine is commonly used by people who inject drugs (PWID). Despite this, there is relatively little research on mortality and cause of death among people who use amphetamines primarily. The present study aimed to examine mortality and causes of death among people who inject amphetamine, and compare these results to the general population. METHODS This retrospective cohort study was based on data from The Malmö Needle Exchange Program in Sweden (MNEP) and on data from The Swedish National Cause of Death Register. Participants in the MNEP, between 1987 and 2011, with registered national identity number and amphetamine as their primary drug of injection use, were included in the study. Standardized mortality ratios (SMR) was calculated for overall mortality and categories of causes of death. RESULTS 2019 individuals were included (mean follow-up-time 13.7 years [range 0.02-24.2 years], a total of 27,698 person-years). Of the 448 deceased, 428 had a registered cause of death. The most common causes of death were external causes (n = 162, 38%), followed by diseases of the circulatory system (n = 67, 16%). SMR were significantly elevated (8.3, 95% CI [7.5-9.1]) for the entire study population, and for every category of causes of death respectively. CONCLUSIONS People injecting amphetamine as a primary drug were found to have significantly elevated mortality compared with the general population, with high rates of both external and somatic causes of death.
Collapse
Affiliation(s)
- Ada Åhman
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Psychiatry, Lund, Sweden, Malmö Addiction Center, Södra Förstadsgatan 35, plan 4, 205 02 Malmö, Sweden.
| | - Anna Jerkeman
- Lund University, Faculty of Medicine, Department of Translational Medicine, Clinical Infection Medicine, Malmö, Sweden, Jan Waldenströms gata 35, 205 02 Malmö, Sweden.
| | - Marianne Alanko Blomé
- Lund University, Faculty of Medicine, Department of Translational Medicine, Clinical Infection Medicine, Malmö, Sweden, Jan Waldenströms gata 35, 205 02 Malmö, Sweden.
| | - Per Björkman
- Lund University, Faculty of Medicine, Department of Translational Medicine, Clinical Infection Medicine, Malmö, Sweden, Jan Waldenströms gata 35, 205 02 Malmö, Sweden.
| | - Anders Håkansson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Psychiatry, Lund, Sweden, Malmö Addiction Center, Södra Förstadsgatan 35, plan 4, 205 02 Malmö, Sweden.
| |
Collapse
|
10
|
Berizzi AE, Perry CJ, Shackleford DM, Lindsley CW, Jones CK, Chen NA, Sexton PM, Christopoulos A, Langmead CJ, Lawrence AJ. Muscarinic M 5 receptors modulate ethanol seeking in rats. Neuropsychopharmacology 2018; 43:1510-1517. [PMID: 29483658 PMCID: PMC5983544 DOI: 10.1038/s41386-017-0007-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/26/2017] [Accepted: 12/29/2017] [Indexed: 12/16/2022]
Abstract
Despite the cost to both individual and society, alcohol use disorders (AUDs) remain a major health risk within society, and both relapse and heavy drinking are still poorly controlled with current medications. Here we demonstrate for the first time that a centrally active and selective negative allosteric modulator for the rat M5 muscarinic acetylcholine receptor (mAChR), ML375, decreases ethanol self-administration and attenuates cue-induced reinstatement of ethanol seeking in ethanol-preferring (iP) rats. Importantly, ML375 did not affect sucrose self-administration or general locomotor activity indicative of a selective effect on ethanol seeking. Based on the expression profile of M5 mAChRs in the brain and the distinct roles different aspects of the dorsal striatum have on long-term and short-term ethanol use, we studied whether intra-striatal microinjection of ML375 modulated ethanol intake in rats. We show in iP rats with an extensive history of ethanol intake that intra-dorsolateral (DL), but not intra-dorsomedial, striatal injections of ML375 reduced ethanol self-administration to a similar extent as the nicotinic acetylcholine receptor ligand varenicline, which has preclinical and clinical efficacy in reducing the reinforcing effects of ethanol. These data implicate the DL striatum as a locus for the effects of cholinergic-acting drugs on ethanol seeking in rats with a history of long-term ethanol use. Accordingly, we demonstrate in rats that selectively targeting the M5 mAChR can modulate both voluntary ethanol intake and cue-induced ethanol seeking and thereby provide direct evidence that the M5 mAChR is a potential novel target for pharmacotherapies aimed at treating AUDs.
Collapse
Affiliation(s)
- Alice E. Berizzi
- 0000 0004 1936 7857grid.1002.3Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Christina J. Perry
- 0000 0004 0606 5526grid.418025.aThe Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052 Australia
| | - David M. Shackleford
- 0000 0004 1936 7857grid.1002.3Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Craig W. Lindsley
- 0000 0001 2264 7217grid.152326.1Departments of Pharmacology and Chemistry, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232 USA
| | - Carrie K. Jones
- 0000 0001 2264 7217grid.152326.1Departments of Pharmacology and Chemistry, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232 USA
| | - Nicola A. Chen
- 0000 0004 0606 5526grid.418025.aThe Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052 Australia
| | - Patrick M. Sexton
- 0000 0004 1936 7857grid.1002.3Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Christopher J. Langmead
- 0000 0004 1936 7857grid.1002.3Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Andrew J. Lawrence
- 0000 0004 0606 5526grid.418025.aThe Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052 Australia ,0000 0001 2179 088Xgrid.1008.9Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
11
|
Walker LC, Kastman HE, Koeleman JA, Smith CM, Perry CJ, Krstew EV, Gundlach AL, Lawrence AJ. Nucleus incertus corticotrophin-releasing factor 1 receptor signalling regulates alcohol seeking in rats. Addict Biol 2017; 22:1641-1654. [PMID: 27440230 DOI: 10.1111/adb.12426] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 01/01/2023]
Abstract
Alcoholism is a chronic relapsing disorder, and stress is a key precipitant of relapse. The nucleus incertus (NI) is highly responsive to corticotrophin-releasing factor (CRF) and psychological stressors, receives a CRF innervation and expresses CRF1 and CRF2 receptor mRNA. Furthermore, the ascending NI relaxin-3 system is implicated in alcohol seeking in rats. Therefore, in alcohol-preferring rats, we examined the effect of bilateral injections into the NI of the CRF1 receptor antagonist, CP376395 or the CRF2 receptor antagonist, astressin-2B on yohimbine-induced reinstatement of alcohol seeking. Using quantitative PCR analysis of NI micropunches, we assessed the effects of chronic alcohol consumption on gene expression profiles for components of the relaxin-3 and CRF systems. Bilateral intra-NI injections of CP376395 (500 ng/0.25 µl) attenuated yohimbine-induced reinstatement of alcohol seeking. In contrast, intra-NI injections of astressin-2B (200 ng/0.25 µl) had no significant effect. In line with these data, CRF1 , but not CRF2 , receptor mRNA was upregulated in the NI following chronic ethanol intake. Relaxin family peptide 3 receptor mRNA was also increased in the NI following chronic ethanol. Our quantitative PCR analysis also identified CRF mRNA within the rat NI, and the existence of a newly identified population of CRF-containing neurons was subsequently confirmed by detection of CRF immunoreactivity in rat and mouse NI. These data suggest that NI neurons contribute to reinstatement of alcohol seeking, via an involvement of CRF1 signalling. Furthermore, chronic ethanol intake leads to neuroadaptive changes in CRF and relaxin-3 systems within rat NI.
Collapse
Affiliation(s)
- Leigh C. Walker
- The Florey Institute of Neuroscience and Mental Health; Parkville Victoria 3052 Australia
- Florey Department of Neuroscience and Mental Health; The University of Melbourne; Victoria 3010 Australia
| | - Hanna E. Kastman
- The Florey Institute of Neuroscience and Mental Health; Parkville Victoria 3052 Australia
- Florey Department of Neuroscience and Mental Health; The University of Melbourne; Victoria 3010 Australia
| | - Jan A. Koeleman
- The Florey Institute of Neuroscience and Mental Health; Parkville Victoria 3052 Australia
- Institute for Interdisciplinary Studies; University of Amsterdam; Amsterdam 1098 XH the Netherlands
| | - Craig M. Smith
- The Florey Institute of Neuroscience and Mental Health; Parkville Victoria 3052 Australia
- Florey Department of Neuroscience and Mental Health; The University of Melbourne; Victoria 3010 Australia
- School of Medicine; Deakin University; Geelong Victoria 3216 Australia
| | - Christina J. Perry
- The Florey Institute of Neuroscience and Mental Health; Parkville Victoria 3052 Australia
- Florey Department of Neuroscience and Mental Health; The University of Melbourne; Victoria 3010 Australia
| | - Elena V. Krstew
- The Florey Institute of Neuroscience and Mental Health; Parkville Victoria 3052 Australia
| | - Andrew L. Gundlach
- The Florey Institute of Neuroscience and Mental Health; Parkville Victoria 3052 Australia
- Florey Department of Neuroscience and Mental Health; The University of Melbourne; Victoria 3010 Australia
| | - Andrew J. Lawrence
- The Florey Institute of Neuroscience and Mental Health; Parkville Victoria 3052 Australia
- Florey Department of Neuroscience and Mental Health; The University of Melbourne; Victoria 3010 Australia
| |
Collapse
|
12
|
Walker LC, Kastman HE, Krstew EV, Gundlach AL, Lawrence AJ. Central amygdala relaxin-3/relaxin family peptide receptor 3 signalling modulates alcohol seeking in rats. Br J Pharmacol 2017; 174:3359-3369. [PMID: 28726252 PMCID: PMC5595761 DOI: 10.1111/bph.13955] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/21/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Alcohol use disorders are a leading cause of preventable deaths worldwide, and stress is a major trigger of relapse. The neuropeptide relaxin-3 and its cognate receptor, relaxin family peptide receptor 3 (RXFP3), modulate stress-induced relapse to alcohol seeking in rats, and while the bed nucleus of the stria terminalis has been implicated in this regard, the central nucleus of the amygdala (CeA) also receives a relaxin-3 innervation and CeA neurons densely express RXFP3 mRNA. Moreover, the CeA is consistently implicated in both stress and addictive disorders. Yohimbine precipitates relapse-like behaviour in rodents, although exactly how yohimbine induces relapse is unknown, possibly by increasing stress levels and inducing heightened cue reactivity. EXPERIMENTAL APPROACH In the current study, we examined the effects of yohimbine (1 mg·kg-1 , i.p.) on anxiety-like behaviour in alcohol-experienced rats. Furthermore, we assessed CeA neuronal activation following yohimbine-induced reinstatement of alcohol seeking and the role of the relaxin-3/RXFP3 signalling within the CeA in yohimbine-induced reinstatement to alcohol seeking. KEY RESULTS Low-dose yohimbine was anxiogenic in rats with a history of alcohol use. Furthermore, yohimbine-induced reinstatement of alcohol seeking increased Fos activation in CeA corticotrophin-releasing factor, dynorphin and GABA neurons compared with naïve and vehicle controls. Bilateral intra-CeA injections of the selective RXFP3 antagonist, R3(B1-22)R, attenuated yohimbine-induced reinstatement of alcohol seeking. CONCLUSIONS Collectively, these data suggest that the CeA is a node where yohimbine acts to induce reinstatement of alcohol seeking and implicate the relaxin-3/RXFP3 system within the CeA in this process.
Collapse
Affiliation(s)
- Leigh C Walker
- The Florey Institute of Neuroscience and Mental HealthParkvilleVICAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| | - Hanna E Kastman
- The Florey Institute of Neuroscience and Mental HealthParkvilleVICAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| | - Elena V Krstew
- The Florey Institute of Neuroscience and Mental HealthParkvilleVICAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental HealthParkvilleVICAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental HealthParkvilleVICAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneParkvilleVICAustralia
| |
Collapse
|
13
|
Abstract
Addiction is a chronic relapsing disorder characterized by compulsive drug seeking and drug taking despite negative consequences. Alcohol abuse and addiction have major social and economic consequences and cause significant morbidity and mortality worldwide. Currently available therapeutics are inadequate, outlining the need for alternative treatments. Detailed knowledge of the neurocircuitry and brain chemistry responsible for aberrant behavior patterns should enable the development of novel pharmacotherapies to treat addiction. Therefore it is important to expand our knowledge and understanding of the neural pathways and mechanisms involved in alcohol seeking and abuse. The orexin (hypocretin) neuropeptide system is an attractive target, given the recent FDA and PMDA approval of suvorexant for the treatment of insomnia. Orexin is synthesized exclusively in neurons located in the lateral (LH), perifornical (PEF), and dorsal medial (DMH) hypothalamus. These neurons project widely throughout the neuraxis with regulatory roles in a wide range of behavioral and physiological responses, including sleep-wake cycle neuroendocrine regulation, anxiety, feeding behavior, and reward seeking. Here we summarize the literature to date, which have evaluated the interplay between alcohol and the orexin system.
Collapse
Affiliation(s)
- Leigh C Walker
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
14
|
Bell RL, Hauser SR, Liang T, Sari Y, Maldonado-Devincci A, Rodd ZA. Rat animal models for screening medications to treat alcohol use disorders. Neuropharmacology 2017; 122:201-243. [PMID: 28215999 PMCID: PMC5659204 DOI: 10.1016/j.neuropharm.2017.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 01/21/2023]
Abstract
The purpose of this review is to present animal research models that can be used to screen and/or repurpose medications for the treatment of alcohol abuse and dependence. The focus will be on rats and in particular selectively bred rats. Brief introductions discuss various aspects of the clinical picture, which provide characteristics of individuals with alcohol use disorders (AUDs) to model in animals. Following this, multiple selectively bred rat lines will be described and evaluated in the context of animal models used to screen medications to treat AUDs. Next, common behavioral tests for drug efficacy will be discussed particularly as they relate to stages in the addiction cycle. Tables highlighting studies that have tested the effects of compounds using the respective techniques are included. Wherever possible the Tables are organized chronologically in ascending order to describe changes in the focus of research on AUDs over time. In general, high ethanol-consuming selectively bred rats have been used to test a wide range of compounds. Older studies usually followed neurobiological findings in the selected lines that supported an association with a propensity for high ethanol intake. Most of these tests evaluated the compound's effects on the maintenance of ethanol drinking. Very few compounds have been tested during ethanol-seeking and/or relapse and fewer still have assessed their effects during the acquisition of AUDs. Overall, while a substantial number of neurotransmitter and neuromodulatory system targets have been assessed; the roles of sex- and age-of-animal, as well as the acquisition of AUDs, ethanol-seeking and relapse continue to be factors and behaviors needing further study. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Richard L Bell
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA.
| | - Sheketha R Hauser
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| | - Tiebing Liang
- Indiana University School of Medicine, Department of Gastroenterology, Indianapolis, IN 46202, USA
| | - Youssef Sari
- University of Toledo, Department of Pharmacology, Toledo, OH 43614, USA
| | | | - Zachary A Rodd
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
The glucagon-like peptide 1 receptor agonist Exendin-4 decreases relapse-like drinking in socially housed mice. Pharmacol Biochem Behav 2017; 160:14-20. [PMID: 28778739 DOI: 10.1016/j.pbb.2017.07.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/26/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a gut peptide that regulates food intake and glucose metabolism. GLP-1 is also produced and released in the brain, and GLP-1 receptors are expressed in brain regions important for alcohol and drug reward, and for the development of addiction. GLP-1 receptor agonists can decrease alcohol intake acutely in rodents. However, alcohol use disorder is a chronic condition that requires treatments to be effective in promoting abstinence from excessive alcohol consumption over time. Here, we assessed the effect of daily treatment with the GLP-1 receptor agonist Exendin-4 in an assay of relapse-like drinking in socially housed mice. Male C57BL/6NTac mice were allowed continuous access to alcohol without tastant in the home cage for 37days. Then, alcohol bottles were removed and Exendin-4 (1.5μg/kg/day) or saline was administered subcutaneously for 8days during alcohol deprivation. Treatment continued for 8 additional days after reintroducing access to alcohol. A high-precision automated fluid consumption system was used to monitor intake of alcohol and water, drinking kinetics, and locomotor activity. Exendin-4 prevented the deprivation-induced increase in alcohol intake observed in control mice, without significantly affecting total fluid intake, body weight, or locomotor activity. The reduced alcohol intake was caused by a protracted latency to the first drink of alcohol and a reduced number of drinking bouts, while bout size and duration were not affected. The effect was maintained undiminished throughout the treatment period. These findings support the possible use of GLP-1 receptor agonists in the treatment of alcohol use disorder.
Collapse
|
16
|
Effects of DA-Phen, a dopamine-aminoacidic conjugate, on alcohol intake and forced abstinence. Behav Brain Res 2016; 310:109-18. [DOI: 10.1016/j.bbr.2016.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 12/27/2022]
|
17
|
Role of Lateral Hypothalamic Orexin (Hypocretin) Neurons in Alcohol Use and Abuse: Recent Advances. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40495-016-0069-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Chronic methamphetamine self-administration disrupts cortical control of cognition. Neurosci Biobehav Rev 2016; 69:36-48. [PMID: 27450578 DOI: 10.1016/j.neubiorev.2016.07.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 11/22/2022]
Abstract
Methamphetamine (meth) is one of the most abused substances worldwide. Chronic use has been associated with repeated relapse episodes that may be exacerbated by cognitive impairments during drug abstinence. Growing evidence demonstrates that meth compromises prefrontal cortex activity, resulting in persisting attentional and memory impairments. After summarizing recent studies of meth-induced cognitive dysfunction using a translationally relevant model of self-administered meth, this review emphasizes the cortical brain changes contributing to cognitive dysregulation during abstinence. Finally, we propose the use of cognitive enhancers during abstinence that may promote a drug-free state by reversing cortical dysfunction linked with prolonged meth abuse.
Collapse
|
19
|
Krebs CA, Reilly WJ, Anderson KG. Reinforcer magnitude affects delay discounting and influences effects of d-amphetamine in rats. Behav Processes 2016; 130:39-45. [PMID: 27418423 DOI: 10.1016/j.beproc.2016.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 11/29/2022]
Abstract
Impulsive choice in humans can be altered by changing reinforcer magnitude; however, this effect has not been found in rats. Current levels of impulsive choice can also influence effects of d-amphetamine. This study used a within-subject assessment to determine if impulsive choice is sensitive to changes in reinforcer magnitude, and whether effects of d-amphetamine are related to current levels of impulsive choice. A discounting procedure in which choice was for a smaller reinforcer available immediately or a larger reinforcer available after a delay that increased within session was used. Reinforcer magnitude was manipulated between conditions and impulsive choice was quantified using area under the curve (AUC). In the Smaller-Magnitude (SM) Condition, choice was between one food pellet and three food pellets. In the Larger-Magnitude (LM) Condition, choice was between two food pellets and six food pellets. Impulsive choice was greater in the SM Condition compared to the LM Condition. Further, effects of d-amphetamine (0.1-1.8mg/kg) were related to differences in impulsive choice. d-Amphetamine increased impulsive choice in the LM Condition, but had no effect on impulsive choice in the SM Condition. Overall, these results show that impulsive choice in rats is sensitive to changes in reinforcer magnitude, and that effects of d-amphetamine are influenced by current levels of impulsive choice.
Collapse
|
20
|
Kastman HE, Blasiak A, Walker L, Siwiec M, Krstew EV, Gundlach AL, Lawrence AJ. Nucleus incertus Orexin2 receptors mediate alcohol seeking in rats. Neuropharmacology 2016; 110:82-91. [PMID: 27395787 DOI: 10.1016/j.neuropharm.2016.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Abstract
Alcoholism is a chronic relapsing disorder and a major global health problem. Stress is a key precipitant of relapse in human alcoholics and in animal models of alcohol seeking. The brainstem nucleus incertus (NI) contains a population of relaxin-3 neurons that are highly responsive to psychological stressors; and the ascending NI relaxin-3/RXFP3 signalling system is implicated in stress-induced reinstatement of alcohol seeking. The NI receives orexinergic innervation and expresses orexin1 (OX1) and orexin2 (OX2) receptor mRNA. In alcohol-preferring (iP) rats, we examined the impact of yohimbine-induced reinstatement of alcohol seeking on orexin neuronal activation, and the effect of bilateral injections into NI of the OX1 receptor antagonist, SB-334867 (n = 16) or the OX2 receptor antagonist, TCS-OX2-29 (n = 8) on stress-induced reinstatement of alcohol seeking. We also assessed the effects of orexin-A on NI neuronal activity and the involvement of OX1 and OX2 receptors using whole cell patch-clamp recordings in rat brain slices. Yohimbine-induced reinstatement of alcohol seeking activated orexin neurons. Bilateral NI injections of TCS-OX2-29 attenuated yohimbine-induced reinstatement of alcohol seeking. In contrast, intra-NI injection of SB-334867 had no significant effect. In line with these data, orexin-A (600 nM) depolarized a majority of NI neurons recorded in coronal brain slices (18/28 cells), effects prevented by bath application of TCS-OX2-29 (10 μM), but not SB-334867 (10 μM). These data suggest an excitatory orexinergic input to NI contributes to yohimbine-induced reinstatement of alcohol seeking, predominantly via OX2 receptor signalling.
Collapse
Affiliation(s)
- Hanna E Kastman
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387 Krakow, Poland
| | - Leigh Walker
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Marcin Siwiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387 Krakow, Poland
| | - Elena V Krstew
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
21
|
Bell RL, Hauser S, Rodd ZA, Liang T, Sari Y, McClintick J, Rahman S, Engleman EA. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:179-261. [PMID: 27055615 PMCID: PMC4851471 DOI: 10.1016/bs.irn.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general.
Collapse
Affiliation(s)
- R L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - S Hauser
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Z A Rodd
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - T Liang
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Y Sari
- University of Toledo, Toledo, OH, United States
| | - J McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - E A Engleman
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
22
|
Rao PSS, Bell RL, Engleman EA, Sari Y. Targeting glutamate uptake to treat alcohol use disorders. Front Neurosci 2015; 9:144. [PMID: 25954150 PMCID: PMC4407613 DOI: 10.3389/fnins.2015.00144] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 04/07/2015] [Indexed: 01/05/2023] Open
Abstract
Alcoholism is a serious public health concern that is characterized by the development of tolerance to alcohol's effects, increased consumption, loss of control over drinking and the development of physical dependence. This cycle is often times punctuated by periods of abstinence, craving and relapse. The development of tolerance and the expression of withdrawal effects, which manifest as dependence, have been to a great extent attributed to neuroadaptations within the mesocorticolimbic and extended amygdala systems. Alcohol affects various neurotransmitter systems in the brain including the adrenergic, cholinergic, dopaminergic, GABAergic, glutamatergic, peptidergic, and serotonergic systems. Due to the myriad of neurotransmitter and neuromodulator systems affected by alcohol, the efficacies of current pharmacotherapies targeting alcohol dependence are limited. Importantly, research findings of changes in glutamatergic neurotransmission induced by alcohol self- or experimenter-administration have resulted in a focus on therapies targeting glutamatergic receptors and normalization of glutamatergic neurotransmission. Glutamatergic receptors implicated in the effects of ethanol include the ionotropic glutamate receptors (AMPA, Kainate, and NMDA) and some metabotropic glutamate receptors. Regarding glutamatergic homeostasis, ceftriaxone, MS-153, and GPI-1046, which upregulate glutamate transporter 1 (GLT1) expression in mesocorticolimbic brain regions, reduce alcohol intake in genetic animal models of alcoholism. Given the hyperglutamatergic/hyperexcitable state of the central nervous system induced by chronic alcohol abuse and withdrawal, the evidence thus far indicates that a restoration of glutamatergic concentrations and activity within the mesocorticolimbic system and extended amygdala as well as multiple memory systems holds great promise for the treatment of alcohol dependence.
Collapse
Affiliation(s)
- P S S Rao
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine Indianapolis, IN, USA
| | - Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine Indianapolis, IN, USA
| | - Youssef Sari
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| |
Collapse
|
23
|
Jupp B, Dalley JW. Convergent pharmacological mechanisms in impulsivity and addiction: insights from rodent models. Br J Pharmacol 2014; 171:4729-66. [PMID: 24866553 PMCID: PMC4209940 DOI: 10.1111/bph.12787] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/02/2014] [Accepted: 05/12/2014] [Indexed: 01/15/2023] Open
Abstract
Research over the last two decades has widely demonstrated that impulsivity, in its various forms, is antecedent to the development of drug addiction and an important behavioural trait underlying the inability of addicts to refrain from continued drug use. Impulsivity describes a variety of rapidly and prematurely expressed behaviours that span several domains from impaired response inhibition to an intolerance of delayed rewards, and is a core symptom of attention deficit hyperactivity disorder (ADHD) and other brain disorders. Various theories have been advanced to explain how impulsivity interacts with addiction both causally and as a consequence of chronic drug abuse; these acknowledge the strong overlaps in neural circuitry and mechanisms between impulsivity and addiction and the seemingly paradoxical treatment of ADHD with stimulant drugs with high abuse potential. Recent years have witnessed unprecedented progress in the elucidation of pharmacological mechanisms underpinning impulsivity. Collectively, this work has significantly improved the prospect for new therapies in ADHD as well as our understanding of the neural mechanisms underlying the shift from recreational drug use to addiction. In this review, we consider the extent to which pharmacological interventions that target impulsive behaviour are also effective in animal models of addiction. We highlight several promising examples of convergence based on empirical findings in rodent-based studies.
Collapse
Affiliation(s)
- B Jupp
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of CambridgeCambridge, UK
- Florey Institute of Neuroscience and Mental Health, University of MelbourneParkville, Australia
| | - J W Dalley
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of CambridgeCambridge, UK
- Department of Psychiatry, University of CambridgeCambridge, UK
| |
Collapse
|
24
|
Homberg JR, Karel P, Verheij MMM. Individual differences in cocaine addiction: maladaptive behavioural traits. Addict Biol 2014; 19:517-28. [PMID: 24835358 DOI: 10.1111/adb.12036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cocaine use leads to addiction in only a subset of individuals. Understanding the mechanisms underlying these individual differences in the transition from cocaine use to cocaine abuse is important to develop treatment strategies. There is agreement that specific behavioural traits increase the risk for addiction. As such, both high impulsivity and high anxiety have been reported to predict (compulsive) cocaine self-administration behaviour. Here, we set out a new view explaining how these two behavioural traits may affect addictive behaviour. According to psychological and psychiatric evolutionary views, organisms flourish well when they fit (match) their environment by trait and genotype. However, under non-fit conditions, the need to compensate the failure to deal with this environment increases, and, as a consequence, the functional use of rewarding drugs like cocaine may also increase. It suggests that neither impulsivity nor anxiety are bad per se, but that the increased risk to develop cocaine addiction is dependent on whether behavioural traits are adaptive or maladaptive in the environment to which the animals are exposed. This 'behavioural (mal)adaptation view' on individual differences in vulnerability to cocaine addiction may help to improve therapies for addiction.
Collapse
Affiliation(s)
- Judith R. Homberg
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience; Nijmegen The Netherlands
| | - Peter Karel
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience; Nijmegen The Netherlands
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience; Nijmegen The Netherlands
| |
Collapse
|
25
|
Brucine suppresses ethanol intake and preference in alcohol-preferring Fawn-Hooded rats. Acta Pharmacol Sin 2014; 35:853-61. [PMID: 24909512 DOI: 10.1038/aps.2014.28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 03/05/2014] [Indexed: 01/18/2023]
Abstract
AIM Brucine (BRU) extracted from the seeds of Strychnos nux-vomica L is glycine receptor antagonist. We hypothesize that BRU may modify alcohol consumption by acting at glycine receptors, and evaluated the pharmacodynamic profiles and adverse effects of BRU in rat models of alcohol abuse. METHODS Alcohol-preferring Fawn-Hooded (FH/Wjd) rats were administered BRU (10, 20 or 30 mg/kg, sc). The effects of BRU on alcohol consumption were examined in ethanol 2-bottle-choice drinking paradigm, ethanol/sucrose operant self-administration paradigm and 5-d ethanol deprivation test. In addition, open field test was used to assess the general locomotor activity of FH/Wjd rats, and conditioned place preference (CPP) was conducted to assess conditioned reinforcing effect. RESULTS In ethanol 2-bottle-choice drinking paradigm, treatment with BRU for 10 consecutive days dose-dependently decreased the ethanol intake associated with a compensatory increase of water intake, but unchanged the daily total fluid intake and body weight. In ethanol/sucrose operant self-administration paradigms, BRU (30 mg/kg) administered before each testing session significantly decreased the number of lever presses for ethanol and the ethanol intake, without affecting the number of sucrose (10%) responses, total sucrose intake, and the number of lever presses for water. Acute treatment with BRU (30 mg/kg) completely suppressed the deprivation-induced elevation of ethanol consumption. Treatment with BRU (10, 20, and 30 mg/kg) did not alter locomotion of FH/Wjd rats, nor did it produce place preference or aversion. CONCLUSION BRU selectively decreases ethanol consumption with minimal adverse effects. Therefore, BRU may represent a new pharmacotherapy for alcoholism.
Collapse
|
26
|
Miszkiel J, Przegaliński E. Effects of serotonin (5-HT)1B receptor ligands on amphetamine-seeking behavior in rats. Pharmacol Rep 2014; 65:813-22. [PMID: 24145075 DOI: 10.1016/s1734-1140(13)71062-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/06/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Numerous studies have indicated that serotonin (5-HT)1B receptor ligands affect the behavioral effects of psychostimulants (cocaine, amphetamine), including the reinforcing activities of these drugs. METHODS To substantiate a role for those receptors in incentive motivation for amphetamine, we used the extinction/reinstatement model to examine the effects of the 5-HT1B receptor ligands on the reinstatement of extinguished amphetamine-seeking behavior. Rats trained to self-administer amphetamine (0.06 mg/kg/infusion) subsequently underwent the extinction procedure. These rats were then tested for the amphetamine-primed or amphetamine-associated cue-induced reinstatement of extinguished amphetamine-seeking behavior. RESULTS The 5-HT1B receptor antagonist SB 216641 (5-7.5 mg/kg) attenuated the amphetamine (1.5 mg/kg)- and the amphetamine-associated cue combined with the threshold dose of amphetamine (0.5 mg/kg)-induced reinstatement of amphetamine-seeking behavior. The 5-HT1B receptor agonist CP 94253 (1.25-5 mg/kg) also inhibited the amphetamine-seeking behavior induced by amphetamine (1.5 mg/kg) but not by the cue combined with the threshold dose of amphetamine. The inhibitory effect of CP94253 on amphetamine-seeking behavior remained unaffected by the 5-HT1B receptor antagonist. CONCLUSION Our results indicate that tonic activation of 5-HT1B receptors is involved in amphetamine- and cue-induced reinstatement of amphetamine-seeking behavior and that the inhibitory effects of 5-HT1B receptor antagonists on these phenomena are directly related to the motivational aspects of amphetamine abuse. The inhibitory effect of CP 94253 on amphetamine-seeking behavior seems to be unrelated to 5-HT1B receptor activation and may result from a general reduction of motivation.
Collapse
Affiliation(s)
- Joanna Miszkiel
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | | |
Collapse
|
27
|
Ericsson E, Bradvik L, Hakansson A. Mortality, causes of death and risk factors for death among primary amphetamine users in the Swedish criminal justice system. Subst Use Misuse 2014; 49:262-9. [PMID: 23965040 DOI: 10.3109/10826084.2013.825921] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study examined mortality and predictors of death in 1,396 primary amphetamine users (85% males) who were interviewed with the Addiction Severity Index in the Swedish criminal justice system during 2000-2006 and followed through 2008. Forty-nine clients deceased (standardized mortality ratio 4.1 [3.0-5.4]), at least 84% of deaths were violent or drug-related (12% suicides), and Cox regression analysis indicated that death was associated with frequent use of sedatives and less frequent use of amphetamine. No female deaths were observed; death and male gender were associated in binary analysis. Implications for diagnostics and treatment are discussed.
Collapse
Affiliation(s)
- Emmy Ericsson
- 1Department of Medicine, Danderyd Hospital , Stockholm , Sweden
| | | | | |
Collapse
|
28
|
Gorini G, Adron Harris R, Dayne Mayfield R. Proteomic approaches and identification of novel therapeutic targets for alcoholism. Neuropsychopharmacology 2014; 39:104-30. [PMID: 23900301 PMCID: PMC3857647 DOI: 10.1038/npp.2013.182] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 01/01/2023]
Abstract
Recent studies have shown that gene regulation is far more complex than previously believed and does not completely explain changes at the protein level. Therefore, the direct study of the proteome, considerably different in both complexity and dynamicity to the genome/transcriptome, has provided unique insights to an increasing number of researchers. During the past decade, extraordinary advances in proteomic techniques have changed the way we can analyze the composition, regulation, and function of protein complexes and pathways underlying altered neurobiological conditions. When combined with complementary approaches, these advances provide the contextual information for decoding large data sets into meaningful biologically adaptive processes. Neuroproteomics offers potential breakthroughs in the field of alcohol research by leading to a deeper understanding of how alcohol globally affects protein structure, function, interactions, and networks. The wealth of information gained from these advances can help pinpoint relevant biomarkers for early diagnosis and improved prognosis of alcoholism and identify future pharmacological targets for the treatment of this addiction.
Collapse
Affiliation(s)
- Giorgio Gorini
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
29
|
Matsumoto RR, Nguyen L, Kaushal N, Robson MJ. Sigma (σ) receptors as potential therapeutic targets to mitigate psychostimulant effects. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:323-86. [PMID: 24484982 DOI: 10.1016/b978-0-12-420118-7.00009-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many psychostimulants, including cocaine and methamphetamine, interact with sigma (σ) receptors at physiologically relevant concentrations. The potential therapeutic relevance of this interaction is underscored by the ability to selectively target σ receptors to mitigate many behavioral and physiological effects of psychostimulants in animal and cell-based model systems. This chapter begins with an overview of these enigmatic proteins. Provocative preclinical data showing that σ ligands modulate an array of cocaine and methamphetamine effects are summarized, along with emerging areas of research. Together, the literature suggests targeting of σ receptors as an innovative option for combating undesired actions of psychostimulants through both neuronal and glial mechanisms.
Collapse
Affiliation(s)
- Rae R Matsumoto
- West Virginia University, One Medical Center Drive, Morgantown, West Virginia, USA.
| | - Linda Nguyen
- West Virginia University, One Medical Center Drive, Morgantown, West Virginia, USA
| | - Nidhi Kaushal
- West Virginia University, One Medical Center Drive, Morgantown, West Virginia, USA
| | - Matthew J Robson
- West Virginia University, One Medical Center Drive, Morgantown, West Virginia, USA
| |
Collapse
|
30
|
Perkins KA, Lerman C. An efficient early phase 2 procedure to screen medications for efficacy in smoking cessation. Psychopharmacology (Berl) 2014; 231:1-11. [PMID: 24297304 PMCID: PMC3910509 DOI: 10.1007/s00213-013-3364-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/13/2013] [Indexed: 01/26/2023]
Abstract
RATIONALE Initial screening of new medications for potential efficacy (i.e., Food and Drug Administration (FDA) early phase 2), such as in aiding smoking cessation, should be efficient in identifying which drugs do, or do not, warrant more extensive (and expensive) clinical testing. OBJECTIVES This focused review outlines our research on development, evaluation, and validation of an efficient crossover procedure for sensitivity in detecting medication efficacy for smoking cessation. First-line FDA-approved medications of nicotine patch, varenicline, and bupropion were tested as model drugs, in three separate placebo-controlled studies. We also tested specificity of our procedure in identifying a drug that lacks efficacy, using modafinil. RESULTS This crossover procedure showed sensitivity (increased days of abstinence) during week-long "practice" quit attempts with each of the active cessation medications (positive controls) versus placebo, but not with modafinil (negative control) versus placebo, as hypothesized. Sensitivity to medication efficacy signal was observed only in smokers high in intrinsic quit motivation (i.e., already preparing to quit soon) and not smokers low in intrinsic quit motivation, even if monetarily reinforced for abstinence (i.e., given extrinsic motivation). CONCLUSIONS A crossover procedure requiring less time and fewer subjects than formal trials may provide an efficient strategy for a go/no-go decision whether to advance to subsequent phase 2 randomized clinical trials with a novel drug. Future research is needed to replicate our results and evaluate this procedure with novel compounds, identify factors that may limit its utility, and evaluate its applicability to testing efficacy of compounds for treating other forms of addiction.
Collapse
Affiliation(s)
- Kenneth A Perkins
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA,
| | | |
Collapse
|
31
|
Abstract
Relapse and hazardous drinking represent the most difficult clinical problems in treating patients with alcohol use disorders. Using a rat model of alcohol use and alcohol-seeking, we demonstrated that central administration of peptide antagonists for relaxin family peptide 3 receptor (RXFP3), the cognate receptor for the highly conserved neuropeptide, relaxin-3, decreased self-administration of alcohol in a dose-related manner and attenuated cue- and stress-induced reinstatement following extinction. By comparison, RXFP3 antagonist treatment did not significantly attenuate self-administration or reinstatement of sucrose-seeking, suggesting a selective effect for alcohol. RXFP3 is densely expressed in the stress-responsive bed nucleus of the stria terminalis, and bilateral injections of RXFP3 antagonist into the bed nucleus of the stria terminalis significantly decreased self-administration and stress-induced reinstatement of alcohol, suggesting that this brain region may, at least in part, mediate the effects of RXFP3 antagonism. RXFP3 antagonist treatment had no effect on general ingestive behavior, activity, or procedural memory for lever pressing in the paradigms assessed. These data suggest that relaxin-3/RXFP3 signaling regulates alcohol intake and relapse-like behavior, adding to current knowledge of the brain chemistry of reward-seeking.
Collapse
|
32
|
Perkins KA, Lerman C, Karelitz JL, Jao NC, Chengappa KR, Sparks GM. Sensitivity and specificity of a procedure for early human screening of novel smoking cessation medications. Addiction 2013; 108:1962-8. [PMID: 23773319 PMCID: PMC3797155 DOI: 10.1111/add.12273] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/13/2013] [Accepted: 06/04/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIM It is important to find economical methods in early Phase 2 studies to screen drugs potentially useful to aid smoking cessation. A method has been developed that detects efficacy of varenicline and nicotine patch. This study aimed to evaluate whether the method would detect the efficacy of bupropion and identify correctly the lack of efficacy of modafinil. DESIGN Using a within-subject double cross-over design, smokers attempted to quit during each treatment, with bupropion (150 mg b.i.d.), modafinil [100 mg twice daily (b.i.d.)] or placebo (double-blind, counterbalanced order). In each of three medication periods, all smoked with no drug on week 1 (baseline or washout), began dose run-up on week 2, and tried to quit every day during week 3. SETTING A university research center in the United States. PARTICIPANTS Forty-five adult smokers high in quit interest. MEASUREMENTS Abstinence was verified daily each quit week by self-report of no smoking over the prior 24 hours and carbon monoxide (CO) < 5 parts per million. FINDINGS Compared with placebo, bupropion did (F(1,44) = 6.98, P = 0.01), but modafinil did not (F(1,44) = 0.29, P = 0.60), increase the number of abstinent days. Also, bupropion (versus placebo) significantly increased the number of those able to maintain continuous abstinence on all 5 days throughout the quit week (11 versus four), Z = 2.11, P < 0.05, while modafinil did not (six). CONCLUSIONS Assessing days abstinent during 1 week of use of medication versus placebo in a cross-over design could be a useful early Phase 2 study design for discriminating between medications useful versus not useful in aiding smoking cessation.
Collapse
Affiliation(s)
| | - Caryn Lerman
- Department of Psychiatry and Abramson Cancer Center, University of Pennsylvania, Philadelphia PA
| | | | - Nancy C. Jao
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA
| | | | | |
Collapse
|
33
|
Maoz A, Hicks MJ, Vallabhjosula S, Synan M, Kothari PJ, Dyke JP, Ballon DJ, Kaminsky SM, De BP, Rosenberg JB, Martinez D, Koob GF, Janda KD, Crystal RG. Adenovirus capsid-based anti-cocaine vaccine prevents cocaine from binding to the nonhuman primate CNS dopamine transporter. Neuropsychopharmacology 2013; 38:2170-8. [PMID: 23660705 PMCID: PMC3773666 DOI: 10.1038/npp.2013.114] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 12/14/2022]
Abstract
Cocaine addiction is a major problem for which there is no approved pharmacotherapy. We have developed a vaccine to cocaine (dAd5GNE), based on the cocaine analog GNE linked to the capsid proteins of a serotype 5 adenovirus, designed to evoke anti-cocaine antibodies that sequester cocaine in the blood, preventing access to the CNS. To assess the efficacy of dAd5GNE in a large animal model, positron emission tomography (PET) and the radiotracer [(11)C]PE2I were used to measure cocaine occupancy of the dopamine transporter (DAT) in nonhuman primates. Repeat administration of dAd5GNE induced high anti-cocaine titers. Before vaccination, cocaine displaced PE2I from DAT in the caudate and putamen, resulting in 62±4% cocaine occupancy. In contrast, dAd5GNE-vaccinated animals showed reduced cocaine occupancy such that when anti-cocaine titers were >4 × 10(5), the cocaine occupancy was reduced to levels of <20%, significantly below the 47% threshold required to evoke the subjective 'high' reported in humans.
Collapse
Affiliation(s)
- Anat Maoz
- Division of Nuclear Medicine and Molecular Imaging, Weill Cornell Medical College, New York, NY, USA,Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Martin J Hicks
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Shankar Vallabhjosula
- Division of Nuclear Medicine and Molecular Imaging, Weill Cornell Medical College, New York, NY, USA,Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Michael Synan
- Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Paresh J Kothari
- Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Jonathan P Dyke
- Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Douglas J Ballon
- Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Diana Martinez
- Division of Substance Abuse, Department of Psychiatry, Columbia University, New York, NY, USA
| | - George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Skaggs Institute for Chemical Biology, and Worm Institute of Research and Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Kim D Janda
- The Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, and Worm Institute of Research and Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA,Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY 10065, USA, Tel: +1 646 962 4363, Fax: +1 646 962 0220, E-mail:
| |
Collapse
|
34
|
de Jesus Mari J, Tófoli LF, Noto C, Li LM, Diehl A, Claudino AM, Juruena MF. Pharmacological and psychosocial management of mental, neurological and substance use disorders in low- and middle-income countries: issues and current strategies. Drugs 2013; 73:1549-1568. [PMID: 24000001 DOI: 10.1007/s40265-013-0113-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mental, neurological, and substance use disorders (MNS) are among the largest sources of medical disability in the world, surpassing both cardiovascular disease and cancer. The picture is not different in low- and middle-income countries (LAMIC) where the relative morbidity associated with MNS is increasing, as a consequence of improvement in general health indicators and longevity. However, 80 % of individuals with MNS live in LAMIC but only close to 20 % of cases receive some sort of treatment. The main aim of this article is to provide non-specialist health workers in LAMIC with an accessible guide to the affordable essential psychotropics and psychosocial interventions which are proven to be cost effective for treating the main MNS. The MNS discussed in this article were selected on the basis of burden, following the key priority conditions selected by the Mental Health Action Programme (mhGAP) developed by the World Health Organization (WHO) (anxiety, stress-related and bodily distress disorders; depression and bipolar disorder; schizophrenia; alcohol and drug addiction; and epilepsy), with the addition of eating disorders, because of their emergent trend in middle-income countries. We review best evidence-based clinical practice in these areas, with a focus on drugs from the WHO Model List of Essential Medicines and the psychosocial interventions available in LAMIC for the management of these conditions in primary care. We do this by reviewing guidelines developed by prestigious professional associations and government agencies, clinical trials conducted in LAMIC and systematic reviews (including Cochrane reviews) identified from the main international literature databases (MEDLINE, EMBASE and PsycINFO). In summary, it can be concluded that the availability and use of the psychotropics on the WHO Model List of Essential Medicines in LAMIC, plus an array of psychosocial interventions, can represent a cost-effective way to expand treatment of most MNS. The translation of these findings into policies can be achieved by relatively low supplementary funding, and limited effort engendered by governments and policy makers in LAMIC.
Collapse
Affiliation(s)
- Jair de Jesus Mari
- Department of Psychiatry, Universidade Federal de São Paulo, Rua Borges Lagoa 570 - 1° andar, Vila Clementino, São Paulo, SP, 04038-000, Brazil,
| | | | | | | | | | | | | |
Collapse
|
35
|
Agabio R, Preti A, Gessa GL. Efficacy and tolerability of baclofen in substance use disorders: a systematic review. Eur Addict Res 2013; 19:325-45. [PMID: 23775042 DOI: 10.1159/000347055] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND It has been reported that baclofen, a drug used in the treatment of spasticity, reduces the severity of withdrawal symptoms and substance use disorders (SUDs) for some psychoactive drugs. AIMS AND METHODS To evaluate the effectiveness and safety of baclofen in the treatment of withdrawal syndrome and/or SUDs, providing (1) an outline of its pharmacological features; (2) a summary of studies that have suggested its possible effectiveness in the treatment of SUDs, and (3) a review of randomized, controlled trials (RCTs) on baclofen and SUDs. RESULTS Baclofen tolerability is generally considered to be good. Eleven RCTs investigated its effectiveness in the treatment of SUDs. Of these, 5 RCTs found that baclofen is effective, 5 RCTs found that it is ineffective and the results of 1 RCT were not appreciable because it did not achieve the preplanned level of participation. CONCLUSIONS The number of RCTs on baclofen and SUDs is still low, and their results are divergent. Further RCTs should be undertaken, particularly with higher doses of baclofen. Its administration may be suggested in patients who fail to respond to other approved drugs or who are affected by liver disease that prevents their administration, or in patients affected by SUDs for which no approved drugs are available. Treatment should be conducted under strict medical supervision.
Collapse
Affiliation(s)
- Roberta Agabio
- Department of Biomedical Sciences, Section of Neuroscience, Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | | | | |
Collapse
|
36
|
Bell RL, Sable HJ, Colombo G, Hyytia P, Rodd ZA, Lumeng L. Animal models for medications development targeting alcohol abuse using selectively bred rat lines: neurobiological and pharmacological validity. Pharmacol Biochem Behav 2012; 103:119-55. [PMID: 22841890 PMCID: PMC3595005 DOI: 10.1016/j.pbb.2012.07.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 07/07/2012] [Accepted: 07/18/2012] [Indexed: 02/04/2023]
Abstract
The purpose of this review paper is to present evidence that rat animal models of alcoholism provide an ideal platform for developing and screening medications that target alcohol abuse and dependence. The focus is on the 5 oldest international rat lines that have been selectively bred for a high alcohol-consumption phenotype. The behavioral and neurochemical phenotypes of these rat lines are reviewed and placed in the context of the clinical literature. The paper presents behavioral models for assessing the efficacy of pharmaceuticals for the treatment of alcohol abuse and dependence in rodents, with particular emphasis on rats. Drugs that have been tested for their effectiveness in reducing alcohol/ethanol consumption and/or self-administration by these rat lines and their putative site of action are summarized. The paper also presents some current and future directions for developing pharmacological treatments targeting alcohol abuse and dependence.
Collapse
Affiliation(s)
- Richard L. Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Helen J.K. Sable
- Department of Psychology, University of Memphis, Memphis, Tennessee, USA
| | - Giancarlo Colombo
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Monserrato, Italy
| | - Petri Hyytia
- Institute of Biomedicine, University of Helsinki, Finland
| | - Zachary A. Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lawrence Lumeng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
37
|
Bell RL, Franklin KM, Hauser SR, Zhou FC. Introduction to the special issue "Pharmacotherapies for the treatment of alcohol abuse and dependence" and a summary of patents targeting other neurotransmitter systems. RECENT PATENTS ON CNS DRUG DISCOVERY 2012; 7:93-112. [PMID: 22574678 PMCID: PMC3868366 DOI: 10.2174/157488912800673155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/02/2012] [Accepted: 03/13/2012] [Indexed: 12/19/2022]
Abstract
This paper introduces the Special Section: Pharmacotherapies for the Treatment of Alcohol Abuse and Dependence and provides a summary of patents targeting neurotransmitter systems not covered in the other four chapters. The World Health Organization notes that alcoholic-type drinking results in 2.5 million deaths per year, and these deaths occur to a disproportionately greater extent among adolescents and young adults. Developing a pharmacological treatment targeting alcohol abuse and dependence is complicated by (a) the heterogeneous nature of the disease(s), (b) alcohol affecting multiple neurotransmitter and neuromodulator systems, and (c) alcohol affecting multiple organ systems which in turn influence the function of the central nervous system. Presently, the USA Federal Drug Administration has approved three pharmacotherapies for alcoholism: disulfiram, naltrexone, and acamprosate. This chapter provides a summary of the following systems, which are not covered in the accompanying chapters; alcohol and acetaldehyde metabolism, opioid, glycinergic, GABA-A, neurosteroid, dopaminergic, serotonergic, and endocannabinoid, as well as patents targeting these systems for the treatment of alcoholism. Finally, an overview is presented on the use of pharmacogenetics and pharmacogenomics in tailoring treatments for certain subpopulations of alcoholics, which is expected to continue in the future.
Collapse
Affiliation(s)
- Richard L. Bell
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Kelle M. Franklin
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Sheketha R. Hauser
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Feng C. Zhou
- Indiana University School of Medicine, Department of Anatomy and Cell Biology, 635 Barnhill Drive MS-508, Indian-apolis, Indiana, 46202, USA
| |
Collapse
|
38
|
Wen RT, Zhang M, Qin WJ, Liu Q, Wang WP, Lawrence AJ, Zhang HT, Liang JH. The phosphodiesterase-4 (PDE4) inhibitor rolipram decreases ethanol seeking and consumption in alcohol-preferring Fawn-Hooded rats. Alcohol Clin Exp Res 2012; 36:2157-67. [PMID: 22671516 DOI: 10.1111/j.1530-0277.2012.01845.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 03/15/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Alcohol dependence is a complex psychiatric disorder demanding development of novel pharmacotherapies. Because the cyclic adenosine monophosphate (cAMP) signaling cascade has been implicated in mediating behavioral responses to alcohol, key components in this cascade may serve as potential treatment targets. Phosphodiesterase-4 (PDE4), an enzyme that specifically catalyzes the hydrolysis of cAMP, represents a key point in regulating intracellular cAMP levels. Thus, it was of interest to determine whether PDE4 was involved in the regulation of alcohol use and abuse. METHODS Male Fawn-Hooded (FH/Wjd) rats were tested for 5% (v/v) ethanol (EtOH) and 10% (w/v) sucrose operant oral self-administration following treatment with the selective PDE4 inhibitor rolipram (0.0125, 0.025, or 0.05 mg/kg, subcutaneous [s.c.]); rolipram at higher doses (0.05, 0.1, and 0.2 mg/kg, s.c.) was tested to determine its impact on the intake of EtOH, sucrose, or water using the 2-bottle choice drinking paradigm. Subsequent open-field testing was performed to evaluate the influence of higher doses of rolipram on locomotor activity. RESULTS Acute administration of rolipram dose-dependently reduced operant self-administration of 5% EtOH, but had no effect on 10% sucrose responding. Time-course assessment revealed significant decreases in EtOH consumption after rolipram (0.1, 0.2 mg/kg) treatment in continuous- and intermittent access to EtOH at 5% or 10%, respectively. Moreover, chronic rolipram treatment time-dependently decreased 5% EtOH consumption and preference during treatment days and after the termination of rolipram administration. Rolipram at the highest doses (0.1 and 0.2 mg/kg) did decrease locomotor activity, but the effect lasted only 10 and 20 minutes, respectively, which did not likely alter long-term EtOH drinking. CONCLUSIONS These results suggest that PDE4 plays a role in alcohol seeking and consumption behavior. Drugs interfering with PDE4 may be a potential pharmacotherapy for alcohol dependence.
Collapse
Affiliation(s)
- Rui-Ting Wen
- National Institute on Drug Dependence, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yeoh JW, James MH, Jobling P, Bains JS, Graham BA, Dayas CV. Cocaine potentiates excitatory drive in the perifornical/lateral hypothalamus. J Physiol 2012; 590:3677-89. [PMID: 22641785 DOI: 10.1113/jphysiol.2012.230268] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The hypothalamus is a critical controller of homeostatic responses and plays a fundamental role in reward-seeking behaviour. Recently, hypothalamic neurones in the perifornical/lateral hypothalamic area (PF/LHA) have also been implicated in drug-seeking behaviour through projections to extra-hypothalamic sites such as the ventral tegmental area. For example, a population of neurones that expresses the peptide orexin has been strongly implicated in addiction-relevant behaviours. To date, the effect of addictive drugs on synaptic properties in the hypothalamus remains largely unexplored. Previous studies focusing on the PF/LHA neurones, however, have shown that the orexin system exhibits significant plasticity in response to food or sleep restriction. This neuroadaptive ability suggests that PF/LHA neurones could be highly susceptible to modifications by drug exposure. Here, we sought to determine whether cocaine produces synaptic plasticity in PF/LHA neurones. Whole-cell patch-clamp techniques were used to examine the effects of experimenter-administered (passive) or self-administered (SA) cocaine on glutamatergic synaptic transmission in PF/LHA neurones. These experiments demonstrate that both passive and SA cocaine exposure increases miniature excitatory postsynaptic current (mEPSC) frequency in PF/LHA neurones. In addition, SA cocaine reduced the paired-pulse ratio but the AMPA/NMDA ratio of evoked excitatory inputs was unchanged, indicative of a presynaptic locus for synaptic plasticity. Dual-labelling for orexin and excitatory inputs using the vesicular glutamate transporter (VGLUT2), showed that passive cocaine exposure increased VGLUT2-positive appositions onto orexin neurones. Further, a population of recorded neurones that were filled with neurobiotin and immunolabelled for orexin confirmed that increased excitatory drive occurs in this PF/LHA population. Given the importance of the PF/LHA and the orexin system in modulating drug addiction, we suggest that these cocaine-induced excitatory synapse-remodelling events within the hypothalamus may contribute to persistence in drug-seeking behaviour and relapse.
Collapse
Affiliation(s)
- Jiann Wei Yeoh
- 1School of Biomedical Sciences and Pharmacy, and the Centre for Translational Neuroscience and Mental Health Research, University of Newcastle,Callaghan, NSW 2308, Australia
| | | | | | | | | | | |
Collapse
|
40
|
Morgenstern J, Kuerbis AN, Chen AC, Kahler CW, Bux DA, Kranzler HR. A randomized clinical trial of naltrexone and behavioral therapy for problem drinking men who have sex with men. J Consult Clin Psychol 2012; 80:863-75. [PMID: 22612306 DOI: 10.1037/a0028615] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE This study tested the comparative effectiveness of modified behavioral self-control therapy (MBSCT) and naltrexone (NTX), as well as the added benefit of combining the 2, in problem drinking men who have sex with men (MSM) seeking to reduce but not quit drinking. METHOD Participants (N = 200) were recruited and urn randomized to 1 of 2 medication conditions, NTX or placebo (PBO), and either MSBCT or no behavioral intervention, yielding 4 conditions: PBO, NTX, MSBCT, and NTX + MSBCT. In addition, all participants received a brief medication compliance intervention. Participants were treated for 12 weeks and assessed 1 week after treatment completion. Two primary outcomes-sum of standard drinks and number of heavy drinking days-and 1 secondary outcome-percentage of those drinking in a nonhazardous manner (NoH)-were selected a priori. RESULTS There was a significant main effect for MBSCT (all ps < .01) but not NTX on all 3 outcomes. In addition, the combination of NTX and MBSCT was not more effective than either MSCBT or PBO. There was a significant interaction effect on NoH, such that NTX significantly increased the likelihood (odds ratio = 3.3) of achieving a nonhazardous drinking outcome relative to PBO. In addition, NTX was significantly more effective than PBO on a descriptive outcome: negative consequences of drinking. CONCLUSIONS There was no advantage to adding NTX to MBSCT. In addition, MBSCT showed stronger evidence of efficacy than NTX. At the same time, NTX delivered in the context of a minimal medication compliance intervention was significantly more effective than PBO on an important clinical indicator. Results provide new information to guide the treatment of problem drinking, including in primary care settings.
Collapse
Affiliation(s)
- Jon Morgenstern
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 180 Fort Washington Avenue, New York, NY10032, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Brown RM, Mustafa S, Ayoub MA, Dodd PR, Pfleger KDG, Lawrence AJ. mGlu5 Receptor Functional Interactions and Addiction. Front Pharmacol 2012; 3:84. [PMID: 22586398 PMCID: PMC3345582 DOI: 10.3389/fphar.2012.00084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/16/2012] [Indexed: 12/22/2022] Open
Abstract
The idea of “receptor mosaics” is that proteins may form complex and dynamic networks with respect to time and composition. These have the potential to markedly expand the diversity and specificity of G protein-coupled receptors (GPCR) signaling, particularly in neural cells, where a few key receptors have been implicated in many neurological and psychiatric disorders, including addiction. Metabotropic glutamate type 5 receptors (mGlu5) can form complexes with other GPCRs, including adenosine A2A and dopamine D2 receptors. mGlu5-containing complexes have been reported in the striatum, a brain region critical for mediating the rewarding and incentive motivational properties of drugs of abuse. mGlu5-containing complexes and/or downstream interactions between divergent receptors may play roles in addiction–relevant behaviors. Interactions between mGlu5 receptors and other GPCRs can regulate the rewarding and conditioned effects of drugs as well as drug-seeking behaviors. mGlu5 complexes may influence striatal function, including GABAergic output of striatopallidal neurons and glutamatergic input from corticostriatal afferents. Given their discrete localization, mGlu5-[non-mGlu5] receptor interactions and/or mGlu5-containing complexes may minimize off-target effects and thus provide a novel avenue for drug discovery. The therapeutic targeting of receptor–receptor functional interactions and/or receptor mosaics in a tissue specific or temporal manner (for example, a sub-population of receptors in a “pathological state”) might reduce detrimental side effects that may otherwise impair vital brain functions.
Collapse
Affiliation(s)
- Robyn M Brown
- Addiction Neuroscience, Behavioural Neuroscience, Florey Neuroscience Institutes, University of Melbourne Parkville, VIC, Australia
| | | | | | | | | | | |
Collapse
|
42
|
Akula KK, Kulkarni SK. Adenosinergic system: an assorted approach to therapeutics for drug addiction. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.12.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine is an endogenous purine nucleoside and it is extensively present in the brain. It exerts several metabolic and neuromodulatory roles in the body. Adenosine also acts as an important messenger molecule for extracellular signaling and shows a homeostatic neuromodulatory function at the synaptic level. Extracellular adenosine exerts a wide variety of biological actions through four cell surface G-protein-coupled receptor subtypes, namely A1, A2A, A2B and A3 adenosine receptors. The extracellular levels of adenosine have been found to be enhanced in several neuropathological conditions, including drug addiction, and thus a neuroprotective role of adenosine was perceived by various experimental studies. The aversive withdrawal symptoms emanating from drug discontinuation provokes rebound drug intake patterns. In addition, alteration of neurotransmitter(s) release and changes in receptor expression contribute to the behavioral changes of drug withdrawal. Furthermore, the abuse of major drugs such as alcohol and opioids are reported to modulate extracellular adenosine levels. In this context, the neuromodulatory functions of adenosine would be valuable if projected to the clinical applications and thus, an increasing attention is currently given to the functional role of adenosine in human addictive disorders. This review will focus on recent clinical and experimental studies that reveal the actions of adenosine and related ligands in drug addiction and various drug-withdrawal syndromes. The evidence and reports provided in this review highlight the looming therapeutic potential of purinergic drugs, with a hope that new therapeutic interventions based on the adenosinergic concept will emerge in the coming years for the management of drug withdrawal syndrome.
Collapse
Affiliation(s)
- Kiran Kumar Akula
- R.S. Dow Neurobiology Laboratories, Legacy Research, 1225 NE 2nd Avenue, Portland, OR 97232, USA
| | - SK Kulkarni
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India
| |
Collapse
|
43
|
Janero DR. Cannabinoid-1 receptor (CB1R) blockers as medicines: beyond obesity and cardiometabolic disorders to substance abuse/drug addiction with CB1R neutral antagonists. Expert Opin Emerg Drugs 2012; 17:17-29. [DOI: 10.1517/14728214.2012.660916] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Dayas CV, Smith DW, Dunkley PR. An emerging role for the Mammalian target of rapamycin in "pathological" protein translation: relevance to cocaine addiction. Front Pharmacol 2012; 3:13. [PMID: 22347189 PMCID: PMC3272624 DOI: 10.3389/fphar.2012.00013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/20/2012] [Indexed: 11/13/2022] Open
Abstract
Complex neuroadaptations within key nodes of the brain's "reward circuitry" are thought to underpin long-term vulnerability to relapse. A more comprehensive understanding of the molecular and cellular signaling events that subserve relapse vulnerability may lead to pharmacological treatments that could improve treatment outcomes for psychostimulant-addicted individuals. Recent advances in this regard include findings that drug-induced perturbations to neurotrophin, metabotropic glutamate receptor, and dopamine receptor signaling pathways perpetuate plasticity impairments at excitatory glutamatergic synapses on ventral tegmental area and nucleus accumbens neurons. In the context of addiction, much previous work, in terms of downstream effectors to these receptor systems, has centered on the extracellular-regulated MAP kinase signaling pathway. The purpose of the present review is to highlight the evidence of an emerging role for another downstream effector of these addiction-relevant receptor systems - the mammalian target of rapamycin complex 1 (mTORC1). mTORC1 functions to regulate synaptic protein translation and is a potential critical link in our understanding of the neurobiological processes that drive addiction and relapse behavior. The precise cellular and molecular changes that are regulated by mTORC1 and contribute to relapse vulnerability are only just coming to light. Therefore, we aim to highlight evidence that mTORC1 signaling may be dysregulated by drug exposure and that these changes may contribute to aberrant translation of synaptic proteins that appear critical to increased relapse vulnerability, including AMPARs. The importance of understanding the role of this signaling pathway in the development of addiction vulnerability is underscored by the fact that the mTORC1 inhibitor rapamycin reduces drug-seeking in pre-clinical models and preliminary evidence indicating that rapamycin suppresses drug craving in humans.
Collapse
Affiliation(s)
- Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, Centre for Translational Neuroscience and Mental Health Research, Hunter Medical Research Institute, University of Newcastle Callaghan, NSW, Australia
| | | | | |
Collapse
|
45
|
Addolorato G, Leggio L, Hopf FW, Diana M, Bonci A. Novel therapeutic strategies for alcohol and drug addiction: focus on GABA, ion channels and transcranial magnetic stimulation. Neuropsychopharmacology 2012; 37:163-77. [PMID: 22030714 PMCID: PMC3238087 DOI: 10.1038/npp.2011.216] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 07/08/2011] [Accepted: 07/27/2011] [Indexed: 12/19/2022]
Abstract
Drug addiction represents a major social problem where addicts and alcoholics continue to seek and take drugs despite adverse social, personal, emotional, and legal consequences. A number of pharmacological compounds have been tested in human addicts with the goal of reducing the level or frequency of intake, but these pharmacotherapies have often been of only moderate efficacy or act in a sub-population of humans. Thus, there is a tremendous need for new therapeutic interventions to treat addiction. Here, we review recent interesting studies focusing on gamma-aminobutyric acid receptors, voltage-gated ion channels, and transcranial magnetic stimulation. Some of these treatments show considerable promise to reduce addictive behaviors, or the early clinical studies or pre-clinical rationale suggest that a promising avenue could be developed. Thus, it is likely that within a decade or so, we could have important new and effective treatments to achieve the goal of reducing the burden of human addiction and alcoholism.
Collapse
Affiliation(s)
| | - Lorenzo Leggio
- Institute of Internal Medicine, Catholic University of Rome, Rome, Italy
- Brown University Medical School, Department of Behavioral and Social Science, Center for Alcohol and Addiction Studies, Providence, RI, USA
| | - F Woodward Hopf
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California, San Francisco, CA, USA
| | - Marco Diana
- Department of Drug Sciences, G Minardi' Cognitive Neuroscience Laboratory, University of Sassari, Sassari, Italy
| | - Antonello Bonci
- NIDA Intramural Research Program, Baltimore, MD, USA
- Department of Neurology, UCSF, San Francisco, CA, USA
- Solomon H Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Bowen MT, Carson DS, Spiro A, Arnold JC, McGregor IS. Adolescent oxytocin exposure causes persistent reductions in anxiety and alcohol consumption and enhances sociability in rats. PLoS One 2011; 6:e27237. [PMID: 22110618 PMCID: PMC3217952 DOI: 10.1371/journal.pone.0027237] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 10/12/2011] [Indexed: 11/30/2022] Open
Abstract
Previous studies have suggested that administration of oxytocin (OT) can have modulatory effects on social and anxiety-like behavior in mammals that may endure beyond the time of acute OT administration. The current study examined whether repeated administration of OT to male Wistar rats (n = 48) during a key developmental epoch (early adolescence) altered their physiology and behavior in later-life. Group housed rats were given intraperitoneal injections of either 1 mg/kg OT or vehicle during early adolescence (post natal-days [PND] 33–42). OT treatment caused a transient inhibition of body weight gain that recovered quickly after the cessation of treatment. At PND 50, the rats pre-treated with OT displayed less anxiety-like behavior on the emergence test, while at PND 55 they showed greater levels of social interaction. A subgroup of OT pre-treated rats examined at PND 63 showed a strong trend towards increased plasma OT levels, and also displayed significantly increased OT receptor mRNA in the hypothalamus. Rats pre-treated with OT and their controls showed similar induction of beer intake in daily 70 min test sessions (PND 63 onwards) in which the alcohol concentration of beer was gradually increased across days from 0.44% to 4.44%. However, when given ad libitum access to beer in their home cages from PND 72 onwards (early adulthood), consumption of beer but not water was significantly less in the OT pre-treated rats. A “booster” shot of OT (1 mg/kg) given after 25 days of ad libitum access to beer had a strong acute inhibitory effect on beer intake without affecting water intake. Overall these results suggest that exogenous OT administered during adolescence can have subtle yet enduring effects on anxiety, sociability and the motivation to consume alcohol. Such effects may reflect the inherent neuroplasticity of brain OT systems and a feed-forward effect whereby exogenous OT upregulates endogenous OT systems.
Collapse
Affiliation(s)
- Michael T Bowen
- School of Psychology, University of Sydney, Sydney, Australia.
| | | | | | | | | |
Collapse
|
47
|
Brenhouse HC, Dumais K, Andersen SL. Enhancing the salience of dullness: behavioral and pharmacological strategies to facilitate extinction of drug-cue associations in adolescent rats. Neuroscience 2010; 169:628-36. [PMID: 20639130 DOI: 10.1016/j.neuroscience.2010.05.063] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/08/2010] [Accepted: 05/26/2010] [Indexed: 11/18/2022]
Abstract
Extinction of drug-seeking is an integral part of addiction treatment, and can profoundly reverse or ameliorate the harmful consequences of drug use. These consequences may be the most deleterious during adolescence. The studies presented here build from recent evidence that adolescent rats are more resistant to extinction training than adults, and therefore may require unique treatment strategies. We used unbiased place-conditioning in male rats to show that passive, un-explicit extinction pairings resulted in delayed extinction in 40-day-old adolescents relative to 80-day-old adults. However, explicit-pairing of a previously cocaine-associated context with the absence of drug produces extinction in adolescents as rapidly as in adults. These data suggest that successful extinction of drug-paired associations in adolescents may be facilitated by stronger acquisition of a new (extinction) memory. Drug-paired associations are largely controlled by the prelimbic prefrontal cortex (plPFC) and its influence on the nucleus accumbens (NAc). This pathway mediates the motivational salience attributed to incoming stimuli through the D1 dopamine receptor. D1 receptors on plPFC outputs to the accumbens are transiently overproduced during adolescence. Since D1 receptors are selectively responsive to potent stimuli, we hypothesized that the adolescent plPFC hinders competition between potent drug-paired associations and the subtler, drug-free information necessary for extinction. To harness this unique profile of the adolescent plPFC, we aimed to increase the salience of unrewarded extinction memories by activating plPFC D1 receptors during extinction training. In a second study, extinction of drug-cue associations was facilitated in adolescents by elevating dopamine and norepinephrine in the PFC during extinction training with atomoxetine. In a third study, direct microinjection of the D1 receptor agonist SKF38393 mimicked this effect, also facilitating extinction in adolescent subjects. Furthermore, pharmacological intervention attenuated subsequent drug-primed reinstatement of cocaine-conditioned preferences. We establish a potential direction for distinct strategies to treat this vulnerable population.
Collapse
Affiliation(s)
- H C Brenhouse
- Laboratory for Developmental Neuropharmacology, Department of Psychiatry, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | |
Collapse
|
48
|
Perkins KA, Lerman C, Fonte CA, Mercincavage M, Stitzer ML, Chengappa KNR, Jain A. Cross-Validation of a New Procedure for Early Screening of Smoking Cessation Medications in Humans. Clin Pharmacol Ther 2010; 88:109-14. [DOI: 10.1038/clpt.2010.65] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Olive MF. Cognitive effects of Group I metabotropic glutamate receptor ligands in the context of drug addiction. Eur J Pharmacol 2010; 639:47-58. [PMID: 20371237 DOI: 10.1016/j.ejphar.2010.01.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 01/03/2023]
Abstract
Glutamate plays a pivotal role in regulating drug self-administration and drug-seeking behavior, and the past decade has witnessed a substantial surge of interest in the role of Group I metabotropic glutamate receptors (mGlu(1) and mGlu(5) receptors) in mediating these behaviors. As will be reviewed here, Group I mGlu receptors are involved in normal and drug-induced synaptic plasticity, drug reward, reinforcement and relapse-like behaviors, and addiction-related cognitive processes such as maladaptive learning and memory, behavioral inflexibility, and extinction learning. Animal models of addiction have revealed that antagonists of Group I mGlu receptors, particularly the mGlu(5) receptor, reduce self-administration of virtually all drugs of abuse. Since inhibitors of mGlu5 receptor function have now entered clinical trials for other medical conditions and appear to be well-tolerated, a key question that remains unanswered is - what changes in cognition are produced by these compounds that result in reduced drug intake and drug-seeking behavior? Finally, in contrast to mGlu(5) receptor antagonists, recent studies have indicated that positive allosteric modulation of mGlu(5) receptors actually enhances synaptic plasticity and improves various aspects of cognition, including spatial learning, behavioral flexibility, and extinction of drug-seeking behavior. Thus, while inhibition of Group I mGlu receptor function may reduce drug reward, reinforcement, and relapse-related behaviors, positive allosteric modulation of the mGlu5 receptor subtype may actually enhance cognition and potentially reverse some of the cognitive deficits associated with chronic drug use.
Collapse
Affiliation(s)
- M Foster Olive
- Center for Drug and Alcohol Programs, Department of Psychiatry, Medical University of South Carolina, 67 President Street, MSC 861, Charleston, SC 29425, USA.
| |
Collapse
|