1
|
Schenzel A, Geiger A, Nendel E, Yang Z, Krammer S, Leberle A, Brunst AK, Trump S, Mittler S, Rauh M, Geppert CI, Tausche P, Hohenberger K, Rieker RJ, Schieweck O, Zundler S, Finotto S. Fiber rich food suppressed airway inflammation, GATA3 + Th2 cells, and FcεRIα+ eosinophils in asthma. Front Nutr 2024; 11:1367864. [PMID: 38757128 PMCID: PMC11097976 DOI: 10.3389/fnut.2024.1367864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background Allergic Asthma is a disease presenting various endotypes and no current therapies act curative but alleviate disease symptoms. Dietary interventions are gaining increasing importance in regulating immune responses. Furthermore, short chain fatty acids (SFCA), as the main products of dietary fiber's fermentation by the gut bacteria, ameliorate the pathogenesis and disease burden of different illnesses including asthma. Nevertheless, the connection and crosstalk between the gut and lung is poorly understood. Objective In this work, the role of high fiber diet on the development of allergic asthma at baseline and after exacerbation of disease induced by respiratory viruses was investigated. Methods Hereby, SCFA in serum of asthmatic and non-asthmatic pre-school children before and after airway disease symptoms were analyzed. Moreover, the effect of high fiber diet in vivo in a murine model of house dust mite extract (HDM) induced allergic asthma and in the end in isolated lung and spleen cells infected ex vivo with Rhinovirus was analyzed. Results In this study, a decrease of the SCFA 3-Hydroxybutyric acid in serum of asthmatic children after symptomatic episodes at convalescent visit as compared to asthmatic and control children at baseline visit was observed. In experimental asthma, in mice fed with high fiber diet, a reduced lung GATA3 + Th2 type mediated inflammation, mucus production and collagen deposition and expression of Fc epsilon receptor Ia (FcεRIa) in eosinophils was observed. By contrast, the CD8+ memory effector T cells were induced in the lungs of asthmatic mice fed with high fiber diet. Then, total lung cells from these asthmatic mice fed with either standard food or with fiber rich food were infected with RV ex vivo. Here, RV1b mRNA was found significantly reduced in the lung cells derived from fiber rich food fed mice as compared to those derived from standard food fed asthmatic mice. Looking for the mechanism, an increase in CD8+ T cells in RV infected spleen cells derived from fiber rich fed asthmatic mice, was observed. Conclusion Convalescent preschool asthmatic children after a symptomatic episode have less serum ß-Hydroxybutyric acid as compared to control and asthmatic children at baseline visit. Fiber rich diet associated with anti-inflammatory effects as well as anti-allergic effects by decreasing Type 2 and IgE mediated immune responses and inducing CD8+ memory effector T cells in a murine model of allergic asthma. Finally, ex vivo infection with Rhinovirus (RV) of total lung cells from asthmatic mice fed with fiber rich food led to a decreased RV load as compared to mice fed with standard food. Moreover, spleen cells derived from asthmatic mice fed with fiber rich food induced CD8+ T cells after ex vivo infection with RV. Clinical implications Dietary interventions with increased content in natural fibers like pectins would ameliorate asthma exacerbations. Moreover, respiratory infection in asthma downregulated SCFA in the gut contributing to asthma exacerbations.
Collapse
Affiliation(s)
- Alicia Schenzel
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Adriana Geiger
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elvedina Nendel
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anna Leberle
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ann-Kathrin Brunst
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sonja Trump
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susanne Mittler
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Manfred Rauh
- Children’s Hospital, Department of Allergy and Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Carol I. Geppert
- Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Patrick Tausche
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katja Hohenberger
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ralf J. Rieker
- Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Oliver Schieweck
- Laboratory of Clinic Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Zundler
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Department of Internal Medicine 1, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
2
|
Miao M, Pan M, Chen X, Shen J, Zhang L, Feng X, Chen M, Cui G, Zong H, Zhang W, Chang S, Xu F, Wang Z, Li D, Liu W, Ding Z, Zhang S, Chen B, Zha X, Fan X. IL-13 facilitates ferroptotic death in asthmatic epithelial cells via SOCS1-mediated ubiquitinated degradation of SLC7A11. Redox Biol 2024; 71:103100. [PMID: 38484644 PMCID: PMC10950698 DOI: 10.1016/j.redox.2024.103100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/24/2024] Open
Abstract
Th2-high asthma is characterized by elevated levels of type 2 cytokines, such as interleukin 13 (IL-13), and its prevalence has been increasing worldwide. Ferroptosis, a recently discovered type of programmed cell death, is involved in the pathological process of Th2-high asthma; however, the underlying mechanisms remain incompletely understood. In this study, we demonstrated that the serum level of malondialdehyde (MDA), an index of lipid peroxidation, positively correlated with IL-13 level and negatively correlated with the predicted forced expiratory volume in 1 s (FEV1%) in asthmatics. Furthermore, we showed that IL-13 facilitates ferroptosis by upregulating of suppressor of cytokine signaling 1 (SOCS1) through analyzing immortalized airway epithelial cells, human airway organoids, and the ovalbumin (OVA)-challenged asthma model. We identified that signal transducer and activator of transcription 6 (STAT6) promotes the transcription of SOCS1 upon IL-13 stimulation. Moreover, SOCS1, an E3 ubiquitin ligase, was found to bind to solute carrier family 7 member 11 (SLC7A11) and catalyze its ubiquitinated degradation, thereby promoting ferroptosis in airway epithelial cells. Last, we found that inhibiting SOCS1 can decrease ferroptosis in airway epithelial cells and alleviate airway hyperresponsiveness (AHR) in OVA-challenged wide-type mice, while SOCS1 overexpression exacerbated the above in OVA-challenged IL-13-knockout mice. Our findings reveal that the IL-13/STAT6/SOCS1/SLC7A11 pathway is a novel molecular mechanism for ferroptosis in Th2-high asthma, confirming that targeting ferroptosis in airway epithelial cells is a potential therapeutic strategy for Th2-high asthma.
Collapse
Affiliation(s)
- Manli Miao
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Min Pan
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Xu Chen
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Jiapan Shen
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Ling Zhang
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Xiaoxia Feng
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Mengting Chen
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Guofeng Cui
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Huaiyuan Zong
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Wen Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Shuang Chang
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Fangzhou Xu
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Zixi Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Dapeng Li
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Department of Otolaryngology, Head and Neck Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, China
| | - Weiwei Liu
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Zhao Ding
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Shengquan Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Biao Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China.
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.
| | - Xiaoyun Fan
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China.
| |
Collapse
|
3
|
Chen Y, Li Z, Ji G, Wang S, Mo C, Ding B. Lung regeneration: diverse cell types and the therapeutic potential. MedComm (Beijing) 2024; 5:e494. [PMID: 38405059 PMCID: PMC10885188 DOI: 10.1002/mco2.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Lung tissue has a certain regenerative ability and triggers repair procedures after injury. Under controllable conditions, lung tissue can restore normal structure and function. Disruptions in this process can lead to respiratory system failure and even death, causing substantial medical burden. The main types of respiratory diseases are chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute respiratory distress syndrome (ARDS). Multiple cells, such as lung epithelial cells, endothelial cells, fibroblasts, and immune cells, are involved in regulating the repair process after lung injury. Although the mechanism that regulates the process of lung repair has not been fully elucidated, clinical trials targeting different cells and signaling pathways have achieved some therapeutic effects in different respiratory diseases. In this review, we provide an overview of the cell type involved in the process of lung regeneration and repair, research models, and summarize molecular mechanisms involved in the regulation of lung regeneration and fibrosis. Moreover, we discuss the current clinical trials of stem cell therapy and pharmacological strategies for COPD, IPF, and ARDS treatment. This review provides a reference for further research on the molecular and cellular mechanisms of lung regeneration, drug development, and clinical trials.
Collapse
Affiliation(s)
- Yutian Chen
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Zhen Li
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gaili Ji
- Department of GynecologyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shaochi Wang
- Department of Translational MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Bi‐Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Hussain SS, Edwards YJK, Libby EF, Stanford D, Byzek SA, Sin DD, McDonald ML, Raju SV, Rowe SM. Comparative transcriptomics in human COPD reveals dysregulated genes uniquely expressed in ferrets. Respir Res 2022; 23:277. [PMID: 36217144 PMCID: PMC9552453 DOI: 10.1186/s12931-022-02198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/19/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a progressive lung disease with poor treatment options. However, most mouse models of COPD produce a primarily emphysematous disease not recapitulating clinically meaningful COPD features like chronic bronchitis. METHODS Wild-type ferrets (Mustela putorius furo) were divided randomly into two groups: whole body cigarette smoke exposure and air controls. Ferrets were exposed to smoke from 1R6F research cigarettes, twice daily for six months. RNA-sequencing was performed on RNA isolated from lung tissue. Comparative transcriptomics analyses of COPD in ferrets, mice, and humans were done to find the uniquely expressed genes. Further, Real-time PCR was performed to confirmed RNA-Seq data on multiple selected genes. RESULTS RNA-sequence analysis identified 420 differentially expressed genes (DEGs) that were associated with the development of COPD in ferrets. By comparative analysis, we identified 25 DEGs that are uniquely expressed in ferrets and humans, but not mice. Among DEGs, a number were related to mucociliary clearance (NEK-6, HAS1, and KL), while others have been correlated with abnormal lung function (IL-18), inflammation (TREM1, CTSB), or oxidative stress (SRX1, AHRR). Multiple cellular pathways were aberrantly altered in the COPD ferret model, including pathways associated with COPD pathogenesis in humans. Validation of these selected unique DEGs using real-time PCR demonstrated > absolute 2-fold changes in mRNA versus air controls, consistent with RNA-seq analysis. CONCLUSION Cigarette smoke-induced COPD in ferrets modulates gene expression consistent with human COPD and suggests that the ferret model may be uniquely well suited for the study of aspects of the disease.
Collapse
Affiliation(s)
- Shah S Hussain
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Yvonne J K Edwards
- Department of Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emily Falk Libby
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Denise Stanford
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Stephen A Byzek
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Don D Sin
- Centre for Heart Lung Innovation and Division of Respiratory Medicine, University of British Columbia, Vancouver, Canada
| | - Merry-Lynn McDonald
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
| | - S Vamsee Raju
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, MCLM 829 1918 University Blvd, Birmingham, AL, 35294-0006, USA.
- Department of Cell Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Cai J, Chen Q, Mehrabi Nasab E, Athari SS. Immunomodulatory effect of N‐acetyl‐seryl‐aspartyl‐proline and vasoactive intestinal peptide on chronic obstructive pulmonary disease pathophysiology. Fundam Clin Pharmacol 2022; 36:1005-1010. [DOI: 10.1111/fcp.12811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jian Cai
- Department of Emergency The Second Hospital of Shandong University Jinan City China
| | - Qianyi Chen
- Department of General Surgery and Critical Care Unit Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine Chongming Brangch Shanghai China
| | - Entezar Mehrabi Nasab
- Department of Cardiology, School of Medicine, Tehran Heart Center Tehran University of Medical Sciences Tehran Iran
| | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine Zanjan University of Medical Sciences Zanjan Iran
| |
Collapse
|
6
|
Malik P, Hoidal JR, Mukherjee TK. Implication of RAGE Polymorphic Variants in COPD Complication and Anti-COPD Therapeutic Potential of sRAGE. COPD 2021; 18:737-748. [PMID: 34615424 DOI: 10.1080/15412555.2021.1984417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a slowly progressive and poorly reversible airway obstruction disease. It is caused either alone or in combination of emphysema, chronic bronchitis (CB), and small airways disease. COPD is thought to be a multi-factorial disorder in which genetic susceptibility, environmental factors and tobacco exposure could be doubly or simultaneously implicated. Available medicines against COPD include anti-inflammatory drugs, such as β2-agonists and anticholinergics, which efficiently reduce airflow limitation but are unable to avert disease progression and mortality. Advanced glycation end products (AGE) and their receptors i.e. receptor for advanced glycation end products (RAGE) are some molecules that have been implicated in the complication of COPD. Several RAGE single nucleotide polymorphic (SNP) variants are produced by the mammalian cells. Based on the ethnicity some SNPs aggravate the COPD severity. Mammalian cells produce several alternative RAGE splice variants including a soluble RAGE (sRAGE) and an endogenous soluble RAGE (esRAGE). Both of these act as decoy receptor and thus may help to arrest the COPD complications. Several lines of evidences indicate a decreased level of sRAGE in the COPD subjects. One of the new strategies to reduce COPD complication may be sRAGE therapeutic administration to the COPD subjects. This comprehensive discussion sheds light on the role of RAGE and its polymorphic variants in the COPD complication along with sRAGE therapeutic significance in the COPD prevention.
Collapse
Affiliation(s)
- Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - John R Hoidal
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tapan Kumar Mukherjee
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Akkoc T, O'Mahony L, Ferstl R, Akdis C, Akkoc T. Mouse Models of Asthma: Characteristics, Limitations and Future Perspectives on Clinical Translation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:119-133. [PMID: 34398449 DOI: 10.1007/5584_2021_654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Asthma is a complex and heterogeneous inflammatory airway disease primarily characterized by airway obstruction, which affects up to 15% of the population in Westernized countries with an increasing prevalence. Descriptive laboratory and clinical studies reveal that allergic asthma is due to an immunological inflammatory response and is significantly influenced by an individual's genetic background and environmental factors. Due to the limitations associated with human experiments and tissue isolation, direct mouse models of asthma provide important insights into the disease pathogenesis and in the discovery of novel therapeutics. A wide range of asthma models are currently available, and the correct model system for a given experimental question needs to be carefully chosen. Despite recent advances in the complexity of murine asthma models, for example humanized murine models and the use of clinically relevant allergens, the limitations of the murine system should always be acknowledged, and it remains to be seen if any single murine model can accurately replicate all the clinical features associated with human asthmatic disease.
Collapse
Affiliation(s)
- Tolga Akkoc
- Genetic Engineering and Biotechnology Institute, Tubitak Marmara Research Center, Kocaeli, Turkey.
| | - Liam O'Mahony
- Department of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ruth Ferstl
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - Tunc Akkoc
- Department of Pediatric Allergy-Immunology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
8
|
Fang X, Zhang S, Wang Z, Zhou J, Qi C, Song J. Cigarette smoke extract combined with LPS down-regulates the expression of MRP2 in chronic pulmonary inflammation may be related to FXR. Mol Immunol 2021; 137:174-186. [PMID: 34273652 DOI: 10.1016/j.molimm.2021.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 01/19/2023]
Abstract
The transporter multidrug resistance protein 2 (MRP2) plays an important role in chronic pulmonary inflammation by transporting cigarette smoke and other related inflammatory mediators. However, it is not completely clear whether pulmonary inflammation caused by cigarette smoke extract (CSE) and lipopolysaccharide (LPS) is related to MRP2 and its signal factors. In this study, CSE combined with LPS was used to establish an inflammation model in vivo and in vitro. We found that compared with the control group, after CSE combined with LPS treatment, the expression of MRP2 in rat lung tissue in vivo and human alveolar cell line in vitro was down-regulated, while the expression of inflammatory factors was up-regulated. Through silencing and overexpression of FXR, it was found that silent FXR could down-regulate MRP2 and up-regulate the expression of inflammatory factors. On the contrary, overexpression of FXR could up-regulate MRP2 and down-regulate the expression of inflammatory factors. Our results show that CSE combined with LPS can down-regulate the expression of MRP2 under inflammatory conditions, and the down-regulation of MRP2 expression may be achieved partly through the FXR signal pathway.
Collapse
Affiliation(s)
- Xin Fang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Shuyi Zhang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Zihao Wang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jian Zhou
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Chuanzong Qi
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jue Song
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.
| |
Collapse
|
9
|
Fang X, Wang Z, Qi C, Zhou J, Zhang S, Song J. The changes of MRP2 expression in three kinds of pulmonary inflammation models: the downregulation occurred in cigarette smoke extract (CSE) stimulation group and CSE plus LPS stimulation group, unchanged in LPS stimulation group. Toxicol Mech Methods 2021; 31:413-424. [PMID: 33752573 DOI: 10.1080/15376516.2021.1903638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 01/07/2023]
Abstract
The transporter multidrug resistance protein 2 (MRP2) can transport some tobacco carcinogens and plays an important role in the transport of mediators related to pulmonary inflammatory diseases. However, it is not fully understood whether the pulmonary inflammation caused by cigarette smoke extract (CSE) and lipopolysaccharide (LPS) is related to the regulation of MRP2. In this study, CSE and LPS were used alone and in combination as stimuli to induce pulmonary inflammation. In addition, the establishment of a pulmonary inflammation model was verified by animal experiments in vivo. We found that compared with those in the control group, the expression of MRP2 protein was downregulated and the expression of inflammatory cytokines was upregulated in pulmonary inflammation in the CSE group and the CSE combined with LPS group. However, there was almost no change in the expression of MRP2 stimulated by LPS alone. Our results show that CSE and CSE combined with LPS downregulate the expression of MRP2 under inflammatory conditions, while LPS has almost no effect on the expression of MRP2 under inflammatory conditions. The in vivo experimental results of CSE combined with LPS were consistent with the cellular results of CSE combined with LPS, which provides a model and basis for other studies of the role of MRP2 in pulmonary inflammation.
Collapse
Affiliation(s)
- Xin Fang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Zihao Wang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Chuanzong Qi
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jian Zhou
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Shuyi Zhang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jue Song
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
10
|
Tu X, Donovan C, Kim RY, Wark PAB, Horvat JC, Hansbro PM. Asthma-COPD overlap: current understanding and the utility of experimental models. Eur Respir Rev 2021; 30:30/159/190185. [PMID: 33597123 PMCID: PMC9488725 DOI: 10.1183/16000617.0185-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Pathological features of both asthma and COPD coexist in some patients and this is termed asthma-COPD overlap (ACO). ACO is heterogeneous and patients exhibit various combinations of asthma and COPD features, making it difficult to characterise the underlying pathogenic mechanisms. There are no controlled studies that define effective therapies for ACO, which arises from the lack of international consensus on the definition and diagnostic criteria for ACO, as well as scant in vitro and in vivo data. There remain unmet needs for experimental models of ACO that accurately recapitulate the hallmark features of ACO in patients. The development and interrogation of such models will identify underlying disease-causing mechanisms, as well as enabling the identification of novel therapeutic targets and providing a platform for assessing new ACO therapies. Here, we review the current understanding of the clinical features of ACO and highlight the approaches that are best suited for developing representative experimental models of ACO. Understanding the pathogenesis of asthma-COPD overlap is critical for improving therapeutic approaches. We present current knowledge on asthma-COPD overlap and the requirements for developing an optimal animal model of disease.https://bit.ly/3lsjyvm
Collapse
Affiliation(s)
- Xiaofan Tu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Both authors contributed equally
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute, Camperdown, Australia.,University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia.,Both authors contributed equally
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute, Camperdown, Australia.,University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia .,Centre for Inflammation, Centenary Institute, Camperdown, Australia.,University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| |
Collapse
|
11
|
Guan X, Yuan Y, Wang G, Zheng R, Zhang J, Dong B, Ran N, Hsu ACY, Wang C, Wang F. Ginsenoside Rg3 ameliorates acute exacerbation of COPD by suppressing neutrophil migration. Int Immunopharmacol 2020; 83:106449. [PMID: 32278128 DOI: 10.1016/j.intimp.2020.106449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD) is an irreversible inflammatory airways disease responsible for global health burden, involved with a complex condition of immunological change. Exacerbation-mediated neutrophilia is an important factor in the pathogenesis of cigarette smoke-induced AECOPD. Ginsenoside Rg3, a red-ginseng-derived compound, has multiple pharmacological properties such as anti-inflammatory and antitumor activities. Here, we investigated a protective role of Rg3 against AECOPD, focusing on neutrophilia. 14-week-cigarette smoke (CS) exposure and non-typeable Haemophilus inflenzae (NTHi) infection were used to establish the AECOPD murine model. Rg3 (10, 20, 40 mg/kg) was administered intragastrically from the 12th week of CS exposure before infection, and this led to improved lung function and lung morphology, and reduced neutrophilic inflammation, indicating a suppressive effect on neutrophil infiltration by Rg3. Further investigations on the mechanism of Rg3 on neutrophils were carried out using bronchial epithelial cell (BEAS-2B) and neutrophil co-culture and transepithelial migration model. Pre-treatment of neutrophils with Rg3 reduced neutrophil migration, which seemed to be the result of inhibition of phosphatidylinositol (PtdIns) 3-kinases (PI3K) activation within neutrophils. Thus, Rg3 could inhibit exacerbation-induced neutrophilia in COPD by negatively regulating PI3K activities in neutrophils. This study provides a potential natural drug against AECOPD neutrophil inflammation.
Collapse
Affiliation(s)
- Xuewa Guan
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yuze Yuan
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ruipeng Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Invasive Technology, First Hospital of Jilin University, Changchun 130021, China
| | - Jing Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Intensive Care Unit, First Hospital of Jilin University, Changchun 130021, China
| | - Bing Dong
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Nan Ran
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute and the University of Newcastle, NSW, Australia
| | - Cuizhu Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Key laboratory of Zoonosis Research Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
12
|
Foucaud L, Demoulin B, Leblanc AL, Ioan I, Schweitzer C, Demoulin-Alexikova S. Modulation of protective reflex cough by acute immune driven inflammation of lower airways in anesthetized rabbits. PLoS One 2019; 14:e0226442. [PMID: 31887143 PMCID: PMC6936810 DOI: 10.1371/journal.pone.0226442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/26/2019] [Indexed: 11/19/2022] Open
Abstract
Chronic irritating cough in patients with allergic disorders may reflect behavioral or reflex response that is inappropriately matched to the stimulus present in the respiratory tract. Such dysregulated response is likely caused by sensory nerve damage driven by allergic mediators leading to cough hypersensitivity. Some indirect findings suggest that even acid-sensitive, capsaicin-insensitive A-δ fibers called “cough receptors” that are likely responsible for protective reflex cough may be modulated through immune driven inflammation. The aim of this study was to find out whether protective reflex cough is altered during acute allergic airway inflammation in rabbits sensitized to ovalbumin. In order to evaluate the effect of such inflammation exclusively on protective reflex cough, C-fiber mediated cough was silenced using general anesthesia. Cough provocation using citric acid inhalation and mechanical stimulation of trachea was realized in 16 ovalbumin (OVA) sensitized, anesthetized and tracheotomised rabbits 24h after OVA (OVA group, n = 9) or saline challenge (control group, n = 7). Number of coughs provoked by citric acid inhalation did not differ between OVA and control group (12,2 ±6,1 vs. 17,9 ± 6,9; p = 0.5). Allergic airway inflammation induced significant modulation of cough threshold (CT) to mechanical stimulus. Mechanically induced cough reflex in OVA group was either up-regulated (subgroup named “responders” CT: 50 msec (50–50); n = 5 p = 0.003) or down-regulated (subgroup named “non responders”, CT: 1200 msec (1200–1200); n = 4 p = 0.001) when compared to control group (CT: 150 msec (75–525)). These results advocate that allergen may induce longer lasting changes of reflex cough pathway, leading to its up- or down-regulation. These findings may be of interest as they suggest that effective therapies for chronic cough in allergic patients should target sensitized component of both, reflex and behavioral cough.
Collapse
Affiliation(s)
- Laurent Foucaud
- Research Unit EA 3450 DevAH—Development, Adaptation and Handicap, Campus Biologie Santé, University of Lorraine, Vandœuvre-Lès-Nancy, France
| | - Bruno Demoulin
- Research Unit EA 3450 DevAH—Development, Adaptation and Handicap, Campus Biologie Santé, University of Lorraine, Vandœuvre-Lès-Nancy, France
| | - Anne-Laure Leblanc
- Research Unit EA 3450 DevAH—Development, Adaptation and Handicap, Campus Biologie Santé, University of Lorraine, Vandœuvre-Lès-Nancy, France
| | - Iulia Ioan
- Research Unit EA 3450 DevAH—Development, Adaptation and Handicap, Campus Biologie Santé, University of Lorraine, Vandœuvre-Lès-Nancy, France
- Department of Pediatric Functional Testing, Hôpital d’Enfants, CHRU de Nancy, Vandoeuvre-Les-Nancy, France
| | - Cyril Schweitzer
- Research Unit EA 3450 DevAH—Development, Adaptation and Handicap, Campus Biologie Santé, University of Lorraine, Vandœuvre-Lès-Nancy, France
- Department of Pediatric Functional Testing, Hôpital d’Enfants, CHRU de Nancy, Vandoeuvre-Les-Nancy, France
| | - Silvia Demoulin-Alexikova
- Research Unit EA 3450 DevAH—Development, Adaptation and Handicap, Campus Biologie Santé, University of Lorraine, Vandœuvre-Lès-Nancy, France
- Department of Pediatric Functional Testing, Hôpital d’Enfants, CHRU de Nancy, Vandoeuvre-Les-Nancy, France
- * E-mail:
| |
Collapse
|
13
|
Tanner L, Single AB. Animal Models Reflecting Chronic Obstructive Pulmonary Disease and Related Respiratory Disorders: Translating Pre-Clinical Data into Clinical Relevance. J Innate Immun 2019; 12:203-225. [PMID: 31527372 PMCID: PMC7265725 DOI: 10.1159/000502489] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) affects the lives of an ever-growing number of people worldwide. The lack of understanding surrounding the pathophysiology of the disease and its progression has led to COPD becoming the third leading cause of death worldwide. COPD is incurable, with current treatments only addressing associated symptoms and sometimes slowing its progression, thus highlighting the need to develop novel treatments. However, this has been limited by the lack of experimental standardization within the respiratory disease research area. A lack of coherent animal models that accurately represent all aspects of COPD clinical presentation makes the translation of promising in vitrodata to human clinical trials exceptionally challenging. Here, we review current knowledge within the COPD research field, with a focus on current COPD animal models. Moreover, we include a set of advantages and disadvantages for the selection of pre-clinical models for the identification of novel COPD treatments.
Collapse
Affiliation(s)
- Lloyd Tanner
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden,
| | - Andrew Bruce Single
- Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Han MK, Arteaga-Solis E, Blenis J, Bourjeily G, Clegg DJ, DeMeo D, Duffy J, Gaston B, Heller NM, Hemnes A, Henske EP, Jain R, Lahm T, Lancaster LH, Lee J, Legato MJ, McKee S, Mehra R, Morris A, Prakash YS, Stampfli MR, Gopal-Srivastava R, Laposky AD, Punturieri A, Reineck L, Tigno X, Clayton J. Female Sex and Gender in Lung/Sleep Health and Disease. Increased Understanding of Basic Biological, Pathophysiological, and Behavioral Mechanisms Leading to Better Health for Female Patients with Lung Disease. Am J Respir Crit Care Med 2019; 198:850-858. [PMID: 29746147 DOI: 10.1164/rccm.201801-0168ws] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Female sex/gender is an undercharacterized variable in studies related to lung development and disease. Notwithstanding, many aspects of lung and sleep biology and pathobiology are impacted by female sex and female reproductive transitions. These may manifest as differential gene expression or peculiar organ development. Some conditions are more prevalent in women, such as asthma and insomnia, or, in the case of lymphangioleiomyomatosis, are seen almost exclusively in women. In other diseases, presentation differs, such as the higher frequency of exacerbations experienced by women with chronic obstructive pulmonary disease or greater cardiac morbidity among women with sleep-disordered breathing. Recent advances in -omics and behavioral science provide an opportunity to specifically address sex-based differences and explore research needs and opportunities that will elucidate biochemical pathways, thus enabling more targeted/personalized therapies. To explore the status of and opportunities for research in this area, the NHLBI, in partnership with the NIH Office of Research on Women's Health and the Office of Rare Diseases Research, convened a workshop of investigators in Bethesda, Maryland on September 18 and 19, 2017. At the workshop, the participants reviewed the current understanding of the biological, behavioral, and clinical implications of female sex and gender on lung and sleep health and disease, and formulated recommendations that address research gaps, with a view to achieving better health outcomes through more precise management of female patients with nonneoplastic lung disease. This report summarizes those discussions.
Collapse
Affiliation(s)
- MeiLan K Han
- 1 Division of Pulmonary and Critical Care, University of Michigan, Ann Arbor, Michigan
| | - Emilio Arteaga-Solis
- 2 Division of Pediatric Pulmonology, Columbia University Medical Center, New York, New York
| | - John Blenis
- 3 Pharmacology Ph.D. Program, Sandra and Edward Meyer Cancer Center, New York, New York
| | - Ghada Bourjeily
- 4 Department of Medicine, Brown University, Providence, Rhode Island
| | - Deborah J Clegg
- 5 Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Dawn DeMeo
- 6 Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jeanne Duffy
- 7 Department of Medicine and.,8 Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ben Gaston
- 9 Pediatric Pulmonology, Case Western Reserve University, Cleveland, Ohio
| | - Nicola M Heller
- 10 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Anna Hemnes
- 11 Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elizabeth Petri Henske
- 12 Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, Massachusetts
| | - Raksha Jain
- 13 Division of Pulmonary and Critical Care, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tim Lahm
- 14 Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lisa H Lancaster
- 15 Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joyce Lee
- 16 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado
| | | | - Sherry McKee
- 18 Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Reena Mehra
- 19 Neurologic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Alison Morris
- 20 Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Y S Prakash
- 21 Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Martin R Stampfli
- 22 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rashmi Gopal-Srivastava
- 23 Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Aaron D Laposky
- 24 Division of Lung Diseases, NHLBI/NIH, Bethesda, Maryland; and
| | | | - Lora Reineck
- 24 Division of Lung Diseases, NHLBI/NIH, Bethesda, Maryland; and
| | - Xenia Tigno
- 24 Division of Lung Diseases, NHLBI/NIH, Bethesda, Maryland; and
| | - Janine Clayton
- 25 Office of Research on Women's Health, NIH-Office of the Director, Bethesda, Maryland
| |
Collapse
|
15
|
Waterpipe Smoke Exposure Triggers Lung Injury and Functional Decline in Mice: Protective Effect of Gum Arabic. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8526083. [PMID: 31178975 PMCID: PMC6501418 DOI: 10.1155/2019/8526083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/08/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of waterpipe (shisha) tobacco smoking has recently seen a substantial increase worldwide and is becoming a public health problem. Both human and animal studies have established that waterpipe smoke (WPS) increases airway reactivity and inflammation. Gum Arabic (GA) is a prebiotic agent that possesses antioxidant and anti-inflammatory properties. However, its effects on lung toxicity induced by WPS exposure are unknown. Thus, the aim of this study was to investigate the possible salutary effects and underlying mechanisms of GA on WPS-induced pulmonary pathophysiologic effects. C57BL/6 mice were exposed to air or WPS (30 minutes/day for one month) with or without GA treatment in drinking water (15%, w/v). Exposure to WPS induced an influx of neutrophil polymorphs in the peribronchiolar and interstitial spaces and an increase of tumor necrosis factor-α and 8-isoprostane, a marker of lipid peroxidation, concentrations in lung homogenates. The latter effects were significantly mitigated by GA treatment. Likewise, the lung DNA damage induced by WPS exposure was prevented by GA administration. Western blot analysis of the lung showed that GA inhibited nuclear factor kappa-B (NF-κB) expression caused by WPS and augmented that of nuclear factor erythroid 2-related factor 2 (Nrf2). Similarly, immunohistochemical analysis of bronchial epithelial cells and alveolar cells showed a parallel and significant increase in the nuclear expression of Nrf2 and cytoplasmic expression of glutathione in mice treated with GA and exposed to WPS. Moreover, GA administration has significantly prevented airway hyperreactivity to methacholine induced by WPS. We conclude that GA administration significantly declined the physiological, histological, biochemical, and molecular indices of lung toxicity caused by WPS exposure, indicating its beneficial respiratory impact. Considering that GA is a safe agent with health benefits in humans, our data suggest its potential usage in waterpipe smokers.
Collapse
|
16
|
The Overlap of Lung Tissue Transcriptome of Smoke Exposed Mice with Human Smoking and COPD. Sci Rep 2018; 8:11881. [PMID: 30089872 PMCID: PMC6082828 DOI: 10.1038/s41598-018-30313-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/23/2018] [Indexed: 01/09/2023] Open
Abstract
Genome-wide mRNA profiling in lung tissue from human and animal models can provide novel insights into the pathogenesis of chronic obstructive pulmonary disease (COPD). While 6 months of smoke exposure are widely used, shorter durations were also reported. The overlap of short term and long-term smoke exposure in mice is currently not well understood, and their representation of the human condition is uncertain. Lung tissue gene expression profiles of six murine smoking experiments (n = 48) were obtained from the Gene Expression Omnibus (GEO) and analyzed to identify the murine smoking signature. The "human smoking" gene signature containing 386 genes was previously published in the lung eQTL study (n = 1,111). A signature of mild COPD containing 7 genes was also identified in the same study. The lung tissue gene signature of "severe COPD" (n = 70) contained 4,071 genes and was previously published. We detected 3,723 differentially expressed genes in the 6 month-exposure mice datasets (FDR <0.1). Of those, 184 genes (representing 48% of human smoking) and 1,003 (representing 27% of human COPD) were shared with the human smoking-related genes and the COPD severity-related genes, respectively. There was 4-fold over-representation of human and murine smoking-related genes (P = 6.7 × 10-26) and a 1.4 fold in the severe COPD -related genes (P = 2.3 × 10-12). There was no significant enrichment of the mice and human smoking-related genes in mild COPD signature. These data suggest that murine smoke models are strongly representative of molecular processes of human smoking but less of COPD.
Collapse
|
17
|
Protective Effect of Jianpiyifei II Granule against Chronic Obstructive Pulmonary Disease via NF- κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4265790. [PMID: 30174706 PMCID: PMC6098891 DOI: 10.1155/2018/4265790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/29/2018] [Accepted: 07/08/2018] [Indexed: 01/31/2023]
Abstract
Jianpiyifei II granule (JPYF II) is an oriental herbal formula used clinically in China to treat chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the anti-inflammatory and antioxidative activities of JPYF II in a mouse model of COPD induced by lipopolysaccharide (LPS) and cigarette smoke (CS) and in RAW264.7 cells stimulated with cigarette smoke extract (CSE). Mice were given LPS via intratracheal instillation on days 1 and 15 and exposed to CS generated from 4 cigarettes/day for 28 days. The mice were treated with 0.75, 1.5, or 3 g/kg/d JPYF II by intragastric administration in low, middle, and high dose groups, respectively, for two weeks. RAW264.7 cells were stimulated by CSE and treated with JPYF II at doses of 12.5, 25, or 50 μg/mL. In the mouse model of LPS and CS-induced COPD, JPYF II decreased inflammatory cell counts in broncho alveolar lavage fluid (BALF), in addition to mRNA expression of proinflammatory cytokines and metalloproteinases (MMPs) in lung tissues. In addition, JPYF II elevated catalase (CAT) and glutathione peroxidase (GSH-Px) activities and reduced the levels of malondialdehyde (MDA) and IκBα and p65 phosphorylation and inflammatory cell infiltration in the lung tissues. In RAW264.7 cells stimulated with CSE, JPYF II inhibited the mRNA levels of inflammatory mediators and the phosphorylation of IκBα and p65. Our results suggest that JPYF II enhanced anti-inflammatory and antioxidative activities in a mouse model of COPD induced by LPS and CS and in RAW264.7 cells stimulated with CSE via inhibition of the NF-κB pathway.
Collapse
|
18
|
Kerdidani D, Magkouta S, Chouvardas P, Karavana V, Glynos K, Roumelioti F, Zakynthinos S, Wauters E, Janssens W, Lambrechts D, Kollias G, Tsoumakidou M. Cigarette Smoke-Induced Emphysema Exhausts Early Cytotoxic CD8 + T Cell Responses against Nascent Lung Cancer Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:1558-1569. [PMID: 30037849 DOI: 10.4049/jimmunol.1700700] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/25/2018] [Indexed: 01/08/2023]
Abstract
Chronic obstructive pulmonary disease is a chronic inflammatory disorder with an increased incidence of lung cancer. The emphysema component of chronic obstructive pulmonary disease confers the greatest proportion to lung cancer risk. Although tumors create inflammatory conditions to escape immunity, the immunological responses that control growth of nascent cancer cells in pre-established inflammatory microenvironments are unknown. In this study, we addressed this issue by implanting OVA-expressing cancer cells in the lungs of mice with cigarette smoke-induced emphysema. Emphysema augmented the growth of cancer cells, an effect that was dependent on T cytotoxic cells. OVA-specific OTI T cells showed early signs of exhaustion upon transfer in emphysema tumor hosts that was largely irreversible because sorting, expansion, and adoptive transfer failed to restore their antitumor activity. Increased numbers of PD-L1- and IDO-positive CD11c+ myeloid dendritic cells (DCs) infiltrated emphysema tumors, whereas sorted emphysema tumor DCs poorly stimulated OTI T cells. Upon adoptive transfer in immunocompetent hosts, T cells primed by emphysema tumor DCs were unable to halt tumor growth. DCs exposed to the emphysema tumor microenvironment downregulated MHC class II and costimulatory molecules, whereas they upregulated PD-L1/IDO via oxidative stress-dependent mechanisms. T cell activation increased upon PD-L1 blockade in emphysema DC-T cell cocultures and in emphysema tumor hosts in vivo. Analysis of the transcriptome of primary human lung tumors showed a strong association between computed tomography-based emphysema scoring and downregulation of immunogenic processes. Thus, suppression of adaptive immunity against lung cancer cells links a chronic inflammatory disorder, emphysema, to cancer, with clinical implications for emphysema patients to be considered optimal candidates for cancer immunotherapies.
Collapse
Affiliation(s)
- Dimitra Kerdidani
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece.,Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Sophia Magkouta
- Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Panagiotis Chouvardas
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece.,Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Vassiliki Karavana
- Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Konstantinos Glynos
- Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Fani Roumelioti
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece
| | - Spyros Zakynthinos
- Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Els Wauters
- Respiratory Oncology Unit, University Hospitals KU Leuven, 3000 Leuven, Belgium.,Leuven Lung Cancer Group, University Hospitals KU Leuven, 3000 Leuven, Belgium.,Laboratory of Pneumology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Wim Janssens
- Respiratory Oncology Unit, University Hospitals KU Leuven, 3000 Leuven, Belgium.,Leuven Lung Cancer Group, University Hospitals KU Leuven, 3000 Leuven, Belgium.,Laboratory of Pneumology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium; and.,Laboratory for Translational Genetics, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - George Kollias
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece.,Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Maria Tsoumakidou
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece;
| |
Collapse
|
19
|
Bonniaud P, Fabre A, Frossard N, Guignabert C, Inman M, Kuebler WM, Maes T, Shi W, Stampfli M, Uhlig S, White E, Witzenrath M, Bellaye PS, Crestani B, Eickelberg O, Fehrenbach H, Guenther A, Jenkins G, Joos G, Magnan A, Maitre B, Maus UA, Reinhold P, Vernooy JHJ, Richeldi L, Kolb M. Optimising experimental research in respiratory diseases: an ERS statement. Eur Respir J 2018; 51:13993003.02133-2017. [PMID: 29773606 DOI: 10.1183/13993003.02133-2017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/02/2018] [Indexed: 12/15/2022]
Abstract
Experimental models are critical for the understanding of lung health and disease and are indispensable for drug development. However, the pathogenetic and clinical relevance of the models is often unclear. Further, the use of animals in biomedical research is controversial from an ethical perspective.The objective of this task force was to issue a statement with research recommendations about lung disease models by facilitating in-depth discussions between respiratory scientists, and to provide an overview of the literature on the available models. Focus was put on their specific benefits and limitations. This will result in more efficient use of resources and greater reduction in the numbers of animals employed, thereby enhancing the ethical standards and translational capacity of experimental research.The task force statement addresses general issues of experimental research (ethics, species, sex, age, ex vivo and in vitro models, gene editing). The statement also includes research recommendations on modelling asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, lung infections, acute lung injury and pulmonary hypertension.The task force stressed the importance of using multiple models to strengthen validity of results, the need to increase the availability of human tissues and the importance of standard operating procedures and data quality.
Collapse
Affiliation(s)
- Philippe Bonniaud
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre Hospitalo-Universitaire de Bourgogne, Dijon, France.,Faculté de Médecine et Pharmacie, Université de Bourgogne-Franche Comté, Dijon, France.,INSERM U866, Dijon, France
| | - Aurélie Fabre
- Dept of Histopathology, St Vincent's University Hospital, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, Strasbourg, France.,CNRS UMR 7200, Faculté de Pharmacie, Illkirch, France.,Labex MEDALIS, Université de Strasbourg, Strasbourg, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Mark Inman
- Dept of Medicine, Firestone Institute for Respiratory Health at St Joseph's Health Care MDCL 4011, McMaster University, Hamilton, ON, Canada
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tania Maes
- Dept of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, USA.,Dept of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Martin Stampfli
- Dept of Medicine, Firestone Institute for Respiratory Health at St Joseph's Health Care MDCL 4011, McMaster University, Hamilton, ON, Canada.,Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Eric White
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin Witzenrath
- Dept of Infectious Diseases and Respiratory Medicine And Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pierre-Simon Bellaye
- Département de Médecine nucléaire, Plateforme d'imagerie préclinique, Centre George-François Leclerc (CGFL), Dijon, France
| | - Bruno Crestani
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, DHU FIRE, Service de Pneumologie A, Paris, France.,INSERM UMR 1152, Paris, France.,Université Paris Diderot, Paris, France
| | - Oliver Eickelberg
- Division of Pulmonary Sciences and Critical Care Medicine, Dept of Medicine, University of Colorado, Aurora, CO, USA
| | - Heinz Fehrenbach
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.,Member of the Leibniz Research Alliance Health Technologies
| | - Andreas Guenther
- Justus-Liebig-University Giessen, Universitary Hospital Giessen, Agaplesion Lung Clinic Waldhof-Elgershausen, German Center for Lung Research, Giessen, Germany
| | - Gisli Jenkins
- Nottingham Biomedical Research Centre, Respiratory Research Unit, City Campus, University of Nottingham, Nottingham, UK
| | - Guy Joos
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Antoine Magnan
- Institut du thorax, CHU de Nantes, Université de Nantes, Nantes, France
| | - Bernard Maitre
- Hôpital H Mondor, AP-HP, Centre Hospitalier Intercommunal de Créteil, Service de Pneumologie et de Pathologie Professionnelle, DHU A-TVB, Université Paris Est - Créteil, Créteil, France
| | - Ulrich A Maus
- Hannover School of Medicine, Division of Experimental Pneumology, Hannover, Germany
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at the 'Friedrich-Loeffler-Institut' (Federal Research Institute for Animal Health), Jena, Germany
| | - Juanita H J Vernooy
- Dept of Respiratory Medicine, Maastricht University Medical Center+ (MUMC+), AZ Maastricht, The Netherlands
| | - Luca Richeldi
- UOC Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
| | - Martin Kolb
- Dept of Medicine, Firestone Institute for Respiratory Health at St Joseph's Health Care MDCL 4011, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
20
|
Exercise Training Mitigates Water Pipe Smoke Exposure-Induced Pulmonary Impairment via Inhibiting NF- κB and Activating Nrf2 Signalling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7459612. [PMID: 29692875 PMCID: PMC5859847 DOI: 10.1155/2018/7459612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 01/16/2018] [Indexed: 12/29/2022]
Abstract
Water pipe smoking is a tobacco smoking method commonly used in Eastern countries and is gaining popularity in Europe and North America, in particular among adolescents and young adults. Several clinical and experimental studies have reported that exposure to water pipe smoke (WPS) induces lung inflammation and impairment of pulmonary function. However, the mechanisms of such effects are not understood, as are data on the possible palliative effect of exercise training. The present study evaluated the effects of regular aerobic exercise training (treadmill: 5 days/week, 40 min/day) on subchronic exposure to WPS (30 minutes/day, 5 days/week for 2 months). C57BL/6 mice were exposed to air or WPS with or without exercise training. Airway resistance measured using forced oscillation technique was significantly and dose-dependently increased in the WPS-exposed group when compared with the air-exposed one. Exercise training significantly prevented the effect of WPS on airway resistance. Histologically, the lungs of WPS-exposed mice had focal moderate interstitial inflammatory cell infiltration consisting of neutrophil polymorphs, plasma cells, and lymphocytes. There was a mild increase in intra-alveolar macrophages and a focal damage to alveolar septae in some foci. Exercise training significantly alleviated these effects and also decreased the WPS-induced increase of tumor necrosis factor α and interleukin 6 concentrations and attenuated the increase of 8-isoprostane in lung homogenates. Likewise, the lung DNA damage induced by WPS was significantly inhibited by exercise training. Moreover, exercise training inhibited nuclear factor kappa-B (NF-κB) expression induced by WPS and increased that of nuclear factor erythroid 2-related factor 2 (Nrf2). Our findings suggest that exercise training significantly mitigated WPS-induced increase in airway resistance, inflammation, oxidative stress, and DNA damage via mechanisms that include inhibiting NF-κB and activating Nrf2 signalling pathways.
Collapse
|
21
|
Vlahos R, Bozinovski S. Protocols to Evaluate Cigarette Smoke-Induced Lung Inflammation and Pathology in Mice. Methods Mol Biol 2018; 1725:53-63. [PMID: 29322408 DOI: 10.1007/978-1-4939-7568-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cigarette smoking is a major cause of chronic obstructive pulmonary disease (COPD). Inhalation of cigarette smoke causes inflammation of the airways, airway wall remodelling, mucus hypersecretion and progressive airflow limitation. Much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities and infectious (viral and bacterial) exacerbations (AECOPD). Comorbidities, in particular skeletal muscle wasting, cardiovascular disease and lung cancer markedly impact on disease morbidity, progression and mortality. The mechanisms and mediators underlying COPD and its comorbidities are poorly understood and current COPD therapy is relatively ineffective. Many researchers have used animal modelling systems to explore the mechanisms underlying COPD, AECOPD and comorbidities of COPD with the goal of identifying novel therapeutic targets. Here we describe a mouse model that we have developed to define the cellular, molecular and pathological consequences of cigarette smoke exposure and the development of comorbidities of COPD.
Collapse
Affiliation(s)
- Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
22
|
Shu J, Li D, Ouyang H, Huang J, Long Z, Liang Z, Chen Y, Chen Y, Zheng Q, Kuang M, Tang H, Wang J, Lu W. Comparison and evaluation of two different methods to establish the cigarette smoke exposure mouse model of COPD. Sci Rep 2017; 7:15454. [PMID: 29133824 PMCID: PMC5684336 DOI: 10.1038/s41598-017-15685-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
Animal model of cigarette smoke (CS) -induced chronic obstructive pulmonary disease (COPD) is the primary testing methodology for drug therapies and studies on pathogenic mechanisms of disease. However, researchers have rarely run simultaneous or side-by-side tests of whole-body and nose-only CS exposure in building their mouse models of COPD. We compared and evaluated these two different methods of CS exposure, plus airway Lipopolysaccharides (LPS) inhalation, in building our COPD mouse model. Compared with the control group, CS exposed mice showed significant increased inspiratory resistance, functional residual capacity, right ventricular hypertrophy index, and total cell count in BALF. Moreover, histological staining exhibited goblet cell hyperplasia, lung inflammation, thickening of smooth muscle layer on bronchia, and lung angiogenesis in both methods of CS exposure. Our data indicated that a viable mouse model of COPD can be established by combining the results from whole-body CS exposure, nose-only CS exposure, and airway LPS inhalation testing. However, in our study, we also found that, given the same amount of particulate intake, changes in right ventricular pressure and intimal thickening of pulmonary small artery are a little more serious in nose-only CS exposure method than changes in the whole-body CS exposure method.
Collapse
Affiliation(s)
- Jiaze Shu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Defu Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Haiping Ouyang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Junyi Huang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Zhen Long
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Zhihao Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Yiguan Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Meidan Kuang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China
- Division of Translational and Regenerative Medicine, Department of Medicine and Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China.
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, P.R. China.
- Division of Translational and Regenerative Medicine, Department of Medicine and Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona, United States.
| |
Collapse
|
23
|
Aun MV, Bonamichi-Santos R, Arantes-Costa FM, Kalil J, Giavina-Bianchi P. Animal models of asthma: utility and limitations. J Asthma Allergy 2017; 10:293-301. [PMID: 29158683 PMCID: PMC5683778 DOI: 10.2147/jaa.s121092] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clinical studies in asthma are not able to clear up all aspects of disease pathophysiology. Animal models have been developed to better understand these mechanisms and to evaluate both safety and efficacy of therapies before starting clinical trials. Several species of animals have been used in experimental models of asthma, such as Drosophila, rats, guinea pigs, cats, dogs, pigs, primates and equines. However, the most common species studied in the last two decades is mice, particularly BALB/c. Animal models of asthma try to mimic the pathophysiology of human disease. They classically include two phases: sensitization and challenge. Sensitization is traditionally performed by intraperitoneal and subcutaneous routes, but intranasal instillation of allergens has been increasingly used because human asthma is induced by inhalation of allergens. Challenges with allergens are performed through aerosol, intranasal or intratracheal instillation. However, few studies have compared different routes of sensitization and challenge. The causative allergen is another important issue in developing a good animal model. Despite being more traditional and leading to intense inflammation, ovalbumin has been replaced by aeroallergens, such as house dust mites, to use the allergens that cause human disease. Finally, researchers should define outcomes to be evaluated, such as serum-specific antibodies, airway hyperresponsiveness, inflammation and remodeling. The present review analyzes the animal models of asthma, assessing differences between species, allergens and routes of allergen administration.
Collapse
Affiliation(s)
- Marcelo Vivolo Aun
- Clinical Immunology and Allergy Division, Department of Internal Medicine, University of São Paulo School of Medicine, São Paulo, Brazil.,Laboratory of Experimental Therapeutics (LIM20), Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Rafael Bonamichi-Santos
- Clinical Immunology and Allergy Division, Department of Internal Medicine, University of São Paulo School of Medicine, São Paulo, Brazil.,Laboratory of Experimental Therapeutics (LIM20), Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Jorge Kalil
- Clinical Immunology and Allergy Division, Department of Internal Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Pedro Giavina-Bianchi
- Clinical Immunology and Allergy Division, Department of Internal Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
24
|
Joshi R, Valdez D, Kim H, Eikenburg DC, Knoll BJ, Bond RA. Effects of β-blockers on house dust mite-driven murine models pre- and post-development of an asthma phenotype. Pulm Pharmacol Ther 2017; 46:30-40. [PMID: 28729042 DOI: 10.1016/j.pupt.2017.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/16/2017] [Accepted: 07/15/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND Our previous studies suggested certain β-adrenoceptor blockers (β-blockers) attenuate the asthma phenotype in ovalbumin driven murine models of asthma. However, the ovalbumin model has been criticized for lack of clinical relevance. METHODS We tested the non-selective β-blockers, carvedilol and nadolol, in house dust mite (HDM) driven murine asthma models where drugs were administered both pre- and post-development of the asthma phenotype. We measured inflammation, mucous metaplasia, and airway hyper-responsiveness (AHR). We also measured the effects of the β-blockers on extracellular-signal regulated kinase (ERK 1/2) phosphorylation in lung homogenates. RESULTS We show that nadolol, but not carvedilol, attenuated inflammation and mucous metaplasia, and had a moderate effect attenuating AHR. Following HDM exposure, ERK1/2 phosphorylation was elevated, but the level of phosphorylation was unaffected by β-blockers, suggesting ERK1/2 phosphorylation becomes dissociated from the asthma phenotype. CONCLUSION Our findings in HDM models administering drugs both pre- and post-development of the asthma phenotype are consistent with previous results using ovalbumin models and show differential effects for nadolol and carvedilol on the asthma phenotype. Lastly, our data suggest that ERK1/2 phosphorylation may be involved in development of the asthma phenotype, but may have a limited role in maintaining the phenotype.
Collapse
Affiliation(s)
- Radhika Joshi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd., Houston, TX 77204-5027, USA.
| | - Daniel Valdez
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd., Houston, TX 77204-5027, USA.
| | - Hosu Kim
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd., Houston, TX 77204-5027, USA.
| | - Douglas C Eikenburg
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd., Houston, TX 77204-5027, USA.
| | - Brian J Knoll
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd., Houston, TX 77204-5027, USA.
| | - Richard A Bond
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd., Houston, TX 77204-5027, USA.
| |
Collapse
|
25
|
Neutrophilic Inflammation in the Immune Responses of Chronic Obstructive Pulmonary Disease: Lessons from Animal Models. J Immunol Res 2017; 2017:7915975. [PMID: 28536707 PMCID: PMC5426078 DOI: 10.1155/2017/7915975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of mortality worldwide, which is characterized by chronic bronchitis, destruction of small airways, and enlargement/disorganization of alveoli. It is generally accepted that the neutrophilic airway inflammation observed in the lungs of COPD patients is intrinsically linked to the tissue destruction and alveolar airspace enlargement, leading to disease progression. Animal models play an important role in studying the underlying mechanisms of COPD as they address questions involving integrated whole body responses. This review aims to summarize the current animal models of COPD, focusing on their advantages and disadvantages on immune responses and neutrophilic inflammation. Also, we propose a potential new animal model of COPD, which may mimic the most characteristics of human COPD pathogenesis, including persistent moderate-to-high levels of neutrophilic inflammation.
Collapse
|
26
|
Baker K, Raemdonck K, Snelgrove RJ, Belvisi MG, Birrell MA. Characterisation of a murine model of the late asthmatic response. Respir Res 2017; 18:55. [PMID: 28399855 PMCID: PMC5387391 DOI: 10.1186/s12931-017-0541-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/28/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The incidence of asthma is increasing at an alarming rate. While the current available therapies are effective, there are associated side effects and they fail to adequately control symptoms in all patient subsets. In the search to understand disease pathogenesis and find effective therapies hypotheses are often tested in animal models before progressing into clinical studies. However, current dogma is that animal model data is often not predictive of clinical outcome. One possible reason for this is the end points measured such as antigen-challenge induced late asthmatic response (LAR) is often used in early clinical development, but seldom in animal model systems. As the mouse is typically selected as preferred species for pre-clinical models, we wanted to characterise and probe the validity of a murine model exhibiting an allergen induced LAR. METHODS C57BL/6 mice were sensitised with antigen and subsequently topically challenged with the same antigen. The role of AlumTM adjuvant, glucocorticoid, long acting muscarinic receptor antagonist (LAMA), TRPA1, CD4+ and CD8+ T cells, B cells, Mast cells and IgE were determined in the LAR using genetically modified mice and a range of pharmacological tools. RESULTS Our data showed that unlike other features of asthma (e.g. cellular inflammation, elevated IgE levels and airway hyper-reactivity (AHR) the LAR required AlumTMadjuvant. Furthermore, the LAR appeared to be sensitive to glucocorticoid and required CD4+ T cells. Unlike in other species studied, the LAR was not sensitive to LAMA treatment nor required the TRPA1 ion channel, suggesting that airway sensory nerves are not involved in the LAR in this species. Furthermore, the data suggested that CD8+ T cells and the mast cell-B-cell - IgE axis appear to be protective in this murine model. CONCLUSION Together we can conclude that this model does feature steroid sensitive, CD4+ T cell dependent, allergen induced LAR. However, collectively our data questions the validity of using the murine pre-clinical model of LAR in the assessment of future asthma therapies.
Collapse
Affiliation(s)
- Katie Baker
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Kristof Raemdonck
- Department of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450, Porto, Portugal
| | - Robert J Snelgrove
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maria G Belvisi
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Mark A Birrell
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK.
| |
Collapse
|
27
|
Szostak J, Boué S, Talikka M, Guedj E, Martin F, Phillips B, Ivanov NV, Peitsch MC, Hoeng J. Aerosol from Tobacco Heating System 2.2 has reduced impact on mouse heart gene expression compared with cigarette smoke. Food Chem Toxicol 2017; 101:157-167. [PMID: 28111298 DOI: 10.1016/j.fct.2017.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 02/05/2023]
Abstract
Experimental studies clearly demonstrate a causal effect of cigarette smoking on cardiovascular disease. To reduce the individual risk and population harm caused by smoking, alternative products to cigarettes are being developed. We recently reported on an apolipoprotein E-deficient (Apoe-/-) mouse inhalation study that compared the effects of exposure to aerosol from a candidate modified risk tobacco product, Tobacco Heating System 2.2 (THS2.2), and smoke from the reference cigarette (3R4F) on pulmonary and vascular biology. Here, we applied a transcriptomics approach to evaluate the impact of the exposure to 3R4F smoke and THS2.2 aerosol on heart tissues from the same cohort of mice. The systems response profiles demonstrated that 3R4F smoke exposure led to time-dependent transcriptomics changes (False Discovery Rate (FDR) < 0.05; 44 differentially expressed genes at 3-months; 491 at 8-months). Analysis of differentially expressed genes in the heart tissue indicated that 3R4F exposure induced the downregulation of genes involved in cytoskeleton organization and the contractile function of the heart, notably genes that encode beta actin (Actb), actinin alpha 4 (Actn4), and filamin C (Flnc). This was accompanied by the downregulation of genes related to the inflammatory response. None of these effects were observed in the group exposed to THS2.2 aerosol.
Collapse
Affiliation(s)
- Justyna Szostak
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Stéphanie Boué
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Emmanuel Guedj
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Blaine Phillips
- Philip Morris International Research Laboratories Pte Ltd, Science Park II, Singapore.
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
28
|
Curcumin ameliorates alveolar epithelial injury in a rat model of chronic obstructive pulmonary disease. Life Sci 2016; 164:1-8. [DOI: 10.1016/j.lfs.2016.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 11/23/2022]
|
29
|
Dhawale VS, Amara VR, Karpe PA, Malek V, Patel D, Tikoo K. Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model. Toxicol Appl Pharmacol 2016; 306:17-26. [PMID: 27343405 DOI: 10.1016/j.taap.2016.06.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
Abstract
Angiotensin-I converting enzyme (ACE) is positively correlated to asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) and is highly expressed in lungs. ACE2, the counteracting enzyme of ACE, was proven to be protective in pulmonary, cardiovascular diseases. In the present study we checked the effect of ACE2 activation in animal model of asthma. Asthma was induced in male wistar rats by sensitization and challenge with ovalbumin and then treated with ACE2 activator, diminazene aceturate (DIZE) for 2weeks. 48h after last allergen challenge, animals were anesthetized, blood, BALF, femoral bone marrow lavage were collected for leucocyte count; trachea for measuring airway responsiveness to carbachol; lungs and heart were isolated for histological studies and western blotting. In our animal model, the characteristic features of asthma such as altered airway responsiveness to carbachol, eosinophilia and neutrophilia were observed. Western blotting revealed the increased pulmonary expression of ACE1, IL-1β, IL-4, NF-κB, BCL2, p-AKT, p-p38 and decreased expression of ACE2 and IκB. DIZE treatment prevented these alterations. Intraalveolar interstitial thickening, inflammatory cell infiltration, interstitial fibrosis, oxidative stress and right ventricular hypertrophy in asthma control animals were also reversed by DIZE treatment. Activation of ACE2 by DIZE conferred protection against asthma as evident from biochemical, functional, histological and molecular parameters. To the best of our knowledge, we report for the first time that activation of ACE2 by DIZE prevents asthma progression by altering AKT, p38, NF-κB and other inflammatory markers.
Collapse
Affiliation(s)
- Vaibhav Shrirang Dhawale
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S Nagar, Punjab 160062, India
| | - Venkateswara Rao Amara
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S Nagar, Punjab 160062, India
| | - Pinakin Arun Karpe
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S Nagar, Punjab 160062, India
| | - Vajir Malek
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S Nagar, Punjab 160062, India
| | - Deep Patel
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S Nagar, Punjab 160062, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S Nagar, Punjab 160062, India..
| |
Collapse
|
30
|
Kim N, Duncan GA, Hanes J, Suk JS. Barriers to inhaled gene therapy of obstructive lung diseases: A review. J Control Release 2016; 240:465-488. [PMID: 27196742 DOI: 10.1016/j.jconrel.2016.05.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/29/2022]
Abstract
Knowledge of genetic origins of obstructive lung diseases has made inhaled gene therapy an attractive alternative to the current standards of care that are limited to managing disease symptoms. Initial lung gene therapy clinical trials occurred in the early 1990s following the discovery of the genetic defect responsible for cystic fibrosis (CF), a monogenic disorder. However, despite over two decades of intensive effort, gene therapy has yet to help patients with CF or any other obstructive lung disease. The slow progress is due in part to poor understanding of the biological barriers to inhaled gene therapy. Encouragingly, clinical trials have shown that inhaled gene therapy with various viral vectors and non-viral gene vectors is well tolerated by patients, and continued research has provided valuable lessons and resources that may lead to future success of this therapeutic strategy. In this review, we first introduce representative obstructive lung diseases and examine limitations of currently available therapeutic options. We then review key components for successful execution of inhaled gene therapy, including gene delivery systems, primary physiological barriers and strategies to overcome them, and advances in preclinical disease models with which the most promising systems may be identified for human clinical trials.
Collapse
Affiliation(s)
- Namho Kim
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregg A Duncan
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Justin Hanes
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Environmental and Health Sciences, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jung Soo Suk
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
31
|
Lilburn DML, Lesbats C, Six JS, Dubuis E, Yew-Booth L, Shaw DE, Belvisi MG, Birrell MA, Pavlovskaya GE, Meersmann T. Hyperpolarized 83Kr magnetic resonance imaging of alveolar degradation in a rat model of emphysema. J R Soc Interface 2016; 12:rsif.2015.0192. [PMID: 25994296 PMCID: PMC4587540 DOI: 10.1098/rsif.2015.0192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Hyperpolarized 83Kr surface quadrupolar relaxation (SQUARE) generates MRI contrast that was previously shown to correlate with surface-to-volume ratios in porous model surface systems. The underlying physics of SQUARE contrast is conceptually different from any other current MRI methodology as the method uses the nuclear electric properties of the spin I = 9/2 isotope 83Kr. To explore the usage of this non-radioactive isotope for pulmonary pathophysiology, MRI SQUARE contrast was acquired in excised rat lungs obtained from an elastase-induced model of emphysema. A significant 83Kr T1 relaxation time increase in the SQUARE contrast was found in the elastase-treated lungs compared with the baseline data from control lungs. The SQUARE contrast suggests a reduction in pulmonary surface-to-volume ratio in the emphysema model that was validated by histology. The finding supports usage of 83Kr SQUARE as a new biomarker for surface-to-volume ratio changes in emphysema.
Collapse
Affiliation(s)
- David M L Lilburn
- Sir Peter Mansfield Imaging Centre, Division for Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Clémentine Lesbats
- Sir Peter Mansfield Imaging Centre, Division for Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Joseph S Six
- Sir Peter Mansfield Imaging Centre, Division for Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Eric Dubuis
- Respiratory Pharmacology, Pharmacology and Toxicology, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Liang Yew-Booth
- Respiratory Pharmacology, Pharmacology and Toxicology, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Dominick E Shaw
- City Hospital Nottingham, Nottingham Respiratory Research Unit, Nottingham NG5 1PB, UK
| | - Maria G Belvisi
- Respiratory Pharmacology, Pharmacology and Toxicology, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Mark A Birrell
- Respiratory Pharmacology, Pharmacology and Toxicology, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Galina E Pavlovskaya
- Sir Peter Mansfield Imaging Centre, Division for Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Thomas Meersmann
- Sir Peter Mansfield Imaging Centre, Division for Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
32
|
Khedoe PPSJ, Rensen PCN, Berbée JFP, Hiemstra PS. Murine models of cardiovascular comorbidity in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1011-27. [PMID: 26993520 DOI: 10.1152/ajplung.00013.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/15/2016] [Indexed: 01/12/2023] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) have an increased risk for cardiovascular disease (CVD). Currently, COPD patients with atherosclerosis (i.e., the most important underlying cause of CVD) receive COPD therapy complemented with standard CVD therapy. This may, however, not be the most optimal treatment. To investigate the link between COPD and atherosclerosis and to develop specific therapeutic strategies for COPD patients with atherosclerosis, a substantial number of preclinical studies using murine models have been performed. In this review, we summarize the currently used murine models of COPD and atherosclerosis, both individually and combined, and discuss the relevance of these models for studying the pathogenesis and development of new treatments for COPD patients with atherosclerosis. Murine and clinical studies have provided complementary information showing a prominent role for systemic inflammation and oxidative stress in the link between COPD and atherosclerosis. These and other studies showed that murine models for COPD and atherosclerosis are useful tools and can provide important insights relevant to understanding the link between COPD and CVD. More importantly, murine studies provide good platforms for studying the potential of promising (new) therapeutic strategies for COPD patients with CVD.
Collapse
Affiliation(s)
- P Padmini S J Khedoe
- Department of Pulmonology, Leiden University Medical Center, the Netherlands; Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands
| | - Jimmy F P Berbée
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, the Netherlands; and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, the Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, the Netherlands
| |
Collapse
|
33
|
Kumar RK, Herbert C, Foster PS. Mouse models of acute exacerbations of allergic asthma. Respirology 2016; 21:842-9. [PMID: 26922049 DOI: 10.1111/resp.12760] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/29/2015] [Accepted: 01/23/2016] [Indexed: 12/24/2022]
Abstract
Most of the healthcare costs associated with asthma relate to emergency department visits and hospitalizations because of acute exacerbations of underlying chronic disease. Development of appropriate animal models of acute exacerbations of asthma is a necessary prerequisite for understanding pathophysiological mechanisms and assessing potential novel therapeutic approaches. Most such models have been developed using mice. Relatively few mouse models attempt to simulate the acute-on-chronic disease that characterizes human asthma exacerbations. Instead, many reported models involve relatively short-term challenge with an antigen to which animals are sensitized, followed closely by an unrelated triggering agent, so are better described as models of potentiation of acute allergic inflammation. Triggers for experimental models of asthma exacerbations include (i) challenge with high levels of the sensitizing allergen (ii) infection by viruses or fungi, or challenge with components of these microorganisms (iii) exposure to environmental pollutants. In this review, we examine the strengths and weaknesses of published mouse models, their application for investigation of novel treatments and potential future developments.
Collapse
Affiliation(s)
- Rakesh K Kumar
- Department of Pathology, School of Medical Sciences, UNSW Australia, Sydney
| | - Cristan Herbert
- Department of Pathology, School of Medical Sciences, UNSW Australia, Sydney
| | - Paul S Foster
- Centre for Asthma and Respiratory Disease, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
34
|
Piyadasa H, Altieri A, Basu S, Schwartz J, Halayko AJ, Mookherjee N. Biosignature for airway inflammation in a house dust mite-challenged murine model of allergic asthma. Biol Open 2016; 5:112-21. [PMID: 26740570 PMCID: PMC4823983 DOI: 10.1242/bio.014464] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
House dust mite (HDM) challenge is commonly used in murine models of allergic asthma for preclinical pathophysiological studies. However, few studies define objective readouts or biomarkers in this model. In this study we characterized immune responses and defined molecular markers that are specifically altered after HDM challenge. In this murine model, we used repeated HDM challenge for two weeks which induced hallmarks of allergic asthma seen in humans, including airway hyper-responsiveness (AHR) and elevated levels of circulating total and HDM-specific IgE and IgG1. Kinetic studies showed that at least 24 h after last HDM challenge results in significant AHR along with eosinophil infiltration in the lungs. Histologic assessment of lung revealed increased epithelial thickness and goblet cell hyperplasia, in the absence of airway wall collagen deposition, suggesting ongoing tissue repair concomitant with acute allergic lung inflammation. Thus, this model may be suitable to delineate airway inflammation processes that precede airway remodeling and development of fixed airway obstruction. We observed that a panel of cytokines e.g. IFN-γ, IL-1β, IL-4, IL-5, IL-6, KC, TNF-α, IL-13, IL-33, MDC and TARC were elevated in lung tissue and bronchoalveolar fluid, indicating local lung inflammation. However, levels of these cytokines remained unchanged in serum, reflecting lack of systemic inflammation in this model. Based on these findings, we further monitored the expression of 84 selected genes in lung tissues by quantitative real-time PCR array, and identified 31 mRNAs that were significantly up-regulated in lung tissue from HDM-challenged mice. These included genes associated with human asthma (e.g. clca3, ear11, il-13, il-13ra2, il-10, il-21, arg1 and chia1) and leukocyte recruitment in the lungs (e.g. ccl11, ccl12 and ccl24). This study describes a biosignature to enable broad and systematic interrogation of molecular mechanisms and intervention strategies for airway inflammation pertinent to allergic asthma that precedes and possibly potentiates airway remodeling and fibrosis. Summary: This study describes a systematic analysis of molecular end points in an murine model of allergic asthma. The biosignature described can be used to interrogate molecular mechanisms and intervention strategies for airway inflammation pertinent to allergic asthma that precedes and possibly potentiates airway remodeling and fibrosis.
Collapse
Affiliation(s)
- Hadeesha Piyadasa
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Immunology, University of Manitoba, Winnipeg, Manitoba, R3E 0T5, Canada
| | - Anthony Altieri
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Immunology, University of Manitoba, Winnipeg, Manitoba, R3E 0T5, Canada
| | - Sujata Basu
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Jacquie Schwartz
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Andrew J Halayko
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, R3E 0T5, Canada Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada Canadian Respiratory Research Network
| | - Neeloffer Mookherjee
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Immunology, University of Manitoba, Winnipeg, Manitoba, R3E 0T5, Canada Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada Canadian Respiratory Research Network
| |
Collapse
|
35
|
Lung structure and function in elastase-treated rats: A follow-up study. Respir Physiol Neurobiol 2015; 215:13-9. [DOI: 10.1016/j.resp.2015.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/19/2022]
|
36
|
PARP is activated in human asthma and its inhibition by olaparib blocks house dust mite-induced disease in mice. Clin Sci (Lond) 2015. [PMID: 26205779 PMCID: PMC4613510 DOI: 10.1042/cs20150122] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present study establishes poly(ADP-ribose)polymerase's (PARP's) role in chronic asthma, demonstrates that it is activated in human asthma, increases the clinical relevance of targeting PARP for blocking or preventing chronic asthma in humans and presents olaparib as a likely candidate drug. Our laboratory established a role for poly(ADP-ribose)polymerase (PARP) in asthma. To increase the clinical significance of our studies, it is imperative to demonstrate that PARP is actually activated in human asthma, to examine whether a PARP inhibitor approved for human testing such as olaparib blocks already-established chronic asthma traits in response to house dust mite (HDM), a true human allergen, in mice and to examine whether the drug modulates human cluster of differentiation type 4 (CD4+) T-cell function. To conduct the study, human lung specimens and peripheral blood mononuclear cells (PBMCs) and a HDM-based mouse asthma model were used. Our results show that PARP is activated in PBMCs and lung tissues of asthmatics. PARP inhibition by olaparib or gene knockout blocked established asthma-like traits in mice chronically exposed to HDM including airway eosinophilia and hyper-responsiveness. These effects were linked to a marked reduction in T helper 2 (Th2) cytokine production without a prominent effect on interferon (IFN)-γ or interleukin (IL)-10. PARP inhibition prevented HDM-induced increase in overall cellularity, weight and CD4+ T-cell population in spleens of treated mice whereas it increased the T-regulatory cell population. In CD3/CD28-stimulated human CD4 +T-cells, olaparib treatment reduced Th2 cytokine production potentially by modulating GATA binding protein-3 (gata-3)/IL-4 expression while moderately affecting T-cell proliferation. PARP inhibition inconsistently increased IL-17 in HDM-exposed mice and CD3/CD28-stimulated CD4+ T cells without a concomitant increase in factors that can be influenced by IL-17. In the present study, we provide evidence for the first time that PARP-1 is activated in human asthma and that its inhibition is effective in blocking established asthma in mice.
Collapse
|
37
|
Microbiome and Asthma: What Have Experimental Models Already Taught Us? J Immunol Res 2015; 2015:614758. [PMID: 26266269 PMCID: PMC4525458 DOI: 10.1155/2015/614758] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/02/2015] [Indexed: 02/07/2023] Open
Abstract
Asthma is a chronic inflammatory disease that imposes a substantial burden on patients, their families, and the community. Although many aspects of the pathogenesis of classical allergic asthma are well known by the scientific community, other points are not yet understood. Experimental asthma models, particularly murine models, have been used for over 100 years in order to better understand the immunopathology of asthma. It has been shown that human microbiome is an important component in the development of the immune system. Furthermore, the occurrence of many inflammatory diseases is influenced by the presence of microbes. Again, experimental models of asthma have helped researchers to understand the relationship between the microbiome and respiratory inflammation. In this review, we discuss the evolution of murine models of asthma and approach the major studies involving the microbiome and asthma.
Collapse
|
38
|
Abstract
The 2nd Cross Company Respiratory Symposium (CCRS), held in Horsham, U.K. in 2012, brought together representatives from across the pharmaceutical industry with expert academics, in the common interest of improving the design and translational predictiveness of in vivo models of respiratory disease. Organized by the respiratory representatives of the European Federation of Pharmaceutical Industries and Federations (EFPIA) group of companies involved in the EU-funded project (U-BIOPRED), the aim of the symposium was to identify state-of-the-art improvements in the utility and design of models of respiratory disease, with a view to improving their translational potential and reducing wasteful animal usage. The respiratory research and development community is responding to the challenge of improving translation in several ways: greater collaboration and open sharing of data, careful selection of the species, complexity and chronicity of the models, improved practices in preclinical research, continued refinement in models of respiratory diseases and their sub-types, greater understanding of the biology underlying human respiratory diseases and their sub-types, and finally greater use of human (and especially disease-relevant) cells, tissues and explants. The present review highlights these initiatives, combining lessons from the symposium and papers published in Clinical Science arising from the symposium, with critiques of the models currently used in the settings of asthma, idiopathic pulmonary fibrosis and COPD. The ultimate hope is that this will contribute to a more rational, efficient and sustainable development of a range of new treatments for respiratory diseases that continue to cause substantial morbidity and mortality across the world.
Collapse
|
39
|
Sagar S, Akbarshahi H, Uller L. Translational value of animal models of asthma: Challenges and promises. Eur J Pharmacol 2015; 759:272-7. [PMID: 25823808 DOI: 10.1016/j.ejphar.2015.03.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/22/2015] [Accepted: 03/12/2015] [Indexed: 01/17/2023]
Abstract
Asthma is a heterogeneous disease in which various environmental stimuli as well as different genes, cell types, cytokines and mediators are implicated. This chronic inflammatory disorder of the airways is estimated to affect as many as 300 million people worldwide. Animal models of asthma, despite their limitations, have contributed greatly to our understanding of disease pathology and the identification of key processes, cells and mediators in asthma. However, it is less likely to develop an animal model of asthma that takes into account all aspects of human disease. The focus in current asthma research is increasingly on severe asthma because this group of patients is not well treated today. Recent advances in studies of asthma exacerbation are thus considered. We therefore need to develop translational model systems for pharmacological evaluation and molecular target discovery of severe asthma and asthma exacerbations. In this review we attempted to discuss the different animal models of asthma, with special emphasis on ovalbumin and house dust mite models, their merits and their limitations.
Collapse
Affiliation(s)
- Seil Sagar
- Unit of Respiratory Immunopharmacology, Department of Experimental Medical Science, Lund University, Sweden.
| | - Hamid Akbarshahi
- Unit of Respiratory Immunopharmacology, Department of Experimental Medical Science, Lund University, Sweden
| | - Lena Uller
- Unit of Respiratory Immunopharmacology, Department of Experimental Medical Science, Lund University, Sweden
| |
Collapse
|
40
|
Sasaki M, Chubachi S, Kameyama N, Sato M, Haraguchi M, Miyazaki M, Takahashi S, Betsuyaku T. Evaluation of cigarette smoke-induced emphysema in mice using quantitative micro-computed tomography. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1039-45. [PMID: 25820526 DOI: 10.1152/ajplung.00366.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/25/2015] [Indexed: 11/22/2022] Open
Abstract
Chronic cigarette smoke (CS) exposure provokes variable changes in the lungs, and emphysema is an important feature of chronic obstructive pulmonary disease. The usefulness of micro-computed tomography (CT) to assess emphysema in different mouse models has been investigated, but few studies evaluated the dynamic structural changes in a CS-induced emphysema mouse model. A novel micro-CT technique with respiratory and cardiac gating has resulted in high-quality images that enable processing for further quantitative and qualitative analyses. Adult female C57BL/6J mice were repeatedly exposed to mainstream CS, and micro-CT scans were performed at 0, 4, 12, and 20 wk. Emphysema was also histologically quantified at each time point. Air-exposed mice and mice treated with intratracheal elastase served as controls and comparisons, respectively. End-expiratory lung volume, corresponding to functional residual volume, was defined as the calculated volume at the phase of end-expiration, and it evaluated air trapping. The end-expiratory lung volumes of CS-exposed mice were significantly larger than those of air controls at 12 and 20 wk, which was in line with alveolar enlargement and destruction by histological quantification. However, CS exposure neither increased low attenuation volume nor decreased the average lung CT value at any time point, unlike the elastase-instilled emphysema model. CS-exposed mice had rather higher average lung CT values at 4 and 12 wk. This is the first study characterizing a CS-induced emphysema model on micro-CT over time in mice. Moreover, these findings extend our understanding of the distinct pathophysiology of CS-induced emphysema in mice.
Collapse
Affiliation(s)
- Mamoru Sasaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naofumi Kameyama
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Minako Sato
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mizuha Haraguchi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masaki Miyazaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Saeko Takahashi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Vlahos R, Bozinovski S. Preclinical murine models of Chronic Obstructive Pulmonary Disease. Eur J Pharmacol 2015; 759:265-71. [PMID: 25818750 DOI: 10.1016/j.ejphar.2015.03.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/03/2015] [Accepted: 03/12/2015] [Indexed: 12/11/2022]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a major incurable global health burden and is the 4th leading cause of death worldwide. It is believed that an exaggerated inflammatory response to cigarette smoke causes progressive airflow limitation. This inflammation, where macrophages, neutrophils and T lymphocytes are prominent, leads to oxidative stress, emphysema, small airway fibrosis and mucus hypersecretion. Much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities and infectious (viral and bacterial) exacerbations (AECOPD). Comorbidities, defined as other chronic medical conditions, in particular skeletal muscle wasting and cardiovascular disease markedly impact on disease morbidity, progression and mortality. The mechanisms and mediators underlying COPD and its comorbidities are poorly understood and current COPD therapy is relatively ineffective. Thus, there is an obvious need for new therapies that can prevent the induction and progression of COPD and effectively treat AECOPD and comorbidities of COPD. Given that access to COPD patients can be difficult and that clinical samples often represent a "snapshot" at a particular time in the disease process, many researchers have used animal modelling systems to explore the mechanisms underlying COPD, AECOPD and comorbidities of COPD with the goal of identifying novel therapeutic targets. This review highlights the mouse models used to define the cellular, molecular and pathological consequences of cigarette smoke exposure and the recent advances in modelling infectious exacerbations and comorbidities of COPD.
Collapse
Affiliation(s)
- Ross Vlahos
- School of Health Sciences, Health Innovations Research Institute, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia; Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Steven Bozinovski
- School of Health Sciences, Health Innovations Research Institute, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia; Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
42
|
Nemmar A, Al Hemeiri A, Al Hammadi N, Yuvaraju P, Beegam S, Yasin J, Elwasila M, Ali BH, Adeghate E. Early pulmonary events of nose-only water pipe (shisha) smoking exposure in mice. Physiol Rep 2015; 3:e12258. [PMID: 25780090 PMCID: PMC4393146 DOI: 10.14814/phy2.12258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 11/24/2022] Open
Abstract
Water pipe smoking (WPS) is increasing in popularity and prevalence worldwide. Convincing data suggest that the toxicants in WPS are similar to that of cigarette smoke. However, the underlying pathophysiologic mechanisms related to the early pulmonary events of WPS exposure are not understood. Here, we evaluated the early pulmonary events of nose-only exposure to mainstream WPS generated by commercially available honey flavored "moasel" tobacco. BALB/c mice were exposed to WPS 30 min/day for 5 days. Control mice were exposed using the same protocol to atmospheric air only. We measured airway resistance using forced oscillation technique, and pulmonary inflammation was evaluated histopathologically and by biochemical analysis of bronchoalveolar lavage (BAL) fluid and lung tissue. Lung oxidative stress was evaluated biochemically by measuring the level of reactive oxygen species (ROS), lipid peroxidation (LPO), reduced glutathione (GSH), catalase, and superoxide dismutase (SOD). Mice exposed to WPS showed a significant increase in the number of neutrophils (P < 0.05) and lymphocytes (P < 0.001). Moreover, total protein (P < 0.05), lactate dehydrogenase (P < 0.005), and endothelin (P < 0.05) levels were augmented in bronchoalveolar lavage fluid. Tumor necrosis factor α (P < 0.005) and interleukin 6 (P < 0.05) concentrations were significantly increased in lung following the exposure to WPS. Both ROS (P < 0.05) and LPO (P < 0.005) in lung tissue were significantly increased, whereas the level and activity of antioxidants including GSH (P < 0.0001), catalase (P < 0.005), and SOD (P < 0.0001) were significantly decreased after WPS exposure, indicating the occurrence of oxidative stress. In contrast, airway resistance was not increased in WPS exposure. We conclude that subacute, nose-only exposure to WPS causes lung inflammation and oxidative stress without affecting pulmonary function suggesting that inflammation and oxidative stress are early markers of WPS exposure that precede airway dysfunction. Our data provide information on the initial steps involved in the respiratory effects of WPS, which constitute the underlying causal chain of reactions leading to the long-term effects of WPS.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmed Al Hemeiri
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Naser Al Hammadi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Elwasila
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
43
|
Ghonim MA, Pyakurel K, Ju J, Rodriguez PC, Lammi MR, Davis C, Abughazleh MQ, Mansy MS, Naura AS, Boulares AH. DNA-dependent protein kinase inhibition blocks asthma in mice and modulates human endothelial and CD4⁺ T-cell function without causing severe combined immunodeficiency. J Allergy Clin Immunol 2015; 135:425-40. [PMID: 25441643 PMCID: PMC4323872 DOI: 10.1016/j.jaci.2014.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 08/05/2014] [Accepted: 09/03/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND We reported that DNA-dependent protein kinase (DNA-PK) is critical for the expression of nuclear factor κB-dependent genes in TNF-α-treated glioblastoma cells, suggesting an involvement in inflammatory diseases. OBJECTIVE We sought to investigate the role of DNA-PK in asthma. METHODS Cell culture and ovalbumin (OVA)- or house dust mite-based murine asthma models were used in this study. RESULTS DNA-PK was essential for monocyte adhesion to TNF-α-treated endothelial cells. Administration of the DNA-PK inhibitor NU7441 reduced airway eosinophilia, mucus hypersecretion, airway hyperresponsiveness, and OVA-specific IgE production in mice prechallenged with OVA. Such effects correlated with a marked reduction in lung vascular cell adhesion molecule 1 expression and production of several cytokines, including IL-4, IL-5, IL-13, eotaxin, IL-2, and IL-12 and the chemokines monocyte chemoattractant protein 1 and keratinocyte-derived chemokine, with a negligible effect on IL-10/IFN-γ production. DNA-PK inhibition by gene heterozygosity of the 450-kDa catalytic subunit of the kinase (DNA-PKcs(+/-)) also prevented manifestation of asthma-like traits. These results were confirmed in a chronic model of asthma by using house dust mite, a human allergen. Remarkably, such protection occurred without causing severe combined immunodeficiency. Adoptive transfer of TH2-skewed OT-II wild-type CD4(+) T cells reversed IgE and TH2 cytokine production but not airway hyperresponsiveness in OVA-challenged DNA-PKcs(+/-) mice. DNA-PK inhibition reduced IL-4, IL-5, IL-13, eotaxin, IL-8, and monocyte chemoattractant protein 1 production without affecting IL-2, IL-12, IFN-γ, and interferon-inducible protein 10 production in CD3/CD28-stimulated human CD4(+) T cells, potentially by blocking expression of Gata3. These effects occurred without significant reductions in T-cell proliferation. In mouse CD4(+) T cells in vitro DNA-PK inhibition severely blocked CD3/CD28-induced Gata3 and T-bet expression in CD4(+) T cells and prevented differentiation of TH1 and TH2 cells under respective TH1- and TH2-skewing conditions. CONCLUSION Our results suggest DNA-PK as a novel determinant of asthma and a potential target for the treatment of the disease.
Collapse
Affiliation(s)
- Mohamed A Ghonim
- Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, La; Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Kusma Pyakurel
- Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, La
| | - Jihang Ju
- Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, La
| | - Paulo C Rodriguez
- Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, La
| | - Matthew R Lammi
- Pulmonary and Critical Care Section, LSU Health Sciences Center, New Orleans, La
| | - Christian Davis
- Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, La
| | | | | | - Amarjit S Naura
- Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, La.
| | - A Hamid Boulares
- Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, La.
| |
Collapse
|
44
|
Abstract
The airway epithelial cell barrier serves as the main site of replication for most of the common respiratory viruses and is thereby the first line of defense against these viruses. Host epithelial cells are specially enriched for pattern recognition receptors that activate immune response genes to limit viral replication. A prominently expressed set of these genes encodes cytokines that orchestrate key aspects of host defense, such as recruitment of immune cells and repair of epithelial cell damage. Under some circumstances, airway epithelial cells may be programmed to release cytokines (notably IL-33) that activate a type 2 immune response, which in excess might contribute to the development of chronic obstructive lung disease. Moreover, long-term epithelial progenitor cells with this capability may explain an ongoing susceptibility to lung disease in response to acute respiratory infection or other types of inhaled danger signals. The mucosal airway epithelial cell can thereby mediate a beneficial response for host defense and a detrimental response leading to inflammatory disease.
Collapse
|
45
|
da Silva RA, Almeida FM, Olivo CR, Saraiva-Romanholo BM, Perini A, Martins MA, Carvalho CRF. Comparison of the Effects of Aerobic Conditioning Before and After Pulmonary Allergic Inflammation. Inflammation 2014; 38:1229-38. [DOI: 10.1007/s10753-014-0090-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Lowe APP, Broadley KJ, Nials AT, Ford WR, Kidd EJ. Adjustment of sensitisation and challenge protocols restores functional and inflammatory responses to ovalbumin in guinea-pigs. J Pharmacol Toxicol Methods 2014; 72:85-93. [PMID: 25450500 PMCID: PMC4370377 DOI: 10.1016/j.vascn.2014.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/08/2014] [Accepted: 10/22/2014] [Indexed: 01/26/2023]
Abstract
Introduction Inhalation of antigen in atopic asthma induces early (EAR) and late asthmatic responses (LARs), inflammatory cell infiltration and airways hyperresponsiveness (AHR). Previously, we have established a protocol of sensitisation and subsequent ovalbumin (Ova) inhalation challenge in guinea-pigs which induced these 4 features (Smith & Broadley, 2007). However, the responses of guinea-pigs to Ova challenge have recently declined, producing no LAR or AHR and diminished EAR and cells. By making cumulative modifications to the protocol, we sought to restore these features. Methods Guinea-pigs were sensitised with Ova (i.p. 100 or 150 μg) on days 1 and 5 or days 1, 4 and 7 and challenged with nebulised Ova (100 or 300 μg/ml, 1 h) on day 15. Airway function was measured in conscious guinea-pigs by whole-body plethysmography to record specific airway conductance (sGaw). Airway responsiveness to aerosolized histamine (0.3 mM) was determined before and 24 h after Ova challenge. Bronchoalveolar lavage was performed for total and differential inflammatory cell counts. Lung sections were stained for counting of eosinophils. Results Lack of AHR and LAR with the original protocol was confirmed. Increasing the Ova challenge concentration from 100 to 300 μg/ml restored AHR and eosinophils and increased the peak of the EAR. Increasing the number of sensitisation injections from 2 to 3 did not alter the responses. Increasing the Ova sensitisation concentration from 100 to 150 μg significantly increased total cells, particularly eosinophils. A LAR was revealed and lymphocytes and eosinophils increased when either the Al(OH)3 concentration was increased or the duration between the final sensitisation injection and Ova challenge was extended from 15 to 21 days. Discussion This study has shown that declining allergic responses to Ova in guinea-pigs could be restored by increasing the sensitisation and challenge conditions. It has also demonstrated an important dissociation between EAR, LAR, AHR and inflammation.
Collapse
Affiliation(s)
- Alexander P P Lowe
- Cardiff School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Ave, Cardiff CF10 3NB, United Kingdom
| | - Kenneth J Broadley
- Cardiff School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Ave, Cardiff CF10 3NB, United Kingdom.
| | - Anthony T Nials
- Discovery Biology, Respiratory Centre of Excellence for Drug Discovery, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, SG1 2NY Stevenage, United Kingdom
| | - William R Ford
- Cardiff School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Ave, Cardiff CF10 3NB, United Kingdom
| | - Emma J Kidd
- Cardiff School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Ave, Cardiff CF10 3NB, United Kingdom
| |
Collapse
|
47
|
Niimori-Kita K, Ogino K, Mikami S, Kudoh S, Koizumi D, Kudoh N, Nakamura F, Misumi M, Shimomura T, Hasegawa K, Usui F, Nagahara N, Ito T. Identification of nuclear phosphoproteins as novel tobacco markers in mouse lung tissue following short-term exposure to tobacco smoke. FEBS Open Bio 2014; 4:746-54. [PMID: 25349779 PMCID: PMC4208089 DOI: 10.1016/j.fob.2014.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 01/07/2023] Open
Abstract
We analyzed nuclear phosphoprotein expression activated by tobacco smoke exposure. 253 phosphoproteins were identified in 1-day and 7-day exposure groups. Of these, 33 were significantly differentially expressed in control and exposed groups. Identified proteins were related to inflammation, response to stress and nicotine. OSF3 and spectrin β chain were identified as candidate tobacco smoke markers.
Smoking is a risk factor for lung diseases, including chronic obstructive pulmonary disease and lung cancer. However, the molecular mechanisms mediating the progression of these diseases remain unclear. Therefore, we sought to identify signaling pathways activated by tobacco-smoke exposure, by analyzing nuclear phosphoprotein expression using phosphoproteomic analysis of lung tissue from mice exposed to tobacco smoke. Sixteen mice were exposed to tobacco smoke for 1 or 7 days, and the expression of phosphorylated peptides was analyzed by mass spectrometry. A total of 253 phosphoproteins were identified, including FACT complex subunit SPT16 in the 1-day exposure group, keratin type 1 cytoskeletal 18 (K18), and adipocyte fatty acid-binding protein, in the 7-day exposure group, and peroxiredoxin-1 (OSF3) and spectrin β chain brain 1 (SPTBN1), in both groups. Semi-quantitative analysis of the identified phosphoproteins revealed that 33 proteins were significantly differentially expressed between the control and exposed groups. The identified phosphoproteins were classified according to their biological functions. We found that the identified proteins were related to inflammation, regeneration, repair, proliferation, differentiation, morphogenesis, and response to stress and nicotine. In conclusion, we identified proteins, including OSF3 and SPTBN1, as candidate tobacco smoke-exposure markers; our results provide insights into the mechanisms of tobacco smoke-induced diseases.
Collapse
Key Words
- 60s-RP, 60s ribosomal protein L10E
- AFABP, adipocyte fatty acid-binding protein
- ALDH2, aldehyde dehydrogenase, mitochondrial
- COPD, chronic obstructive pulmonary disorder
- CRP1, cysteine and glycine-rich protein 1
- ERK(1/2), extracellular signal regulated kinase 1/2
- FACTp140, FACT complex subunit SPT16
- HIP1, Huntingtin-interacting protein 1
- IL, interleukin
- JNK, c-Jun NH2-terminal kinase
- Jak2, tyrosine-protein kinase JAK2
- K18, keratin type 1 cytoskeletal 18
- K8, keratin type 2 cytoskeletal 8
- LIM, LIM/homeobox protein
- MAPK3, mitogen-activated protein kinase 3
- NF-κB, nuclear factor-kappa B
- Nuclear phosphoprotein
- OSF3, peroxiredoxin-1
- PKC-α, protein kinase C-α
- PRP19, pre-mRNA-processing factor 19
- Phosphoproteomic analysis
- ROS, reactive oxygen species
- SPTBN1, spectrin β chain brain 1
- STAT, signal transducer and activator of transcription
- Signaling pathways
- TGF-β, Transforming growth factor-β
- TIM, mitochondrial import inner membrane translocase subunit Tim9
- TNF, tumor necrosis factor
- TNFR2, tumor necrosis factor receptor 2
- TRAP1, heat shock protein 75 kDa
- Tobacco smoke exposure
- p100, serine protease P100
- pSTAT3-Tyr705, phosphorylated STAT3
Collapse
Affiliation(s)
- Kanako Niimori-Kita
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Kiyoshi Ogino
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Sayaka Mikami
- AMR Incorporated, 2-13-18, Nakane, Meguro-ku, Tokyo 152-0031, Japan
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Daikai Koizumi
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Noritaka Kudoh
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Fumiko Nakamura
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Masahiro Misumi
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Tadasuke Shimomura
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Koki Hasegawa
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Fumihiko Usui
- AMR Incorporated, 2-13-18, Nakane, Meguro-ku, Tokyo 152-0031, Japan
| | - Noriyuki Nagahara
- Isotope Research Center, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| |
Collapse
|
48
|
Davidsen PK, Herbert JM, Antczak P, Clarke K, Ferrer E, Peinado VI, Gonzalez C, Roca J, Egginton S, Barberá JA, Falciani F. A systems biology approach reveals a link between systemic cytokines and skeletal muscle energy metabolism in a rodent smoking model and human COPD. Genome Med 2014; 6:59. [PMID: 25228925 PMCID: PMC4165371 DOI: 10.1186/s13073-014-0059-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/24/2014] [Indexed: 01/03/2023] Open
Abstract
Background A relatively large percentage of patients with chronic obstructive pulmonary disease (COPD) develop systemic co-morbidities that affect prognosis, among which muscle wasting is particularly debilitating. Despite significant research effort, the pathophysiology of this important extrapulmonary manifestation is still unclear. A key question that remains unanswered is to what extent systemic inflammatory mediators might play a role in this pathology. Cigarette smoke (CS) is the main risk factor for developing COPD and therefore animal models chronically exposed to CS have been proposed for mechanistic studies and biomarker discovery. Although mice have been successfully used as a pre-clinical in vivo model to study the pulmonary effects of acute and chronic CS exposure, data suggest that they may be inadequate models for studying the effects of CS on peripheral muscle function. In contrast, recent findings indicate that the guinea pig model (Cavia porcellus) may better mimic muscle wasting. Methods We have used a systems biology approach to compare the transcriptional profile of hindlimb skeletal muscles from a Guinea pig rodent model exposed to CS and/or chronic hypoxia to COPD patients with muscle wasting. Results We show that guinea pigs exposed to long-term CS accurately reflect most of the transcriptional changes observed in dysfunctional limb muscle of severe COPD patients when compared to matched controls. Using network inference, we could then show that the expression profile in whole lung of genes encoding for soluble inflammatory mediators is informative of the molecular state of skeletal muscles in the guinea pig smoking model. Finally, we show that CXCL10 and CXCL9, two of the candidate systemic cytokines identified using this pre-clinical model, are indeed detected at significantly higher levels in serum of COPD patients, and that their serum protein level is inversely correlated with the expression of aerobic energy metabolism genes in skeletal muscle. Conclusions We conclude that CXCL10 and CXCL9 are promising candidate inflammatory signals linked to the regulation of central metabolism genes in skeletal muscles. On a methodological level, our work also shows that a system level analysis of animal models of diseases can be very effective to generate clinically relevant hypothesis. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0059-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter K Davidsen
- Centre for Computational Biology and Modelling, Institute for Integrative Biology, University of Liverpool, Crown Street, L69 7ZB Liverpool, UK ; School of Immunity and Infection, University of Birmingham, Birmingham, UK
| | - John M Herbert
- Centre for Computational Biology and Modelling, Institute for Integrative Biology, University of Liverpool, Crown Street, L69 7ZB Liverpool, UK
| | - Philipp Antczak
- Centre for Computational Biology and Modelling, Institute for Integrative Biology, University of Liverpool, Crown Street, L69 7ZB Liverpool, UK
| | - Kim Clarke
- Centre for Computational Biology and Modelling, Institute for Integrative Biology, University of Liverpool, Crown Street, L69 7ZB Liverpool, UK
| | - Elisabet Ferrer
- Department of Pulmonary Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain ; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Victor I Peinado
- Department of Pulmonary Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain ; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ; Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Barcelona, Spain
| | - Constancio Gonzalez
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Barcelona, Spain ; Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, Valladolid, Spain
| | - Josep Roca
- Department of Pulmonary Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain ; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ; Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Barcelona, Spain
| | - Stuart Egginton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joan A Barberá
- Department of Pulmonary Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain ; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ; Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Barcelona, Spain
| | - Francesco Falciani
- Centre for Computational Biology and Modelling, Institute for Integrative Biology, University of Liverpool, Crown Street, L69 7ZB Liverpool, UK
| |
Collapse
|
49
|
Haste L, Hulland K, Bolton S, Yesilkaya H, McKechnie K, Andrew PW. Development and characterization of a long-term murine model of Streptococcus pneumoniae infection of the lower airways. Infect Immun 2014; 82:3289-98. [PMID: 24866797 PMCID: PMC4136212 DOI: 10.1128/iai.01623-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/15/2014] [Indexed: 11/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by long periods of stable symptoms, but exacerbations occur, which result in a permanent worsening of symptoms. Previous studies have shown a link between bacterial colonization of the lower airways of COPD sufferers and an increase in exacerbation frequency. One of the most frequent bacterial colonizers is Streptococcus pneumoniae. To mimic this aspect of COPD, a murine model of low-level pneumococcal colonization in the lung has been developed, in which S. pneumoniae persisted in the lungs for at least 28 days. From day 14 postinfection, bacterial numbers remained constant until at least 28 days postinfection, and animals showed no outward signs of disease. The bacterial presence correlated with a low-level inflammatory response that was localized to small foci across the left and inferior lobes of the lung. The cellular response was predominantly monocytic, and focal fibroplasia was observed at the airway transitional zones. Physiological changes in the lungs were investigated with a Forced Maneuvers system. This new model provides a means of study of a long-term pulmonary infection with a human pathogen in a rodent system. This is an excellent tool for the development of future models that mimic complex respiratory diseases such as COPD and asthma.
Collapse
Affiliation(s)
- Louise Haste
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Kathryn Hulland
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Sarah Bolton
- Independent consultant, The Research Network, Sandwich, Kent, United Kingdom
| | - Hasan Yesilkaya
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Kenneth McKechnie
- Department of Bioscience, AstraZeneca R&D Charnwood, Loughborough, United Kingdom
| | - Peter W Andrew
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
50
|
Martin RA, Hodgkins SR, Dixon AE, Poynter ME. Aligning mouse models of asthma to human endotypes of disease. Respirology 2014; 19:823-33. [PMID: 24811131 PMCID: PMC4107015 DOI: 10.1111/resp.12315] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/01/2014] [Accepted: 03/28/2014] [Indexed: 12/20/2022]
Abstract
Substantial gains in understanding the pathophysiologic mechanisms underlying asthma have been made using preclinical mouse models. However, because asthma is a complex, heterogeneous syndrome that is rarely due to a single allergen and that often presents in the absence of atopy, few of the promising therapeutics that demonstrated effectiveness in mouse models have translated into new treatments for patients. This has resulted in an urgent need to characterize T helper (Th) 2-low, non-eosinophilic subsets of asthma, to study models that are resistant to conventional treatments such as corticosteroids and to develop therapies targeting patients with severe disease. Classifying asthma based on underlying pathophysiologic mechanisms, known as endotyping, offers a stratified approach for the development of new therapies for asthma. In preclinical research, new models of asthma are being utilized that more closely resemble the clinical features of different asthma endotypes, including the presence of interleukin-17 and a Th17 response, a biomarker of severe disease. These models utilize more physiologically relevant sensitizing agents, exacerbating factors and allergens, as well as incorporate time points that better reflect the natural history and chronicity of clinical asthma. Importantly, some models better represent non-classical asthma endotypes that facilitate the study of non-Th2-driven pathology and resemble the complex nature of clinical asthma, including corticosteroid resistance. Placing mouse asthma models into the context of human asthma endotypes will afford a more relevant approach to the understanding of pathophysiological mechanisms of disease that will afford the development of new therapies for those asthmatics that remain difficult to treat.
Collapse
Affiliation(s)
- Rebecca A Martin
- Vermont Lung Center, Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, Burlington, Vermont, USA
| | | | | | | |
Collapse
|