1
|
Cheng M, Hou Y, Chen Q, Ge S, Chen C, Zheng X, Zhang C. Exploring the wound-healing mechanism of Cayratia japonica extract: A combined experimental and network pharmacology study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119810. [PMID: 40239878 DOI: 10.1016/j.jep.2025.119810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wound healing is a complex biological process and remains a significant challenge due to the lack of effective therapeutic drugs. Cayratia japonica (CJG), a traditional folk medicine, has been widely used for its anti-inflammatory and efficacy in treating traumatic injuries. AIM OF THE STUDY This study aimed to investigate the wound-healing effects of CJG and elucidate its underlying mechanism. METHODS First, the phytochemical composition of CJG was identified using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), and its potential wound-healing mechanisms were predicated via network pharmacology. Next, in vivo experiments were conducted by dividing subjects into control, CJG (1.5-6 mg/cm2), and bFGF (150 IU/cm2) groups to assess its therapeutic efficacy. Finally, the mechanism of CJG and its key bioactive component, luteolin-7-O-glucoside (LUT-7G), were explained through polymerase chain reaction (PCR), Western blotting, histopathology, immunofluorescence, plasmid transfection, colony formation unit assays, and cellular thermal shift assay (CETSA). RESULTS LC-MS/MS identified 15 major constituents of CJG and 102 potential wound healing-related targets. Network pharmacology analysis revealed key enriched pathways, including AMPK, TNF, and metabolic pathways. In vivo, CJG significantly accelerated wound-healing by inhibiting inflammatory responses, promoting angiogenesis, and modulating collagen deposition. In vitro, LUT-7G treatment markedly enhanced the proliferation and migration of HaCaT and HSF cells. Mechanistically, LUT-7G exerted its wound-healing effects by activating the AMPK/CTHRC1/TGF-β1 signaling pathway in HaCaT cells. In conclusion, CJG significantly promotes wound healing by regulating AMPK signaling pathways, indicating its promising clinical application prospects.
Collapse
Affiliation(s)
- Mengqin Cheng
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi Hou
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 21000, China
| | - Qi Chen
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Shanchun Ge
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Ce Chen
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Xueping Zheng
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 21000, China.
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
2
|
Lin H, Pan J, Zhang J, He Y, Ge Y, Niu D, Han W, Han X, Li F, Bai X, Feng X, Lin L, Shen R, Su X, Qiao X. Intermedin protects peritubular capillaries by inhibiting eNOS uncoupling through AMPK/GTPCH-I/BH4 pathway and alleviate CKD following AKI. Free Radic Biol Med 2025; 234:72-85. [PMID: 40228707 DOI: 10.1016/j.freeradbiomed.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND Even after recovery of kidney function following AKI, progression to CKD may still occur, characterized by a reduction in peritubular capillaries (PTC) and subsequent kidney fibrosis. Reactive oxygen species (ROS) from uncoupled eNOS are suspected to damage endothelial cells and cause PTC rarefaction observed in AKI-CKD. Intermedin (IMD) inhibits eNOS uncoupling by activating AMPK, but its impact on AKI-CKD transition remains unclear. METHODS We utilized IMD-deficient (IMD-/-) mice to explore its effects on AKI-CKD transition, PTC density, endothelial damage, and kidney ROS in a kidney ischemia/reperfusion injury (IRI) model. To elucidate its protective mechanism for PTCs, we subsequently investigated the effects of IMD on endothelial cells and ROS using a hypoxia/reoxygenation (HR) model with human umbilical vein endothelial cells (HUVECs). Finally, we investigated the influence of IMD on AMPK/GTPCH-I/BH4/eNOS to explore its mechanism in alleviating oxidative stress. RESULTS Compared with IMD+/+ littermate sham controls, PTC density was significantly reduced in IMD-/- sham mice, with significantly increased oxidative stress. Post-AKI, both IMD+/+ and IMD-/- mice demonstrated substantial declines in kidney function and histology, along with significant fibrosis, PTC reduction, and heightened oxidative stress. Moreover, the severity of kidney damage in IMD-/- mice following AKI was considerably more pronounced than in IMD+/+ mice. HR significantly induced eNOS uncoupling and oxidative stress in HUVECs. Treatment with IMD effectively inhibited eNOS uncoupling and ROS production, achieving levels comparable to the antioxidant N-acetylcysteine. The inhibitory effect of IMD on eNOS uncoupling was abrogated when L-NAME was introduced after HR. HR significantly impaired AMPK activation, which could be reversed by IMD. Additional experiments with inhibitors of GTPCH-I and AMPK, and exogenous BH4, confirmed that IMD protects endothelial cells by activating AMPK/GTPCH-I/BH4, thereby inhibiting eNOS uncoupling and ROS production. CONCLUSION We concluded that IMD inhibits AKI-CKD transition by protecting endothelial cells of PTC via AMPK/GTPCH-I/BH4/eNOS pathway.
Collapse
Affiliation(s)
- Hui Lin
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China; Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China; Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Juan Pan
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China; Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China; Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Junhua Zhang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China; Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China; Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yuyin He
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China; Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China; Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yuan Ge
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China; Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China; Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Dan Niu
- Department of Pathology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Weixia Han
- Department of Pathology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xiaoli Han
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China; Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China; Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Fan Li
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China; Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China; Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xiaomei Bai
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China; Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China; Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xinyuan Feng
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China; Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China; Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ling Lin
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China; Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China; Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ruihua Shen
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China; Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China; Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xiaole Su
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China; Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China; Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xi Qiao
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China; Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China; Kidney Research Center of Shanxi Medical University, Taiyuan, People's Republic of China.
| |
Collapse
|
3
|
Al-Kuraishy HM, Sulaiman GM, Mohsin MH, Mohammed HA, Dawood RA, Albuhadily AK, Al-Gareeb AI, Albukhaty S, Abomughaid MM. Targeting of AMPK/MTOR signaling in the management of atherosclerosis: Outmost leveraging. Int J Biol Macromol 2025; 309:142933. [PMID: 40203916 DOI: 10.1016/j.ijbiomac.2025.142933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Atherosclerosis (AS) is a chronic vascular disorder that is characterized by the thickening and narrowing of arteries due to the development of atherosclerotic plaques. The traditional risk factors involved in AS are obesity, type 2 diabetes (T2D), dyslipidemia, hypertension, and smoking. Furthermore, non-traditional risk factors for AS, such as inflammation, sleep disturbances, physical inactivity, air pollution, and alterations of gut microbiota, gained attention in relation to the pathogenesis of AS. Interestingly, the pathogenesis of AS, is complex and related to different abnormalities of cellular and sub-cellular signaling pathways. It has been illustrated that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (MTOR) pathways are involved in AS pathogenesis. Mounting evidence indicated that AMPK plays a critical role in attenuating the development of AS by activating autophagy, which is impaired during atherogenesis. AMPK has a vasculoprotective effect by reducing lipid accumulation, inflammatory cell proliferation, and the release of pro-inflammatory cytokines, as well as decreasing inflammatory cell adhesion to the vascular endothelium. AMPK activation by metformin inhibits the migration of vascular smooth muscle cells (VSMCs) and AS development. However, the MTOR pathway contributes to AS by inhibiting autophagy, highlighting autophagy as a crucial link between the AMPK and MTOR pathways in AS pathogenesis. The MTOR is a key inducer of endothelial dysfunction and is involved in the development of AS. Therefore, both the AMPK and MTOR pathways play a crucial role in the pathogenesis of AS. However, the exact role of AMPK and MTOR pathways in the pathogenesis of AS is not fully clarified. Therefore, this review aims to discuss the potential role of the AMPK/MTOR signaling pathway in AS, and how AMPK activators and MTOR inhibitors influence the development and progression of AS. In conclusion, AMPK activators and MTOR inhibitors have vasculoprotective effects against the development and progression of AS.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ghassan M Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad, Iraq.
| | - Mayyadah H Mohsin
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Retaj A Dawood
- Department of Biology, College of Science, Al-Mustaqbal University, Hilla 51001, Iraq
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir ibn Hayyan Medical University, Al-Ameer Qu, PO.Box13 Kufa, Najaf, Iraq
| | | | - Mosleh M Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Bisha 67714, Saudi Arabia
| |
Collapse
|
4
|
Terasaki M, Yashima H, Mori Y, Saito T, Inoue N, Matsui T, Osaka N, Fujikawa T, Ohara M, Yamagishi SI. Glucose-Dependent Insulinotropic Polypeptide Inhibits AGE-Induced NADPH Oxidase-Derived Oxidative Stress Generation and Foam Cell Formation in Macrophages Partly via AMPK Activation. Int J Mol Sci 2024; 25:9724. [PMID: 39273671 PMCID: PMC11395916 DOI: 10.3390/ijms25179724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) of the incretin group has been shown to exert pleiotropic actions. There is growing evidence that advanced glycation end products (AGEs), senescent macromolecules formed at an accelerated rate under chronic hyperglycemic conditions, play a role in the pathogenesis of atherosclerotic cardiovascular disease in diabetes. However, whether and how GIP could inhibit the AGE-induced foam cell formation of macrophages, an initial step of atherosclerosis remains to be elucidated. In this study, we address these issues. We found that AGEs increased oxidized low-density-lipoprotein uptake into reactive oxygen species (ROS) generation and Cdk5 and CD36 gene expressions in human U937 macrophages, all of which were significantly blocked by [D-Ala2]GIP(1-42) or an inhibitor of NADPH oxidase activity. An inhibitor of AMP-activated protein kinase (AMPK) attenuated all of the beneficial effects of [D-Ala2]GIP(1-42) on AGE-exposed U937 macrophages, whereas an activator of AMPK mimicked the effects of [D-Ala2]GIP(1-42) on foam cell formation, ROS generation, and Cdk5 and CD36 gene expressions in macrophages. The present study suggests that [D-Ala2]GIP(1-42) could inhibit the AGE-RAGE-induced, NADPH oxidase-derived oxidative stress generation in U937 macrophages via AMPK activation and subsequently suppress macrophage foam cell formation by reducing the Cdk5-CD36 pathway.
Collapse
Affiliation(s)
- Michishige Terasaki
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Graduate School of Medicine, Showa University, 1-5-8 Shinagawa, Tokyo 142-8666, Japan
| | - Hironori Yashima
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Graduate School of Medicine, Showa University, 1-5-8 Shinagawa, Tokyo 142-8666, Japan
| | - Yusaku Mori
- Anti-Glycation Research Section, Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Graduate School of Medicine, Showa University, 1-5-8 Shinagawa, Tokyo 142-8666, Japan
| | - Tomomi Saito
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Graduate School of Medicine, Showa University, 1-5-8 Shinagawa, Tokyo 142-8666, Japan
| | - Naoto Inoue
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Graduate School of Medicine, Showa University, 1-5-8 Shinagawa, Tokyo 142-8666, Japan
| | - Takanori Matsui
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui 910-1195, Japan
| | - Naoya Osaka
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Graduate School of Medicine, Showa University, 1-5-8 Shinagawa, Tokyo 142-8666, Japan
| | - Tomoki Fujikawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Graduate School of Medicine, Showa University, 1-5-8 Shinagawa, Tokyo 142-8666, Japan
| | - Makoto Ohara
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Graduate School of Medicine, Showa University, 1-5-8 Shinagawa, Tokyo 142-8666, Japan
| | - Sho-Ichi Yamagishi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Graduate School of Medicine, Showa University, 1-5-8 Shinagawa, Tokyo 142-8666, Japan
| |
Collapse
|
5
|
Kumar K, Rawat P, Kaur S, Singh N, Yadav HN, Singh D, Jaggi AS, Sethi D. Unveiling Wide Spectrum Therapeutic Implications and Signaling Mechanisms of Valsartan in Diverse Disorders: A Comprehensive Review. Curr Drug Res Rev 2024; 16:268-288. [PMID: 37461345 DOI: 10.2174/2589977515666230717120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2024]
Abstract
Valsartan is an orally active non-peptide angiotensin receptor antagonist, an effective and well-tolerated anti-hypertensive drug. Besides its antihypertensive action, it has clinical implications in many other disorders, like heart failure (HF), arrhythmia, chronic kidney disease (CKD), diabetic complications (DM), atherosclerosis, etc. Besides angiotensin receptor blocking activity, valsartan reduces circulating levels of biochemical markers, such as hs-CRP, which is responsible for its anti-inflammatory and anti-oxidant activity. Moreover, valsartan also acts by inhibiting or inducing various signalling pathways, such as inducing autophagy via the AKT/mTOR/S6K pathway or inhibiting the TLR/NF-kB pathway. The current review exhaustively discusses the therapeutic implications of valsartan with specific emphasis on the mechanism of action in various disorders. The article provides a detailed spectrum of the therapeutic profile of valsartan and will likely be very useful to researchers working in the relevant research areas.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Pooja Rawat
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Simrat Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Dimple Sethi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
6
|
González-Blázquez R, Gil-Ortega M, Alcalá M, González-Moreno D, Viana M, Chowen JA, Sanz-Gómez M, Fernández-Alfonso MS, Somoza B. Short-term dietary intervention improves endothelial dysfunction induced by high-fat feeding in mice through upregulation of the AMPK-CREB signaling pathway. Acta Physiol (Oxf) 2023; 239:e14023. [PMID: 37553856 DOI: 10.1111/apha.14023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
AIM In addition to functioning as an energy sensor switch, AMPK plays a key role in the maintenance of cardiovascular homeostasis. However, obesity disrupts AMPK signaling, contributing to endothelial dysfunction and cardiovascular disease. This study aimed to elucidate if a short-term dietary intervention consisting in replacing the high-fat diet with a standard diet for 2 weeks could reverse obesity-induced endothelial dysfunction via AMPK-CREB activation. METHODS For this, 5-week-old male C57BL6J mice were fed a standard (Chow) or a high-fat (HF) diet for 8 weeks. The HF diet was replaced by the chow diet for the last 2 weeks in half of HF mice, generating 3 groups: Chow, HF and HF-Chow. Vascular reactivity and western-blot assays were performed in the thoracic aorta. RESULTS Returning to a chow diet significantly reduced body weight and glucose intolerance. Relaxant responses to acetylcholine and the AMPK activator (AICAR) were significantly impaired in HF mice but improved in HF-Chow mice. The protein levels of AMPKα, p-CREB and antioxidant systems (heme oxygenase-1 (HO-1) and catalase) were significantly reduced in HF but normalized in HF-Chow mice. CONCLUSION Improving dietary intake by replacing a HF diet with a standard diet improves AMPK-mediated responses due to the upregulation of the AMPK/CREB/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| | - Daniel González-Moreno
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| | - Julie A Chowen
- Department of Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Marta Sanz-Gómez
- Instituto Pluridisciplinar, Unidad de Cartografía Cerebral, Universidad Complutense de Madrid, Madrid, Spain
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar, Unidad de Cartografía Cerebral, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
7
|
Lu H, Jiang X, He L, Ji X, Li X, Liu S, Sun Y, Qin X, Xiong X, Philipsen S, Xi B, Zhang M, Yang J, Zhang C, Zhang Y, Zhang W. Endothelial Sp1/Sp3 are essential to the effect of captopril on blood pressure in male mice. Nat Commun 2023; 14:5891. [PMID: 37735515 PMCID: PMC10514286 DOI: 10.1038/s41467-023-41567-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Endothelial dysfunction represents a major cardiovascular risk factor for hypertension. Sp1 and Sp3 belong to the specificity protein and Krüppel-like transcription factor families. They are ubiquitously expressed and closely associated with cardiovascular development. We investigate the role of Sp1 and Sp3 in endothelial cells in vivo and evaluate whether captopril, an angiotensin-converting enzyme inhibitor (ACEI), targets Sp1/Sp3 to exert its effects. Inducible endothelial-specific Sp1/Sp3 knockout mice are generated to elucidate their role in endothelial cells. Tamoxifen-induced deletion of endothelial Sp1 and Sp3 in male mice decreases the serum nitrite/nitrate level, impairs endothelium-dependent vasodilation, and causes hypertension and cardiac remodeling. The beneficial actions of captopril are abolished by endothelial-specific deletion of Sp1/Sp3, indicating that they may be targets for ACEIs. Captopril increases Sp1/Sp3 protein levels by recruiting histone deacetylase 1, which elevates deacetylation and suppressed degradation of Sp1/Sp3. Sp1/Sp3 represents innovative therapeutic target for captopril to prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Hanlin Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiuxin Jiang
- Department of Bariatric and Metabolic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lifan He
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xuyang Ji
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyun Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shaozhuang Liu
- Department of Bariatric and Metabolic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanyuan Sun
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoteng Qin
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiwen Xiong
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wencheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
8
|
Tian H, Zhao X, Zhang Y, Xia Z. Abnormalities of glucose and lipid metabolism in myocardial ischemia-reperfusion injury. Biomed Pharmacother 2023; 163:114827. [PMID: 37141734 DOI: 10.1016/j.biopha.2023.114827] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023] Open
Abstract
Myocardial ischemia-reperfusion injury is a common condition in cardiovascular diseases, and the mechanism of its occurrence involves multiple complex metabolic pathways and signaling pathways. Among these pathways, glucose metabolism and lipid metabolism play important roles in regulating myocardial energy metabolism. Therefore, this article focuses on the roles of glucose metabolism and lipid metabolism in myocardial ischemia-reperfusion injury, including glycolysis, glucose uptake and transport, glycogen metabolism and the pentose phosphate pathway; and triglyceride metabolism, fatty acid uptake and transport, phospholipid metabolism, lipoprotein metabolism, and cholesterol metabolism. Finally, due to the different alterations and development of glucose metabolism and lipid metabolism in myocardial ischemia-reperfusion, there are also complex interregulatory relationships between them. In the future, modulating the equilibrium between glucose metabolism and lipid metabolism in cardiomyocytes and ameliorating aberrations in myocardial energy metabolism represent highly promising novel strategies for addressing myocardial ischemia-reperfusion injury. Therefore, a comprehensive exploration of glycolipid metabolism can offer novel theoretical and clinical insights into the prevention and treatment of myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiaoshuai Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yuxi Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
9
|
Ashkar F, Bhullar KS, Jiang X, Wu J. Tripeptide IRW Improves AMPK/eNOS Signaling Pathway via Activating ACE2 in the Aorta of High-Fat-Diet-Fed C57BL/6 Mice. BIOLOGY 2023; 12:biology12040556. [PMID: 37106756 PMCID: PMC10135585 DOI: 10.3390/biology12040556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
This study aims to investigate the effect of tripeptide IRW on the local renin–angiotensin system (RAS), particularly angiotensin-converting enzyme 2 (ACE2), and their association with signaling pathways in the aorta of a high-fat-diet (HFD)-induced insulin-resistant mouse model. C57BL/6 mice were fed HFD (45% of the total calories) for six weeks, and then IRW was added to the diet (45 mg/kg body weight (BW)) for another eight weeks. ACE2 mRNA expression and protein level(s) were increased (p < 0.05), while angiotensin II receptor (AT1R) and angiotensin-converting enzyme (ACE) protein abundance was significantly reduced (p < 0.05) in the aorta of HFD mice treated by IRW. IRW supplementation also improved glucose transporter 4 (GLUT4) abundance (p < 0.05) alongside AMP-activated protein kinase (AMPK) (p < 0.05), Sirtuin 1 (SIRT1) (p < 0.05), and endothelial nitric oxide synthase (eNOS) (p < 0.05) expression. IRW downregulated the levels of endothelin 1 (ET-1) and p38 mitogen-activated protein kinases (p38 MAPK, p < 0.05). Furthermore, the levels of AMPK and eNOS in vascular smooth muscle cells (VSMCs) were significantly reduced in ACE2 knockdown cells treated with or without IRW (p < 0.01). In conclusion, this study provided new evidence of the regulatory role of IRW on the aortic ACE2 against metabolic syndrome (MetS) in an HFD-induced insulin-resistant model.
Collapse
Affiliation(s)
- Fatemeh Ashkar
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Khushwant S. Bhullar
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Xu Jiang
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
10
|
Ghai S, Young A, Su KH. Proteotoxic stress response in atherosclerotic cardiovascular disease: Emerging role of heat shock factor 1. Front Cardiovasc Med 2023; 10:1155444. [PMID: 37077734 PMCID: PMC10106699 DOI: 10.3389/fcvm.2023.1155444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Atherosclerosis is a major risk factor for cardiovascular diseases. Hypercholesterolemia has been both clinically and experimentally linked to cardiovascular disease and is involved in the initiation of atherosclerosis. Heat shock factor 1 (HSF1) is involved in the control of atherosclerosis. HSF1 is a critical transcriptional factor of the proteotoxic stress response that regulates the production of heat shock proteins (HSPs) and other important activities such as lipid metabolism. Recently, HSF1 is reported to directly interact with and inhibit AMP-activated protein kinase (AMPK) to promote lipogenesis and cholesterol synthesis. This review highlights roles of HSF1 and HSPs in critical metabolic pathways of atherosclerosis, including lipogenesis and proteome homeostasis.
Collapse
|
11
|
Li W, Yang Y, Zhang X, Lin Y, Li H, Yao Y, Mu D. The preliminary study of exosomes derived from thymosin beta 4-treated adipose-derived stem cells in fat grafting. Genes Genomics 2023; 45:413-427. [PMID: 36445571 DOI: 10.1007/s13258-022-01329-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The retention rate in autologous fat grafting is an increasing concern for surgeons and patients. Our previous research verified that thymosin beta 4 (Tβ4) positively affected fat survival, while the mechanism was unknown. The endothelial cells (ECs) and exosomes derived from adipose-derived stem cells (ADSCs) were regarded to play a critical role in fat transplantation. OBJECTIVE This study aimed to evaluate the effect of exosomes derived from Tβ4-treated ADSCs on EC proliferation and to identify the exosomal microRNA (miRNA) profile compared with the Tβ4-untreated group. Additionally, this research intended to recognize the related molecules and signaling pathways in the Tβ4-treated group with potential roles in fat transplants. METHODS ADSCs were collected from patients who underwent liposuction surgery. Depending on whether the medium was supplemented with exogenous Tβ4 or not, exosomes derived from cultured ADSCs were divided into the Tβ4-Exos group and Con-Exos group. Exosome uptake and cell counting kit-8 (CCK-8) assays assessed the influence of Tβ4-Exos on EC proliferation. The exosomal miRNAs of the two groups were analyzed by next-generation sequencing. With the criteria at the |log2 (fold change)| ≥ 1 and p-value < 0.05, up-regulated and down-regulated differentially expressed miRNAs (DEMs) were obtained. Prediction databases were used to predict the downstream mRNAs for DEMs. And then, overlapping genes for the up-regulated DEMs and the down-regulated were screened out, followed by enrichment analysis, protein-protein interaction network construction, and the gene cluster and hub gene identification. RESULTS ADSCs were obtained from four female patients. The exosome uptake and CCK-8 assays showed that the Tβ4-Exos could increase cell growth rate compared with the control group (DMEM-H + PBS). In Tβ4-Exos and Con-Exos groups, 2651 exosomal miRNAs were recognized, with 80 up-regulated and 99 down-regulated DEMs according to the criteria. After the prediction, 621 overlapping genes for the up-regulated and 572 for the down-regulated DEMs were screened. The subsequent bioinformatics analysis found specific molecules and pathways related to the positive effect on fat survival. CONCLUSIONS The exosomes derived from Tβ4-treated ADSCs probably positively affect EC proliferation. Compared with the Con-Exos group, several exosomal DEMs, genes, and pathways were distinguished. These findings of this exploratory study provide the potential direction for future in-depth research on fat grafting.
Collapse
Affiliation(s)
- Wandi Li
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Yan Yang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xiaoyu Zhang
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Yan Lin
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Haoran Li
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Yu Yao
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Dali Mu
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, 100144, People's Republic of China.
| |
Collapse
|
12
|
Citri Reticulatae Pericarpium (Chenpi) Protects against Endothelial Dysfunction and Vascular Inflammation in Diabetic Rats. Nutrients 2022; 14:nu14245221. [PMID: 36558380 PMCID: PMC9783663 DOI: 10.3390/nu14245221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Dried tangerine peel (Citri reticulatae Pericarpium, CRP; Chenpi in Chinese) possesses medicine and food homology with hypolipidemic, anti-inflammatory and antioxidant activities. This study aimed to explore the protective effect of CRP extract on endothelial function and inflammation in type 2 diabetic rats and the related mechanisms. Type 2 diabetes mellitus was induced by high-fat diet (HFD)/streptozotocin (STZ) in male Sprague Dawley rats, and CRP extract was orally administered at 400 mg/kg/day for 4 weeks. Rat and mouse aortas were treated with high glucose and CRP extract ex vivo. The data showed that the ethanolic extract of CRP normalized blood pressure and the plasma lipid profile as well as the plasma levels of liver enzymes in diabetic rats. Impaired endothelium-dependent relaxations in aortas, carotid arteries and renal arteries were improved. CRP extract suppressed vascular inflammatory markers and induced AMPK activation in aortas of diabetic rats. Exposure to high glucose impaired vasodilation in aortas of rats and mice, and this impairment was prevented by co-incubation with CRP extract. In conclusion, our findings suggest that CRP extract protects endothelial function by inhibiting the vascular inflammatory state on activation of AMPK in diabetic rats.
Collapse
|
13
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
14
|
Flores K, Siques P, Brito J, Arribas SM. AMPK and the Challenge of Treating Hypoxic Pulmonary Hypertension. Int J Mol Sci 2022; 23:ijms23116205. [PMID: 35682884 PMCID: PMC9181235 DOI: 10.3390/ijms23116205] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by sustained elevation of pulmonary artery pressure produced by vasoconstriction and hyperproliferative remodeling of the pulmonary artery and subsequent right ventricular hypertrophy (RVH). The search for therapeutic targets for cardiovascular pathophysiology has extended in many directions. However, studies focused on mitigating high-altitude pulmonary hypertension (HAPH) have been rare. Because AMP-activated protein kinase (AMPK) is involved in cardiovascular and metabolic pathology, AMPK is often studied as a potential therapeutic target. AMPK is best characterized as a sensor of cellular energy that can also restore cellular metabolic homeostasis. However, AMPK has been implicated in other pathways with vasculoprotective effects. Notably, cellular metabolic stress increases the intracellular ADP/ATP or AMP/ATP ratio, and AMPK activation restores ATP levels by activating energy-producing catabolic pathways and inhibiting energy-consuming anabolic pathways, such as cell growth and proliferation pathways, promoting cardiovascular protection. Thus, AMPK activation plays an important role in antiproliferative, antihypertrophic and antioxidant pathways in the pulmonary artery in HPH. However, AMPK plays contradictory roles in promoting HPH development. This review describes the main findings related to AMPK participation in HPH and its potential as a therapeutic target. It also extrapolates known AMPK functions to discuss the less-studied HAPH context.
Collapse
Affiliation(s)
- Karen Flores
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
- Correspondence: ; Tel.: +56-572526392
| | - Patricia Siques
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
| | - Julio Brito
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
| | - Silvia M. Arribas
- Department of Physiology, University Autonoma of Madrid, 28049 Madrid, Spain;
| |
Collapse
|
15
|
Song D, Li M, Yu X, Wang Y, Fan J, Yang W, Yang L, Li H. The Molecular Pathways of Pyroptosis in Atherosclerosis. Front Cell Dev Biol 2022; 10:824165. [PMID: 35237603 PMCID: PMC8884404 DOI: 10.3389/fcell.2022.824165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease seriously endangering human health, whose occurrence and development is related to many factors. Pyroptosis is a recently identified novel programmed cell death associated with an inflammatory response and involved in the formation and progression of AS by activating different signaling pathways. Protein modifications of the sirtuin family and microRNAs (miRNAs) can directly or indirectly affect pyroptosis-related molecules. It is important to link atherosclerosis, thermogenesis and molecular modifications. This article will systematically review the molecular pathways of pyroptosis in AS, which can provide a new perspective for AS prevention and treatment.
Collapse
Affiliation(s)
- Dan Song
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Manman Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xue Yu
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yuqin Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Jiaying Fan
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Wei Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, China
- *Correspondence: Hong Li, ; Liming Yang,
| | - Hong Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- *Correspondence: Hong Li, ; Liming Yang,
| |
Collapse
|
16
|
Yang J, Sun M, Cheng R, Tan H, Liu C, Chen R, Zhang J, Yang Y, Gao X, Huang L. Pitavastatin activates mitophagy to protect EPC proliferation through a calcium-dependent CAMK1-PINK1 pathway in atherosclerotic mice. Commun Biol 2022; 5:124. [PMID: 35145192 PMCID: PMC8831604 DOI: 10.1038/s42003-022-03081-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/28/2022] [Indexed: 01/08/2023] Open
Abstract
Statins play a major role in reducing circulating cholesterol levels and are widely used to prevent coronary artery disease. Although they are recently confirmed to up-regulate mitophagy, little is known about the molecular mechanisms and its effect on endothelial progenitor cell (EPC). Here, we explore the role and mechanism underlying statin (pitavastatin, PTV)-activated mitophagy in EPC proliferation. ApoE−/− mice are fed a high-fat diet for 8 weeks to induce atherosclerosis. In these mice, EPC proliferation decreases and is accompanied by mitochondrial dysfunction and mitophagy impairment via the PINK1-PARK2 pathway. PTV reverses mitophagy and reduction in proliferation. Pink1 knockout or silencing Atg7 blocks PTV-induced proliferation improvement, suggesting that mitophagy contributes to the EPC proliferation increase. PTV elicits mitochondrial calcium release into the cytoplasm and further phosphorylates CAMK1. Phosphorylated CAMK1 contributes to PINK1 phosphorylation as well as mitophagy and mitochondrial function recover in EPCs. Together, our findings describe a molecular mechanism of mitophagy activation, where mitochondrial calcium release promotes CAMK1 phosphorylation of threonine177 before phosphorylation of PINK1 at serine228, which recruits PARK2 and phosphorylates its serine65 to activate mitophagy. Our results further account for the pleiotropic effects of statins on the cardiovascular system and provide a promising and potential therapeutic target for atherosclerosis. Endothelial progenitor cell (EPCs) proliferation decreased, accompanied by mitochondrial dysfunction and mitophagy impairment via the PINK1-PARK2 pathway in atherosclerosis. Statins induce mitophagy to protect EPCs by mitochondrial calcium release and CAMK1-mediated PINK1 phosphorylation.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengjia Sun
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ran Cheng
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hu Tan
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chuan Liu
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Renzheng Chen
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jihang Zhang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuanqi Yang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xubin Gao
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China. .,Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
17
|
Glucose-Dependent Insulinotropic Polypeptide Suppresses Foam Cell Formation of Macrophages through Inhibition of the Cyclin-Dependent Kinase 5-CD36 Pathway. Biomedicines 2021; 9:biomedicines9070832. [PMID: 34356896 PMCID: PMC8301338 DOI: 10.3390/biomedicines9070832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) has been reported to have an atheroprotective property in animal models. However, the effect of GIP on macrophage foam cell formation, a crucial step of atherosclerosis, remains largely unknown. We investigated the effects of GIP on foam cell formation of, and CD36 expression in, macrophages extracted from GIP receptor-deficient (Gipr−/−) and Gipr+/+ mice and cultured human U937 macrophages by using an agonist for GIP receptor, [D-Ala2]GIP(1–42). Foam cell formation evaluated by esterification of free cholesterol to cholesteryl ester and CD36 gene expression in macrophages isolated from Gipr+/+ mice infused subcutaneously with [D-Ala2]GIP(1–42) were significantly suppressed compared with vehicle-treated mice, while these beneficial effects were not observed in macrophages isolated from Gipr−/− mice infused with [D-Ala2]GIP(1–42). When macrophages were isolated from Gipr+/+ and Gipr−/− mice, and then exposed to [D-Ala2]GIP(1–42), similar results were obtained. [D-Ala2]GIP(1–42) attenuated ox-LDL uptake of, and CD36 gene expression in, human U937 macrophages as well. Gene expression level of cyclin-dependent kinase 5 (Cdk5) was also suppressed by [D-Ala2]GIP(1–42) in U937 cells, which was corelated with that of CD36. A selective inhibitor of Cdk5, (R)-DRF053 mimicked the effects of [D-Ala2]GIP(1–42) in U937 cells. The present study suggests that GIP could inhibit foam cell formation of macrophages by suppressing the Cdk5-CD36 pathway via GIP receptor.
Collapse
|
18
|
Rodríguez C, Sánchez A, Sáenz-Medina J, Muñoz M, Hernández M, López M, Rivera L, Contreras C, Prieto D. Activation of AMP kinase ameliorates kidney vascular dysfunction, oxidative stress and inflammation in rodent models of obesity. Br J Pharmacol 2021; 178:4085-4103. [PMID: 34192805 DOI: 10.1111/bph.15600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Obesity is a risk factor for the development of chronic kidney disease independent of diabetes, hypertension and other co-morbidities. Obesity-associated nephropathy is linked to dysregulation of the cell energy sensor AMP-activated protein kinase (AMPK). We aimed here to assess whether impairment of AMPK activity may cause renal arterial dysfunction in obesity and to evaluate the therapeutic potential of activating renal AMPK. EXPERIMENTAL APPROACH Effects of the AMPK activator A769662 were assessed on intrarenal arteries isolated from ob/ob mice and obese Zucker rats and then mounted in microvascular myographs. Superoxide and hydrogen peroxide production were measured by chemiluminescence and fluorescence, respectively, and protein expression was analysed by western blotting. KEY RESULTS Endothelium-dependent vasodilation and PI3K/Akt/eNOS pathway were impaired in preglomerular arteries from genetically obese rats and mice, along with impaired arterial AMPK activity and blunted relaxations induced by the AMPK activator A769662. Acute ex vivo exposure to A769662 restored endothelial function and enhanced activity of PI3K/Akt/eNOS pathway in obese rats, whereas in vivo treatment with A769662 improved metabolic state and ameliorated endothelial dysfunction, reduced inflammatory markers and vascular oxidative stress in renal arteries and restored redox balance in renal cortex of obese mice. CONCLUSION AND IMPLICATIONS These results demonstrate that AMPK dysregulation underlies obesity-associated kidney vascular dysfunction and activation of AMPK improves metabolic state, protects renal endothelial function and exerts potent vascular antioxidant and anti-inflammatory effects. The beneficial effects of vascular AMPK activation might represent a promising therapeutic approach to the treatment of obesity-related kidney injury.
Collapse
Affiliation(s)
- Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sáenz-Medina
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, Universidad de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
19
|
Jin Q, Su H, Yang R, Tan Y, Li B, Yi W, Dong Q, Zhang H, Xing W, Sun X. C1q/TNF-related protein-9 ameliorates hypoxia-induced pulmonary hypertension by regulating secretion of endothelin-1 and nitric oxide mediated by AMPK in rats. Sci Rep 2021; 11:11372. [PMID: 34059748 PMCID: PMC8166879 DOI: 10.1038/s41598-021-90779-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
Injury/dysfunction of the endothelium of pulmonary arteries contributes to hypoxia-induced pulmonary hypertension (HPH). We investigated whether C1q/tumor necrosis factor-related protein-9 (CTRP9), a newly identified cardiovascular agent, has protective roles in the development of HPH. HPH was induced in adult male rats by chronic hypobaric hypoxia. CTRP9 overexpression by adeno-associated virus (AAV)-CTRP9 transfection attenuated the increases in right ventricular systolic pressure, right ventricular hypertrophy index, and pulmonary arterial remodeling of rats under hypoxia. Importantly, CTRP9 overexpression improved endothelium-dependent vasodilation in pulmonary arterioles in HPH rats. CTRP9 overexpression enhanced expression of phosphorylated 5′-adenosine monophosphate-activated protein kinase (p-AMPK) and phosphorylated endothelial nitric oxide synthase (p-eNOS), and reduced phosphorylated extracellular signal-regulated protein kinase (p-ERK1/2) expression in pulmonary microvascular endothelial cells (PMVECs) of HPH rats. In cultured PMVECs, CTRP9 not only preserved the decrease of AMPK and eNOS phosphorylation level and nitric oxide (NO) production induced by hypoxia, but also blocked the increase in hypoxia-induced ERK1/2 phosphorylation level and endothelin (ET)-1 production. Furthermore, the effects of CTRP9 were interrupted by inhibitors or knockdown of AMPK. CTRP9 enhances NO production and reduces ET-1 production by regulating AMPK activation. CTRP9 could be a target for HPH.
Collapse
Affiliation(s)
- Qiaoyan Jin
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, China
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Yang
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, China
| | - Yanzhen Tan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Buying Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qianqian Dong
- Teaching Experiment Center, Fourth Military Medical University, Xi'an, 710032, China
| | - Haifeng Zhang
- Teaching Experiment Center, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenjuan Xing
- School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an, 710032, China.
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, 710032, China.
| |
Collapse
|
20
|
Rodríguez C, Muñoz M, Contreras C, Prieto D. AMPK, metabolism, and vascular function. FEBS J 2021; 288:3746-3771. [PMID: 33825330 DOI: 10.1111/febs.15863] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/04/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor activated during energy stress that plays a key role in maintaining energy homeostasis. This ubiquitous signaling pathway has been implicated in multiple functions including mitochondrial biogenesis, redox regulation, cell growth and proliferation, cell autophagy and inflammation. The protective role of AMPK in cardiovascular function and the involvement of dysfunctional AMPK in the pathogenesis of cardiovascular disease have been highlighted in recent years. In this review, we summarize and discuss the role of AMPK in the regulation of blood flow in response to metabolic demand and the basis of the AMPK physiological anticontractile, antioxidant, anti-inflammatory, and antiatherogenic actions in the vascular system. Investigations by others and us have demonstrated the key role of vascular AMPK in the regulation of endothelial function, redox homeostasis, and inflammation, in addition to its protective role in the hypoxia and ischemia/reperfusion injury. The pathophysiological implications of AMPK involvement in vascular function with regard to the vascular complications of metabolic disease and the therapeutic potential of AMPK activators are also discussed.
Collapse
Affiliation(s)
- Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
21
|
Xu J, Feng H, Ma L, Tan H, Yan S, Fang C. Bakkenolide‑IIIa ameliorates lipopolysaccharide‑induced inflammatory injury in human umbilical vein endothelial cells by upregulating LINC00294. Mol Med Rep 2021; 23:377. [PMID: 33760129 PMCID: PMC7986008 DOI: 10.3892/mmr.2021.12016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/04/2021] [Indexed: 01/21/2023] Open
Abstract
Inflammation, which causes injury to vascular endothelial cells, is one of the major factors associated with atherosclerosis (AS); therefore, inhibition of endothelial inflammation is a key step toward preventing AS. The present study aimed to investigate the effects of bakkenolide-IIIa (Bak-IIIa), an important active component of bakkenolides, on endothelial inflammation, as well as the mechanisms underlying such effects. Lipopolysaccharide (LPS)-damaged human umbilical vein endothelial cells (HUVECs) were treated with Bak-IIIa. The results of the MTT assay and enzyme-linked immunosorbent assay indicated that Bak-IIIa significantly alleviated survival inhibition, and decreased the levels of LPS-induced TNF-α, interleukin (IL)-1β, IL-8, and IL-6. Furthermore, long noncoding RNA (lncRNA) microarray analyses revealed 70 differentially expressed lncRNAs (DELs) in LPS-damaged HUVECs treated with Bak-IIIa. lncRNA target prediction results revealed that 44 DELs had 52 cis-targets, whereas 12 DELs covered 386 trans-targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses of the trans-targets indicated that three GO terms were associated with inflammation. Therefore, 17 targets involved in these GO terms and six relevant DELs were screened out. Validation via reverse transcription-quantitative PCR indicated that the fold change of NR_015451 (LINC00294) was the highest among the six candidates and that overexpression of LINC00294 significantly alleviated LPS-induced survival inhibition and inflammatory damage in HUVECs. In conclusion, Bak-IIIa ameliorated LPS-induced inflammatory damage in HUVECs by upregulating LINC00294. Thus, Bak-IIIa exhibited potential for preventing vascular inflammation.
Collapse
Affiliation(s)
- Jichong Xu
- Department of Interventional Radiology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Hao Feng
- Department of Interventional Radiology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Lin Ma
- Department of Interventional Radiology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Huaqiao Tan
- Department of Interventional Radiology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Shuo Yan
- Department of Interventional Radiology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Chun Fang
- Department of Interventional Radiology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
22
|
From Mitochondria to Atherosclerosis: The Inflammation Path. Biomedicines 2021; 9:biomedicines9030258. [PMID: 33807807 PMCID: PMC8000234 DOI: 10.3390/biomedicines9030258] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammation is a key process in metazoan organisms due to its relevance for innate defense against infections and tissue damage. However, inflammation is also implicated in pathological processes such as atherosclerosis. Atherosclerosis is a chronic inflammatory disease of the arterial wall where unstable atherosclerotic plaque rupture causing platelet aggregation and thrombosis may compromise the arterial lumen, leading to acute or chronic ischemic syndromes. In this review, we will focus on the role of mitochondria in atherosclerosis while keeping inflammation as a link. Mitochondria are the main source of cellular energy. Under stress, mitochondria are also capable of controlling inflammation through the production of reactive oxygen species (ROS) and the release of mitochondrial components, such as mitochondrial DNA (mtDNA), into the cytoplasm or into the extracellular matrix, where they act as danger signals when recognized by innate immune receptors. Primary or secondary mitochondrial dysfunctions are associated with the initiation and progression of atherosclerosis by elevating the production of ROS, altering mitochondrial dynamics and energy supply, as well as promoting inflammation. Knowing and understanding the pathways behind mitochondrial-based inflammation in atheroma progression is essential to discovering alternative or complementary treatments.
Collapse
|
23
|
Gan W, Zhang NN, Li L. The Regulation Mechanism of AMPK/FOXO3 Signal Pathway in the Apoptosis and Differentiation of Duck Myoblasts. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Wang MT, Lai JH, Huang YL, Kuo FC, Wang YH, Tsai CL, Tu MY. Use of antidiabetic medications and risk of chronic obstructive pulmonary disease exacerbation requiring hospitalization: a disease risk score-matched nested case-control study. Respir Res 2020; 21:319. [PMID: 33267895 PMCID: PMC7709288 DOI: 10.1186/s12931-020-01547-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Exacerbation of chronic obstructive pulmonary disease (COPD) severely impacts the quality of life and causes high mortality and morbidity. COPD is involved with systemic and pulmonary inflammation, which may be attenuated with antidiabetic agents exerting anti-inflammatory effects. Real-world evidence is scant regarding the effects of antidiabetic agents on COPD exacerbation. Accordingly, we conducted a disease risk score (DRS)-matched nested case-control study to systemically assess the association between each class of oral hypoglycemic agents (OHAs) and risk of severe COPD exacerbation in a nationwide COPD population co-diagnosed with diabetes mellitus (DM). METHODS We enrolled 23,875 COPD patients receiving at least one OHA for management of DM by analyzing the Taiwan National Health Insurance claims database between January 1, 2000, and December 31, 2015. Cases of severe exacerbation were defined as those who had the first hospital admission for COPD. Each case was individually matched with four randomly-selected controls by cohort entry date, DRS (the estimated probability of encountering a severe COPD exacerbation), and COPD medication regimens using the incidence density sampling approach. Conditional logistic regressions were performed to estimate odds ratios (OR) of severe COPD exacerbation for each type of OHAs. RESULTS We analyzed 2700 cases of severe COPD exacerbation and 9272 corresponding controls after DRS matching. Current use of metformin versus other OHAs was associated with a 15% (adjusted OR [aOR], 0.85; 95% confidence interval [CI] 0.75-0.95) reduced risk of severe COPD exacerbation, whereas the reduced risk was not observed with other types of antidiabetic agents. When considering the duration of antidiabetic medication therapy, current use of metformin for 91-180 and 181-365 days was associated with a 28% (aOR, 0.72; 95% CI 0.58-0.89) and 37% (aOR, 0.63; 95% CI 0.51-0.77) reduced risk of severe COPD exacerbation, respectively. Similarly, 91-180 days of sulfonylureas therapy led to a 28% (aOR, 0.72; 95% CI 0.58-0.90) lower risk, and longer treatments consistently yielded 24-30% lower risks. Current use of thiazolidinediones for more than 181 days yielded an approximately 40% decreased risk. CONCLUSIONS Duration-dependent beneficial effects of current metformin, sulfonylurea, and thiazolidinedione use on severe COPD exacerbation were observed in patients with COPD and DM.
Collapse
Affiliation(s)
- Meng-Ting Wang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Jyun-Heng Lai
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Ling Huang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.,Department of Pharmacy, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Feng-Chih Kuo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yun-Han Wang
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Chen-Liang Tsai
- Division of Pulmonary and Critical Care, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Yu Tu
- Department of Health Business Administration, Meiho University, Pingtung, Taiwan. .,Aviation Physiology Research Laboratory, Kaohsiung Armed Forces General Hospital Gangshan Branch, No.1, Dayi 2nd Rd., Gangshan Dist., Kaohsiung City, 82050, Taiwan. .,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan. .,Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
25
|
Rodríguez C, Contreras C, Sáenz-Medina J, Muñoz M, Corbacho C, Carballido J, García-Sacristán A, Hernandez M, López M, Rivera L, Prieto D. Activation of the AMP-related kinase (AMPK) induces renal vasodilatation and downregulates Nox-derived reactive oxygen species (ROS) generation. Redox Biol 2020. [PMID: 32470915 DOI: 10.1016/j.redox.2020.101575.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy sensor activated during energy stress to stimulate ATP production pathways and restore homeostasis. AMPK is widely expressed in the kidney and involved in mitochondrial protection and biogenesis upon acute renal ischemia, AMPK activity being blunted in metabolic disease-associated kidney disease. Since little is known about AMPK in the regulation of renal blood flow, the present study aimed to assess the role of AMPK in renal vascular function. Functional responses to the selective AMPK activator A769662 were assessed in intrarenal small arteries isolated from the kidney of renal tumour patients and Wistar rats and mounted in microvascular myographs to perform simultaneous measurements of intracellular calcium [Ca2+]i and tension. Superoxide (O2.-) and hydrogen peroxide (H2O2) production were measured by chemiluminescence and fluorescence and protein expression by Western blot. Activation of AMPK with A769662 increased AMPKα phosphorylation at Thr-172 and induced potent relaxations compared to AICAR in isolated human and rat intrarenal arteries, through both endothelium-dependent mechanisms involving nitric oxide (NO) and intermediate-conductance calcium-activated potassium (IKCa) channels, as well as activation of ATP-sensitive (KATP) channels and sarcoplasmic reticulum Ca2+-ATPase (SERCA) in vascular smooth muscle (VSM). Furthermore, AMPK activator reduced NADPH oxidase 4 (Nox4) and Nox2-derived reactive oxygen species (ROS) production. These results demonstrate that A769662 has potent vasodilator and antioxidant effects in intrarenal arteries. The benefits of AMPK activation in rat kidney are reproduced in human arteries and therefore vascular AMPK activation might be a therapeutic target in the treatment of metabolic disease-associated kidney injury.
Collapse
Affiliation(s)
- Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sáenz-Medina
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - César Corbacho
- Departamento de Anatomía Patológica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Joaquín Carballido
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | | | - Medardo Hernandez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, Universidad de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
26
|
Sun JL, Abd El-Aty AM, Jeong JH, Jung TW. Ginsenoside Rb2 Ameliorates LPS-Induced Inflammation and ER Stress in HUVECs and THP-1 Cells via the AMPK-Mediated Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:967-985. [PMID: 32431178 DOI: 10.1142/s0192415x20500469] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammation and endoplasmic reticulum (ER) stress have been documented to contribute to the development of atherosclerosis. Ginsenoside Rb2 has been reported to exhibit antidiabetic effects. However, the effects of Rb2 on atherosclerotic responses such as inflammation and ER stress in endothelial cells and monocytes remain unclear. In this study, the expression of inflammation and ER stress markers was determined using a Western blotting method. Concentrations of tumor necrosis factor alpha (TNF[Formula: see text]) and monocyte chemoattractant protein-1 (MCP-1) in culture media were assessed by enzyme-linked immunosorbent assay (ELISA) and apoptosis was evaluated by a cell viability assay and a caspase-3 activity measurement kit. We found that exposure of HUVECs and THP-1 monocytes to Rb2 attenuated inflammation and ER stress, resulting in amelioration of apoptosis and THP-1 cell adhesion to HUVECs under lipopolysaccharide (LPS) condition. Increased AMPK phosphorylation and heme oxygenase (HO)-1 expression, including GPR120 expression were observed in Rb2-treated HUVECs and THP-1 monocytes. Downregulation of both, AMPK phosphorylation and HO-1expression rescued these observed changes. Furthermore, GPR120 siRNA mitigated Rb2-induced AMPK phosphorylation. These results suggest that Rb2 inhibits LPS-mediated apoptosis and THP-1 cell adhesion to HUVECs by GPR120/AMPK/HO-1-associated attenuating inflammation and ER stress. Therefore, Rb2 can be used as a potential therapeutic molecule for treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jaw Long Sun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Activation of the AMP-related kinase (AMPK) induces renal vasodilatation and downregulates Nox-derived reactive oxygen species (ROS) generation. Redox Biol 2020; 34:101575. [PMID: 32470915 PMCID: PMC7256643 DOI: 10.1016/j.redox.2020.101575] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy sensor activated during energy stress to stimulate ATP production pathways and restore homeostasis. AMPK is widely expressed in the kidney and involved in mitochondrial protection and biogenesis upon acute renal ischemia, AMPK activity being blunted in metabolic disease-associated kidney disease. Since little is known about AMPK in the regulation of renal blood flow, the present study aimed to assess the role of AMPK in renal vascular function. Functional responses to the selective AMPK activator A769662 were assessed in intrarenal small arteries isolated from the kidney of renal tumour patients and Wistar rats and mounted in microvascular myographs to perform simultaneous measurements of intracellular calcium [Ca2+]i and tension. Superoxide (O2.-) and hydrogen peroxide (H2O2) production were measured by chemiluminescence and fluorescence and protein expression by Western blot. Activation of AMPK with A769662 increased AMPKα phosphorylation at Thr-172 and induced potent relaxations compared to AICAR in isolated human and rat intrarenal arteries, through both endothelium-dependent mechanisms involving nitric oxide (NO) and intermediate-conductance calcium-activated potassium (IKCa) channels, as well as activation of ATP-sensitive (KATP) channels and sarcoplasmic reticulum Ca2+-ATPase (SERCA) in vascular smooth muscle (VSM). Furthermore, AMPK activator reduced NADPH oxidase 4 (Nox4) and Nox2-derived reactive oxygen species (ROS) production. These results demonstrate that A769662 has potent vasodilator and antioxidant effects in intrarenal arteries. The benefits of AMPK activation in rat kidney are reproduced in human arteries and therefore vascular AMPK activation might be a therapeutic target in the treatment of metabolic disease-associated kidney injury.
Collapse
|
28
|
GIP as a Potential Therapeutic Target for Atherosclerotic Cardiovascular Disease-A Systematic Review. Int J Mol Sci 2020; 21:ijms21041509. [PMID: 32098413 PMCID: PMC7073149 DOI: 10.3390/ijms21041509] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are gut hormones that are secreted from enteroendocrine L cells and K cells in response to digested nutrients, respectively. They are also referred to incretin for their ability to stimulate insulin secretion from pancreatic beta cells in a glucose-dependent manner. Furthermore, GLP-1 exerts anorexic effects via its actions in the central nervous system. Since native incretin is rapidly inactivated by dipeptidyl peptidase-4 (DPP-4), DPP-resistant GLP-1 receptor agonists (GLP-1RAs), and DPP-4 inhibitors are currently used for the treatment of type 2 diabetes as incretin-based therapy. These new-class agents have superiority to classical oral hypoglycemic agents such as sulfonylureas because of their low risks for hypoglycemia and body weight gain. In addition, a number of preclinical studies have shown the cardioprotective properties of incretin-based therapy, whose findings are further supported by several randomized clinical trials. Indeed, GLP-1RA has been significantly shown to reduce the risk of cardiovascular and renal events in patients with type 2 diabetes. However, the role of GIP in cardiovascular disease remains to be elucidated. Recently, pharmacological doses of GIP receptor agonists (GIPRAs) have been found to exert anti-obesity effects in animal models. These observations suggest that combination therapy of GLP-1R and GIPR may induce superior metabolic and anti-diabetic effects compared with each agonist individually. Clinical trials with GLP-1R/GIPR dual agonists are ongoing in diabetic patients. Therefore, in this review, we summarize the cardiovascular effects of GIP and GIPRAs in cell culture systems, animal models, and humans.
Collapse
|
29
|
Ono H, Suzuki N, Kanno SI, Kawahara G, Izumi R, Takahashi T, Kitajima Y, Osana S, Nakamura N, Akiyama T, Ikeda K, Shijo T, Mitsuzawa S, Nagatomi R, Araki N, Yasui A, Warita H, Hayashi YK, Miyake K, Aoki M. AMPK Complex Activation Promotes Sarcolemmal Repair in Dysferlinopathy. Mol Ther 2020; 28:1133-1153. [PMID: 32087766 PMCID: PMC7132631 DOI: 10.1016/j.ymthe.2020.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/12/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Mutations in dysferlin are responsible for a group of progressive, recessively inherited muscular dystrophies known as dysferlinopathies. Using recombinant proteins and affinity purification methods combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found that AMP-activated protein kinase (AMPK)γ1 was bound to a region of dysferlin located between the third and fourth C2 domains. Using ex vivo laser injury experiments, we demonstrated that the AMPK complex was vital for the sarcolemmal damage repair of skeletal muscle fibers. Injury-induced AMPK complex accumulation was dependent on the presence of Ca2+, and the rate of accumulation was regulated by dysferlin. Furthermore, it was found that the phosphorylation of AMPKα was essential for plasma membrane repair, and treatment with an AMPK activator rescued the membrane-repair impairment observed in immortalized human myotubes with reduced expression of dysferlin and dysferlin-null mouse fibers. Finally, it was determined that treatment with the AMPK activator metformin improved the muscle phenotype in zebrafish and mouse models of dysferlin deficiency. These findings indicate that the AMPK complex is essential for plasma membrane repair and is a potential therapeutic target for dysferlinopathy.
Collapse
Affiliation(s)
- Hiroya Ono
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Shin-Ichiro Kanno
- The Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| | - Genri Kawahara
- Department of Pathophysiology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Toshiaki Takahashi
- National Hospital Organization Sendai-Nishitaga Hospital, Sendai 982-8555, Japan
| | - Yasuo Kitajima
- Department of Muscle Development and Regeneration, Division of Developmental Regulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8575, Japan
| | - Naoko Nakamura
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Tomomi Shijo
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Shio Mitsuzawa
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Ryoichi Nagatomi
- Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8575, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Akira Yasui
- The Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Katsuya Miyake
- Department of Histology and Cell Biology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan; Center for Basic Medical Research, Narita Campus, International University of Health and Welfare, Narita 286-8686, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai 980-8574, Japan.
| |
Collapse
|
30
|
TSPO ligands prevent the proliferation of vascular smooth muscle cells and attenuate neointima formation through AMPK activation. Acta Pharmacol Sin 2020; 41:34-46. [PMID: 31515530 PMCID: PMC7471478 DOI: 10.1038/s41401-019-0293-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
Abnormal growth of the intimal layer of blood vessels (neointima formation) contributes to the progression of atherosclerosis and in-stent restenosis. Recent evidence shows that the 18-kDa translocator protein (TSPO), a mitochondrial membrane protein, is involved in diverse cardiovascular diseases. In this study we investigated the role of endogenous TSPO in neointima formation after angioplasty in vitro and in vivo. We established a vascular injury model in vitro by using platelet-derived growth factor-BB (PDGF-BB) to stimulate rat thoracic aortic smooth muscle cells (A10 cells). We found that treatment with PDGF-BB (1–20 ng/mL) dose-dependently increased TSPO expression in A10 cells, which was blocked in the presence of PKC inhibitor or MAPK inhibitor. Overexpression of TSPO significantly promoted the proliferation and migration in A10 cells, whereas downregulation of TSPO expression by siRNA or treatment with TSPO ligands PK11195 or Ro5-4864 (104 nM) produced the opposite effects. Furthermore, we found that PK11195 (10−104 nM) dose-dependently activated AMPK in A10 cells. PK11195-induced inhibition on the proliferation and migration of PDGF-BB-treated A10 cells were abolished by compound C (an AMPK-specific inhibitor, 103 nM). In rats with balloon-injured carotid arteries, TSPO expression was markedly upregulated in the carotid arteries. Administration of PK11195 (3 mg/kg every 3 days, ip), starting from the initial balloon injury and lasting for 2 weeks, greatly attenuated carotid neointima formation by suppressing balloon injury-induced phenotype switching of VSMCs (increased α-SMA expression). These results suggest that TSPO is a vascular injury-response molecule that promotes VSMC proliferation and migration and is responsible for the neointima formation after vascular injury, which provides a novel therapeutic target for various cardiovascular diseases including atherosclerosis and restenosis.
Collapse
|
31
|
Hu R, Wang MQ, Ni SH, Wang M, Liu LY, You HY, Wu XH, Wang YJ, Lu L, Wei LB. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs. Eur J Pharmacol 2020; 867:172797. [DOI: 10.1016/j.ejphar.2019.172797] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 01/22/2023]
|
32
|
Liu D, Lv H, Liu Q, Sun Y, Hou S, Zhang L, Yang M, Han B, Wang G, Wang X, Du W, Nie H, Zhang R, Huang X, Hou J, Yu B. Atheroprotective effects of methotrexate via the inhibition of YAP/TAZ under disturbed flow. J Transl Med 2019; 17:378. [PMID: 31730006 PMCID: PMC6857284 DOI: 10.1186/s12967-019-02135-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/09/2019] [Indexed: 01/19/2023] Open
Abstract
Background Atherosclerosis preferentially develops in regions of disturbed flow (DF). Emerging evidence indicates that yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), which are both effectors of the Hippo pathway, sense different blood flow patterns and regulate atherosclerotic lesions. We previously found that methotrexate (MTX) reduces in-stent neoatherosclerosis, decreases the plaque burden, and has an effect on local fluid shear stress. Here, we investigated the atheroprotective effect of MTX under DF and the mechanisms underlying these properties. Methods Human umbilical vein endothelial cells (HUVECs) were subjected to biomechanical stretch using a parallel-plate flow system and treated with or without MTX at therapeutically relevant concentrations. Additionally, an extravascular device was used to induce DF in the left common carotid artery of C57BL/6 mice, followed by treatment with MTX or 0.9% saline. The artery was then assessed histopathologically after 4 weeks on a Western diet. Results We observed that MTX significantly inhibited DF-induced endothelial YAP/TAZ activation. Furthermore, it markedly decreased pro-inflammatory factor secretion and monocyte adhesion in HUVECs but had no effect on apoptosis. Mechanistically, AMPKa1 depletion attenuated these effects of MTX. Accordingly, MTX decreased DF-induced plaque formation, which was accompanied by YAP/TAZ downregulation in vivo. Conclusions Taken together, we conclude that MTX exerts protective effects via the AMP-dependent kinase (AMPK)-YAP/TAZ pathway. These results provide a basis for the prevention and treatment of atherosclerosis via the inhibition of YAP/TAZ.
Collapse
Affiliation(s)
- Dandan Liu
- Division Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, China
| | - Hang Lv
- Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, China.,Division of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Liu
- Division Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, China
| | - Yanli Sun
- Division Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, China
| | - Shenglong Hou
- Division Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, China
| | - Lu Zhang
- Division Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, China
| | - Mengyue Yang
- Division Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, China
| | - Baihe Han
- Division Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, China
| | - Gang Wang
- Division Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, China
| | - Xuedong Wang
- Division Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, China
| | - Wenjuan Du
- Division Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, China
| | - Honggang Nie
- Division Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, China
| | - Ruoxi Zhang
- Division Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, China
| | - Xingtao Huang
- Division Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, China
| | - Jingbo Hou
- Division Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China. .,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, China.
| | - Bo Yu
- Division Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of the Education Ministry for Myocardial Ischemia Mechanisms and Treatment, Harbin, China
| |
Collapse
|
33
|
Madhavi Y, Gaikwad N, Yerra VG, Kalvala AK, Nanduri S, Kumar A. Targeting AMPK in Diabetes and Diabetic Complications: Energy Homeostasis, Autophagy and Mitochondrial Health. Curr Med Chem 2019; 26:5207-5229. [DOI: 10.2174/0929867325666180406120051] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/16/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023]
Abstract
Adenosine 5′-monophosphate activated protein kinase (AMPK) is a key enzymatic protein involved
in linking the energy sensing to the metabolic manipulation. It is a serine/threonine kinase activated
by several upstream kinases. AMPK is a heterotrimeric protein complex regulated by AMP, ADP, and
ATP allosterically. AMPK is ubiquitously expressed in various tissues of the living system such as heart,
kidney, liver, brain and skeletal muscles. Thus malfunctioning of AMPK is expected to harbor several
human pathologies especially diseases associated with metabolic and mitochondrial dysfunction. AMPK
activators including synthetic derivatives and several natural products that have been found to show therapeutic
relief in several animal models of disease. AMP, 5-Aminoimidazole-4-carboxamide riboside (AICA
riboside) and A769662 are important activators of AMPK which have potential therapeutic importance
in diabetes and diabetic complications. AMPK modulation has shown beneficial effects against
diabetes, cardiovascular complications and diabetic neuropathy. The major impact of AMPK modulation
ensures healthy functioning of mitochondria and energy homeostasis in addition to maintaining a strict
check on inflammatory processes, autophagy and apoptosis. Structural studies on AMP and AICAR suggest
that the free amino group is imperative for AMPK stimulation. A769662, a non-nucleoside
thienopyridone compound which resulted from the lead optimization studies on A-592107 and several
other related compound is reported to exhibit a promising effect on diabetes and its complications through
activation of AMPK. Subsequent to the discovery of A769662, several thienopyridones,
hydroxybiphenyls pyrrolopyridones have been reported as AMPK modulators. The review will explore
the structure-function relationships of these analogues and the prospect of targeting AMPK in diabetes
and diabetic complications.
Collapse
Affiliation(s)
- Y.V. Madhavi
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Nikhil Gaikwad
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Veera Ganesh Yerra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Anil Kumar Kalvala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Srinivas Nanduri
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Telangana, India
| |
Collapse
|
34
|
Liao S, Li D, Hui Z, McLachlan CS, Zhang Y. Chronic dosing with metformin plus bosentan decreases in vitro pulmonary artery contraction from isolated arteries in adults with pulmonary hypertension. J Cardiovasc Thorac Res 2019; 11:189-195. [PMID: 31579458 PMCID: PMC6759611 DOI: 10.15171/jcvtr.2019.32] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/01/2019] [Indexed: 01/27/2023] Open
Abstract
Introduction: Pulmonary arterial hypertension (PAH) specific drug therapy using bosentan has significantly improved quality of life and survival, although PAH is still an incurable disease. Recent studies suggest metformin may have additional treatment benefits in PAH. We therefore investigated in vitro pulmonary artery reactivity after combination therapy of bosentan and metformin in PAH patients as compared with bosentan monotherapy in a prospective, randomized study.
Methods: Adult patients with PAH associated with congenital heart defects (PAH-CHD) were randomised to receive bosentan (initially at 62.5 mg twice daily for 4 weeks and then 125 mg twice daily) for 3 months with or without the combination treatment of metformin (500 mg twice daily). Vessel reactivity of isolated pulmonary arteries was examined using a wire myograph.
Results: Phenylephrine (PE)-induced contractions of arteries in patients received combination therapy were significantly attenuated at concentrations of 3 × 10-7 M, 10-6 M and 3 × 10-6 M, compared to those received bosentan monotherapy. After denudation, PE-induced contractions at concentrations of 3 × 10-6 M and 10-5 M were significantly decreased in the combination therapy group. AMP-activated protein kinase (AMPK) inhibitor compound C abrogated the inhibitory effects of metformin on PE-induced contractility. AMPK and eNOS phosphorylation in the pulmonary arteries of patients treated with combination therapy was increased compared to monotherapy (P < 0.05).
Conclusion: Adding metformin to bosentan therapy in patients with PAH-CHD decreased in vitro pulmonary artery contraction induced by PE, which is possibly related to increased AMPK phosphorylation.
Collapse
Affiliation(s)
- Shutan Liao
- Rural Clinical School, University of New South Wales, Sydney, New South Wales, Australia.,The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongsheng Li
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zheng Hui
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Craig S McLachlan
- Rural Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Yang Zhang
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
35
|
Hong M, Li N, Li J, Li W, Liang L, Li Q, Wang R, Shi H, Storey KB, Ding L. Adenosine Monophosphate-Activated Protein Kinase Signaling Regulates Lipid Metabolism in Response to Salinity Stress in the Red-Eared Slider Turtle Trachemys scripta elegans. Front Physiol 2019; 10:962. [PMID: 31417422 PMCID: PMC6684833 DOI: 10.3389/fphys.2019.00962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/11/2019] [Indexed: 12/25/2022] Open
Abstract
Aquatic animals have developed various mechanisms to live in either hyperionic or hypoionic environments, and, as such, not many species are capable of surviving in both. The red-eared slider turtle, Trachemys scripta elegans, a well-known freshwater species, has recently been found to invade and inhabit brackish water. Herein, we focus on some of the metabolic adaptations that are required to survive and cope with salinity stress. The regulation of the adenosine monophosphate (AMP)-activated protein kinase (AMPK), a main cellular “energy sensor,” and its influence on lipid metabolism were evaluated with a comparison of three groups of turtles: controls in freshwater, and turtles held in water of either 5‰ salinity (S5) or 15‰ salinity (S15) with sampling at 6, 24, and 48 h and 30 days of exposure. When subjected to elevated salinities of 5 or 15‰, AMPK mRNA levels and AMPK enzyme activity increased strongly. In addition, the high expression of the peroxisome proliferator activated receptor-α (PPARα) transcription factor that, in turn, facilitated upregulation of target genes including carnitine palmitoyltransferase (CPT) and acyl-CoA oxidase (ACO). Furthermore, the expression of transcription factors involved in lipid synthesis such as the carbohydrate-responsive element-binding protein (ChREBP) and sterol regulatory element-binding protein 1c (SREBP-1c) was inhibited, and two of their target genes, acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), were significantly decreased. Moreover, exposure to saline environments also increased plasma triglyceride (TG) content. Interestingly, the content of low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) in plasma was markedly higher than the control in the S15 group after 30 days, which indicated that lipid metabolism was disrupted by chronic exposure to high salinity. These findings demonstrate that activation of AMPK might regulate lipid metabolism in response to salinity stress through the inhibition of lipid synthesis and promotion of lipid oxidation in the liver of T. s. elegans. This may be an important component of the observed salinity tolerance of these turtles that allow for invasion of brackish waters.
Collapse
Affiliation(s)
- Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Jiangyue Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Weihao Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Lingyue Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Qian Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Runqi Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | | | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China
| |
Collapse
|
36
|
Zhao Y, Shang F, Shi W, Zhang J, Zhang J, Liu X, Li B, Hu X, Wang L. Angiotensin II Receptor Type 1 Antagonists Modulate Vascular Smooth Muscle Cell Proliferation and Migration via AMPK/mTOR. Cardiology 2019; 143:1-10. [PMID: 31307032 DOI: 10.1159/000500038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/28/2019] [Indexed: 08/18/2024]
Abstract
The aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) in the vascular wall are crucial pathological events involved in cardiovascular impairments including hypertension, heart failure, and atherosclerosis. At the molecular level, the mammalian target of rapamycin (mTOR)-ribosomal protein S6 kinase beta-1 (p70S6K) signaling pathway is essential to potentiate VSMC proliferation and migration. Although angiotensin II receptor type 1 -(AT1-R) antagonists such as valsartan and telmisartan have a significant cardiovascular protective effect, the molecular basis of this class of drugs in VSMC proliferation and migration remains elusive. By using cultured VSMCs, adenosine monophosphate-activated protein kinase (AMPK) α2 knockout mice, and hypertensive rat models, this study investigated whether AT1-R antagonists can inhibit the mTOR-p70S6K signaling pathway in VSMCs and the vascular wall. Valsartan activated AMPK, which in turn suppressed reactive oxygen species production and consequently attenuated VSMC proliferation and migration. In vivo, a clinical dose of telmisartan significantly inhibited the mTOR-p70S6K signaling pathway in the vascular wall of wild-type but not AMPKα2-/- mice. Furthermore, spontaneously hypertensive rats had significantly elevated phosphorylation of mTOR and p70S6K in the aorta compared to Wistar-Kyoto rats, which were reduced by telmisartan administration. These data suggest that AT1-R antagonists inhibit VSMC proliferation and migration via their regulation of AMPK, mTOR, and p70S6K, which contribute to the cardioprotective effects of these drugs.
Collapse
Affiliation(s)
- Yingshuai Zhao
- Department of General Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Fenqing Shang
- Division of Cardiology, The First Hospital of Xi'an, Xi'an, China
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Weili Shi
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiao Zhang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Junjian Zhang
- Department of Cardiology, Liaoning Medical College, Jinzhou, China
| | - Xiaoyu Liu
- Department of General Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bing Li
- Department of General Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xingang Hu
- Department of General Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Liuyi Wang
- Department of General Medicine, Henan Provincial People's Hospital, Zhengzhou, China,
| |
Collapse
|
37
|
Wang MJ, Peng XY, Lian ZQ, Zhu HB. The cordycepin derivative IMM-H007 improves endothelial dysfunction by suppressing vascular inflammation and promoting AMPK-dependent eNOS activation in high-fat diet-fed ApoE knockout mice. Eur J Pharmacol 2019; 852:167-178. [DOI: 10.1016/j.ejphar.2019.02.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/14/2023]
|
38
|
Zhao D, Sun X, Lv S, Sun M, Guo H, Zhai Y, Wang Z, Dai P, Zheng L, Ye M, Wang X. Salidroside attenuates oxidized low‑density lipoprotein‑induced endothelial cell injury via promotion of the AMPK/SIRT1 pathway. Int J Mol Med 2019; 43:2279-2290. [PMID: 30942428 PMCID: PMC6488166 DOI: 10.3892/ijmm.2019.4153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL)-induced endothelial damage contributes to the initiation and pathogenesis of atherosclerosis. Salidroside can alleviate atherosclerosis and attenuate endothelial cell injury induced by ox-LDL. However, the mechanisms involved in this process are not fully understood. Therefore, the purpose of the present study was to investigate the role of the adenosine monophosphate-activated protein kinase (AMPK)/sirtuin (SIRT)1 pathway in the protection of salidroside against ox-LDL-induced human umbilical vein endothelial cells (HUVECs) injuries. The results revealed that salidroside reverses ox-LDL-induced HUVECs injury as demonstrated by the upregulation of cell viability and downregulation of LDH release. In addition, salidroside increased the expression of the SIRT1 protein in ox-LDL-treated HUVECs. Next, it was demonstrated that SIRT1 knockdown induced by transfection with small interfering (si)RNA targeting SIRT1 (siSRT1) abolished the protection of salidroside against ox-LDL-induced HUVECs injuries. This was illustrated by a decrease in cell viability and an increase in LDH release, caspase-3 activity and apoptosis rate. Furthermore, salidroside mitigated ox-LDL-induced reactive oxygen species production, upregulated malondialdehyde content and NADPH oxidase 2 expression and decreased superoxide dismutase and glutathione peroxidase activities, while these effects were also reversed by siSIRT1 transfection. In addition, it was demonstrated that salidroside suppressed ox-LDL-induced mitochondrial dysfunction as demonstrated by the increase in mitochondrial membrane potential and decreases in cytochrome c expression, and Bax/Bcl-2 reductions. However, these effects were eliminated by SIRT1 knockdown. Finally, it was demonstrated that salidroside significantly upregulated the phosphorylated-AMPK expression in ox-LDL-treated HUVECs and AMPK knockdown induced by transfection with AMPK siRNA (siAMPK) leads to elimination of the salidroside-induced increase in cell viability and the decrease in LDH release. Notably, siAMPK transfection further decreased the expression of SIRT1. In conclusion, these results suggested that salidroside protects HUVECs against ox-LDL injury through inhibiting oxidative stress and improving mitochondrial dysfunction, which were dependent on activating the AMPK/SIRT1 pathway.
Collapse
Affiliation(s)
- Dongming Zhao
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Xinyi Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Shujie Lv
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Miying Sun
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Huatao Guo
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Yujia Zhai
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Zhi Wang
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Peng Dai
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Lina Zheng
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Mingzhe Ye
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Xinpeng Wang
- Department of Cardiovascular, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| |
Collapse
|
39
|
Enkhjargal B, Malaguit J, Ho WM, Jiang W, Wan W, Wang G, Tang J, Zhang JH. Vitamin D attenuates cerebral artery remodeling through VDR/AMPK/eNOS dimer phosphorylation pathway after subarachnoid hemorrhage in rats. J Cereb Blood Flow Metab 2019; 39:272-284. [PMID: 28825325 PMCID: PMC6365598 DOI: 10.1177/0271678x17726287] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/29/2023]
Abstract
The role of vitamin D3 (VitD3) in the upregulation of osteopontin (OPN) and eNOS in the endothelium of cerebral arteries after subarachnoid hemorrhage (SAH) is investigated. The endovascular perforation SAH model in Sprague-Dawley rats ( n = 103) was used. The VitD3 pretreatment (30 ng/kg) increased endogenous OPN and eNOS expression in cerebral arteries compared with naïve rats ( n = 5 per group). Neurobehavioral scores were significantly improved in Pre-SAH+VitD3 group compared with the SAH group. The effects of VitD3 were attenuated by intracerebroventricular (i.c.v) injections of siRNA for the vitamin D receptor (VDR) and OPN in Pre-SAH+VitD3+VDR siRNA and Pre-SAH+VitD3+OPN siRNA rats, respectively ( n = 5 per group). The significant increase of VDR, OPN and decrease of C44 splicing in the cerebral arteries of Pre-SAH+VitD3 rats lead to an increase in basilar artery lumen. The increase in VDR expression led to an upregulation and phosphorylation of AMPK and eNOS, especially dimer form, in endothelium of cerebral artery. The results provide that VitD3 pretreatment attenuates cerebral artery remodeling and vasospasm through the upregulation of OPN and phosphorylation of AMPK (p-AMPK) and eNOS (p-eNOS) at Ser1177-Dimer in the cerebral arteries. Vitamin D may be a useful new preventive and therapeutic strategy against cerebral artery remodeling in stroke patients.
Collapse
Affiliation(s)
- Budbazar Enkhjargal
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jay Malaguit
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Wing M Ho
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Wu Jiang
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Weifeng Wan
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Gaiqing Wang
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
40
|
Qi XY, Qu SL, Xiong WH, Rom O, Chang L, Jiang ZS. Perivascular adipose tissue (PVAT) in atherosclerosis: a double-edged sword. Cardiovasc Diabetol 2018; 17:134. [PMID: 30305178 PMCID: PMC6180425 DOI: 10.1186/s12933-018-0777-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/06/2018] [Indexed: 02/06/2023] Open
Abstract
Perivascular adipose tissue (PVAT), the adipose tissue that surrounds most of the vasculature, has emerged as an active component of the blood vessel wall regulating vascular homeostasis and affecting the pathogenesis of atherosclerosis. Although PVAT characteristics resemble both brown and white adipose tissues, recent evidence suggests that PVAT develops from its own distinct precursors implying a closer link between PVAT and vascular system. Under physiological conditions, PVAT has potent anti-atherogenic properties mediated by its ability to secrete various biologically active factors that induce non-shivering thermogenesis and metabolize fatty acids. In contrast, under pathological conditions (mainly obesity), PVAT becomes dysfunctional, loses its thermogenic capacity and secretes pro-inflammatory adipokines that induce endothelial dysfunction and infiltration of inflammatory cells, promoting atherosclerosis development. Since PVAT plays crucial roles in regulating key steps of atherosclerosis development, it may constitute a novel therapeutic target for the prevention and treatment of atherosclerosis. Here, we review the current literature regarding the roles of PVAT in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Xiao-Yan Qi
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001 China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001 China
| | - Wen-Hao Xiong
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001 China
| | - Oren Rom
- Cardiovascular Research Center, University of Michigan, Ann Arbor, MI USA
| | - Lin Chang
- Cardiovascular Research Center, University of Michigan, Ann Arbor, MI USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001 China
| |
Collapse
|
41
|
Zhang J, Dong J, Martin M, He M, Gongol B, Marin TL, Chen L, Shi X, Yin Y, Shang F, Wu Y, Huang HY, Zhang J, Zhang Y, Kang J, Moya EA, Huang HD, Powell FL, Chen Z, Thistlethwaite PA, Yuan ZY, Shyy JYJ. AMP-activated Protein Kinase Phosphorylation of Angiotensin-Converting Enzyme 2 in Endothelium Mitigates Pulmonary Hypertension. Am J Respir Crit Care Med 2018; 198:509-520. [PMID: 29570986 PMCID: PMC6118028 DOI: 10.1164/rccm.201712-2570oc] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/23/2018] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Endothelial dysfunction plays an integral role in pulmonary hypertension (PH). AMPK (AMP-activated protein kinase) and ACE2 (angiotensin-converting enzyme 2) are crucial in endothelial homeostasis. The mechanism by which AMPK regulates ACE2 in the pulmonary endothelium and its protective role in PH remain elusive. OBJECTIVES We investigated the role of AMPK phosphorylation of ACE2 Ser680 in ACE2 stability and deciphered the functional consequences of this post-translational modification of ACE2 in endothelial homeostasis and PH. METHODS Bioinformatics prediction, kinase assay, and antibody against phospho-ACE2 Ser680 (p-ACE2 S680) were used to investigate AMPK phosphorylation of ACE2 Ser680 in endothelial cells. Using CRISPR-Cas9 genomic editing, we created gain-of-function ACE2 S680D knock-in and loss-of-function ACE2 knockout (ACE2-/-) mouse lines to address the involvement of p-ACE2 S680 and ACE2 in PH. The AMPK-p-ACE2 S680 axis was also validated in lung tissue from humans with idiopathic pulmonary arterial hypertension. MEASUREMENTS AND MAIN RESULTS Phosphorylation of ACE2 by AMPK enhanced the stability of ACE2, which increased Ang (angiotensin) 1-7 and endothelial nitric oxide synthase-derived NO bioavailability. ACE2 S680D knock-in mice were resistant to PH as compared with wild-type littermates. In contrast, ACE2-knockout mice exacerbated PH, a similar phenotype found in mice with endothelial cell-specific deletion of AMPKα2. Consistently, the concentrations of phosphorylated AMPK, p-ACE2 S680, and ACE2 were decreased in human lungs with idiopathic pulmonary arterial hypertension. CONCLUSIONS Impaired phosphorylation of ACE2 Ser680 by AMPK in pulmonary endothelium leads to a labile ACE2 and hence is associated with the pathogenesis of PH. Thus, AMPK regulation of the vasoprotective ACE2 is a potential target for PH treatment.
Collapse
Affiliation(s)
- Jiao Zhang
- Department of Cardiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Division of Cardiology and
| | - Jianjie Dong
- Department of Cardiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Marcy Martin
- Division of Cardiology and
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, California
| | | | - Brendan Gongol
- Department of Cardiopulmonary Sciences, Loma Linda University, Loma Linda, California; and
| | - Traci L. Marin
- Department of Cardiopulmonary Sciences, Loma Linda University, Loma Linda, California; and
| | - Lili Chen
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xinxing Shi
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yanjun Yin
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Fenqing Shang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yan Wu
- Department of Cardiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hsi-Yuan Huang
- Institute of Bioinformatics and Systems Biology and
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu City, Taiwan
| | - Jin Zhang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yu Zhang
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, California
| | | | | | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology and
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu City, Taiwan
| | | | | | - Patricia A. Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, California
| | - Zu-Yi Yuan
- Department of Cardiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - John Y.-J. Shyy
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Division of Cardiology and
| |
Collapse
|
42
|
Nellaiappan K, Yerra VG, Kumar A. Role of AMPK in Diabetic Cardiovascular Complications: An Overview. Cardiovasc Hematol Disord Drug Targets 2018; 19:5-13. [PMID: 29737267 DOI: 10.2174/1871529x18666180508104929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/22/2017] [Accepted: 03/28/2018] [Indexed: 12/25/2022]
Abstract
Macrovascular complications of diabetes like cardiovascular diseases appear to be one of the leading causes of mortality. Current therapies aimed at counteracting the adverse effects of diabetes on cardiovascular system are found to be inadequate. Hence, there is a growing need in search of novel targets. Adenosine Monophosphate Activated Protein Kinase (AMPK) is one such promising target, as a plethora of evidences pointing to its cardioprotective role in pathological milieu like cardiac hypertrophy, atherosclerosis and heart failure. AMPK is a serine-threonine kinase, which gets activated in response to a cellular depriving energy status. It orchestrates cellular metabolic response to energy demand and is, therefore, often referred to as "metabolic master switch" of the cell. In this review, we provide an overview of patho-mechanisms of diabetic cardiovascular disease; highlighting the role of AMPK in the regulation of this condition, followed by a description of extrinsic modulators of AMPK as potential therapeutic tools.
Collapse
Affiliation(s)
- Karthika Nellaiappan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Bala Nagar, Hyderabad, TS, India
| | - Veera Ganesh Yerra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Bala Nagar, Hyderabad, TS, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Bala Nagar, Hyderabad, TS, India
| |
Collapse
|
43
|
McCarthy CG, Wenceslau CF, Ogbi S, Szasz T, Webb RC. Toll-Like Receptor 9-Dependent AMPK α Activation Occurs via TAK1 and Contributes to RhoA/ROCK Signaling and Actin Polymerization in Vascular Smooth Muscle Cells. J Pharmacol Exp Ther 2018; 365:60-71. [PMID: 29348267 PMCID: PMC5830639 DOI: 10.1124/jpet.117.245746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/17/2018] [Indexed: 01/06/2023] Open
Abstract
Traditionally, Toll-like receptor 9 (TLR9) signals through an MyD88-dependent cascade that results in proinflammatory gene transcription. Recently, it was reported that TLR9 also participates in a stress tolerance signaling cascade in nonimmune cells. In this noncanonical pathway, TLR9 binds to and inhibits sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2), modulating intracellular calcium handling, and subsequently resulting in the activation of 5'-AMP-activated protein kinase α (AMPKα). We have previously reported that TLR9 causes increased contraction in isolated arteries; however, the mechanisms underlying this vascular dysfunction need to be further clarified. Therefore, we hypothesized that noncanonical TLR9 signaling was also present in vascular smooth muscle cells (VSMCs) and that it mediates enhanced contractile responses through SERCA2 inhibition. To test these hypotheses, aortic microsomes, aortic VSMCs, and isolated arteries from male Sprague-Dawley rats were incubated with vehicle or TLR9 agonist (ODN2395). Despite clear AMPKα activation after treatment with ODN2395, SERCA2 activity was unaffected. Alternatively, ODN2395 caused the phosphorylation of AMPKα via transforming growth factor β-activated kinase 1 (TAK1), a kinase involved in TLR9 inflammatory signaling. Downstream, we hypothesized that that TLR9 activation of AMPKα may be important in mediating actin cytoskeleton reorganization. ODN2395 significantly increased the filamentous-to-globular actin ratio, as well as indices of RhoA/Rho-associated protein kinase (ROCK) activation, with the latter being prevented by AMPKα inhibition. In conclusion, AMPKα phosphorylation after TLR9 activation in VSMCs appears to be an extension of traditional inflammatory signaling via TAK1, as opposed to SERCA2 inhibition and the noncanonical pathway. Nonetheless, TLR9-AMPKα signaling can mediate VSMC function via RhoA/ROCK activation and actin polymerization.
Collapse
Affiliation(s)
| | | | - Safia Ogbi
- Department of Physiology, Augusta University, Augusta, Georgia
| | - Theodora Szasz
- Department of Physiology, Augusta University, Augusta, Georgia
| | - R Clinton Webb
- Department of Physiology, Augusta University, Augusta, Georgia
| |
Collapse
|
44
|
Huang Y, Smith CA, Chen G, Sharma B, Miner AS, Barbee RW, Ratz PH. The AMP-Dependent Protein Kinase (AMPK) Activator A-769662 Causes Arterial Relaxation by Reducing Cytosolic Free Calcium Independently of an Increase in AMPK Phosphorylation. Front Pharmacol 2017; 8:756. [PMID: 29093683 PMCID: PMC5651270 DOI: 10.3389/fphar.2017.00756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/05/2017] [Indexed: 12/15/2022] Open
Abstract
Although recent studies reveal that activation of the metabolic and Ca2+ sensor AMPK strongly inhibits smooth muscle contraction, there is a paucity of information about the potential linkage between pharmacological AMPK activation and vascular smooth muscle (VSM) contraction regulation. Our aim was to test the general hypothesis that the allosteric AMPK activator A-769662 causes VSM relaxation via inhibition of contractile protein activation, and to specifically determine which activation mechanism(s) is(are) affected. The ability of A-769662 to cause endothelium-independent relaxation of contractions induced by several contractile stimuli was examined in large and small musculocutaneous and visceral rabbit arteries. For comparison, the structurally dissimilar AMPK activators MET, SIM, and BBR were assessed. A-769662 displayed artery- and agonist-dependent differential inhibitory activities that depended on artery size and location. A-769662 did not increase AMPK-pT172 levels, but did increase phosphorylation of the downstream AMPK substrate, acetyl-CoA carboxylase (ACC). A-769662 did not inhibit basal phosphorylation levels of several contractile protein regulatory proteins, and did not alter the activation state of rhoA. A-769662 did not inhibit Ca2+- and GTPγS-induced contractions in β-escin-permeabilized muscle, suggesting that A-769662 must act by inhibiting Ca2+ signaling. In intact artery, A-769662 immediately reduced basal intracellular free calcium ([Ca2+]i), inhibited a stimulus-induced increase in [Ca2+]i, and inhibited a cyclopiazonic acid (CPA)-induced contraction. MET increased AMPK-pT172, and caused neither inhibition of contraction nor inhibition of [Ca2+]i. Together, these data support the hypothesis that the differential inhibition of stimulus-induced arterial contractions by A-769662 was due to selective inhibition of a Ca2+ mobilization pathway, possibly involving CPA-dependent Ca2+ entry via an AMPK-independent pathway. That MET activated AMPK without causing arterial relaxation suggests that AMPK activation does not necessarily cause VSM relaxation.
Collapse
Affiliation(s)
- Yi Huang
- Department of Emergency Medicine and Physiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Corey A Smith
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Grace Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Bharti Sharma
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Amy S Miner
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Robert W Barbee
- Department of Emergency Medicine and Physiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Paul H Ratz
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
45
|
Speirs C, Williams JJL, Riches K, Salt IP, Palmer TM. Linking energy sensing to suppression of JAK-STAT signalling: A potential route for repurposing AMPK activators? Pharmacol Res 2017; 128:88-100. [PMID: 29037480 DOI: 10.1016/j.phrs.2017.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/12/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
Exaggerated Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling is key to the pathogenesis of pro-inflammatory disorders, such as rheumatoid arthritis and cardiovascular diseases. Mutational activation of JAKs is also responsible for several haematological malignancies, including myeloproliferative neoplasms and acute lymphoblastic leukaemia. Accumulating evidence links adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), an energy sensor and regulator of organismal and cellular metabolism, with the suppression of immune and inflammatory processes. Recent studies have shown that activation of AMPK can limit JAK-STAT-dependent signalling pathways via several mechanisms. These novel findings support AMPK activation as a strategy for management of an array of disorders characterised by hyper-activation of the JAK-STAT pathway. This review discusses the pivotal role of JAK-STAT signalling in a range of disorders and how both established clinically used and novel AMPK activators might be used to treat these conditions.
Collapse
Affiliation(s)
- Claire Speirs
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jamie J L Williams
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Kirsten Riches
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Timothy M Palmer
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
46
|
AMPK activation: Role in the signaling pathways of neuroinflammation and neurodegeneration. Exp Neurol 2017; 298:31-41. [PMID: 28844606 DOI: 10.1016/j.expneurol.2017.08.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is an evolutionarily conserved sensor of cellular energy status and has been reported to be involved in chronic inflammatory disorders. AMPK is expressed in immune cells, such as dendritic cells, macrophages, lymphocytes and neutrophils, and is an important regulator of inflammatory responses through the regulation of complex signaling networks in part by inhibiting downstream cascade pathways, such as nuclear factor kB, which is a key regulator of innate immunity and inflammation, as well as acting as a negative regulator of toll-like receptors. Recent data suggest that AMPK dysregulation may participate in neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and neuropathies. However, there are conflicting reports on the benefits or detrimental effects of AMPK in distinct pathological conditions. This paper offers a review of the recent literature on the pharmacological modulation of the AMPK system as a potential molecular target in the management of neurodegenerative diseases.
Collapse
|
47
|
Masoudkabir F, Sarrafzadegan N, Gotay C, Ignaszewski A, Krahn AD, Davis MK, Franco C, Mani A. Cardiovascular disease and cancer: Evidence for shared disease pathways and pharmacologic prevention. Atherosclerosis 2017; 263:343-351. [PMID: 28624099 PMCID: PMC6207942 DOI: 10.1016/j.atherosclerosis.2017.06.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/08/2017] [Accepted: 06/01/2017] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) and cancer are leading causes of mortality and morbidity worldwide. Strategies to improve their treatment and prevention are global priorities and major focus of World Health Organization's joint prevention programs. Emerging evidence suggests that modifiable risk factors including diet, sedentary lifestyle, obesity and tobacco use are central to the pathogenesis of both diseases and are reflected in common genetic, cellular, and signaling mechanisms. Understanding this important biological overlap is critical and may help identify novel therapeutic and preventative strategies for both disorders. In this review, we will discuss the shared genetic and molecular factors central to CVD and cancer and how the strategies commonly used for the prevention of atherosclerotic vascular disease can be applied to cancer prevention.
Collapse
Affiliation(s)
- Farzad Masoudkabir
- Cardiac Primary Prevention Research Center, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Carolyn Gotay
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; Cancer Control Research Program, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Andrew Ignaszewski
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew D Krahn
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Margot K Davis
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Franco
- Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arya Mani
- Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
48
|
Balcilar C, Özakça I, Altan VM. Contribution of Rho-kinase and Adenosine Monophosphate-Activated Protein Kinase Signaling Pathways to Endothelium-Derived Contracting Factors Responses. Turk J Pharm Sci 2017; 14:207-212. [PMID: 32454615 DOI: 10.4274/tjps.26349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/10/2017] [Indexed: 12/01/2022]
Abstract
Vascular tonus is controlled by endothelium-derived relaxing factor (EDRF), endothelium-derived hyperpolarizing factor (EDHF) and endothelium-derived contracting factor (EDCF) under physiological circumstances. In pathological conditions, impairment of endothelium-derived relaxation can be caused by both decrease in EDRF release and increase in EDCF release. The increase in EDCF is observed with diseases such as hypertension and diabetes. The contribution of Rho-kinase and activated protein kinase (AMPK), which have opposite effects, to the increased EDCF responses was investigated. Rho-kinases are the effectors of Rho which is one of the small guanosine triphosphate-binding proteins. They increase cytosolic Ca+2 concentration and cause vascular smooth muscle to contract, keeping myosin light chain (MLC) in phosphorylated state by affecting myosin phosphatase target subunit which dephosphorylates the MLC. The activities of Rho-kinases increase with the increase of EDCF function. AMPK is the energy sensor of the cell. It provides a vasculoprotective effect by causing endothelium-dependent and endothelium-independent relaxation in smooth muscle. In contrast to Rho-kinase pathway activity, AMPK pathway activity decreases with diseases in which the EDCF function increases. In cases such as diabetes and hypertension that endothelial function impairs toward vasocontraction, it is considered that evaluating Rho-kinase and AMPK pathways which mediate contraction and relaxation in vascular smooth muscle respectively, would provide clues on choosing therapeutic target for pathologies in which endothelial dysfunction is observed.
Collapse
Affiliation(s)
- Cennet Balcilar
- Ankara University, Faculty Of Pharmacy, Department Of Pharmacology, Ankara, Turkey
| | - Işıl Özakça
- Ankara University, Faculty Of Pharmacy, Department Of Pharmacology, Ankara, Turkey
| | - Vecdi Melih Altan
- Ankara University, Faculty Of Pharmacy, Department Of Pharmacology, Ankara, Turkey
| |
Collapse
|
49
|
Baye E, Naderpoor N, Misso M, Teede H, Moran LJ, de Courten B. Treatment with high dose salicylates improves cardiometabolic parameters: Meta-analysis of randomized controlled trials. Metabolism 2017; 71:94-106. [PMID: 28521883 DOI: 10.1016/j.metabol.2017.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/13/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
INTRODUCTION There is conflicting evidence regarding the efficacy of high dose salicylates in improving cardiometabolic risk in healthy and type 2 diabetes patients. We aimed to determine whether treatment with salicylates at an anti-inflammatory dose (≥1g daily) would improve cardiometabolic risk in healthy individuals and type 2 diabetes patients, compared to placebo. METHODS Medline, Medline-in-process, Embase, and all EBM databases were searched for studies published up to December 2016. Twenty-eight articles from 24 studies comprising 1591 participants were included. Two reviewers independently assessed the risk of bias and extracted data from included studies. Meta-analyses using random-effects model were used to analyze the data. RESULTS High dose salicylates (≥3g/d) decreased fasting glucose (MD -0.4mmol/l, 95% CI -0.54, -0.27) and glucose area under the curve (MD -0.41mmol/l, 95% CI -0.81, -0.01). Salicylates (≥3g/d) also increased fasting insulin (MD 2.4 μU/ml, 95% CI 0.3, 4.4), 2-h insulin (MD 25.4 μU/ml, 95% CI 8.2, 42.6), insulin secretion (MD 79.2, 95% CI 35, 123) but decreased fasting C-peptide (MD -0.11nmol/l, 95% CI -0.2, -0.04), insulin clearance (MD -0.26l/min, 95% CI -0.36, -0.16) and triglycerides (MD -0.36mmol/l, 95% CI -0.51, -0.21) and increased total adiponectin (MD 1.97μg/ml, 95% CI 0.99, 2.95). A lower salicylate dose (1-2.9g) did not change any cardiometabolic parameters (p>0.1). No significant difference was observed between those receiving salicylates and placebo following withdrawal due to adverse events. CONCLUSIONS High dose salicylates appear to improve cardiometabolic risk factors in healthy individuals and type 2 diabetes patients. PROSPERO REGISTRATION NUMBER CRD42015029826.
Collapse
Affiliation(s)
- Estifanos Baye
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia
| | - Negar Naderpoor
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia; Diabetes and Vascular Medicine Unit, Monash Health, Locked Bag 29, Clayton, VIC 3168, Australia
| | - Marie Misso
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia
| | - Helena Teede
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia; Diabetes and Vascular Medicine Unit, Monash Health, Locked Bag 29, Clayton, VIC 3168, Australia
| | - Lisa J Moran
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia; Diabetes and Vascular Medicine Unit, Monash Health, Locked Bag 29, Clayton, VIC 3168, Australia.
| |
Collapse
|
50
|
Zhao Y, Wang L, He S, Wang X, Shi W. Nitric oxide synthesis-promoting effects of valsartan in human umbilical vein endothelial cells via the Akt/adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway. Bosn J Basic Med Sci 2017; 17:132-137. [PMID: 28178430 DOI: 10.17305/bjbms.2017.1319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 01/17/2023] Open
Abstract
Valsartan (VAL), an antagonist of angiotensin II receptor type 1, has antihypertensive and multiple cardiovascular protective effects. The pleiotropic functions of VAL are related to the increased synthesis and biological activity of intravascular nitric oxide (NO). In this study, the role and mechanisms of VAL in the synthesis of NO were examined in human umbilical vein endothelial cells (HUVECs). Ten µmol/L of VAL was used to treat EA.hy926 cells for 30 minutes, 1, 3, 6, 12, and 24 hours, and three concentrations of VAL (i.e., 10, 1, and 0.1 µmol/L) were used to treat EA.hy926 cells for 24 hours. The cells were divided into five groups: control, VAL, VAL + Compound C (adenosine monophosphate-activated protein kinase [AMPK] inhibitor, 1 µmol/L), VAL + LY294002 (Akt [protein kinase B] inhibitor, 10 µmol/L), and VAL + L-nitro-arginine methyl ester (L-NAME, endothelial NO synthase [eNOS] inhibitor, 500 µmol/L) groups. The NO content in the VAL-treated HUVEC line (EA.hy926) was detected using the nitrate reductase method, and western blot was used to detect the phosphorylation of Akt, AMPK, and eNOS, as well as the changes in total protein levels. VAL increased NO synthesis in EA.hy926 cells in time- and dose-dependent manners (p < 0.05) and the intracellular phosphorylation levels of Akt, AMPK, and eNOS at the corresponding time points. LY294002, Compound C, and L-NAME could inhibit the VAL-promoted NO synthesis. VAL activated Akt, AMPK, and eNOS, thus promoting NO synthesis and playing a protective role in endothelial cells. These results partially explained the mechanisms underlying the cardiovascular protective effects of VAL.
Collapse
Affiliation(s)
- Yingshuai Zhao
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of General Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| | | | | | | | | |
Collapse
|