1
|
Zhan JH, Wei J, Liu YJ, Wang PX, Zhu XY. Sepsis-associated endothelial glycocalyx damage: a review of animal models, clinical evidence, and molecular mechanisms. Int J Biol Macromol 2025; 295:139548. [PMID: 39788232 DOI: 10.1016/j.ijbiomac.2025.139548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/21/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
In the mammalian cardiovascular system, endothelial glycocalyx is a gel-like layer that covers the luminal surface of endothelial cells (ECs) and plays crucial roles in vascular homeostasis, permeability and leukocyte adhesion. Degradation of this structure occurs early in sepsis and becomes accordingly dysfunctional. In severe cases, it is not self-regulated by the organism. However, the relationship between the glycocalyx and the occurrence and development of sepsis remains poorly understood. One possibility is that thinned glycocalyx promotes leukocyte recognition and adhesion, thereby facilitating the elimination of pathogens from infected areas. This may represent a protective mechanism developed by the organism during through evolutionary processes. However, if the damage persists and disrupts the dynamic balance of the microcirculation, interstitial edema or organ failure can occur. Thus, we asked the questions, what is the precise composition and structure of the glycocalyx? How is it degraded? What animal models are available to study the relationship between the glycocalyx and sepsis? What glycocalyx biomarkers are found in the blood of patients with sepsis? To determine whether sepsis can be treated by interfering with the glycocalyx, this study provides a systematic summary and discussion of the latest progress in addressing these questions.
Collapse
Affiliation(s)
- Jun-Hui Zhan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Physiology, Naval Medical University, Shanghai 200433, China
| | - Juan Wei
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Peng-Xiang Wang
- Department of Physiology, Naval Medical University, Shanghai 200433, China.
| | - Xiao-Yan Zhu
- Department of Physiology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Maiwall R, Kulkarni AV, Arab JP, Piano S. Acute liver failure. Lancet 2024; 404:789-802. [PMID: 39098320 DOI: 10.1016/s0140-6736(24)00693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 08/06/2024]
Abstract
Acute liver failure (ALF) is a life-threatening disorder characterised by rapid deterioration of liver function, coagulopathy, and hepatic encephalopathy in the absence of pre-existing liver disease. The cause of ALF varies across the world. Common causes of ALF in adults include drug toxicity, hepatotropic and non-hepatotropic viruses, herbal and dietary supplements, antituberculosis drugs, and autoimmune hepatitis. The cause of liver failure affects the management and prognosis, and therefore extensive investigation for cause is strongly suggested. Sepsis with multiorgan failure and cerebral oedema remain the leading causes of death in patients with ALF and early identification and appropriate management can alter the course of ALF. Liver transplantation is the best current therapy, although the role of artificial liver support systems, particularly therapeutic plasma exchange, can be useful for patients with ALF, especially in non-transplant centres. In this Seminar, we discuss the cause, prognostic models, and management of ALF.
Collapse
Affiliation(s)
- Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Anand V Kulkarni
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Juan Pablo Arab
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Salvatore Piano
- Unit of Internal Medicine and Hepatology, Department of Medicine, University and Hospital of Padova, Padova, Italy
| |
Collapse
|
3
|
Guo J, Yuan Z, Wang R. Zn 2+ improves sepsis-induced acute kidney injury by upregulating SIRT7-mediated Parkin acetylation. Am J Physiol Renal Physiol 2024; 327:F184-F197. [PMID: 38779758 DOI: 10.1152/ajprenal.00337.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Zn2+ levels are reported to be correlated with kidney function. We explored the significance of Zn2+ in sepsis-induced acute kidney injury (SI-AKI) through the regulation of sirtuin 7 (SIRT7) activity. The sepsis rat model was established by cecal ligation and perforation (CLP) and intraperitoneally injected with ZnSO4 or SIRT7 inhibitor 97491 (SIRT7i), with renal tubular injury assessed by hematoxylin and eosin staining. In vitro, human renal tubular epithelial cells (HK-2) were induced with lipopolysaccharide to obtain a renal injury cell model, followed by ZnSO4 or SIRT7i and autophagy inhibitor (3-methyladenine) treatment. Interleukin (IL)-1β, IL-18, reactive oxygen species (ROS), Parkin acetylation level, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) expression levels were determined. The renal tubule injury, inflammation condition, and pyroptosis-related and autophagy-related protein levels were assessed. The pyroptosis in kidney tissues and autophagosome formation were observed by transmission electron microscopy. Zn2+ alleviated renal injury in CLP rats and inhibited pyroptosis and its related protein levels by inhibiting SIRT7 activity in septic rat renal tissues. In vitro, Zn2+ increased HK-2 cell viability and reduced KIM-1, NGAL, IL-1β, IL-18, NLRP3 inflammasome, cleaved caspase-1, gasdermin D-N levels, and pyroptotic cell number. Zn2+ increased autophagosome number and LC3BII/LC3BI ratio and decreased TOM20, TIM23, P62, and mitochondrial ROS levels. Zn2+ increased Parkin acetylation by repressing SIRT7 activity. Inhibiting mitophagy partially averted Zn2+-inhibited NLRP3 inflammasome activation and apoptosis in HK-2 cells. Zn2+ upregulated Parkin acetylation by repressing SIRT7 activity to promote mitophagy and inhibit NLRP3 inflammasome activation and pyroptosis, thus improving SI-AKI.NEW & NOTEWORTHY Zn2+ upregulated Parkin acetylation by repressing sirtuin 7 activity to promote mitophagy and inhibit NLRP3 inflammasome activation and pyroptosis, thus improving sepsis-induced acute kidney injury.
Collapse
Affiliation(s)
- Jun Guo
- Department of Critical Care Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhenhui Yuan
- Department of Critical Care Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Rong Wang
- Department of Critical Care Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
4
|
Ates G, Tamer S, Ozkok E, Yorulmaz H, Yalcin IE, Demir G. Determination of trace elements and electrolyte levels in kidney tissue of simvastatin-treated septic rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3513-3521. [PMID: 37966573 DOI: 10.1007/s00210-023-02835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Trace elements are cofactors in various enzymes in the antioxidant defense and cell homeostasis required in the tissue during inflammation. In acute kidney injury induced by lipopolysaccharide (LPS), renal cells are affected by cytotoxicity. Renal evacuation and gastrointestinal absorption rates are important in regulating plasma levels of trace elements. Simvastatin is a widely used anti-lipidemic drug with known anti-inflammatory effects. This study aimed to examine the effect of simvastatin on trace elements and electrolyte levels in kidney tissue in rats with LPS-induced sepsis. Adult male Wistar albino rats were divided into four groups: control, LPS (20 mg/kg, i.p., single dose), simvastatin (20 mg/kg, o.p., 5 days), and LPS + Simvastatin (LPS + Sim). Sodium, potassium, calcium, magnesium, selenium, zinc, copper, and histological structural changes were examined in kidney tissue samples 4 h after LPS execution. The inductively coupled plasma optical emission spectroscopy technique (ICP-OES) was used to determine the tissue trace element levels. In rats with sepsis-induced LPS, selenium, calcium, sodium, and magnesium levels significantly decreased while copper, potassium, and zinc levels significantly increased compared to other experimental groups. In sepsis treated with the simvastatin (LPS + Simvastatin) group, trace elements and electrolyte levels are like the control groups, apart from selenium levels. Selenium levels were significantly decreased in the LPS + Simvastatin group compared to the controls. As a result of examining the kidney tissues under a light microscope, simvastatin improved tissue damage caused by LPS-induced acute kidney injury. LPS-induced renal injury and simvastatin caused significant changes in the oxidant/antioxidant system. In septic rats, simvastatin was shown to balance some trace element levels, and it may improve damage in the kidney tissue.
Collapse
Affiliation(s)
- Gulten Ates
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Sule Tamer
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Elif Ozkok
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Vakif Gureba St, Istanbul, 34093, Turkey.
| | | | - I Ertugrul Yalcin
- Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey
| | - Goksel Demir
- Department of Occupational Health and Safety, Hamidiye Health Sciences Faculty, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
5
|
Sharma B, Bhateja A, Sharma R, Chauhan A, Bodh V. Acute kidney injury in acute liver failure: A narrative review. Indian J Gastroenterol 2024; 43:377-386. [PMID: 38578564 DOI: 10.1007/s12664-024-01559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Acute kidney injury (AKI) is a frequent complication of acute liver failure (ALF) and it worsens the already worse prognoses of ALF. ALF is an uncommon disease, with varying etiologies and varying definitions in different parts of the world. There is limited literature on the impact of AKI on the outcome of ALF with or without transplantation. The multifaceted etiology of AKI in ALF encompasses factors such as hemodynamic instability, systemic inflammation, sepsis and direct nephrotoxicity. Indications of renal replacement therapy (RRT) for AKI in ALF patients extend beyond the conventional criteria for dialysis and continuous renal replacement therapy (CRRT) may have a role in transplant-free survival or bridge to liver transplantation (LT). LT is a life-saving option for ALF, so despite somewhat lower survival rates of LT in ALF patients with AKI, LT is not usually deferred. In this review, we will discuss the guidelines' recommended definition and classification of AKI in ALF, the impact of AKI in ALF, the pathophysiology of AKI and the role of CRRT and LT in ALF patients with AKI.
Collapse
Affiliation(s)
- Brij Sharma
- Department of Gastroenterology, Indira Gandhi Medical College, Shimla, 171 001, India
| | - Anshul Bhateja
- Department of Gastroenterology, Indira Gandhi Medical College, Shimla, 171 001, India
| | - Rajesh Sharma
- Department of Gastroenterology, Indira Gandhi Medical College, Shimla, 171 001, India
| | - Ashish Chauhan
- Department of Gastroenterology, Indira Gandhi Medical College, Shimla, 171 001, India
| | - Vishal Bodh
- Department of Gastroenterology, Indira Gandhi Medical College, Shimla, 171 001, India.
| |
Collapse
|
6
|
Liu D, Li L, Li Z. Anemonin inhibits sepsis-induced acute kidney injury via mitigating inflammation and oxidative stress. Biotechnol Appl Biochem 2023; 70:1983-2001. [PMID: 37592376 DOI: 10.1002/bab.2504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/08/2023] [Indexed: 08/19/2023]
Abstract
Elevated inflammation and oxidative stress (OS) are the main pathologic features of acute kidney injury (AKI)-caused by sepsis. Here, we made an investigation into the protective effects of the natural compound Anemonin (ANE) on sepsis-induced AKI both in vitro and in vivo. Lipopolysaccharide (LPS) was applied to construct an in vitro AKI model in renal tubular epithelial cells, and the septic C57BL/6J mouse model was constructed via cecal ligation and puncture (CLP). Cell viability and apoptosis were detected. The levels of p53, Bax, Bcl2, Caspase3, Caspase8, Caspase9, AMP-activated protein kinase (AMPK), Sirt-1, and forkhead box O3 were determined by Western Blot or RT-PCR. The reactive oxygen species level and OS markers were measured. Furthermore, the pathological changes of kidneys were evaluated by hematoxylin-eosin staining and immunohistochemistry. As per the information presented, ANE improved LPS-elicited apoptosis, inflammatory response, and OS in a dose-dependent pattern in renal tubular epithelial cells. Besides, ANE activated the AMPK/Sirt-1 pathway, and the AMPK inhibitor (Compound C) and Sirt-1 inhibitor (EX-527) significantly attenuated ANE-mediated protection on renal tubular epithelial cells. In vivo, ANE mitigated the levels of serum creatinine and urea nitrogen in the CLP-induced mouse sepsis model, reduced the renal tissue injury score, and attenuated OS, inflammation, and apoptosis levels in the kidney. Taken together, this study suggested that ANE has protective effects in sepsis-triggered AKI through repressing inflammation, OS, and cell apoptosis by activating the AMPK/Sirt-1 pathway.
Collapse
Affiliation(s)
- Dan Liu
- Department of Nephrology, First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Li Li
- Department of Nephrology, First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Zengyan Li
- Department of Nephrology, First Affiliated Hospital of Baotou Medical College, Baotou, China
| |
Collapse
|
7
|
Li JC, Wang LJ, Feng F, Chen TT, Shi WG, Liu LP. Role of heparanase in sepsis‑related acute kidney injury (Review). Exp Ther Med 2023; 26:379. [PMID: 37456170 PMCID: PMC10347300 DOI: 10.3892/etm.2023.12078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Sepsis-related acute kidney injury (S-AKI) is a common and significant complication of sepsis in critically ill patients, which can often only be treated with antibiotics and medications that reduce S-AKI symptoms. The precise mechanism underlying the onset of S-AKI is still unclear, thus hindering the development of new strategies for its treatment. Therefore, it is necessary to explore the pathogenesis of S-AKI to identify biomarkers and therapeutic targets for its early diagnosis and treatment. Heparanase (HPA), the only known enzyme that cleaves the side chain of heparan sulfate, has been widely studied in relation to tumor metabolism, procoagulant activity, angiogenesis, inflammation and sepsis. It has been reported that HPA plays an important role in the progression of S-AKI. The aim of the present review was to provide an overview of the function of HPA in S-AKI and to summarize its underlying molecular mechanisms, including mediating inflammatory response, immune response, autophagy and exosome biogenesis. It is anticipated that emerging discoveries about HPA in S-AKI will support HPA as a potential biomarker and therapeutic target to combat S-AKI.
Collapse
Affiliation(s)
- Jian-Chun Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lin-Jun Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fei Feng
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ting-Ting Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wen-Gui Shi
- Cuiying Biomedical Research Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Li-Ping Liu
- Department of Emergency, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
8
|
Li Y, Chen L, Feng L, Li M. Contrast-Enhanced Ultrasonography for Acute Kidney Injury: A Systematic Review and Meta-Analysis. ULTRASOUND IN MEDICINE & BIOLOGY 2023:S0301-5629(23)00178-3. [PMID: 37391293 DOI: 10.1016/j.ultrasmedbio.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
OBJECTIVE The aim of the work described here was to provide an evidence-based evaluation of contrast-enhanced ultrasonography (CEUS) in acute kidney injury (AKI) and assess variations in renal microperfusion with CEUS quantitative parameters in patients at a high risk of developing AKI. METHODS A meta-analysis and systematic review were conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the Embase, MEDLINE, Web of Science and the Cochrane Library databases were used to search the relevant articles systematically (2000-2022). Studies using CEUS to assess renal cortical microcirculation in AKI were included. RESULTS Six prospective studies (374 patients) were included. The overall quality of included studies was moderate to high. CEUS measures, maximum intensity (standard mean difference [SMD]: -1.37, 95% confidence interval [CI]: -1.64 to -1.09) and wash-in rate (SMD: -0.77, 95% CI: -1.09 to -0.45) were lower in the AKI+ group than in the AKI- group, and mean transit time (SMD: 0.76, 95% CI: 0.11-1.40) and time to peak (SMD: 1.63, 95% CI: 0.99-2.27) were higher in the AKI+ group. Moreover, maximum intensity and wash-in rate values changed before creatinine changed in the AKI+ group. CONCLUSION Patients with AKI had reduced microcirculatory perfusion, prolonged perfusion time and a reduced rising slope in the renal cortex, which occurred before serum creatinine changes. And they could be measured using CEUS, indicating that CEUS could help in the diagnosis of AKI.
Collapse
Affiliation(s)
- Yini Li
- Southwest Medical University, Luzhou, Sichuan Province, China.
| | - Lingzhi Chen
- Southwest Medical University, Luzhou, Sichuan Province, China
| | - Lu Feng
- Southwest Medical University, Luzhou, Sichuan Province, China
| | - Mingxing Li
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China.
| |
Collapse
|
9
|
Sun S, Chen R, Dou X, Dai M, Long J, Wu Y, Lin Y. Immunoregulatory mechanism of acute kidney injury in sepsis: A Narrative Review. Biomed Pharmacother 2023; 159:114202. [PMID: 36621143 DOI: 10.1016/j.biopha.2022.114202] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/17/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023] Open
Abstract
Sepsis acute kidney injury (SAKI) is a common complication of sepsis, accounting for 26-50 % of all acute kidney injury (AKI). AKI is an independent risk factor for increased mortality risk in patients with sepsis. The excessive inflammatory cascade reaction in SAKI is one of the main causes of kidney damage. Both the innate immune system and the adaptive immune system are involved in the inflammation process of SAKI. Under the action of endotoxin, neutrophils, monocytes, macrophages, T cells and other complex immune network reactions occur, and a large number of endogenous inflammatory mediators are released, resulting in the amplification and loss of control of the inflammatory response. The study of immune cells in SAKI will help improve the understanding of the immune mechanisms of SAKI, and will lay a foundation for the development of new diagnostic and therapeutic targets. This article reviews the role of known immune mechanisms in the occurrence and development of SAKI, with a view to finding new targets for SAKI treatment.
Collapse
Affiliation(s)
- Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
10
|
Cao G, Miao H, Wang YN, Chen DQ, Wu XQ, Chen L, Guo Y, Zou L, Vaziri ND, Li P, Zhao YY. Intrarenal 1-methoxypyrene, an aryl hydrocarbon receptor agonist, mediates progressive tubulointerstitial fibrosis in mice. Acta Pharmacol Sin 2022; 43:2929-2945. [PMID: 35577910 PMCID: PMC9622813 DOI: 10.1038/s41401-022-00914-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/17/2022] [Indexed: 12/29/2022]
Abstract
Recent studies have shown that endogenous metabolites act via aryl hydrocarbon receptor (AhR) signalling pathway in tubulointerstitial fibrosis (TIF) pathogenesis. However, the mechanisms underlying endogenous metabolite-mediated AhR activation are poorly characterised. In this study, we conducted untargeted metabolomics analysis to identify the significantly altered intrarenal metabolites in a mouse model of unilateral ureteral obstruction (UUO). We found that the levels of the metabolite 1-methoxypyrene (MP) and the mRNA expression of AhR and its target genes CYP1A1, CYP1A2, CYP1B1 and COX-2 were progressively increased in the obstructed kidney at Weeks 1, 2 and 3. Furthermore, these changes were positively correlated with progressive TIF in UUO mice. In NRK-52E, RAW 264.7 and NRK-49F cells, MP dose-dependently upregulated the mRNA expression of AhR and its four target genes and the protein expression of nuclear AhR, accompanied by the upregulated protein expression of collagen I, α-SMA and fibronectin, as well as downregulated E-cadherin expression. Consistently, oral administration of MP in mice progressively enhanced AhR activity and upregulated profibrotic protein expression in the kidneys; these effects were partially inhibited by AhR knockdown in MP-treated mice and cell lines. In addition, we screened and identified erythro-guaiacylglycerol-β-ferulic acid ether (GFA), which was isolated from Semen plantaginis, as a new AhR antagonist. GFA significantly attenuated TIF in MP-treated NRK-52E cells and mice by partially antagonising AhR activity. Our results suggest that MP activates AhR signalling, thus mediating TIF through epithelial-mesenchymal transition and macrophage-myofibroblast transition. MP is a crucial metabolite that contributes to TIF via AhR signalling pathway.
Collapse
Affiliation(s)
- Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China.
| | - Hua Miao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China
| | - Dan-Qian Chen
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, Department of Nephrology, China-Japan Friendship Hospital, No. 2 Yinghua East Road, Beijing, 100029, China
| | - Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China
| | - Lin Chen
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, 1700 Lomas Blvd NE, Albuquerque, NM, 87131, USA
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, 610106, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA, 92897, USA
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, Department of Nephrology, China-Japan Friendship Hospital, No. 2 Yinghua East Road, Beijing, 100029, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China.
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
11
|
Guo J, Wang R, Min F. Ginsenoside Rg1 ameliorates sepsis-induced acute kidney injury by inhibiting ferroptosis in renal tubular epithelial cells. J Leukoc Biol 2022; 112:1065-1077. [PMID: 35774015 DOI: 10.1002/jlb.1a0422-211r] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI) represents a prevailing complication of sepsis, and its onset involves ferroptosis. Ginsenoside Rg1 exerts a positive effect on kidney diseases. This study explored the action of ginsenoside Rg1 in sepsis-induced AKI (SI-AKI) by regulating ferroptosis in renal tubular epithelial cells (TECs). Sepsis rat models were established using cecal ligation and puncture (CLP) and cell models were established by treating human renal TECs (HK-2) with LPS to induce ferroptosis. Serum creatinine (SCr) and blood urea nitrogen (BUN) and urine KIM1 contents in rats were determined by ELISA kits. Kidney tissues were subjected to immunohistochemical and H&E stainings. Iron concentration, malondialdehyde (MDA), glutathione (GSH), and ferroptosis-related protein (ferritin light chain [FTL], ferritin heavy chain [FTH], GSH peroxidase 4 [GPX4], and Ferroptosis suppressor protein 1 [FSP1]) levels in kidney tissues and HK-2 cells were measured using ELISA kits and Western blotting. HK-2 cell viability was detected by cell counting kit-8, and cell death was observed via propidium iodide staining. Reactive oxygen species accumulation in cells was detected using C11 BODIPY 581/591 as a molecular probe. In CLP rats, ginsenoside Rg1 reduced SCr, BUN, KIM1, and NGAL levels, thus palliating SI-AKI. Additionally, ginsenoside Rg1 decreased iron content, FTL, FTH, and MDA levels, and elevated GPX4, FSP1, and GSH levels, thereby inhibiting lipid peroxidation and ferroptosis. Moreover, FSP1 knockdown annulled the inhibition of ginsenoside Rg1 on ferroptosis. In vitro experiments, ginsenoside Rg1 raised HK-2 cell viability and lowered iron accumulation and lipid peroxidation during ferroptosis, and its antiferroptosis activity was dependent on FSP1. Ginsenoside Rg1 alleviates SI-AKI, possibly resulting from inhibition of ferroptosis in renal TECs through FSP1.
Collapse
Affiliation(s)
- Jun Guo
- Department of Critical Care Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Rong Wang
- Department of Critical Care Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fei Min
- Department of Critical Care Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
12
|
Yang M, Shen P, Xu L, Kong M, Yu C, Shi Y. Theacrine alleviates sepsis-induced acute kidney injury by repressing the activation of NLRP3/Caspase-1 inflammasome. PeerJ 2022; 10:e14109. [PMID: 36213494 PMCID: PMC9541625 DOI: 10.7717/peerj.14109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023] Open
Abstract
Acute kidney injury (AKI) is a frequent and serious complication of sepsis, which results in a rapid decline of kidney function. Currently, there are no curative therapies for AKI. Theacrine is a purine alkaloid and exerts significant role in regulating inflammation, oxidative stress, and mood elevation. The study aims to evaluate the biological role and potential mechanism of theacrine in septic AKI. The murine and cellular models of septic AKI were established in lipopolysaccharide (LPS)-treated C57BL/6 mice and HK-2 cells, respectively. The effect of theacrine on alleviating septic AKI was assessed after pretreatment with theacrine in vivo and in vitro. We found that theacrine treatment significantly alleviated LPS-induced kidney injury, as evidenced by decreased levels of kidney injury markers (blood urea nitrogen and creatinine), inflammatory factors (IL-1β and IL-18), and cell apoptosis in vivo and in vitro. Mechanistically, theacrine markedly repressed the activation of NOD-like receptor (NLR) pyrin domain-containing protein 3 (NLRP3)inflammasome. As expected, MCC950 (a specific inhibitor of NLRP3) treatment also decreased LPS-induced production of IL-18 and IL-1β and cell apoptosis in HK-2 cells. More important, Nigericin sodiumsalt (a NLRP3 agonist) damaged the effect of theacrine on repressing kidney injury markers (blood urea nitrogen and creatinine), pro-inflammatory cytokines (IL-18 and IL-1β), and cell apoptosis. Taken together, these results demonstrate that theacrine alleviates septic AKI, at least in part by repressing the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Maoxian Yang
- Department of Intensive Care Unit, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Peng Shen
- Department of Intensive Care Unit, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Longsheng Xu
- Department of Center Laboratory, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Min Kong
- Department of Anesthesiology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Congcong Yu
- Department of Pharmacy, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yunchao Shi
- Department of Intensive Care Unit, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
13
|
Jia P, Xu SJ, Wang X, Wu X, Ren T, Zou Z, Zeng Q, Shen B, Ding X. Chemokine CCL2 from proximal tubular epithelial cells contributes to sepsis-induced acute kidney injury. Am J Physiol Renal Physiol 2022; 323:F107-F119. [PMID: 35658715 DOI: 10.1152/ajprenal.00037.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Damage-associated molecular patterns secreted from activated kidney cells initiate inflammatory response, a critical step in the development of sepsis-induced acute kidney injury (AKI). However, the underlying mechanism remains to be clarified. Here, we established a mouse model of sepsis-induced AKI through intraperitoneal injection of lipopolysaccharide (LPS), and demonstrated that LPS induced dramatical upregulation of C-C motif chemokine ligand 2 (CCL2) at both the mRNA and the protein levels in kidney, which was mainly expressed by tubular epithelial cells (TECs), especially by proximal TECs. Proximal tubule-specific ablation of CCL2 reduced LPS-induced macrophage infiltration, proinflammatory cytokine expression, and attenuated AKI. In vitro, using transwell migration assay, we found that deficiency of CCL2 in TECs decreased macrophage migration ability. However, myeloid-specific depletion of CCL2 could not protect the kidneys from the aforementioned effects. Mechanistically, LPS activated toll like receptor (TLR) 2 signaling in TECs, which induced activation of its downstream effector nuclear factor (NF)-κB. Blockade of TLR2 signaling or inhibition of NF-κB activation in TECs significantly suppressed LPS-induced CCL2 expression. Furthermore, ChIP analyses confirmed a direct binding of NF-κB p65 in the CCL2 promoter regein, and LPS increased the binding of NF-κB p65 to CCL2 promoter, suggesting that TLR2/NF-κB p65 regulates CCL2 expression in TECs. Together, these results demonstrate that endogenous CCL2 released from PTECs, not from myeloid cells was responsible for sepsis-induced kidney inflammation and AKI. Specificly targeting tubular TLR2/NF-κB/CCL2 signaling may be a potential therapeutic strategy for prevention or attenuation of septic AKI.
Collapse
Affiliation(s)
- Ping Jia
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Su-Juan Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Wang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoli Wu
- Traditional Chinese Medicine Pharmacology Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Ren
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhouping Zou
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Zeng
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bo Shen
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Kidney and Dialysis Institute of Shanghai, Shanghai, China.,Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China.,Hemodialysis quality control center of Shanghai, Shanghai, China
| |
Collapse
|
14
|
Zhao J, Duan Q, Dong C, Cui J. Cul4a attenuates LPS-induced acute kidney injury via blocking NF-kB signaling pathway in sepsis. J Med Biochem 2022; 41:62-70. [PMID: 35611245 PMCID: PMC9069243 DOI: 10.5937/jomb0-33096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022] Open
Abstract
Background Acute kidney injury (AKI) is a common disease that can develop into end-stage kidney disease. Sepsis is one of the main causes of AKI. Currently, there is no satisfactory way to treat septic AKI. Therefore, we have shown the protective function of Cul4a in septic AKI and its molecular mechanism. Methods The cellular and animal models of septic AKI were established by using lipopolysaccharide (LPS). Western blot (WB) was employed to analyze Cul4a expression. RT-qPCR was employed to test the expression of Cul4a, SOD1, SOD2, GPX1, CAT, IL-6, TNF-a, Bcl-2, IL1b, Bax and KIM-1 mRNA. ELISA was performed to detect the contents of inflammatory factors and LDH. CCK-8 was utilized to detect cell viability. Flow cytometry was utilized to analyze the apoptosis. DHE-ROS kit was used to detect the content of ROS. Results Cul4a was down-regulated in cellular and animal models of septic AKI. Oxidative stress is obviously induced by LPS, as well as apoptosis and inflammation. However, these can be significantly inhibited by up-regulating Cul4a. Moreover, LPS induced the activation of the NF-kB pathway, which could also be inhibited by overexpression of Cul4a. Conclusions Cul4awas found to be a protective factor in septic AKI, which could inhibit LPS-induced oxidative stress, apoptosis and inflammation of HK-2 cells by inhibiting the NF-kB pathway.
Collapse
Affiliation(s)
- Jing Zhao
- Yantaishan Hospital, Department of Critical Care Medicine, Yantai, China
| | - Qiuxia Duan
- The Third People's Hospital of Qingdao, Department of Critical Care Medicine, Qingdao, China
| | - Cuihong Dong
- Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Jing Cui
- The Third People's Hospital of Qingdao, Department of Emergency, Qingdao, China
| |
Collapse
|
15
|
Molema G, Zijlstra JG, van Meurs M, Kamps JAAM. Renal microvascular endothelial cell responses in sepsis-induced acute kidney injury. Nat Rev Nephrol 2022; 18:95-112. [PMID: 34667283 DOI: 10.1038/s41581-021-00489-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 12/29/2022]
Abstract
Microvascular endothelial cells in the kidney have been a neglected cell type in sepsis-induced acute kidney injury (sepsis-AKI) research; yet, they offer tremendous potential as pharmacological targets. As endothelial cells in distinct cortical microvascular segments are highly heterogeneous, this Review focuses on endothelial cells in their anatomical niche. In animal models of sepsis-AKI, reduced glomerular blood flow has been attributed to inhibition of endothelial nitric oxide synthase activation in arterioles and glomeruli, whereas decreased cortex peritubular capillary perfusion is associated with epithelial redox stress. Elevated systemic levels of vascular endothelial growth factor, reduced levels of circulating sphingosine 1-phosphate and loss of components of the glycocalyx from glomerular endothelial cells lead to increased microvascular permeability. Although coagulation disbalance occurs in all microvascular segments, the molecules involved differ between segments. Induction of the expression of adhesion molecules and leukocyte recruitment also occurs in a heterogeneous manner. Evidence of similar endothelial cell responses has been found in kidney and blood samples from patients with sepsis. Comprehensive studies are needed to investigate the relationships between segment-specific changes in the microvasculature and kidney function loss in sepsis-AKI. The application of omics technologies to kidney tissues from animals and patients will be key in identifying these relationships and in developing novel therapeutics for sepsis.
Collapse
Affiliation(s)
- Grietje Molema
- Dept. Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Jan G Zijlstra
- Dept. Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matijs van Meurs
- Dept. Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Dept. Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan A A M Kamps
- Dept. Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Wang Z, Fu Z, Wang C, Xu J, Ma H, Jiang M, Xu T, Feng X, Zhang W. ZLN005 protects against ischemia-reperfusion-induced kidney injury by mitigating oxidative stress through the restoration of mitochondrial fatty acid oxidation. Am J Transl Res 2021; 13:10014-10037. [PMID: 34650679 PMCID: PMC8507071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
To date, the treatment of acute kidney injury (AKI) remains a difficult problem for clinicians. In the present study, we assessed whether ZLN005, a novel peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) agonist, can protect against ischemic AKI in vivo and in vitro. Notably, ZLN005 treatment significantly alleviated Ischemia-reperfusion (I/R)-induced tubular injury and reversed the decrease in hypoxia-reoxygenation-induced cell viability by restoring PGC-1α expression in a dose-dependent manner. This beneficial effect of ZLN005 was associated with the preservation of mitochondrial fatty acid oxidation (MitoFAO) and the alleviation of oxidative stress. Cotreatment with etomoxir, a specific inhibitor of carnitine palmitoyltransferase-1α (CPT-1α) activity, or CPT-1α siRNA abrogated ZLN005-induced antistress responses by mitigating reactive oxygen species production and decreasing apoptosis under ischemia-hypoxia conditions by suppressing MitoFAO. Further studies revealed that activation of endoplasmic reticulum (ER) stress may be involved in the effect of CPT-1α inhibition observed in vivo and in vitro. Collectively, our results suggest that ZLN005 confers a protective effect on I/R-induced kidney injury by mitigating ER stress through the restoration of MitoFAO by targeting PGC-1α.
Collapse
Affiliation(s)
- Zhiyu Wang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200025, China
| | - Zongjie Fu
- Department of Nephrology, Zhongshan Hospital, Fudan UniversityShanghai 200032, China
| | - Chongjian Wang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200025, China
| | - Jing Xu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200025, China
| | - Hongkun Ma
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200025, China
| | - Mengdi Jiang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200025, China
| | - Tingting Xu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200025, China
| | - Xiaobei Feng
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200025, China
| | - Wen Zhang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200025, China
| |
Collapse
|
17
|
Cao J, Shi D, Zhu L, Song L. Circ_RASGEF1B Promotes LPS-Induced Apoptosis and Inflammatory Response by Targeting MicroRNA-146a-5p/Pdk1 Axis in Septic Acute Kidney Injury Cell Model. Nephron Clin Pract 2021; 145:748-759. [PMID: 34438395 DOI: 10.1159/000517475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/21/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We intended to investigate the function of circular RNA RasGEF domain family member 1B (circ_RASGEF1B) in lipopolysaccharide (LPS)-induced septic acute kidney injury (AKI) cell model and its associated mechanism. METHODS TCMK-1 cells were exposed to 10 μg/mL LPS for 24 h to establish a septic AKI cell model. Mice were intraperitoneally injected with 10 mg/kg LPS to establish a septic AKI mice model. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were used to measure RNA and protein expression, respectively. Cell viability and apoptosis were assessed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry. Cell inflammatory response was analyzed using enzyme-linked immunosorbent assay. Dual-luciferase reporter assay was conducted to confirm the predicted target relationship between microRNA-146a-5p (miR-146a-5p) and circ_RASGEF1B or pyruvate dehydrogenase kinase 1 (Pdk1). RESULTS The circ_RASGEF1B level was upregulated in LPS-induced TCMK-1 cells and septic AKI mice models. LPS exposure reduced cell viability and promoted cell apoptosis and inflammatory response partly by upregulating circ_RASGEF1B. Circ_RASGEF1B bound to miR-146a-5p and miR-146a-5p interference partly overturned circ_RASGEF1B silencing-mediated effects in LPS-induced TCMK-1 cells. Pdk1 was a target of miR-146a-5p, and Pdk1 accumulation partly counteracted miR-146a-5p-induced influences in TCMK-1 cells upon LPS stimulation. CONCLUSION Circ_RASGEF1B promoted LPS-induced apoptosis and inflammatory response in renal tubular epithelial cells partly by upregulating Pdk1 via acting as miR-146a-5p sponge.
Collapse
Affiliation(s)
- Jianghong Cao
- Department of Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Dongwu Shi
- Department of Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Lili Zhu
- Department of Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Lu Song
- Department of Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, China
| |
Collapse
|
18
|
MiR-22-3p suppresses sepsis-induced acute kidney injury by targeting PTEN. Biosci Rep 2021; 40:224157. [PMID: 32412059 PMCID: PMC7268257 DOI: 10.1042/bsr20200527] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Septic acute kidney injury is considered as a severe and frequent complication that occurs during sepsis. The present study was performed to understand the role of miR-22-3p and its underlying mechanism in sepsis-induced acute kidney injury. Methods: Rats were injected with adenovirus carrying miR-22-3p or miR-NC in the caudal vein before cecal ligation. Meanwhile, HK-2 cells were transfected with the above adenovirus following LPS stimulation. We measured the markers of renal injury (blood urea nitrogen (BUN), serum creatinine (SCR)). Histological changes in kidney tissues were examined by hematoxylin and eosin (H&E), Masson staining, periodic acid Schiff staining and TUNEL staining. The levels of IL-1β, IL-6, TNF-α and NO were determined by ELISA assay. Using TargetScan prediction and luciferase reporter assay, we predicted and validated the association between PTEN and miR-22-3p. Results: Our data showed that miR-22-3p was significantly down-regulated in a rat model of sepsis-induced acute kidney injury, in vivo and LPS-induced sepsis model in HK-2 cells, in vitro. Overexpression of miR-22-3p remarkably suppressed the inflammatory response and apoptosis via down-regulating HMGB1, p-p65, TLR4 and pro-inflammatory factors (IL-1β, IL-6, TNF-α and NO), both in vivo and in vitro. Moreover, PTEN was identified as a target of miR-22-3p. Furthermore, PTEN knockdown augmented, while overexpression reversed the suppressive role of miR-22-3p in LPS-induced inflammatory response. Conclusions: Our results showed that miR-22-3p induced protective role in sepsis-induced acute kidney injury may rely on the repression of PTEN.
Collapse
|
19
|
Deng Z, Sun M, Wu J, Fang H, Cai S, An S, Huang Q, Chen Z, Wu C, Zhou Z, Hu H, Zeng Z. SIRT1 attenuates sepsis-induced acute kidney injury via Beclin1 deacetylation-mediated autophagy activation. Cell Death Dis 2021; 12:217. [PMID: 33637691 PMCID: PMC7910451 DOI: 10.1038/s41419-021-03508-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 01/05/2023]
Abstract
Our previous studies showed that silent mating-type information regulation 2 homologue-1 (SIRT1, a deacetylase) upregulation could attenuate sepsis-induced acute kidney injury (SAKI). Upregulated SIRT1 can deacetylate certain autophagy-related proteins (Beclin1, Atg5, Atg7 and LC3) in vitro. However, it remains unclear whether the beneficial effect of SIRT1 is related to autophagy induction and the underlying mechanism of this effect is also unknown. In the present study, caecal ligation and puncture (CLP)-induced mice, and an LPS-challenged HK-2 cell line were established to mimic a SAKI animal model and a SAKI cell model, respectively. Our results demonstrated that SIRT1 activation promoted autophagy and attenuated SAKI. SIRT1 deacetylated only Beclin1 but not the other autophagy-related proteins in SAKI. SIRT1-induced autophagy and its protective effect against SAKI were mediated by the deacetylation of Beclin1 at K430 and K437. Moreover, two SIRT1 activators, resveratrol and polydatin, attenuated SAKI in CLP-induced septic mice. Our study was the first to demonstrate the important role of SIRT1-induced Beclin1 deacetylation in autophagy and its protective effect against SAKI. These findings suggest that pharmacologic induction of autophagy via SIRT1-mediated Beclin1 deacetylation may be a promising therapeutic approach for future SAKI treatment.
Collapse
Affiliation(s)
- Zhiya Deng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Maomao Sun
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Jie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Haihong Fang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Sheng An
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Qiaobing Huang
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Zhenfeng Chen
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Chenglun Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Ziwei Zhou
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Haoran Hu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, Guangdong, 510515, China.
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Baiyun District, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
20
|
Li X, Li J, Lu P, Li M. LINC00261 relieves the progression of sepsis-induced acute kidney injury by inhibiting NF-κB activation through targeting the miR-654-5p/SOCS3 axis. J Bioenerg Biomembr 2021; 53:129-137. [PMID: 33481135 DOI: 10.1007/s10863-021-09874-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Sepsis is a life-threatening disease, which can cause the dysfunction of multiple organs, including kidney. Recently, a number of studies found that the long non-coding RNA (lncRNA) is closely associated with the development and progression of sepsis; however, the role of long intergenic non-protein coding RNA 261 (LINC00261) in sepsis-induced acute kidney injury is poorly understood. In this study, we found the expression of LINC00261 was significantly decreased in the serum of patients with sepsis than healthy controls. A similar result was also observed in the mouse model of sepsis induced by lipopolysaccharide (LPS). Further investigations revealed that overexpression of LINC00261 improved the viability, suppressed the apoptosis and reduced the generation of inflammatory cytokines in LPS-treated HK-2 cells. Mechanistically, we confirmed that LINC00261 could function as a sponge to combine with microRNA-654-5p (miR-654-5p) which inhibits nuclear factor-κB (NF-κB) activity by targeting suppressor of cytokine signaling 3 (SOCS3). In conclusion, our results demonstrate that LINC00261 may regulate the progression of sepsis-induced acute kidney injury via the miR-654-5p/SOCS3/NF-κB pathway and therefore provides a new insight into the treatment of this disease.
Collapse
Affiliation(s)
- Xinying Li
- Department of Emergency, Shandong Otolaryngological Hospital Affiliated to Shandong University, No.4 DuanXing West Road, Huaiyin District, Jinan, 250022, Shandong Province, China
| | - Jinying Li
- Department of Emergency, Shandong Otolaryngological Hospital Affiliated to Shandong University, No.4 DuanXing West Road, Huaiyin District, Jinan, 250022, Shandong Province, China
| | - Ping Lu
- Department of Emergency, The Fourth People's Hospital of Jinan, Jinan, 250031, Shandong Province, China
| | - Mingzhe Li
- Department of Emergency, Shandong Otolaryngological Hospital Affiliated to Shandong University, No.4 DuanXing West Road, Huaiyin District, Jinan, 250022, Shandong Province, China.
| |
Collapse
|
21
|
Xiao LX, Qi L, Zhang XL, Zhou YQ, Yue HL, Yu ED, Li QY. Liver injury in septic mice were suppressed by a camptothecin-bile acid conjugate via inhibiting NF-κB signaling pathway. Life Sci 2020; 257:118130. [DOI: 10.1016/j.lfs.2020.118130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/19/2022]
|
22
|
miR-20a-5p is enriched in hypoxia-derived tubular exosomes and protects against acute tubular injury. Clin Sci (Lond) 2020; 134:2223-2234. [PMID: 32808649 DOI: 10.1042/cs20200288] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Abstract
Exosomes have been shown to effectively regulate the biological functions of target cells. Here, we investigated the protective effect and mechanism of hypoxia-induced renal tubular epithelial cells (TECs)-derived exosomes on acute tubular injury. We found that in vitro hypoxia-induced tubular exosomes (Hy-EXOs) were protective in acute tubular injury by promoting TECs proliferation and improving mitochondrial functions. By using exosome miRNA sequencing, we identified miR-20a-5p was abundant and was a key mechanism for the protective effect of Hy-EXOs on tubular injury as up-regulation of miR-20a-5p enhanced but down-regulation of miR-20a-5p inhibited the protective effect of Hy-EXOs on tubular injury under hypoxia conditions. Further study in a mouse model of ischemia–reperfusion-induced acute kidney injury (IRI-AKI) also confirmed this notion as pre-treating mice with the miR-20a-5p agomir 48 h prior to AKI induction was capable of inhibiting IRI-AKI by lowering serum levels of creatinine and urea nitrogen, and attenuating the severity of tubular necrosis, F4/80(+) macrophages infiltration and vascular rarefaction. Mechanistically, the protective effect of miR-20a-5p on acute kidney injury (AKI) was associated with inhibition of TECs mitochondrial injury and apoptosis in vitro and in vivo. In conclusion, miR-20a-5p is enriched in hypoxia-derived tubular exosomes and protects against acute tubular injury. Results from the present study also reveal that miR-20a-5p may represent as a novel therapy for AKI.
Collapse
|
23
|
Role of Nrf2 in Lipopolysaccharide-Induced Acute Kidney Injury: Protection by Human Umbilical Cord Blood Mononuclear Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6123459. [PMID: 32774680 PMCID: PMC7407026 DOI: 10.1155/2020/6123459] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
Background Acute kidney injury (AKI) is one of the common complications of sepsis. Heretofore, there is no effective treatment for septic AKI. Recent studies have revealed that besides treating hematological malignancies, human umbilical cord blood mononuclear cells (hUCBMNCs) show good therapeutic effects on other diseases. But whether hUCBMNCs can protect against septic AKI and its underlying mechanism are unknown. Methods The rat model of lipopolysaccharide- (LPS-) induced AKI was developed, and the injection of hUCBMNCs was executed to prevent and treat AKI. ML385, a specific nuclear factor E2-related factor 2 (Nrf2) inhibitor, was used to silence Nrf2. The cell experiments were conducted to elaborate the protective mechanism of Nrf2 pathway. Results An effective model of LPS-induced AKI was established. Compared to the rats only with LPS injection, the levels of inflammation, reactive oxygen species (ROS), and apoptosis in renal tissues after hUCBMNC injection were markedly attenuated. Pathological examination also indicated significant remission of renal tissue injury in the LPS+MNCs group, compared to rats in the LPS group. Transmission electron microscopy (TEM) showed that the damage of the mitochondria in the LPS+MNCs group was lighter than that in the LPS group. Noteworthily, the renal Nrf2/HO-1 pathway was activated and autophagy was enhanced after hUCBMNC injection. ML385 could partly reverse the renoprotective effect of hUCBMNCs, which could demonstrate that Nrf2 participated in the protection of hUCBMNCs. Cell experiments showed that increasing the expression level of Nrf2 could alleviate LPS-induced cell injury by increasing the autophagy level and decreasing the injury of the mitochondria in HK-2 cells. Conclusion All results suggest that hUCBMNCs can protect against LPS-induced AKI via the Nrf2 pathway. Activating Nrf2 can upregulate autophagy to protect LPS-induced cell injury.
Collapse
|
24
|
He Z, Wang H, Yue L. Endothelial progenitor cells-secreted extracellular vesicles containing microRNA-93-5p confer protection against sepsis-induced acute kidney injury via the KDM6B/H3K27me3/TNF-α axis. Exp Cell Res 2020; 395:112173. [PMID: 32679234 DOI: 10.1016/j.yexcr.2020.112173] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022]
Abstract
The pivotal pathogenetic role of microRNAs (miRs) in sepsis-induced acute kidney injury (AKI) has been demonstrated in mounting evidence. The functions of the target cells are regulated through the release of cells-encapsulated extracellular vesicles (Evs) into the extracellular space. The present study aims to elucidate the clinical significance as well as biological function of the endothelial progenitor cell (EPC)-derived Evs containing miR-93-5p in sepsis-induced AKI. We first established a cellular sepsis-induced AKI mouse model by treatment with lipopolysaccharide (LPS), and tested ectopic expression and depletion experiments in the model. Evs derived from miR-93-5p inhibitor-transfected EPCs (Evs/miR-93-5p inhibitor) were isolated, and co-cultured with HK2 cells to explore the effects of EPC-derived Evs overexpressing miR-93-5p on LPS-induced HK2 cell injury. The interaction between miR-93-5p and lysine (K)-specific demethylase 6B (KDM6B) was identified using dual-luciferase reporter assay, and ChIP was used to validate the relationship between KDM6B and tumor necrosis factor-α (TNF-α). Mice were made septic by cecal ligation and puncture (CLP), and then injected with Ev/miR-93-5p inhibitor to explore its functions in vivo. The results found that miR-93-5p and histone H3 Lys27 trimethylation (H3K27me3) were downregulated while KDM6B was upregulated in LPS-treated HK2 cells. EPC-derived Evs alleviated LPS-induced HK2 cell injury, while Ev/miR-93-5p inhibitor potentiated the cell injury in vitro. miR-93-5p was found to directly target KDM6B. Silencing KDM6B induced H3K27me3, inhibiting the activation of TNF-α, thereby weakening LPS-induced HK2 cell injury. EPC-derived Evs containing miR-93-5p attenuated multiple organ injury, vascular leakage, inflammation, and apoptosis in septic mice. In conclusion, the present study demonstrated that endothelial protection from EPC-derived Evs carrying miR-93-5p in sepsis-induced AKI, which was mediated by regulation KDM6BH/3K27me3/TNF-α axis.
Collapse
Affiliation(s)
- Zhonghua He
- Department of Infectious Disease, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, PR China
| | - Haixia Wang
- Dispensing Room, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, PR China
| | - Lingju Yue
- Department of Geriatrics, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, PR China.
| |
Collapse
|
25
|
Anand AC, Nandi B, Acharya SK, Arora A, Babu S, Batra Y, Chawla YK, Chowdhury A, Chaoudhuri A, Eapen EC, Devarbhavi H, Dhiman R, Datta Gupta S, Duseja A, Jothimani D, Kapoor D, Kar P, Khuroo MS, Kumar A, Madan K, Mallick B, Maiwall R, Mohan N, Nagral A, Nath P, Panigrahi SC, Pawar A, Philips CA, Prahraj D, Puri P, Rastogi A, Saraswat VA, Saigal S, Shalimar, Shukla A, Singh SP, Verghese T, Wadhawan M. Indian National Association for the Study of the Liver Consensus Statement on Acute Liver Failure (Part 1): Epidemiology, Pathogenesis, Presentation and Prognosis. J Clin Exp Hepatol 2020; 10:339-376. [PMID: 32655238 PMCID: PMC7335721 DOI: 10.1016/j.jceh.2020.04.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022] Open
Abstract
Acute liver failure (ALF) is an infrequent, unpredictable, potentially fatal complication of acute liver injury (ALI) consequent to varied etiologies. Etiologies of ALF as reported in the literature have regional differences, which affects the clinical presentation and natural course. In this part of the consensus article designed to reflect the clinical practices in India, disease burden, epidemiology, clinical presentation, monitoring, and prognostication have been discussed. In India, viral hepatitis is the most frequent cause of ALF, with drug-induced hepatitis due to antituberculosis drugs being the second most frequent cause. The clinical presentation of ALF is characterized by jaundice, coagulopathy, and encephalopathy. It is important to differentiate ALF from other causes of liver failure, including acute on chronic liver failure, subacute liver failure, as well as certain tropical infections which can mimic this presentation. The disease often has a fulminant clinical course with high short-term mortality. Death is usually attributable to cerebral complications, infections, and resultant multiorgan failure. Timely liver transplantation (LT) can change the outcome, and hence, it is vital to provide intensive care to patients until LT can be arranged. It is equally important to assess prognosis to select patients who are suitable for LT. Several prognostic scores have been proposed, and their comparisons show that indigenously developed dynamic scores have an edge over scores described from the Western world. Management of ALF will be described in part 2 of this document.
Collapse
Key Words
- ACLF, acute on chronic liver failure
- AFLP, acute fatty liver of pregnancy
- AKI, Acute kidney injury
- ALF, Acute liver failure
- ALFED, Acute Liver Failure Early Dynamic
- ALT, alanine transaminase
- ANA, antinuclear antibody
- AP, Alkaline phosphatase
- APTT, activated partial thromboplastin time
- ASM, alternative system of medicine
- ASMA, antismooth muscle antibody
- AST, aspartate transaminase
- ATN, Acute tubular necrosis
- ATP, adenosine triphosphate
- ATT, anti-TB therapy
- AUROC, Area under the receiver operating characteristics curve
- BCS, Budd-Chiari syndrome
- BMI, body mass index
- CBF, cerebral blood flow
- CBFV, cerebral blood flow volume
- CE, cerebral edema
- CHBV, chronic HBV
- CLD, chronic liver disease
- CNS, central nervous system
- CPI, clinical prognostic indicator
- CSF, cerebrospinal fluid
- DAMPs, Damage-associated molecular patterns
- DILI, drug-induced liver injury
- EBV, Epstein-Barr virus
- ETCO2, End tidal CO2
- GRADE, Grading of Recommendations Assessment Development and Evaluation
- HAV, hepatitis A virus
- HBV, Hepatitis B virus
- HELLP, hemolysis
- HEV, hepatitis E virus
- HLH, Hemophagocytic lymphohistiocytosis
- HSV, herpes simplex virus
- HV, hepatic vein
- HVOTO, hepatic venous outflow tract obstruction
- IAHG, International Autoimmune Hepatitis Group
- ICH, intracerebral hypertension
- ICP, intracerebral pressure
- ICU, intensive care unit
- IFN, interferon
- IL, interleukin
- IND-ALF, ALF of indeterminate etiology
- INDILI, Indian Network for DILI
- KCC, King's College Criteria
- LC, liver cirrhosis
- LDLT, living donor liver transplantation
- LT, liver transplantation
- MAP, mean arterial pressure
- MHN, massive hepatic necrosis
- MPT, mitochondrial permeability transition
- MUAC, mid-upper arm circumference
- NAPQI, n-acetyl-p-benzo-quinone-imine
- NPV, negative predictive value
- NWI, New Wilson's Index
- ONSD, optic nerve sheath diameter
- PAMPs, pathogen-associated molecular patterns
- PCR, polymerase chain reaction
- PELD, Pediatric End-Stage Liver Disease
- PPV, positive predictive value
- PT, prothrombin time
- RAAS, renin–angiotensin–aldosterone system
- SHF, subacute hepatic failure
- SIRS, systemic inflammatory response syndrome
- SNS, sympathetic nervous system
- TB, tuberculosis
- TCD, transcranial Doppler
- TGF, tumor growth factor
- TJLB, transjugular liver biopsy
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- TSFT, triceps skin fold thickness
- US, ultrasound
- USALF, US Acute Liver Failure
- VZV, varicella-zoster virus
- WD, Wilson disease
- Wilson disease (WD)
- YP, yellow phosphorus
- acute liver failure
- autoimmune hepatitis (AIH)
- drug-induced liver injury
- elevated liver enzymes, low platelets
- sALI, severe acute liver injury
- viral hepatitis
Collapse
Affiliation(s)
- Anil C. Anand
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Bhaskar Nandi
- Department of Gastroenterology, Sarvodaya Hospital and Research Centre, Faridababd, Haryana, India
| | - Subrat K. Acharya
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
| | - Anil Arora
- Institute of Liver Gastroenterology &Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Sethu Babu
- Department of Gastroenterology, Krishna Institute of Medical Sciences, Hyderabad 500003, India
| | - Yogesh Batra
- Department of Gastroenterology, Indraprastha Apollo Hospital, SaritaVihar, New Delhi, 110 076, India
| | - Yogesh K. Chawla
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, 700020, India
| | - Ashok Chaoudhuri
- Hepatology and Liver Transplant, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
| | - Eapen C. Eapen
- Department of Hepatology, Christian Medical College, Vellore, India
| | - Harshad Devarbhavi
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, 560034, India
| | - RadhaKrishan Dhiman
- Department of Hepatology, Post graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Siddhartha Datta Gupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Ajay Duseja
- Department of Hepatology, Post graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Dinesh Jothimani
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Chrompet, Chennai, 600044, India
| | | | - Premashish Kar
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
| | - Mohamad S. Khuroo
- Department of Gastroenterology, Dr Khuroo’ S Medical Clinic, Srinagar, Kashmir, India
| | - Ashish Kumar
- Institute of Liver Gastroenterology &Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Kaushal Madan
- Gastroenterology and Hepatology, Max Smart Super Specialty Hospital, Saket, New Delhi, India
| | - Bipadabhanjan Mallick
- Department of Gastroenterology, Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Rakhi Maiwall
- Hepatology Incharge Liver Intensive Care, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
| | - Neelam Mohan
- Department of Pediatric Gastroenterology, Hepatology & Liver Transplantation, Medanta – the Medicity Hospital, Sector – 38, Gurgaon, Haryana, India
| | - Aabha Nagral
- Department of Gastroenterology, Apollo and Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
| | - Preetam Nath
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Sarat C. Panigrahi
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Ankush Pawar
- Liver & Digestive Diseases Institute, Fortis Escorts Hospital, Okhla Road, New Delhi, 110 025, India
| | - Cyriac A. Philips
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, 682028, Kerala, India
| | - Dibyalochan Prahraj
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Pankaj Puri
- Department of Hepatology and Gastroenterology, Fortis Escorts Liver & Digestive Diseases Institute (FELDI), Fortis Escorts Hospital, Delhi, India
| | - Amit Rastogi
- Department of Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
| | - Vivek A. Saraswat
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareli Road, Lucknow, Uttar Pradesh, 226 014, India
| | - Sanjiv Saigal
- Department of Hepatology, Department of Liver Transplantation, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 29, India
| | - Akash Shukla
- Department of Gastroenterology, LTM Medical College & Sion Hospital, India
| | - Shivaram P. Singh
- Department of Gastroenterology, SCB Medical College, Cuttack, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
| | - Thomas Verghese
- Department of Gastroenterology, Government Medical College, Kozikhode, India
| | - Manav Wadhawan
- Institute of Liver & Digestive Diseases and Head of Hepatology & Liver Transplant (Medicine), BLK Super Speciality Hospital, Delhi, India
| | - The INASL Task-Force on Acute Liver Failure
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
- Department of Gastroenterology, Sarvodaya Hospital and Research Centre, Faridababd, Haryana, India
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
- Institute of Liver Gastroenterology &Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
- Department of Gastroenterology, Krishna Institute of Medical Sciences, Hyderabad 500003, India
- Department of Gastroenterology, Indraprastha Apollo Hospital, SaritaVihar, New Delhi, 110 076, India
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, 700020, India
- Hepatology and Liver Transplant, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
- Department of Hepatology, Christian Medical College, Vellore, India
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, 560034, India
- Department of Hepatology, Post graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Chrompet, Chennai, 600044, India
- Gleneagles Global Hospitals, Hyderabad, Telangana, India
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
- Department of Gastroenterology, Dr Khuroo’ S Medical Clinic, Srinagar, Kashmir, India
- Gastroenterology and Hepatology, Max Smart Super Specialty Hospital, Saket, New Delhi, India
- Department of Gastroenterology, Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
- Hepatology Incharge Liver Intensive Care, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
- Department of Pediatric Gastroenterology, Hepatology & Liver Transplantation, Medanta – the Medicity Hospital, Sector – 38, Gurgaon, Haryana, India
- Department of Gastroenterology, Apollo and Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
- Liver & Digestive Diseases Institute, Fortis Escorts Hospital, Okhla Road, New Delhi, 110 025, India
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, 682028, Kerala, India
- Department of Hepatology and Gastroenterology, Fortis Escorts Liver & Digestive Diseases Institute (FELDI), Fortis Escorts Hospital, Delhi, India
- Department of Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareli Road, Lucknow, Uttar Pradesh, 226 014, India
- Department of Hepatology, Department of Liver Transplantation, India
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 29, India
- Department of Gastroenterology, LTM Medical College & Sion Hospital, India
- Department of Gastroenterology, SCB Medical College, Cuttack, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
- Department of Gastroenterology, Government Medical College, Kozikhode, India
- Institute of Liver & Digestive Diseases and Head of Hepatology & Liver Transplant (Medicine), BLK Super Speciality Hospital, Delhi, India
| |
Collapse
|
26
|
miRNA-20a suppressed lipopolysaccharide‐induced HK‐2 cells injury via NFκB and ERK1/2 signaling by targeting CXCL12. Mol Immunol 2020; 118:117-123. [DOI: 10.1016/j.molimm.2019.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/26/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023]
|
27
|
Wang J, Song J, Li Y, Shao J, Xie Z, Sun K. Down-regulation of LncRNA CRNDE aggravates kidney injury via increasing MiR-181a-5p in sepsis. Int Immunopharmacol 2019; 79:105933. [PMID: 31877497 DOI: 10.1016/j.intimp.2019.105933] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/01/2019] [Accepted: 09/23/2019] [Indexed: 01/10/2023]
Abstract
Long non-coding RNA (lncRNA) colorectal neoplasia differentially expressed (CRNDE) is reported to be linked to inflammation and cell apoptosis. However its role in sepsis induced kidney injury remains unclear. This study aims to explore the possible mechanism of CRNDE in kidney injury induced by sepsis. In vivo urine-derived sepsis (US) rat model and in vitro LPS-induced HK-2 and HEK293 cells were established. Kidney function was measured in rats from different groups. Relative levels of tumor necrosis factor-α (TNF-α) and interleukin-1β(IL-1β) in kidney tissue were detected via Enzyme-linked immune sorbent assay (ELISA). Then we up- or down-regulated CRNDE and miRNA-181a-5p expression in the cells. The biological influence of CRNDE and miR-181a-5p on cells was studied using CCK-8 assay and Annexin V assay. Interaction between CRNDE and miR-181a-5p was determined by bioinformatics analysis, RT-PCR, and dual luciferase reporter assay. Peroxisome proliferator-activated receptor-α (PPARα) and cell apoptosis related molecules were detected by western blot. We demonstrated that CRNDE was markedly down-regulated while miR-181a-5p was significantly up-regulated in sepsis models. CRNDE interacted with miR-181a-5p, and negatively regulated its expression level. CRNDE knockdown in rats increased the urea nitrogen and serum creatinine in plasma. Knockdown of CRNDE or transfection of miR-181a-5p significantly inhibited proliferation and promoted apoptosis of HK-2 and HEK293 cells, while overexpression of CRNDE and transfection of miR-181a-5p inhibitors had opposite effects. For mechanism, miR-181a-5p directly targeted the 3' untranslated region of PPARα, and depressed its protein level, and PPARα was regulated indirectly by CRNDE. We concluded that CRNDE protected renal cell from sepsis-induced injury via miR-181a-5p/PPARα pathway.
Collapse
Affiliation(s)
- Jiqin Wang
- Emergency Department, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Jianfeng Song
- Emergency Department, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Yanyan Li
- Emergency Department, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Jinyan Shao
- Emergency Department, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Zichen Xie
- Emergency Department, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Keyu Sun
- Emergency Department, Minhang Hospital, Fudan University, Shanghai 201199, China.
| |
Collapse
|
28
|
Yang M, Lu L, Kang Z, Ma T, Wang Y. Overexpressed CD39 mitigates sepsis‑induced kidney epithelial cell injury via suppressing the activation of NLR family pyrin domain containing 3. Int J Mol Med 2019; 44:1707-1718. [PMID: 31545401 PMCID: PMC6777677 DOI: 10.3892/ijmm.2019.4349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022] Open
Abstract
Unfettered inflammation is a leading cause of multiple organ failures in sepsis. The anti-inflammatory role of cluster of differentiation (CD)39 has been previously reported. The present study aimed to investigate the role of unfettered inflammation in sepsis-induced acute kidney injury (AKI). Lipopolysaccharide (LPS) was introduced to construct a sepsis mouse model. Kidney function and pathological changes in mice were measured at 12, 24 and 48 h. CD39 overexpression and inhibition vectors were transfected into renal tubular epithelial (HK-2) cells, followed by LPS treatment (10 μg/ml), and the cell viability changes at 24 h after treatment were assessed and the expression of NLR family pyrin domain containing 3 (NLRP3), cleaved caspase-1 and CD39 were determined by performing ELISAs. Cell apoptosis and reactive oxygen species (ROS) levels were determined by flow cytometry. It was found that after LPS administration, kidney injury was the most serious at 24 h in mice. CD39 overexpression could suppress the upregulation of pro-inflammatory cytokines induced by LPS treatment. In addition, the cell apoptosis and ROS level exhibited an obvious decrease, while cell viability increased. The NLRP3 expression and activity also showed a great inhibition in CD39-overexpressed cells. By contrast to CD39 overexpression, CD39 inhibition promoted the activation of the NLRP3 inflammasome. These data indicate the protective role of CD39 in LPS-induced renal tubular epithelial cell damage through inhibiting NLRP3 inflammasome activation and that CD39 might be a potential therapeutic target in sepsis-induced AKI.
Collapse
Affiliation(s)
- Meixia Yang
- Department of Emergency, Shanxi Dayi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Linxin Lu
- Department of Emergency, Shanxi Dayi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Zhiqin Kang
- Department of Emergency, Shanxi Dayi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Tianlong Ma
- Department of Emergency, Shanxi Dayi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Yu Wang
- Department of Emergency, Shanxi Dayi Hospital, Taiyuan, Shanxi 030032, P.R. China
| |
Collapse
|
29
|
MicroRNA-191-5p diminished sepsis-induced acute kidney injury through targeting oxidative stress responsive 1 in rat models. Biosci Rep 2019; 39:BSR20190548. [PMID: 31362998 PMCID: PMC6692571 DOI: 10.1042/bsr20190548] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
There is no effective treatment for septic acute kidney injury (AKI), which is considered a major public health concern in today’s world. Here, we studied the functions of miR-191-5p in septic AKI. MiR-191-5p mimic or mimic control was injected into rats from caudal vein before cecal ligation and puncture (CLP) surgery. Part of kidney tissues was stained by Hematoxylin and Eosin (H&E) for histological examination. The levels of serum cytokines were evaluated using enzyme-linked immunosorbent assay (ELISA). For cell transfection, renal cells were isolated from the kidneys of CLP rat model injected with mimic control and miR-191-5p mimic. With TargetScan prediction, serine/threonine-protein kinase OSR1 was identified as a target of miR-191-5p. Oxidative stress responsive 1 (OXSR1) overexpression vector was transfected into renal cells. Cell viability and apoptosis rate were determined by Cell Counting Kit-8 (CCK-8) and flow cytometry, respectively. We additionally measured the phosphorylation levels of p38 and p65. We found that the injection of miR-191-5p mimic could observably inhibit renal injury scores, and inhibit inflammatory cytokine productions and apoptotic protein levels in septic rats. After being transfected with OXSR1, the apoptosis rates and expressions of B-cell lymphoma-2 (Bcl-2), down-regulated Bax and Cleaved caspase-3 (C caspase-3) indicated overexpressed OXSR1 contributed to cell apoptosis. The up-regulated protein levels of p-p38 and p-p65 may suggest the involvement of p38 MAPK/NF-κB signaling pathway in the functions of OXSR1. Our results showed that the protective effects of miR-191-5p on kidney tissues of septic rats may rely on the repression of OXSR1.
Collapse
|
30
|
Fu Z, Liao W, Ma H, Wang Z, Jiang M, Feng X, Zhang W. Inhibition of neddylation plays protective role in lipopolysaccharide-induced kidney damage through CRL-mediated NF-κB pathways. Am J Transl Res 2019; 11:2830-2842. [PMID: 31217857 PMCID: PMC6556637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
It has been shown that NF-κB signaling path is very effective pharmacological target for the treatment of various inflammatory diseases, including bacterial infection-associated acute kidney injury (AKI), which remains a main cause of disability and death in patients. Notably, IκB, the upstream molecular of NF-κB, plays an important role by inhibiting NF-κB activity, and IκB is regulated by cullin-RING E3 ligases (CRLs)-mediated proteasomal degradation. Therefore inhibition of CRLs-mediated neddylation and degradation of IκB would prevent NF-κB-mediated inflammation. MLN4924, a potent neddylation-inhibiting pharmacological agent, has been shown to have significant protective effects against lipopolysaccharide (LPS)-induced pro-inflammatory cytokine production through restriction of the CRL-mediated NF-κB pathway. However, it is still unclear whether MLN4924 plays a protective role through its anti-inflammatory properties in sepsis-induced AKI. In the current research, we explored whether MLN4924 have anti-inflammatory action in LPS-induced AKI mice. Our results show that MLN4924 dramatically decreased the cytotoxicity of LPS and inhibited LPS-induced synthesis and release of pro-inflammatory cytokines, such as TNF-α, IL-6 and IL-1β, in HK2 cells, a renal tubular cell line. In addition, MLN4924 inhibited Nedd8-activating enzymes, which broke the process of cullin proteins neddylation and subsequent CRL target proteins degradation. The MLN4924-induced degradation of CRL attenuated the phosphorylation modification of IκB and IKK-α/β and blocked the nuclear translocation of P50-NF-κB and P65-NF-κB in HK2 cells under LPS stimulation. Finally, our in vivo results show that MLN4924 protected against LPS-induced AKI at relatively low doses. Collectively, these results suggest that pharmacologically blocking neddylation by MLN4924 results in the suppression of pro-inflammatory cytokines generation through the CRL/NF-κB pathway in LPS-stimulated HK2 cells, and attenuated renal inflammation in LPS-induced AKI.
Collapse
Affiliation(s)
- Zongjie Fu
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200025, PR China
| | - Weitang Liao
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University107 Yan-Jiang Xi Road, Guangzhou 510120, PR China
| | - Hongkun Ma
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200025, PR China
| | - Zhiyu Wang
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200025, PR China
| | - Mengdi Jiang
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200025, PR China
| | - Xiaobei Feng
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200025, PR China
| | - Wen Zhang
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200025, PR China
| |
Collapse
|
31
|
Meurer M, Höcherl K. Endotoxaemia differentially regulates the expression of renal Ca 2+ transport proteins in mice. Acta Physiol (Oxf) 2019; 225:e13175. [PMID: 30133162 DOI: 10.1111/apha.13175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/16/2022]
Abstract
AIM Alterations in parathyroid hormone (PTH) and/or vitamin D signalling are frequently reported in patients with sepsis. The consequences on renal and intestinal Ca2+ and Pi regulatory mechanisms are still unclear. We hypothesized that endotoxaemia alters the expression of important renal and intestinal Ca2+ and Pi transport proteins. METHODS Male C57BL/6 mice were treated with lipopolysaccharide (LPS; 3 mg/kg; i.p.). The mRNA and protein levels of renal and intestinal Ca2+ and Pi transport proteins were measured by RT-qPCR, immunohistochemistry and western blot analysis. RESULTS Lipopolysaccharide-induced hypocalcaemia and hyperphosphataemia was paralleled by a decrease in glomerular filtration rate and urinary excretion of Ca2+ and Pi . Endotoxaemia augmented plasma levels of PTH and affected the fibroblast growth factor 23 (FGF23)-klotho-vitamin D axis by increasing plasma levels of FGF23 and downregulation of renal klotho expression. Renal expression of CYP27b1 and plasma levels of 1,25-dihydroxyvitamin D3 were increased in response to LPS. Endotoxaemia augmented the renal expression of TRPV5, TRPV6 and PiT1, whereas the renal expression of calbindin-D28K , NCX1, NaPi -2a and NaPi -2c were decreased. Incubation of primary distal tubule cells with LPS increased TRPV6 mRNA levels. Furthermore, LPS decreased the intestinal expression of TRPV6, calbindin-D9K and of NaPi -2b. CONCLUSION Our findings indicate that endotoxaemia is associated with hypocalcaemia and hyperphosphataemia and a disturbed FGF23-klotho-vitamin D signaling. Further, LPS-induced acute kidney injury was accompanied by an increased or decreased expression of specific renal and intestinal Ca2+ and Pi transporters respectively. It seems unlikely that LPS-induced hypocalcaemia is due to renal loss of Ca2+ .
Collapse
Affiliation(s)
- Manuel Meurer
- Institute of Experimental and Clinical Pharmacology and Toxicology; Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Erlangen Germany
| | - Klaus Höcherl
- Institute of Experimental and Clinical Pharmacology and Toxicology; Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Erlangen Germany
| |
Collapse
|
32
|
Post EH, Su F, Righy Shinotsuka C, Taccone FS, Creteur J, De Backer D, Vincent JL. Renal autoregulation in experimental septic shock and its response to vasopressin and norepinephrine administration. J Appl Physiol (1985) 2018; 125:1661-1669. [PMID: 30260750 DOI: 10.1152/japplphysiol.00783.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Evidence suggests that septic shock patients with chronic arterial hypertension may benefit from resuscitation targeted to achieve higher blood pressure values than other patients, possibly as a result of altered renal autoregulation. The effects of different vasopressor agents on renal autoregulation may be important in this context. We investigated the effects of arginine vasopressin (AVP) and norepinephrine (NE) on renal autoregulation in ovine septic shock. Sepsis was induced by fecal peritonitis. When shock developed (decrease in mean arterial pressure to <65 mmHg and no fluid-responsiveness), animals were randomized to receive NE or AVP in a crossover design. Before the switch to the second vasopressor, the first vasopressor was discontinued for 30 minutes to ensure complete washout of the first vasopressor. Renal autoregulation was evaluated by recording the change in renal blood flow (RBF) in response to manual, stepwise reductions in renal inflow pressure. In this model, the lower limit of renal autoregulation was not significantly altered 6 hours after sepsis induction (59±9 vs. 64±7 mmHg at baseline, p=0.096). After development of shock, the autoregulatory threshold was lower with AVP than with NE (59±5 vs. 65±7 mmHg, p=0.010). However, RBF was higher with NE both at the start of autoregulatory measurements (206±58 vs. 170±52 mL/min; p=0.050) and at the autoregulatory threshold (191±53 vs. 150±47 mL/min; p=0.008). As vasopressors may have different effects on renal autoregulation, blood pressure management in patients with septic shock should be individualized and take into account drug-specific effects.
Collapse
|
33
|
Marticorena Garcia SR, Guo J, Dürr M, Denecke T, Hamm B, Sack I, Fischer T. Comparison of ultrasound shear wave elastography with magnetic resonance elastography and renal microvascular flow in the assessment of chronic renal allograft dysfunction. Acta Radiol 2018; 59:1139-1145. [PMID: 29249167 DOI: 10.1177/0284185117748488] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Monitoring of renal allograft function is essential for early identification of dysfunction and improvement of kidney transplant (KTX) outcome. Purpose To non-invasively assess renal stiffness in KTX recipients using ultrasound shear wave elastography (USE) in correlation with multifrequency magnetic resonance elastography (MRE), renal allograft function, and renal microvascular flow determined using a novel ultrasound microvascular imaging technique. Material and Methods This prospective study investigated 25 KTXs (functional KTX [FCT], n = 14; chronic KTX insufficiency [DYS], n = 11) in 20 KTX recipients (mean age = 43 ± 14 years). USE was performed using a high-frequency broadband linear transducer and compared with MRE. Shear wave velocity (SWV) was correlated with the estimated glomerular filtration rate (eGFR). Qualitative differences in renal microvascular flow were obtained using SMI. Results FCT had higher SWV than DYS in both cortex and pyramids (cortex, FCT: 3.75 ± 0.82 m/s vs. DYS: 2.79 ± 0.73 m/s, P = 0.0002; pyramid, FCT: 2.89 ± 0.46 m/s vs. DYS: 2.39 ± 0.34 m/s, P = 0.044). Cutoff values of 3.265 m/s for cortex, 2.535 m/s for pyramids, and 2.985 m/s for combined non-hilar parenchyma provided sensitivities of 72.7%, 77.8%, and 90.9% and specificities of 71.4%, 78.6%, and 85.7% for detecting renal allograft dysfunction with area under the receiver operating characteristic curve (AUC) values of 0.831, 0.841, 0.925 (95% confidence interval [CI] = 0.67-0.99, 0.66-1.02, 0.83-1.03). USE correlated positively with eGFR ( r = 0.741, P = 0.0004) and with MRE-derived SWV ( r = 0.562, P = 0.004). Renal microvascular flow was decreased in DYS. Conclusion USE is sensitive to renal allograft dysfunction, which is characterized by reduced SWV and renal perfusion. USE has higher image resolution than MRE, while MRE has slightly better diagnostic accuracy.
Collapse
Affiliation(s)
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Dürr
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Timm Denecke
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Fischer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
34
|
Street JM, Koritzinsky EH, Bellomo TR, Hu X, Yuen PST, Star RA. The role of adenosine 1a receptor signaling on GFR early after the induction of sepsis. Am J Physiol Renal Physiol 2018; 314:F788-F797. [PMID: 29117994 PMCID: PMC6031909 DOI: 10.1152/ajprenal.00051.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 01/12/2023] Open
Abstract
Sepsis and acute kidney injury (AKI) synergistically increase morbidity and mortality in the ICU. How sepsis reduces glomerular filtration rate (GFR) and causes AKI is poorly understood; one proposed mechanism includes tubuloglomerular feedback (TGF). When sodium reabsorption by the proximal tubules is reduced in normal animals, the macula densa senses increased luminal sodium chloride, and then adenosine-1a receptor (A1aR) signaling triggers tubuloglomerular feedback, reducing GFR through afferent arteriole vasoconstriction. We measured GFR and systemic hemodynamics early during cecal ligation and puncture-induced sepsis in wild-type and A1aR-knockout mice. A miniaturized fluorometer was attached to the back of each mouse and recorded the clearance of FITC-sinistrin via transcutaneous fluorescence to monitor GFR. Clinical organ injury markers and cytokines were measured and hemodynamics monitored using implantable transducer telemetry devices. In wild-type mice, GFR was stable within 1 h after surgery, declined by 43% in the next hour, and then fell to less than 10% of baseline after 2 h and 45 min. In contrast, in A1aR-knockout mice GFR was 37% below baseline immediately after surgery and then gradually declined over 4 h. A1aR-knockout mice had similar organ injury and inflammatory responses, albeit with lower heart rate. We conclude that transcutaneous fluorescence can accurately monitor GFR and detect changes rapidly during sepsis. Tubuloglomerular feedback plays a complex role in sepsis; initially, TGF helps maintain GFR in the 1st hour, and over the subsequent 3 h, TGF causes GFR to plummet. By 18 h, TGF has no cumulative effect on renal or extrarenal organ damage.
Collapse
Affiliation(s)
- Jonathan M Street
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Erik H Koritzinsky
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Tiffany R Bellomo
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Peter S T Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
35
|
Transplantation of Human Umbilical Cord Blood Mononuclear Cells Attenuated Ischemic Injury in MCAO Rats via Inhibition of NF-κB and NLRP3 Inflammasome. Neuroscience 2017; 369:314-324. [PMID: 29175152 DOI: 10.1016/j.neuroscience.2017.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/28/2022]
Abstract
Accumulated evidence displayed that transplantation of stem cells may be a promising approach for the treatment of neurological disorders. However, the underlying mechanisms remain to be well elucidated. Moreover, some investigators cannot reproduce similar results as the previous. The present results showed that transplantation of fresh human umbilical cord blood mononuclear cells (cbMNCs) attenuated ischemic damage in middle cerebral artery occlusion (MCAO) rats, accompanied with improvement of neurologic deficits, learning and memory function. The increase in neovascularization and related molecules such as vascular endothelial growth factor (VEGF), Angiopoietin-1 (Ang-1) and endothelium-specific receptor tyrosine kinase 2 (Tie-2) in the injured brain was observed in cbMNCs-treated rats. Moreover, nuclear factor-κB (NF-κB) activation and nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome were also inhibited by the cells graft, resulting in reduction in cleaved caspase-1 and mature interleukin-1β (IL-1β) content. These results suggested that the protective actions of the cells on the cerebral ischemia may be related to inhibition of NF-κB pathway and NLRP3 inflammasome.
Collapse
|
36
|
Huang Z, Jiang H, Cui X, Liang G, Chen Y, Wang T, Sun Z, Qi L. Elevated serum levels of lipoprotein‑associated phospholipase A2 predict mortality rates in patients with sepsis. Mol Med Rep 2017; 17:1791-1798. [PMID: 29138849 DOI: 10.3892/mmr.2017.8034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 01/09/2017] [Indexed: 11/06/2022] Open
Abstract
Sepsis remains one of the leading contributors to mortality rates in the intensive care unit (ICU) and emergency intensive care unit (EICU). Therefore, any treatments against the agents which produce sepsis in a medical emergency, are welcome. Elevated serum levels of lipoprotein‑associated phospholipase A2 (Lp‑PLA2) have been reported in a small cohort of patients with inflammation. The present study evaluated serum levels of Lp‑PLA2 in patients with sepsis and investigated the role of Lp‑PLA2 in sepsis. The investigation involved the selection of 151 patients with sepsis admitted to the emergency department of the Affiliated Hospital of Nantong University (Nantong, China) and 30 healthy controls. All patients (39 with sepsis, 55 with severe sepsis and 57 with septic shock) were examined on admission to the EICU. A complete blood count was performed, and serum levels of Lp‑PLA2, C‑reactive protein, procalcitonin, and interleukin 6, sequential organ failure (SOFA) scores and Acute Physiology and Chronic Health Evaluation II (APACHE II) scores were determined on hospital admission. The EICU and overall mortality rates were evaluated at baseline. The present study also assessed various laboratory parameters, clinical data and inflammatory cytokines. The patient follow up duration was 90 days. The data suggested that the serum levels of Lp‑PLA2 on admission to the EICU in patients with sepsis were elevated, compared with those in healthy controls. The concentrations of Lp‑PLA2 were correlated with the severity of disease, and were significantly associated with experimental markers of inflammation and established prognostic scores. In the total cohort, persistently elevated levels of Lp‑PLA2 on admission for EICU treatment was a predictor of poor prognosis, and provided superior diagnostic use, compared with the prognostic scoring systems, including SOFA or APACHE II scores. Taken together, the results suggested that Lp‑PLA2, with respect to other markers of inflammation, may have a role as a prognostic marker in sepsis, and provide background evidence for further trials to evaluate the clinical and pathophysiologic roles of Lp‑PLA2 in sepsis. Persistently elevated serum concentrations of Lp‑PLA2 indicated an unfavorable outcome in patients with sepsis. In addition, the results indicated the potential role of Lp‑PLA2 as a prognostic biomarker in patients with sepsis during the early course of EICU treatment.
Collapse
Affiliation(s)
- Zhongwei Huang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Haiyan Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaohui Cui
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guiwen Liang
- Department of Geriatric Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yu Chen
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ting Wang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhichao Sun
- Medical College, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
37
|
SIRT1/3 Activation by Resveratrol Attenuates Acute Kidney Injury in a Septic Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7296092. [PMID: 28003866 PMCID: PMC5149703 DOI: 10.1155/2016/7296092] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/07/2016] [Accepted: 10/30/2016] [Indexed: 12/20/2022]
Abstract
Sepsis often results in damage to multiple organ systems, possibly due to severe mitochondrial dysfunction. Two members of the sirtuin family, SIRT1 and SIRT3, have been implicated in the reversal of mitochondrial damage. The aim of this study was to determine the role of SIRT1/3 in acute kidney injury (AKI) following sepsis in a septic rat model. After drug pretreatment and cecal ligation and puncture (CLP) model reproduction in the rats, we performed survival time evaluation and kidney tissue extraction and renal tubular epithelial cell (RTEC) isolation. We observed reduced SIRT1/3 activity, elevated acetylated SOD2 (ac-SOD2) levels and oxidative stress, and damaged mitochondria in RTECs following sepsis. Treatment with resveratrol (RSV), a chemical SIRT1 activator, effectively restored SIRT1/3 activity, reduced acetylated SOD2 levels, ameliorated oxidative stress and mitochondrial function of RTECs, and prolonged survival time. However, the beneficial effects of RSV were greatly abrogated by Ex527, a selective inhibitor of SIRT1. These results suggest a therapeutic role for SIRT1 in the reversal of AKI in septic rat, which may rely on SIRT3-mediated deacetylation of SOD2. SIRT1/3 activation could therefore be a promising therapeutic strategy to treat sepsis-associated AKI.
Collapse
|
38
|
Zhang D, Li H, Geng J, Li Y, Li S, Ma C, Cong B, Zhang X. The therapeutic effects of cholecystokinin octapeptide on rat liver and kidney microcirculation disorder in endotoxic shock. Immunopharmacol Immunotoxicol 2016; 39:2-10. [DOI: 10.1080/08923973.2016.1255225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Dong Zhang
- College of Integrated Traditional and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, PR China
| | - Hui Li
- Department of Forensic Medicine, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, PR China
| | - Jing Geng
- Department of Forensic Medicine, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, PR China
| | - Yingmin Li
- Department of Forensic Medicine, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, PR China
| | - Shujin Li
- Department of Forensic Medicine, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, PR China
| | - Chunling Ma
- Department of Forensic Medicine, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, PR China
| | - Bin Cong
- Department of Forensic Medicine, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, PR China
| | - Xiaojing Zhang
- Department of Forensic Medicine, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, PR China
| |
Collapse
|
39
|
Abstract
Sepsis affects practically all aspects of endothelial cell (EC) function and is thought to be the key factor in the progression from sepsis to organ failure. Endothelial functions affected by sepsis include vasoregulation, barrier function, inflammation, and hemostasis. These are among other mechanisms often mediated by glycocalyx shedding, such as abnormal nitric oxide metabolism, up-regulation of reactive oxygen species generation due to down-regulation of endothelial-associated antioxidant defenses, transcellular communication, proteases, exposure of adhesion molecules, and activation of tissue factor. This review covers current insight in EC-associated hemostatic responses to sepsis and the EC response to inflammation. The endothelial cell lining is highly heterogeneous between different organ systems and consequently also in its response to sepsis. In this context, we discuss the response of the endothelial cell lining to sepsis in the kidney, liver, and lung. Finally, we discuss evidence as to whether the EC response to sepsis is adaptive or maladaptive. This study is a result of an Acute Dialysis Quality Initiative XIV Sepsis Workgroup meeting held in Bogota, Columbia, between October 12 and 15, 2014.
Collapse
|
40
|
Gan Y, Tao S, Cao D, Xie H, Zeng Q. Protection of resveratrol on acute kidney injury in septic rats. Hum Exp Toxicol 2016; 36:1015-1022. [PMID: 27837177 DOI: 10.1177/0960327116678298] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIM The aim of the study is to investigate protective effect of resveratrol (Res) on acute kidney injury (AKI) in sepsis. METHODS Rats in sham group received sham operation; in sham + Res received sham operation and Res (3 mg/kg); in cecal ligation and puncture (CLP) established as sepsis; in CLP + Res (3 mg/kg) with sepsis and Res (3 mg/kg); and in CLP + Res (10 mg/kg) with sepsis and Res (10 mg/kg). Survival rate, serum indexes, inflammatory factors, NF-κB-P65, and SIRT1 were detected. Lipopolysaccharide (LPS) mesangial cell was with Res and SIRT1 silencing. RESULTS (1) Res intervention improved survival rate of CLP rat. (2) Compared to sham, serum creatinine, blood urine nitrogen, serum cystatin C, neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, tumor necrosis factor-α, interleukin-1β, IL-6, and renal injury index increased in CLP group, while decreased in CLP + Res (3 mg/kg) and CLP + Res (10 mg/kg), significantly, as dose-dependent ( p < 0.05). (3) With Res, NF-κB-P65 and de-acetylated SIRT1 decreased, while SIRT1 and de-acetylated Nuclear factor kB-p65 9 NF-κB-P65) increased, significantly ( p < 0.05). (4) SIRT1 and de-acetylated NF-κB-P65 decreased in LPS cells, while SIRT1 increased after Res intervention, significantly ( p < 0.05). After silencing SIRT1, de-acetylated NF-κB-P65 increased, significantly ( p < 0.05). CONCLUSIONS Res increases the survival rate of septic rats by inhibiting inflammatory factors to ease AKI and promotes NF-κB-P65 de-acetylation by upregulating SIRT1.
Collapse
Affiliation(s)
- Y Gan
- 1 Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.,2 Department of Pediatrics, The First Hospital of Huhehaote, The Inner Mongolia Autonomous Region, China
| | - S Tao
- 1 Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - D Cao
- 3 Department of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - H Xie
- 1 Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Q Zeng
- 1 Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Sims CR, Nguyen TC, Mayeux PR. Could Biomarkers Direct Therapy for the Septic Patient? J Pharmacol Exp Ther 2016; 357:228-39. [PMID: 26857961 PMCID: PMC4851319 DOI: 10.1124/jpet.115.230797] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/05/2016] [Indexed: 01/25/2023] Open
Abstract
Sepsis is a serious medical condition caused by a severe systemic inflammatory response to a bacterial, fungal, or viral infection that most commonly affects neonates and the elderly. Advances in understanding the pathophysiology of sepsis have resulted in guidelines for care that have helped reduce the risk of dying from sepsis for both children and older adults. Still, over the past three decades, a large number of clinical trials have been undertaken to evaluate pharmacological agents for sepsis. Unfortunately, all of these trials have failed, with the use of some agents even shown to be harmful. One key issue in these trials was the heterogeneity of the patient population that participated. What has emerged is the need to target therapeutic interventions to the specific patient's underlying pathophysiological processes, rather than looking for a universal therapy that would be effective in a "typical" septic patient, who does not exist. This review supports the concept that identification of the right biomarkers that can direct therapy and provide timely feedback on its effectiveness will enable critical care physicians to decrease mortality of patients with sepsis and improve the quality of life of survivors.
Collapse
Affiliation(s)
- Clark R Sims
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.R.S., P.R.M.); and Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas (T.C.N.)
| | - Trung C Nguyen
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.R.S., P.R.M.); and Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas (T.C.N.)
| | - Philip R Mayeux
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.R.S., P.R.M.); and Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas (T.C.N.)
| |
Collapse
|
42
|
Ka SM, Kuoping Chao L, Lin JC, Chen ST, Li WT, Lin CN, Cheng JC, Jheng HL, Chen A, Hua KF. A low toxicity synthetic cinnamaldehyde derivative ameliorates renal inflammation in mice by inhibiting NLRP3 inflammasome and its related signaling pathways. Free Radic Biol Med 2016; 91:10-24. [PMID: 26675345 DOI: 10.1016/j.freeradbiomed.2015.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/14/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022]
Abstract
Uncontrolled inflammation is a leading cause of various chronic diseases. Cinnamaldehyde (CA) is a major bioactive compound isolated from the essential oil of the leaves of Cinnamomum osmophloeum kaneh that exhibits anti-inflammatory activity; however, the use of CA is limited by its cytotoxicity. Here, we synthesized three CA derivatives and identified 4-hydroxycinnamaldehyde-galactosamine (HCAG) as a low toxicity anti-inflammatory compound in vitro (HCAG IC50 ≫ 1600 µM; CA IC50=40 µM) and in vivo. HCAG reduced pro-inflammatory mediator expression in LPS-activated macrophages by inhibiting MAPK and PKC-α/δ phosphorylation, decreasing ROS generation and reducing NF-κB activation. HCAG also reduced NLRP3 inflammasome-derived IL-1β secretion by inhibiting the ATP-mediated phosphorylation of AKT and PKC-α/δ. In a mouse model of LPS-induced renal inflammation, we observed reduced albuminuria and a mild degree of glomerular proliferation, glomerular sclerosis and periglomerular inflammation in the HCAG-treated mice compared with the vehicle-treated mice. The underlying mechanisms for these renoprotective effects involved: (1) inhibited NLRP3 inflammasome activation; (2) decreased superoxide anion levels and apoptosis; and (3) suppressed activation of NF-κB and related downstream inflammatory mediators.
Collapse
Affiliation(s)
- Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | | | - Jung-Chen Lin
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shui-Tein Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen-Tai Li
- National Research institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Chien-Nan Lin
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Jen-Che Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Huei-Ling Jheng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.
| |
Collapse
|
43
|
Zafrani L, Ince C. Microcirculation in Acute and Chronic Kidney Diseases. Am J Kidney Dis 2015; 66:1083-94. [DOI: 10.1053/j.ajkd.2015.06.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/15/2015] [Indexed: 01/20/2023]
|
44
|
Liu L, Song Y, Zhao M, Yi Z, Zeng Q. Protective effects of edaravone, a free radical scavenger, on lipopolysaccharide-induced acute kidney injury in a rat model of sepsis. Int Urol Nephrol 2015; 47:1745-52. [DOI: 10.1007/s11255-015-1070-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/24/2015] [Indexed: 02/06/2023]
|
45
|
Panaxadiol Saponin and Dexamethasone Improve Renal Function in Lipopolysaccharide-Induced Mouse Model of Acute Kidney Injury. PLoS One 2015; 10:e0134653. [PMID: 26230340 PMCID: PMC4521715 DOI: 10.1371/journal.pone.0134653] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 07/13/2015] [Indexed: 01/20/2023] Open
Abstract
Background Acute kidney injury (AKI) is a serious complication of systemic inflammatory response syndrome (SIRS), which has a high mortality rate. Previous studies showed that panaxadiol saponin (PDS) and Dexamethasone have similar anti-inflammatory properties and protect cardiopulmonary function in lipopolysaccharide (LPS)-induced septic shock rats. In the present study, we investigated whether PDS or Dexamethasone has a similar role in improving kidney function in LPS-induced AKI mice. Methods and Results Mice subjected to LPS (10 mg/kg) treatment exhibited AKI demonstrated by markedly increased blood urea nitrogen and creatinine levels compared with controls (P<0.01). However, PDS and Dexamethasone induce similar reverse effects on renal function, such as reduced serum creatinine and blood urea nitrogen levels compared with the LPS group (P<0.05). PDS decreased the production and release of tumor necrosis factor (TNF)-α and interleukin (IL)-6 by inhibiting the NF-κB signaling pathway, down-regulating inducible nitric oxide synthase protein expression levels and inhibiting oxidative stress. In most anti-AKI mechanisms, PDS and dexamethasone were similar, but PDS are better at inhibition of TNF production, promote SOD activity and inhibition of IKB phosphorylation. In addition, nuclear glucocorticoid receptor expression was markedly enhanced in PDS and Dexamethasone treatment groups. Further research is required to determine whether PDS can combine with the glucocorticoid receptor to enter the nucleus. Conclusion This study demonstrated that PDS and dexamethasone have similar reverse amelioration for renal functions, and have potential application prospects in the treatment of sepsis-induced AKI.
Collapse
|
46
|
El-Achkar TM, Dagher PC. Tubular cross talk in acute kidney injury: a story of sense and sensibility. Am J Physiol Renal Physiol 2015; 308:F1317-23. [PMID: 25877507 DOI: 10.1152/ajprenal.00030.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/10/2015] [Indexed: 01/20/2023] Open
Abstract
The mammalian kidney is an organ composed of numerous functional units or nephrons. Beyond the filtering glomerulus of each nephron, various tubular segments with distinct populations of epithelial cells sequentially span the kidney from cortex to medulla. The highly organized folding of the tubules results in a spatial distribution that allows intimate contact between various tubular subsegments. This unique arrangement can promote a newly recognized type of horizontal epithelial-to-epithelial cross talk. In this review, we discuss the importance of this tubular cross talk in shaping the response of the kidney to acute injury in a sense and sensibility model. We propose that injury-resistant tubules such as S1 proximal segments and thick ascending limbs (TAL) can act as "sensors" and thus modulate the responsiveness or "sensibility" of the S2-S3 proximal segments to injury. We also discuss new findings that highlight the importance of tubular cross talk in regulating homeostasis and inflammation not only in the kidney, but also systemically.
Collapse
Affiliation(s)
- Tarek M El-Achkar
- Indiana University School of Medicine, Indianapolis, Indiana; and Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Pierre C Dagher
- Indiana University School of Medicine, Indianapolis, Indiana; and
| |
Collapse
|
47
|
Chen L, Yang S, Zumbrun EE, Guan H, Nagarkatti PS, Nagarkatti M. Resveratrol attenuates lipopolysaccharide-induced acute kidney injury by suppressing inflammation driven by macrophages. Mol Nutr Food Res 2015; 59:853-64. [PMID: 25643926 DOI: 10.1002/mnfr.201400819] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 01/20/2023]
Abstract
SCOPE Acute kidney injury (AKI) is the most frequent and serious complication in sepsis, a potentially deadly inflammatory response induced by bacterial, viral, or fungal infection. LPS-induced AKI is associated with an abnormal inflammatory response, including renal endothelial dysfunction and renal inflammation. Resveratrol, a natural phytoalexin with low toxicity and anti-inflammatory properties, is known to protect endothelial cells and modulate the immune response in sepsis. METHODS AND RESULTS This study investigates the potential protective effects of resveratrol on AKI induced by LPS exposure of mice. Resveratrol was administered as a pre- and posttreatment, or as a posttreatment alone following LPS injection and compared to control groups. Resveratrol significantly improved kidney function and lowered serum and kidney tissue inflammatory cytokine levels. Consistently, resveratrol prevented endotoxin-induced disruption of endothelial cell permeability and inhibited inflammation of kidney tissue. Resveratrol treatment attenuated the effects of LPS on macrophages, with significant inhibition of activation, cytokine release, and Toll-like receptor 4 activation. Resveratrol treatment also resulted in decreased expression of iNOS, Bcl-2, and Bcl-xL in macrophages, which was linked with induction of apoptosis in macrophages. CONCLUSION Our studies suggest that resveratrol might represent a novel therapeutic agent to prevent and treat sepsis-induced AKI.
Collapse
Affiliation(s)
- Liang Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
48
|
Microparticles: markers and mediators of sepsis-induced microvascular dysfunction, immunosuppression, and AKI. Kidney Int 2015; 87:1100-8. [PMID: 25692956 PMCID: PMC4449806 DOI: 10.1038/ki.2015.26] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 01/28/2023]
Abstract
Sepsis is a severe and complex syndrome that lacks effective prevention or therapeutics. The effects of sepsis on the microvasculature have become an attractive area for possible new targets and therapeutics. Microparticles (MPs) are cell membrane-derived particles that can promote coagulation, inflammation, and angiogenesis, and they can participate in cell-to-cell communication. MPs retain cell membrane and cytoplasmic constituents of their parental cells, including two procoagulants: phosphatidylserine and tissue factor. We highlight the role of microparticles released by endothelial and circulating cells after sepsis-induced microvascular injury, and we discuss possible mechanisms by which microparticles can contribute to endothelial dysfunction, immunosuppression, and multiorgan dysfunction--including sepsis-AKI. Once viewed as cellular byproducts, microparticles are emerging as a new class of markers and mediators in the pathogenesis of sepsis.
Collapse
|
49
|
Wang Z, Sims CR, Patil NK, Gokden N, Mayeux PR. Pharmacologic targeting of sphingosine-1-phosphate receptor 1 improves the renal microcirculation during sepsis in the mouse. J Pharmacol Exp Ther 2015; 352:61-6. [PMID: 25355645 PMCID: PMC4279105 DOI: 10.1124/jpet.114.219394] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/28/2014] [Indexed: 01/21/2023] Open
Abstract
Microvascular failure is hallmark of sepsis in humans and is recognized as a strong predictor of mortality. In the mouse subjected to cecal ligation and puncture (CLP) to induce a clinically relevant sepsis, renal microvascular permeability increases and peritubular capillary perfusion declines rapidly in the kidney leading to acute kidney injury (AKI). Sphingosine-1-phosphate (S1P) is a key regulator of microvascular endothelial function. To investigate the role of S1P in the development of microvascular permeability and peritubular capillary hypoperfusion in the kidney during CLP-induced AKI, we used a pharmacologic approach and a clinically relevant delayed dosing paradigm. Evans blue dye was used to measure renal microvascular permeability and intravital video microscopy was used to quantitate renal cortical capillary perfusion. The S1P receptor 1 (S1P1) agonist SEW2871 [5-[4-phenyl-5-(trifluoromethyl)-2-thienyl]-3-[3-(trifluoromethyl)phenyl]-1,2,4-oxadiazole] and S1P2 antagonist JTE-013 [N-(2,6-dichloro-4-pyridinyl)-2-[1,3-dimethyl-4-(1-methylethyl)-1H-pyrazolo[3,4-b]pyridin-6-yl]-hydrazinecarboxamide] were administered at the time of CLP and produced a dose-dependent but partial reduction in renal microvascular permeability at 6 hours after CLP. However, neither agent improved capillary perfusion at 6 hours. With delayed administration at 6 hours after CLP, only SEW2871 reversed microvascular permeability when measured at 18 hours. Importantly, SEW2871 also restored capillary perfusion and improved renal function. These data suggest that S1P1 and S1P2 do not regulate the early decline in renal capillary perfusion. However, later in the course of sepsis, pharmacologic stimulation of S1P1, even when delaying therapy until after injury has occurred, improves capillary and renal function, suggesting this approach should be evaluated as an adjunct therapy during sepsis.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pharmacology and Toxicology (Z.W., C.R.S., N.K.P., P.R.M.) and Department of Pathology (N.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Clark R Sims
- Department of Pharmacology and Toxicology (Z.W., C.R.S., N.K.P., P.R.M.) and Department of Pathology (N.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Naeem K Patil
- Department of Pharmacology and Toxicology (Z.W., C.R.S., N.K.P., P.R.M.) and Department of Pathology (N.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Neriman Gokden
- Department of Pharmacology and Toxicology (Z.W., C.R.S., N.K.P., P.R.M.) and Department of Pathology (N.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Philip R Mayeux
- Department of Pharmacology and Toxicology (Z.W., C.R.S., N.K.P., P.R.M.) and Department of Pathology (N.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
50
|
Blatt NB, Srinivasan S, Mottes T, Shanley MM, Shanley TP. Biology of sepsis: its relevance to pediatric nephrology. Pediatr Nephrol 2014; 29:2273-87. [PMID: 24408224 PMCID: PMC4092055 DOI: 10.1007/s00467-013-2677-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/16/2013] [Accepted: 10/24/2013] [Indexed: 12/15/2022]
Abstract
Because of its multi-organ involvement, the syndrome of sepsis provides clinical challenges to a wide variety of health care providers. While multi-organ dysfunction triggered by sepsis requires general supportive critical care provided by intensivists, the impact of sepsis on renal function and the ability of renal replacement therapies to modulate its biologic consequences provide a significant opportunity for pediatric nephrologists and related care providers to impact outcomes. In this review, we aim to highlight newer areas of understanding of the pathobiology of sepsis with special emphasis on those aspects of particular interest to pediatric nephrology. As such, we aim to: (1) review the definition of sepsis and discuss advances in our mechanistic understanding of sepsis; (2) review current hypotheses regarding sepsis-induced acute kidney injury (AKI) and describe its epidemiology based on evolving definitions of AKI; (3) review the impact of renal failure on the immune system, highlighting the sepsis risk in this cohort and strategies that might minimize this risk; (4) review how renal replacement therapeutic strategies may impact sepsis-induced AKI outcomes. By focusing the review on these specific areas, we have omitted other important areas of the biology of sepsis and additional interactions with renal function from this discussion; however, we have aimed to provide a comprehensive list of references that provide contemporary reviews of these additional areas.
Collapse
Affiliation(s)
- Neal B. Blatt
- Division of Pediatric Nephrology, C.S. Mott Children’s Hospital at the University of Michigan, Ann Arbor, MI USA
| | - Sushant Srinivasan
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Theresa Mottes
- Division of Pediatric Nephrology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Maureen M. Shanley
- Division of Pediatric Nephrology, C.S. Mott Children’s Hospital at the University of Michigan, Ann Arbor, MI USA
| | - Thomas P. Shanley
- Division of Pediatric Critical Care Medicine, C.S. Mott Children’s Hospital at the University of Michigan, Building 400 2800 Plymouth Road, Ann Arbor, MI 48109 USA
| |
Collapse
|