1
|
Chi X, Chen R, Chen R, Xu Y, Deng Y, Yang X, Pan Z, Xu X, Pan Y, Li Q, Zhou P, Huang W. Discovery and characterization of novel FAK inhibitors for breast cancer therapy via hybrid virtual screening, biological evaluation and molecular dynamics simulations. Bioorg Chem 2025; 159:108400. [PMID: 40163988 DOI: 10.1016/j.bioorg.2025.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Focal adhesion kinase (FAK) is a critical drug target implicated in various disease pathways, including hematological malignancies and breast cancer. Therefore, identifying FAK inhibitors with novel scaffolds could offer new opportunities for developing effective therapeutic compounds. Herein, we disclosed the discovery of a new backbone inhibitor of FAK using an "internal" database, employing a structure-based high-transparency permeability virtual screening (HTVS) and a DeepDock algorithm based on geometric deep learning. Subsequently, molecular docking was conducted at different precisions to identify 10 compounds for further evaluation of biological activity. Ultimately, compound 4, a pyrimidin-4-amine derivative, demonstrated inhibitory activity against FAK and breast cancer cells, further supporting its potential as a FAK inhibitor. Moreover, molecular dynamics simulations were carried out to gain more detailed insights into the binding mechanism between compound 4 and FAK to guide subsequent structural optimization.
Collapse
Affiliation(s)
- Xinglong Chi
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310058, PR China; Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, PR China
| | - Runmei Chen
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310058, PR China; School of Pharmacy, Hangzhou Medical College, Hangzhou 310058, PR China
| | - Roufen Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yingxuan Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yaru Deng
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310058, PR China; Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, PR China
| | - Xinle Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhichao Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiangwei Xu
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310058, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Youlu Pan
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310058, PR China; Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, PR China
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310058, PR China.
| | - Peng Zhou
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310058, PR China.
| | - Wenhai Huang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310058, PR China; Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou 310053, PR China.
| |
Collapse
|
2
|
Zhang RH, Chen T, Xiong QQ, Wang S, Chen GQ, Zhang WL, Yuan HF, Zhao YL, Liu T, Huang Y, Zhou M, Yang CL, Liao SG, Li YJ. Discovery of a potent anticancer agent against pancreatic ductal adenocarcinoma targeting FAK with DFG-out state and JAK/Aurora kinases. Eur J Med Chem 2025; 282:117059. [PMID: 39577230 DOI: 10.1016/j.ejmech.2024.117059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging cancer because of the difficulty in diagnosis and its resistance to chemotherapy. Focal adhesion kinase (FAK) is found overexpressed in PDAC, and targeting FAK has been proved to impede the progress of PDAC. However, most of FAK inhibitors were reported to bind with FAK in a DFG-in conformation, leading to a limited anti-tumor effect in clinical studies. Herein, to develop FAK inhibitors targeting the inactive DFG-out conformation, a series of large aromatic rings were selected to improve the interaction with Phe565 of the DFG motif. Compound 26 was designed to effectively inhibit FAK and the proliferation of PANC-1 cells with IC50 of 50.94 nM and 0.15 μM, respectively. Besides, compound 26 was proved to strongly suppress the proliferation, colony formation, migration, and invasion in FAK-overexpressing PDAC cells. This inhibitor was confirmed to induce the apoptosis and G2/M arrest in PANC-1 cells through the suppression of FAK/PI3K/Akt signal pathway. Meanwhile, compound 26 was found to simultaneously inhibit FAK with DFG-out conformation and JAK3/Aurora B (IC50 of 9.99 nM and 0.49 nM, respectively). In vivo, compound 26 effectively inhibited the tumorigenesis and metastasis of PDAC with desirable biosafety. Overall, these results suggested that compound 26 was a promising candidate for the treatment of PDAC.
Collapse
Affiliation(s)
- Rong-Hong Zhang
- Center for Tissue Engineering and Stem Cell Research, Key Laboratory of Regenerative Medicine of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Ting Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Qian-Qian Xiong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Shan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Guo-Qi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Wen-Li Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Hong-Fei Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Yong-Long Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.
| | - Cheng-Li Yang
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.
| | - Yong-Jun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, China.
| |
Collapse
|
3
|
Ramisetti SV, Patra T, Munirathnam V, Sainath JV, Veeraiyan D, Namani A. NRF2 Signaling Pathway in Chemo/Radio/Immuno-Therapy Resistance of Lung Cancer: Looking Beyond the Tip of the Iceberg. Arch Bronconeumol 2024; 60 Suppl 2:S59-S66. [PMID: 39060123 DOI: 10.1016/j.arbres.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Lung cancer is one of the most common causes of cancer death in men and women worldwide. Various combinations of surgery, chemotherapy, radiation therapy and immunotherapy are currently used to treat lung cancer. However, the prognosis remains relatively poor due to the higher frequency of tumor mutational burden (TMB). Nuclear factor E2-related factor 2 (NFE2L2/NRF2) is often considered a primary regulator of the expression of antioxidant enzymes and detoxification proteins and is involved in cytoprotection. On the contrary, NRF2 is even known to induce metastasis and support tumor progression. Kelch-like ECH-associated protein 1 (KEAP1) plays an important role in negatively regulating NRF2 activity via CUL3-mediated ubiquitinylation and successive proteasomal degradation. Extensive research has shown that the genetic alterations of KEAP1/NFE2L2/CUL3 genes lead to increased expression of NRF2 and its target genes in lung cancer. Thus, these studies provide ample evidence for the dual role of NRF2 in lung cancer. In this review, we discussed the mechanistic insights into the role of NRF2 signaling in therapy resistance by focusing on cell lines, mouse models, and translational studies in lung cancer. Finally, we highlighted the potential therapeutic strategies targeting NRF2 inhibition, followed by the discussion of biomarkers related to NRF2 activity in lung cancer. Overall, our article exclusively discusses in detail the NRF2 signaling pathway in resistance to therapy, especially immunotherapy, and its therapeutic avenue in the treatment of lung cancer.
Collapse
Affiliation(s)
- Sri Vidya Ramisetti
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, India
| | - Tapas Patra
- Department of Molecular Research, Sri Shankara Cancer Hospital and Research Centre, Sri Shankara National Centre for Cancer Prevention and Research, Sri Shankara Cancer Foundation, Bangalore 560004, India
| | - Vinayak Munirathnam
- Department of Medical Oncology, Sri Shankara Cancer Hospital and Research Centre, Bangalore 560004, India
| | - Jyothi Venkat Sainath
- Department of Head and Neck Oncology, Sri Shankara Cancer Hospital and Research Centre, Bangalore 560004, India
| | - Durgadevi Veeraiyan
- Department of Molecular Research, Sri Shankara Cancer Hospital and Research Centre, Sri Shankara National Centre for Cancer Prevention and Research, Sri Shankara Cancer Foundation, Bangalore 560004, India
| | - Akhileshwar Namani
- Department of Molecular Research, Sri Shankara Cancer Hospital and Research Centre, Sri Shankara National Centre for Cancer Prevention and Research, Sri Shankara Cancer Foundation, Bangalore 560004, India.
| |
Collapse
|
4
|
Mokhfi FZ, Al Amin M, Zehravi M, Sweilam SH, Arjun UVNV, Gupta JK, Vallamkonda B, Balakrishnan A, Challa M, Singh J, Prasad PD, Ali SS, Ahmad I, Doukani K, Emran TB. Alkaloid-based modulators of the PI3K/Akt/mTOR pathway for cancer therapy: Understandings from pharmacological point of view. Chem Biol Interact 2024; 402:111218. [PMID: 39209016 DOI: 10.1016/j.cbi.2024.111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
This review aims to summarize the role of alkaloids as potential modulators of the PI3K/Akt/mTOR (PAMT) pathway in cancer therapy. The PAMT pathway plays a critical role in cell growth, survival, and metabolism, and its dysregulation contributes to cancer hallmarks. In healthy cells, this pathway is tightly controlled. However, this pathway is frequently dysregulated in cancers and becomes abnormally active. This can happen due to mutations in genes within the pathway itself or due to other factors. This chronic overactivity promotes cancer hallmarks such as uncontrolled cell division, resistance to cell death, and increased blood vessel formation to nourish the tumor. As a result, the PAMT pathway is a crucial therapeutic target for cancer. Researchers are developing drugs that specifically target different components of this pathway, aiming to turn it off and slow cancer progression. Alkaloids, a class of naturally occurring nitrogen-containing molecules found in plants, have emerged as potential therapeutic agents. These alkaloids can target different points within the PAMT pathway, inhibiting its activity and potentially resulting in cancer cell death or suppression of tumor growth. Research is ongoing to explore the role of various alkaloids in cancer treatment. Berberine reduces mTOR activity and increases apoptosis by targeting the PAMT pathway, inhibiting cancer cell proliferation. Lycorine inhibits Akt phosphorylation and mTOR activation, increasing pro-apoptotic protein production and decreasing cell viability. In glioblastoma models, harmine suppresses mTORC1. This review focuses on alkaloids such as evodiamine, hirsuteine, chaetocochin J, indole-3-carbinol, noscapine, berberine, piperlongumine, and so on, which have shown promise in targeting the PAMT pathway. Clinical studies evaluating alkaloids as part of cancer treatment are underway, and their potential impact on patient outcomes is being investigated. In summary, alkaloids represent a promising avenue for targeting the dysregulated PAMT pathway in cancer, and further research is warranted.
Collapse
Affiliation(s)
- Fatima Zohra Mokhfi
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Md Al Amin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uppuluri Varuna Naga Venkata Arjun
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | | | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| | - Anitha Balakrishnan
- Department of Pharmaceutics, GRT Institute of Pharmaceutical Education and Research, Tiruttani, Tamil Nadu, India
| | - Manjula Challa
- Department of Pharmaceutics, Vasavi Institute of Pharmaceutical Sciences, Vasavi Nagar, Peddapalli Village, Sidhout Mandal Kadapa District, Andhra Pradesh, India
| | - Jyoti Singh
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - P Dharani Prasad
- Depertment of Pharmacology, Mohan Babu University, MB School of Pharmaceutical Sciences, (Erstwhile, Sree Vidyaniketan College of Pharmacy), Tirupati, India
| | - Syed Salman Ali
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201306, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Koula Doukani
- Department of Biology, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh; Department of Pathology and Laboratory Medicine and Legorreta Cancer Center Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA; Legorreta Cancer Center, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
5
|
Dutta D, Ziemke M, Sindelar P, Vargas H, Lim JY, Chandra S. Cytoarchitecture of Breast Cancer Cells under Diabetic Conditions: Role of Regulatory Kinases-Rho Kinase and Focal Adhesion Kinase. Cancers (Basel) 2024; 16:3166. [PMID: 39335137 PMCID: PMC11430325 DOI: 10.3390/cancers16183166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetes greatly reduces the survival rates in breast cancer patients due to chemoresistance and metastasis. Reorganization of the cytoskeleton is crucial to cell migration and metastasis. Regulatory cytoskeletal protein kinases such as the Rho kinase (ROCK) and focal adhesion kinase (FAK) play a key role in cell mobility and have been shown to be affected in cancer. It is hypothesized that diabetes/high-glucose conditions alter the cytoskeletal structure and, thus, the elasticity of breast cancer cells through the ROCK and FAK pathway, which can cause rapid metastasis of cancer. The aim of the study was to investigate the role of potential mediators that affect the morphology of cancer cells in diabetes, thus leading to aggressive cancer. Breast cancer cells (MDA-MB-231 and MCF-7) were treated with 5 mM glucose (low glucose) or 25 mM glucose (high glucose) in the presence of Rho kinase inhibitor (Y-27632, 10 mM) or FAK inhibitor (10 mM). Cell morphology and elasticity were monitored using atomic force microscopy (AFM), and actin staining was performed by fluorescence microscopy. For comparative study, normal mammary breast epithelial cells (MCF-10A) were used. It was observed that high-glucose treatments modified the cytoskeleton of the cells, as observed through AFM and fluorescence microscopy, and significantly reduced the elasticity of the cells. Blocking the ROCK or FAK pathway diminished the high-glucose effects. These changes were more evident in the breast cancer cells as compared to the normal cells. This study improves the knowledge on the cytoarchitecture properties of diabetic breast cancer cells and provides potential pathways that can be targeted to prevent such effects.
Collapse
Affiliation(s)
- Diganta Dutta
- Department of Physics, Astronomy and Engineering, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Matthew Ziemke
- Department of Physics, Astronomy and Engineering, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Payton Sindelar
- Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849, USA (H.V.)
| | - Hernan Vargas
- Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849, USA (H.V.)
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Surabhi Chandra
- Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849, USA (H.V.)
| |
Collapse
|
6
|
Aydin H, Ozcelikkale A, Acar A. Exploiting Matrix Stiffness to Overcome Drug Resistance. ACS Biomater Sci Eng 2024; 10:4682-4700. [PMID: 38967485 PMCID: PMC11322920 DOI: 10.1021/acsbiomaterials.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Drug resistance is arguably one of the biggest challenges facing cancer research today. Understanding the underlying mechanisms of drug resistance in tumor progression and metastasis are essential in developing better treatment modalities. Given the matrix stiffness affecting the mechanotransduction capabilities of cancer cells, characterization of the related signal transduction pathways can provide a better understanding for developing novel therapeutic strategies. In this review, we aimed to summarize the recent advancements in tumor matrix biology in parallel to therapeutic approaches targeting matrix stiffness and its consequences in cellular processes in tumor progression and metastasis. The cellular processes governed by signal transduction pathways and their aberrant activation may result in activating the epithelial-to-mesenchymal transition, cancer stemness, and autophagy, which can be attributed to drug resistance. Developing therapeutic strategies to target these cellular processes in cancer biology will offer novel therapeutic approaches to tailor better personalized treatment modalities for clinical studies.
Collapse
Affiliation(s)
- Hakan
Berk Aydin
- Department
of Biological Sciences, Middle East Technical
University, 06800, Ankara, Turkey
| | - Altug Ozcelikkale
- Department
of Mechanical Engineering, Middle East Technical
University, 06800, Ankara, Turkey
- Graduate
Program of Biomedical Engineering, Middle
East Technical University, 06800, Ankara, Turkey
| | - Ahmet Acar
- Department
of Biological Sciences, Middle East Technical
University, 06800, Ankara, Turkey
| |
Collapse
|
7
|
Brennan RJ, Jenkinson S, Brown A, Delaunois A, Dumotier B, Pannirselvam M, Rao M, Ribeiro LR, Schmidt F, Sibony A, Timsit Y, Sales VT, Armstrong D, Lagrutta A, Mittlestadt SW, Naven R, Peri R, Roberts S, Vergis JM, Valentin JP. The state of the art in secondary pharmacology and its impact on the safety of new medicines. Nat Rev Drug Discov 2024; 23:525-545. [PMID: 38773351 DOI: 10.1038/s41573-024-00942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
Secondary pharmacology screening of investigational small-molecule drugs for potentially adverse off-target activities has become standard practice in pharmaceutical research and development, and regulatory agencies are increasingly requesting data on activity against targets with recognized adverse effect relationships. However, the screening strategies and target panels used by pharmaceutical companies may vary substantially. To help identify commonalities and differences, as well as to highlight opportunities for further optimization of secondary pharmacology assessment, we conducted a broad-ranging survey across 18 companies under the auspices of the DruSafe leadership group of the International Consortium for Innovation and Quality in Pharmaceutical Development. Based on our analysis of this survey and discussions and additional research within the group, we present here an overview of the current state of the art in secondary pharmacology screening. We discuss best practices, including additional safety-associated targets not covered by most current screening panels, and present approaches for interpreting and reporting off-target activities. We also provide an assessment of the safety impact of secondary pharmacology screening, and a perspective on opportunities and challenges in this rapidly developing field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mohan Rao
- Janssen Research & Development, San Diego, CA, USA
- Neurocrine Biosciences, San Diego, CA, USA
| | - Lyn Rosenbrier Ribeiro
- UCB Biopharma, Braine-l'Alleud, Belgium
- AstraZeneca, Cambridge, UK
- Grunenthal, Berkshire, UK
| | | | | | - Yoav Timsit
- Novartis Biomedical Research, Cambridge, MA, USA
- Blueprint Medicines, Cambridge, MA, USA
| | | | - Duncan Armstrong
- Novartis Biomedical Research, Cambridge, MA, USA
- Armstrong Pharmacology, Macclesfield, UK
| | | | | | - Russell Naven
- Takeda Pharmaceuticals, Cambridge, MA, USA
- Novartis Biomedical Research, Cambridge, MA, USA
| | - Ravikumar Peri
- Takeda Pharmaceuticals, Cambridge, MA, USA
- Alexion Pharmaceuticals, Wilmington, DE, USA
| | - Sonia Roberts
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - James M Vergis
- Faegre Drinker Biddle and Reath, LLP, Washington, DC, USA
| | | |
Collapse
|
8
|
Akompong SK, Li Y, Gong W, Ye L, Liu J. Recently reported cell migration inhibitors: Opportunities and challenges for antimetastatic agents. Drug Discov Today 2024; 29:103906. [PMID: 38309689 DOI: 10.1016/j.drudis.2024.103906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Antimetastatic agents are highly desirable for cancer treatment because of the severe medical challenges and high mortality resulting from tumor metastasis. Having demonstrated antimetastatic effects in numerous in vitro and in vivo studies, migration inhibitors present significant opportunities for developing a new class of anticancer drugs. To provide a useful overview on the latest research in migration inhibitors, this article first discusses their therapeutic significance, targetable proteins, and developmental avenues. Subsequently it reviews over 20 representative migration inhibitors reported in recent journals in terms of their inhibitory mechanism, potency, and potential clinical utility. The relevance of the target proteins to cellular migratory function is focused on as it is crucial for assessing the overall efficacy of the inhibitors.
Collapse
Affiliation(s)
- Samuel K Akompong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yang Li
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wenxue Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Long Ye
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Jinping Liu
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
9
|
白 钰, 刚 保, 张 梦, 万 子, 刘 国, 顾 玮. [Protective effect of FAK inhibitor PF-562271 against human umbilical vein endothelial cell injury induced by aging platelets]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:252-259. [PMID: 38501410 PMCID: PMC10954518 DOI: 10.12122/j.issn.1673-4254.2024.02.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To investigate the protective effect of PF-562271, a FAK inhibitor, against aging platelet-induced injury in human umbilical vein endothelial cells (HUVECs). METHODS Cultured HUVECs were treated with vehicle, lipopolysaccharide (LPS), LPS+aging platelets, or LPS+aging platelets+PF-562271. The changes in protein expressions of FAK, pFAK and PECAM-1 in the treated cells were detected using Western blotting and immunofluorescence assay, and the level of reactive oxygen species (ROS) was detected with flow cytometry. The changes of barrier function of the cells were assessed with cell permeability test and transendothelial cell resistance test. RT-qPCR was used to analyze mRNA expressions of inflammatory factors, and pro-inflammatory cytokine levels in the culture supernatants was determined with enzyme-linked immunosorbent assay. Immunofluorescence assay was used to examine the effect of the ROS inhibitor vitamin C on PECAM-1 expression in the cells with different treatments. RESULTS Treatment of HUVECs with LPS and aging platelets significantly increased cellular protein expressions of FAK, pFAK and PECAM-1, which were effectively lowered by addition of PF-562271 (P < 0.05). LPS and aged platelets obviously enhanced ROS production in the cells, which was inhibited by the addition of PF-562271 (P < 0.001). PF-562271 significantly alleviated the damage of endothelial cell barrier function of the cells caused by LPS and aging platelets (P < 0.01). The expressions of TNF-α, IL-6 and IL-8 in HUVECs increased significantly after exposure to LPS and aging platelets, and were obviously lowered after treatment with PF-562271 (P < 0.05). Treatment with vitamin C significantly decreased the expression of PECAM-1 protein in the cells (P < 0.01). CONCLUSION The FAK inhibitor PF-562271 alleviates endothelial cell damage induced by LPS and aging platelets by lowering cellular oxidative stress levels and reducing inflammatory responses.
Collapse
Affiliation(s)
- 钰婷 白
- 蚌埠医科大学癌症转化医学安徽省重点实验室,安徽 蚌埠 233000Anhui Provincial Key Laboratory of Translational Cancer Medicine, Bengbu Medical University, Bengbu 233000, China
| | - 保才 刚
- 蚌埠医科大学癌症转化医学安徽省重点实验室,安徽 蚌埠 233000Anhui Provincial Key Laboratory of Translational Cancer Medicine, Bengbu Medical University, Bengbu 233000, China
| | - 梦洁 张
- 蚌埠医科大学癌症转化医学安徽省重点实验室,安徽 蚌埠 233000Anhui Provincial Key Laboratory of Translational Cancer Medicine, Bengbu Medical University, Bengbu 233000, China
| | - 子雨 万
- 蚌埠医科大学癌症转化医学安徽省重点实验室,安徽 蚌埠 233000Anhui Provincial Key Laboratory of Translational Cancer Medicine, Bengbu Medical University, Bengbu 233000, China
| | - 国权 刘
- 蚌埠医科大学癌症转化医学安徽省重点实验室,安徽 蚌埠 233000Anhui Provincial Key Laboratory of Translational Cancer Medicine, Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学检验医学院生物化学与分子生物学教研室,安徽 蚌埠 233000Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233000, China
| | - 玮 顾
- 蚌埠医科大学癌症转化医学安徽省重点实验室,安徽 蚌埠 233000Anhui Provincial Key Laboratory of Translational Cancer Medicine, Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学检验医学院生物化学与分子生物学教研室,安徽 蚌埠 233000Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
10
|
Lin K, Zhao Y, Tang Y, Chen Y, Lin M, He L. Collagen I-induced VCAN/ERK signaling and PARP1/ZEB1-mediated metastasis facilitate OSBPL2 defect to promote colorectal cancer progression. Cell Death Dis 2024; 15:85. [PMID: 38267463 PMCID: PMC10808547 DOI: 10.1038/s41419-024-06468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
The global burden of colorectal cancer (CRC) has rapidly increased in recent years. Dysregulated cholesterol homeostasis facilitated by extracellular matrix (ECM) remodeling transforms the tumor microenvironment. Collagen I, a major with ECM component is highly expressed in colorectal tumors with infiltrative growth. Although oxysterol binding protein (OSBP)-related proteins accommodate tumorigenesis, OSBPL2, which is usually involved in deafness, is not associated with CRC progression. Therefore, we aimed to investigate the pathological function of OSBPL2 and identify the molecular link between ECM-Collagen I and OSBPL2 in CRC to facilitate the development of new treatments for CRC. OSBPL2 predicted a favorable prognosis in stage IV CRC and substantially repressed Collagen I-induced focal adhesion, migration, and invasion. The reduction of OSBPL2 activated ERK signaling through the VCAN/AREG/EREG axis during CRC growth, while relying on PARP1 via ZEB1 in CRC metastasis. OSBPL2 defect supported colorectal tumor growth and metastasis, which were suppressed by the ERK and PARP1 inhibitors SCH772984 and AG14361, respectively. Overall, our findings revealed that the Collagen I-induced loss of OSBPL2 aggravates CRC progression through VCAN-mediated ERK signaling and the PARP1/ZEB1 axis. This demonstrates that SCH772984 and AG14361 are reciprocally connective therapies for OSBPL2Low CRC, which could contribute to further development of targeted CRC treatment.
Collapse
Affiliation(s)
- Kang Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yuqi Tang
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Ying Chen
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Moubin Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China.
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Luwei He
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
11
|
Zhang Q, Shi M, Zheng R, Han H, Zhang X, Lin F. C1632 inhibits ovarian cancer cell growth and migration by inhibiting LIN28 B/let-7/FAK signaling pathway and FAK phosphorylation. Eur J Pharmacol 2023; 956:175935. [PMID: 37541366 DOI: 10.1016/j.ejphar.2023.175935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
The highly conserved RNA-binding protein LIN28B and focal adhesion kinase (FAK) are significantly upregulated in ovarian cancer (OC), serving as markers for disease progression and prognosis. Nonetheless, the correlation between LIN28B and FAK, as well as the pharmacological effects of the LIN28 inhibitor C1632, in OC cells have not been elucidated. The present study demonstrates that C1632 significantly reduced the rate of DNA replication, arrested the cell cycle at the G0/G1 phase, consequently reducing cell viability, and impeding clone formation. Moreover, treatment with C1632 decreased cell-matrix adhesion, as well as inhibited cell migration and invasion. Further mechanistic studies revealed that C1632 inhibited the OC cell proliferation and migration by concurrently inhibiting LIN28 B/let-7/FAK signaling pathway and FAK phosphorylation. Furthermore, C1632 exhibited an obvious inhibitory effect on OC cell xenograft tumors in mice. Altogether, these findings identified that LIN28 B/let-7/FAK is a valuable target in OC and C1632 is a promising onco-therapeutic agent for OC treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Mengyun Shi
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ruiling Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Haoyi Han
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Feng Lin
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Department of Gynecology, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
12
|
Wudtiwai B, Kodchakorn K, Shwe TH, Pothacharoen P, Phitak T, Suninthaboonrana R, Kongtawelert P. Brazilein inhibits epithelial-mesenchymal transition (EMT) and programmed death ligand 1 (PD-L1) expression in breast cancer cells. Int Immunopharmacol 2023; 118:109988. [PMID: 36933493 DOI: 10.1016/j.intimp.2023.109988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Triple-negative breast cancer (TNBC) exhibits high levels of Epithelial-mesenchymal transition (EMT) and Programmed death ligand 1 (PD-L1) expression, which promotes immune escape and metastasis. Brazilein is a natural compound extracted from Caesalpinia sappan L., and has been demonstrated to be an anti-inflammatory anti- proliferative and apoptosis-inducer in various cancer cells. Here, we investigated the effect of brazilein on EMT and PD-L1 expression in breast cancer cells and its related molecular mechanisms using MCF-7 and MDA-MB-231 cells as a model. Since the AKT, NF-κB, and GSK3β/β-catenin signaling were reported to be important mechanisms in immune escape and metastasis, the effect of brazilein on these signaling pathways were also found out in our study. Firstly, brazilein was treated on breast cancer cells at various concentrations to study cell viability, apoptosis, and apoptosis proteins. Then, breast cancer cells were treated with non-toxic concentrations of brazilein to study its influence on EMT and expression of PD-L1 protein using MTT, flow cytometry, western blot, and wound healing analysis, respectively. We found that brazilein exerts an anti-cancer effect by reducing cell viability via induction of apoptosis, while it also downregulated EMT and PD-L1 through suppression of phosphorylation of AKT, NF-κB, and GSK3β/β-catenin. Moreover, the migration ability was diminished by inhibiting the activation of MMP-9 and MMP-2. Taken together, brazilein might delay cancer progression through inhibition of EMT, PD-L1, and metastasis suggesting it might be a potential therapeutic option in breast cancer patients having a high level of EMT and PD-L1.
Collapse
Affiliation(s)
- Benjawan Wudtiwai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Kanchanok Kodchakorn
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Thuzar Hla Shwe
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Thanyaluck Phitak
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | | | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
13
|
Chen Y, Wang W, Fang L, Zhang Z, Deng S. Identification of PTK2 as an adverse prognostic biomarker in breast cancer by integrated bioinformatics and experimental analyses. Front Mol Biosci 2022; 9:984564. [PMID: 36533074 PMCID: PMC9751198 DOI: 10.3389/fmolb.2022.984564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/14/2022] [Indexed: 08/09/2023] Open
Abstract
PTK2 is highly expressed in many cancers and is involved in cell growth, survival, migration, and invasion. However, the prognostic value of PTK2 and its potential function remain unclear in breast cancer. Therefore, we performed a comprehensive analysis of multiple public databases to explore the roles of PTK2. By integrating multiple datasets, we found that PTK2 mRNA expression in breast cancer tissue was higher than that in normal breast tissue or adjacent tissue. High PTK2 expression was associated with lymph node metastasis stage, tumor stage, breast cancer type, age, TP53 mutation, and gender and significantly predicted a poor survival outcome in breast cancer patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) results suggested that PTK2 and co-expressed genes participated in the cell cycle. Immune infiltration analysis clarified that high PTK2 expression was positively correlated with infiltrating levels of CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. The DNA methylation of PTK2 in breast cancer tissues was higher than that in normal tissues, and high PTK2 methylation was correlated with poor prognosis in breast cancer patients. Furthermore, 16 possible ceRNA networks related to PTK2 were constructed for breast cancer. Additionally, PTK2 knockdown could suppress the proliferation and migration ability of MCF-7 cells. These results suggest that PTK2 can be used as a prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Yanru Chen
- North Sichuan Medical College, Institute of Basic Medicine and Forensic Medicine, Sichuan, China
- Sichuan Key Laboratory of Medical Imaging and school of Medicine Imaging, North Sichuan Medical College, Sichuan, China
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Lingyu Fang
- North Sichuan Medical College, Institute of Basic Medicine and Forensic Medicine, Sichuan, China
- Sichuan Key Laboratory of Medical Imaging and school of Medicine Imaging, North Sichuan Medical College, Sichuan, China
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Zhenyang Zhang
- North Sichuan Medical College, Institute of Basic Medicine and Forensic Medicine, Sichuan, China
- Sichuan Key Laboratory of Medical Imaging and school of Medicine Imaging, North Sichuan Medical College, Sichuan, China
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Shishan Deng
- North Sichuan Medical College, Institute of Basic Medicine and Forensic Medicine, Sichuan, China
- Sichuan Key Laboratory of Medical Imaging and school of Medicine Imaging, North Sichuan Medical College, Sichuan, China
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| |
Collapse
|
14
|
Zhang Z, Li J, Jiao S, Han G, Zhu J, Liu T. Functional and clinical characteristics of focal adhesion kinases in cancer progression. Front Cell Dev Biol 2022; 10:1040311. [PMID: 36407100 PMCID: PMC9666724 DOI: 10.3389/fcell.2022.1040311] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and an adaptor protein that primarily regulates adhesion signaling and cell migration. FAK promotes cell survival in response to stress. Increasing evidence has shown that at the pathological level, FAK is highly expressed in multiple tumors in several systems (including lung, liver, gastric, and colorectal cancers) and correlates with tumor aggressiveness and patient prognosis. At the molecular level, FAK promotes tumor progression mainly by altering survival signals, invasive capacity, epithelial-mesenchymal transition, the tumor microenvironment, the Warburg effect, and stemness of tumor cells. Many effective drugs have been developed based on the comprehensive role of FAK in tumor cells. In addition, its potential as a tumor marker cannot be ignored. Here, we discuss the pathological and pre-clinical evidence of the role of FAK in cancer development; we hope that these findings will assist in FAK-based clinical studies.
Collapse
Affiliation(s)
- Zhaoyu Zhang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinlong Li
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Guangda Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tianzhou Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
15
|
Chen F, Zhong Z, Zhang C, Lu Y, Chan YT, Wang N, Zhao D, Feng Y. Potential Focal Adhesion Kinase Inhibitors in Management of Cancer: Therapeutic Opportunities from Herbal Medicine. Int J Mol Sci 2022; 23:13334. [PMID: 36362132 PMCID: PMC9659249 DOI: 10.3390/ijms232113334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/15/2024] Open
Abstract
Focal adhesion kinase (FAK) is a multifunctional protein involved in cellular communication, integrating and transducing extracellular signals from cell-surface membrane receptors. It plays a central role intracellularly and extracellularly within the tumor microenvironment. Perturbations in FAK signaling promote tumor occurrence and development, and studies have revealed its biological behavior in tumor cell proliferation, migration, and adhesion. Herein we provide an overview of the complex biology of the FAK family members and their context-dependent nature. Next, with a focus on cancer, we highlight the activities of FAK signaling in different types of cancer and how knowledge of them is being used for screening natural compounds used in herbal medicine to fight tumor development.
Collapse
Affiliation(s)
- Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanjun Lu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Di Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Hepatocyte phosphatase DUSP22 mitigates NASH-HCC progression by targeting FAK. Nat Commun 2022; 13:5945. [PMID: 36209205 PMCID: PMC9547917 DOI: 10.1038/s41467-022-33493-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/21/2022] [Indexed: 11/08/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH), a common clinical disease, is becoming a leading cause of hepatocellular carcinoma (HCC). Dual specificity phosphatase 22 (DUSP22, also known as JKAP or JSP-1) expressed in numerous tissues plays essential biological functions in immune responses and tumor growth. However, the effects of DUSP22 on NASH still remain unknown. Here, we find a significant decrease of DUSP22 expression in human and murine fatty liver, which is mediated by reactive oxygen species (ROS) generation. Hepatic-specific DUSP22 deletion particularly exacerbates lipid deposition, inflammatory response and fibrosis in liver, facilitating NASH and non-alcoholic fatty liver disease (NAFLD)-associated HCC progression. In contrast, transgenic over-expression, lentivirus or adeno-associated virus (AAV)-mediated DUSP22 gene therapy substantially inhibit NASH-related phenotypes and HCC development in mice. We provide mechanistic evidence that DUSP22 directly interacts with focal adhesion kinase (FAK) and restrains its phosphorylation at Tyr397 (Y397) and Y576 + Y577 residues, subsequently prohibiting downstream activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor-κB (NF-κB) cascades. The binding of DUSP22 to FAK and the dephosphorylation of FAK are indispensable for DUSP22-meliorated NASH progression. Collectively, our findings identify DUSP22 as a key suppressor of NASH-HCC, and underscore the DUSP22-FAK axis as a promising therapeutic target for treatment of the disease.
Collapse
|
17
|
Shirvani P, Fassihi A. In silico design of novel FAK inhibitors using integrated molecular docking, 3D-QSAR and molecular dynamics simulation studies. J Biomol Struct Dyn 2022; 40:5965-5982. [PMID: 33475043 DOI: 10.1080/07391102.2021.1875880] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that plays a crucial role in integrin signaling that regulates essential cellular functions including growth, motility, proliferation and survival in different types of cells. Interestingly, it has also shown to be up-regulated in various types of tumors, hence it has emerged as a significant therapeutic target for the development of selective inhibitors. In present work, with the aim of achieving further insight into the structural characteristics required for the FAK inhibitory activity, a combined approach of molecular modeling studies including molecular docking, three-dimensional quantitative structure activity relationship (3D-QSAR) and molecular dynamics (MD) simulation were carried out on a series of 7H-pyrrolo[2,3-d]pyrimidine and thieno[3,2-d]pyrimidine FAK inhibitors. The probable binding modes and interactions of inhibitors into the FAK active site were predicted by molecular docking. The 3D-QSAR models were developed using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods, with three ligand-based, docking-based and receptor-based alignment techniques. Both CoMFA and CoMSIA models obtained from receptor-based alignment were superior to the ones obtained by other alignment methods. However, the CoMSIA model (q2 = 0.679, r2 = 0.954 and r2pred = 0.888) depicted almost better predictive ability than the CoMFA model (q2 = 0.617, r2 = 0.932 and r2pred = 0.856). The contour map analysis revealed the relationship between the structural features and inhibitory activity. The docking results and CoMFA and CoMSIA contour maps were in good accordance. Based on the information obtained from the molecular docking and contour map analysis, a series of novel FAK inhibitors were designed that showed better predicted inhibitory activity than the most potent compound 31 in the data set. Finally, the stability of the reference molecule 31 and the designed compounds D15 and D27 were evaluated through a 30 ns of MD simulation and their binding free energies were calculated using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. The result of MD simulation and binding free energy decomposition demonstrated the important role of van der Waals interactions alongside H-bond ones that were in consistent with the docking and contour maps analysis results. In sum, the results from this study may provide a significant insight for developing more effective novel FAK inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pouria Shirvani
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
- Bioinformatics Research Center, Isfahan university of Medical Science, Isfahan, Iran
| |
Collapse
|
18
|
Xu Z, Huang L, Zhang T, Liu Y, Fang F, Wu X, Chen W, Lan L, Zhang Y, Li N, Hu P. Shikonin inhibits the proliferation of cervical cancer cells via FAK/AKT/GSK3β signalling. Oncol Lett 2022; 24:304. [PMID: 35949620 PMCID: PMC9353239 DOI: 10.3892/ol.2022.13424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cervical cancer is one of the most lethal malignancies of the female reproductive system. Shikonin, a naphthoquinone pigment extracted from the traditional medicinal herb, Lithospermum erythrorhizon, has been demonstrated to exert significant inhibitory effects on a variety of tumours in vitro and in vivo. In the present study, the effects of shikonin on cervical cancer and the underlying mechanisms were investigated. The effects of shikonin on the viability on HeLa and SiHa cervical cancer cells was examined using cell counting kit (CCK-8) and colony formation assays. Immunofluorescence assay was performed to detect the levels of the proliferation-related protein, Ki67. Western blot analysis was utilized to measure the phosphorylated and total expression levels of proteins, including focal adhesion kinase (FAK), AKT, and glycogen synthase kinase 3β (GSK3β). Cell migration was determined by using wound healing assay. Metastasis-associated 1 (MTA1), TGFβ1 and VEGF mRNA expression levels were determined using reverse transcription-quantitative PCR. It was demonstrated that, shikonin inhibited cervical cancer cell proliferation and migration. The data of the present study revealed that shikonin inhibited the proliferation of HeLa and SiHa cells in a concentration- and time-dependent manner. Mechanistically, shikonin blocked the proliferation of cervical cancer cells by downregulating the phosphorylation of FAK, AKT and GSK3β induced by EGF. In addition, shikonin significantly suppressed cell migration and reduced the expression of migration-related proteins, including MTA1, TGFβ1 and VEGF. On the whole, the present study demonstrates that shikonin may exert an inhibitory effect on the cervical cancer cell proliferation and migration through the FAK/AKT/GSK3β signaling pathway. These findings suggest that shikonin may function as a potential therapeutic drug for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Ziyan Xu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Liru Huang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Tiantian Zhang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Yuwei Liu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Fang Fang
- Department of Traditional Chinese Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Xinyue Wu
- Queen Mary School, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Wen Chen
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingning Lan
- Queen Mary School, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Yangbo Zhang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Na Li
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ping Hu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| |
Collapse
|
19
|
miRNA-guided reprogramming of glucose and glutamine metabolism and its impact on cell adhesion/migration during solid tumor progression. Cell Mol Life Sci 2022; 79:216. [PMID: 35348905 PMCID: PMC8964646 DOI: 10.1007/s00018-022-04228-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs about 22 nucleotides in length that regulate the expression of target genes post-transcriptionally, and are highly involved in cancer progression. They are able to impact a variety of cell processes such as proliferation, apoptosis and differentiation and can consequently control tumor initiation, tumor progression and metastasis formation. miRNAs can regulate, at the same time, metabolic gene expression which, in turn, influences relevant traits of malignancy such as cell adhesion, migration and invasion. Since the interaction between metabolism and adhesion or cell movement has not, to date, been well understood, in this review, we will specifically focus on miRNA alterations that can interfere with some metabolic processes leading to the modulation of cancer cell movement. In addition, we will analyze the signaling pathways connecting metabolism and adhesion/migration, alterations that often affect cancer cell dissemination and metastasis formation.
Collapse
|
20
|
Narciclasine suppresses esophageal cancer cell proliferation and migration by inhibiting the FAK signaling pathway. Eur J Pharmacol 2022; 921:174669. [DOI: 10.1016/j.ejphar.2021.174669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
|
21
|
Brindell M, Gurgul I, Janczy-Cempa E, Gajda-Morszewski P, Mazuryk O. Moving Ru polypyridyl complexes beyond cytotoxic activity towards metastasis inhibition. J Inorg Biochem 2021; 226:111652. [PMID: 34741931 DOI: 10.1016/j.jinorgbio.2021.111652] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
In recent years, Ru polypyridyl complexes have been intensively studied for their anticancer activity. The vast majority of research focuses on assessing their cytotoxic activity, as well as targeting cancer cells with them. Since the formation of metastases poses a greater risk than primary tumors, scientists recently began evaluating these compounds as potential metastasis inhibitors. This review highlights the latest achievements in this field with particular attention to the identification of the target proteins responsible for such activity. Cell migration, invasion, and adhesion are key components of metastasis, therefore understanding how they are affected by Ru polypyridyl complexes is of great importance. KEYWORDS: Ruthenium polypyridyl complexes Antimetastatic Migration Invasion Adhesion Metalloproteinases.
Collapse
Affiliation(s)
- Małgorzata Brindell
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Ilona Gurgul
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Ewelina Janczy-Cempa
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Przemysław Gajda-Morszewski
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Olga Mazuryk
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
22
|
Du Y, Li S, Zhou T, Zhao J, Liu J. SIPA1 boosts migration and proliferation, and blocks apoptosis of glioma by activating the phosphorylation of the FAK signaling pathway. J Med Biochem 2021; 41:108-114. [PMID: 35431649 PMCID: PMC8970579 DOI: 10.5937/jomb0-32903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022] Open
Abstract
Background We aimed to analyze the regulatory effects of SIPA1 (signal-induced proliferation-associated protein 1) on glioma progression and the dominant signaling pathway. Methods Differential level of SIPA1 in glioma and normal tissues and cells was determined. Migratory, proliferative, apoptotic and cell cycle progression changes in A172 cells with overexpression or knockdown of SIPA1 were examined. Finally, protein levels of phosphorylated FAKs in A172 cells intervened by SIPA1, and the FAK inhibitor PF562271 were detected. Results SIPA1 was upregulated in glioma cases. Knock-down of SIPA1 reduced migratory and proliferative rates of glioma cells, increased apoptotic cell rate, and declined cell ratio in the S phase. The knockdown of SIPA1 also downregulated cell cycle proteins. In addition, SIPA1 upregulated phosphorylated FAKs in A172 cells and thus boosted malignant phenotypes of glioma. Conclusions SIPA1 is upregulated in glioma that boosts migratory and proliferative potentials of glioma cells by activating the phosphorylation of the FAK signaling pathway.
Collapse
Affiliation(s)
- Yuan Du
- Jiamusi University, School of Basic Medicine Science, Jiamusi, China
| | - Shenglan Li
- Capital Medical University, Beijing Tiantan Hospital, Department of Neuro-oncology, Cancer center, Beijing, China
| | - Tong Zhou
- Jiamusi University, School of Pharmacy, Jiamusi, China
| | - Jing Zhao
- First Affiliated Hospital of Jiamusi University, Clinical Laboratory, Jiamusi, China
| | - Jiguang Liu
- Jiamusi University, School of Stomatology, Jiamusi, China
| |
Collapse
|
23
|
Mahmud KM, Niloy MS, Shakil MS, Islam MA. Ruthenium Complexes: An Alternative to Platinum Drugs in Colorectal Cancer Treatment. Pharmaceutics 2021; 13:1295. [PMID: 34452256 PMCID: PMC8398452 DOI: 10.3390/pharmaceutics13081295] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the intimidating causes of death around the world. CRC originated from mutations of tumor suppressor genes, proto-oncogenes and DNA repair genes. Though platinum (Pt)-based anticancer drugs have been widely used in the treatment of cancer, their toxicity and CRC cells' resistance to Pt drugs has piqued interest in the search for alternative metal-based drugs. Ruthenium (Ru)-based compounds displayed promising anticancer activity due to their unique chemical properties. Ru-complexes are reported to exert their anticancer activities in CRC cells by regulating different cell signaling pathways that are either directly or indirectly associated with cell growth, division, proliferation, and migration. Additionally, some Ru-based drug candidates showed higher potency compared to commercially available Pt-based anticancer drugs in CRC cell line models. Meanwhile Ru nanoparticles coupled with photosensitizers or anticancer agents have also shown theranostic potential towards CRC. Ru-nanoformulations improve drug efficacy, targeted drug delivery, immune activation, and biocompatibility, and therefore may be capable of overcoming some of the existing chemotherapeutic limitations. Among the potential Ru-based compounds, only Ru (III)-based drug NKP-1339 has undergone phase-Ib clinical trials in CRC treatment.
Collapse
Affiliation(s)
- Kazi Mustafa Mahmud
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (K.M.M.); (M.S.N.)
| | - Mahruba Sultana Niloy
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (K.M.M.); (M.S.N.)
| | - Md Salman Shakil
- Department of Pharmacology & Toxicology, University of Otago, Dunedin 9016, New Zealand
- Department of Biochemistry, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
24
|
Benwell CJ, Taylor JAGE, Robinson SD. Endothelial neuropilin-2 influences angiogenesis by regulating actin pattern development and α5-integrin-p-FAK complex recruitment to assembling adhesion sites. FASEB J 2021; 35:e21679. [PMID: 34314542 DOI: 10.1096/fj.202100286r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023]
Abstract
The ability to form a variety of cell-matrix connections is crucial for angiogenesis to take place. Without stable anchorage to the extracellular matrix (ECM), endothelial cells (ECs) are unable to sense, integrate and disseminate growth factor stimulated responses that drive growth of a vascular bed. Neuropilin-2 (NRP2) is a widely expressed membrane-bound multifunctional non-tyrosine kinase receptor, which has previously been implicated in influencing cell adhesion and migration by interacting with α5-integrin and regulating adhesion turnover. α5-integrin, and its ECM ligand fibronectin (FN) are both known to be upregulated during the formation of neo-vasculature. Despite being descriptively annotated as a candidate biomarker for aggressive cancer phenotypes, the EC-specific roles for NRP2 during developmental and pathological angiogenesis remain unexplored. The data reported here support a model whereby NRP2 actively promotes EC adhesion and migration by regulating dynamic cytoskeletal remodeling and by stimulating Rab11-dependent recycling of α5-integrin-p-FAK complexes to newly assembling adhesion sites. Furthermore, temporal depletion of EC-NRP2 in vivo impairs primary tumor growth by disrupting vessel formation. We also demonstrate that EC-NRP2 is required for normal postnatal retinal vascular development, specifically by regulating cell-matrix adhesion. Upon loss of endothelial NRP2, vascular outgrowth from the optic nerve during superficial plexus formation is disrupted, likely due to reduced FAK phosphorylation within sprouting tip cells.
Collapse
Affiliation(s)
- Christopher J Benwell
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - James A G E Taylor
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Stephen D Robinson
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
25
|
Brullo C, Tasso B. New Insights on Fak and Fak Inhibitors. Curr Med Chem 2021; 28:3318-3338. [PMID: 33143618 DOI: 10.2174/0929867327666201103162239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/08/2020] [Accepted: 09/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Focal adhesion kinase (Fak) is a cytoplasmic protein tyrosine kinase overexpressed and activated in different solid cancers; it has shown an important role in metastasis formation, cell migration, invasion and angiogenesis and consequently it has been proposed as a potential target in cancer therapy, particularly in a metastatic phase. In recent years, different investigations have highlighted the importance of new Fak inhibitors as potential anti-cancer drugs, but other studies evidenced its role in different pathologies related to the cardiac function or viral infection. METHODS An extensive bibliographic research (104 references) has been done concerning the structure of Fak, its importance in tumor development, but also in other pathologies currently under study. The compounds currently subjected to clinical studies were therefore treated using the appropriate databases. Finally, the main chemical scaffolds currently under preclinical investigation were analyzed, focusing on their molecular structures and on the activity structure relationships (SAR). RESULTS At the moment, only a few reversible ATP-competitive inhibitors are under investigation in pre-clinical studies and clinical trials. Other compounds, with different chemical scaffolds, are investigated to obtain more active and selective Fak inhibitors. This mini-review is a summary of different Fak functions in cancer and other pathologies; the compounds today in clinical trials and the recent chemical scaffolds (also included in patents) giving the most interesting results are investigated. In addition, PROTAC molecules are reported. CONCLUSION All reported results evidenced that additional studies are necessary to design and synthesize new selective and more active compounds, although promising information has been obtained from associations between Fak inhibitors and other different anti- cancer drugs. In addition, the other important roles evidenced, both at the nuclear level and in non-cancerous cells, make this protein an increasingly important target in pharmaceutical chemistry.
Collapse
Affiliation(s)
- Chiara Brullo
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3-I16132 Genova, Italy
| | - Bruno Tasso
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3-I16132 Genova, Italy
| |
Collapse
|
26
|
Wang S, Zhang RH, Zhang H, Wang YC, Yang D, Zhao YL, Yan GY, Xu GB, Guan HY, Zhou YH, Cui DB, Liu T, Li YJ, Liao SG, Zhou M. Design, synthesis, and biological evaluation of 2,4-diamino pyrimidine derivatives as potent FAK inhibitors with anti-cancer and anti-angiogenesis activities. Eur J Med Chem 2021; 222:113573. [PMID: 34091209 DOI: 10.1016/j.ejmech.2021.113573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 01/18/2023]
Abstract
A series of 2,4-diamino pyrimidine (DAPY) derivatives were designed, synthesized, and evaluated as inhibitors of focal adhesion kinase (FAK) with antitumor and anti-angiogenesis activities. Most compounds effectively suppressed the enzymatic activities of FAK, and the IC50s of 11b and 12f were 2.75 and 1.87 nM, respectively. 11b and 12f exhibited strong antiproliferative effects against seven human cancer cells, with IC50 values against two FAK-overexpressing pancreatic cancer cells (PANC-1 and BxPC-3) of 0.98 μM, 0.55 μM, and 0.11 μM, 0.15 μM, respectively. Moreover, 11b and 12f obviously suppressed the colony formation, migration, and invasion of PANC-1 cells in a dose-dependent manner. Meanwhile, these two compounds could induce the apoptosis of PANC-1 cells and arrest the cell cycle in G2/M phase according to the flow cytometry assay. Western blot revealed that 11b and 12f effectively inhibited the FAK/PI3K/Akt signal pathway and significantly decreased the expression of cyclin D1 and Bcl-2. In addition, compounds 11b and 12f potently inhibited the antiproliferative of HUVECs and obviously altered the cell morphology. 11b and 12f also significantly inhibited the migration, tube formation of HUVECs and severely impaired the angiogenesis in the zebrafish model. Overall, these results revealed the potential of compounds 11b and 12f as promising candidates for further preclinical studies.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, PR China; School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Rong-Hong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, PR China; Center for Tissue Engineering and Stem Cell Research, Key Laboratory of Regenerative Medicine of Guizhou Province, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hong Zhang
- School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Yu-Chan Wang
- School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Dan Yang
- School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Yong-Long Zhao
- School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Guo-Yi Yan
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, Henan University, Zhengzhou, PR China
| | - Guo-Bo Xu
- School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Huan-Yu Guan
- School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Yan-Hua Zhou
- Center for Tissue Engineering and Stem Cell Research, Key Laboratory of Regenerative Medicine of Guizhou Province, Guizhou Medical University, Guiyang, 550004, PR China
| | - Dong-Bing Cui
- Center for Tissue Engineering and Stem Cell Research, Key Laboratory of Regenerative Medicine of Guizhou Province, Guizhou Medical University, Guiyang, 550004, PR China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, PR China; School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Yong-Jun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, PR China; School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China
| | - Shang-Gao Liao
- School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China.
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, PR China; School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou, PR China.
| |
Collapse
|
27
|
Żurek N, Karatsai O, Rędowicz MJ, Kapusta IT. Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules 2021; 26:molecules26092656. [PMID: 34062758 PMCID: PMC8124274 DOI: 10.3390/molecules26092656] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Crataegus contains numerous health-promoting compounds that are also proposed to have anti-cancer properties. Herein, we aimed at a contemporaneous evaluation of the effects of polyphenol-rich extracts of berries, leaves, and flowers of six Crataegus species on the viability and invasive potential on the highly aggressive human glioblastoma U87MG cell line. The treatment with the extracts evoked cytotoxic effects, with the strongest in the berry extracts. All extracts not only promoted the apoptosis-related cleavage of poly (ADP-ribose) polymerase 1 (PARP1) but also substantially inhibited the activity of pro-survival kinases, focal adhesion kinase (FAK), and protein kinase B (PKB; also known as Akt), thus indicating the suppression of proliferative and invasive potentials of the examined glioblastoma cells. The qualitative and quantitative characterization of the extracts’ content was also performed and revealed that amongst 37 polyphenolic compounds identified in the examined Crataegus extracts, the majority (29) was detected in berries; the leaf and flower extracts, exerting milder cytotoxic effects, contained only 14 and 13 compounds, respectively. The highest polyphenol content was found in the berries of C. laevigata x rhipidophylla x monogyna, in which flavan-3-ols and phenolic acids predominated. Our results demonstrated that a high content of polyphenolic compounds correlated with the extract cytotoxicity, and especially berries were a valuable source of compounds with anti-cancer potential. This might be a promising option for the development of an effective therapeutic strategy against highly malignant glioblastomas in the future.
Collapse
Affiliation(s)
- Natalia Żurek
- Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland; (N.Ż.); (M.J.R.)
| | - Olena Karatsai
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland;
| | - Maria Jolanta Rędowicz
- Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland; (N.Ż.); (M.J.R.)
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland;
| | - Ireneusz Tomasz Kapusta
- Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland; (N.Ż.); (M.J.R.)
- Correspondence: ; Tel.: +48-17-785-5238
| |
Collapse
|
28
|
Che P, Yu L, Friedman GK, Wang M, Ke X, Wang H, Zhang W, Nabors B, Ding Q, Han X. Integrin αvβ3 Engagement Regulates Glucose Metabolism and Migration through Focal Adhesion Kinase (FAK) and Protein Arginine Methyltransferase 5 (PRMT5) in Glioblastoma Cells. Cancers (Basel) 2021; 13:cancers13051111. [PMID: 33807786 PMCID: PMC7961489 DOI: 10.3390/cancers13051111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/20/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic reprogramming promotes glioblastoma cell migration and invasion. Integrin αvβ3 is one of the major integrin family members in glioblastoma multiforme cell surface mediating interactions with extracellular matrix proteins that are important for glioblastoma progression. The role of αvβ3 integrin in regulating metabolic reprogramming and its mechanism of action have not been determined in glioblastoma cells. Integrin αvβ3 engagement with osteopontin promotes glucose uptake and aerobic glycolysis, while inhibiting mitochondrial oxidative phosphorylation. Blocking or downregulation of integrin αvβ3 inhibits glucose uptake and aerobic glycolysis and promotes mitochondrial oxidative phosphorylation, resulting in decreased migration and growth in glioblastoma cells. Pharmacological inhibition of focal adhesion kinase (FAK) or downregulation of protein arginine methyltransferase 5 (PRMT5) blocks metabolic shift toward glycolysis and inhibits glioblastoma cell migration and invasion. These results support that integrin αvβ3 and osteopontin engagement plays an important role in promoting the metabolic shift toward glycolysis and inhibiting mitochondria oxidative phosphorylation in glioblastoma cells. The metabolic shift in cell energy metabolism is coupled to changes in migration, invasion, and growth, which are mediated by downstream FAK and PRMT5 in glioblastoma cells.
Collapse
Affiliation(s)
- Pulin Che
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.C.); (M.W.)
| | - Lei Yu
- Guiyang Maternal and Child Health Hospital, Guiyang 550001, China;
| | - Gregory K. Friedman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Meimei Wang
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.C.); (M.W.)
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China;
| | - Huafeng Wang
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
- School of Life Science, Shanxi Normal University, Linfen City 041004, China
| | - Wenbin Zhang
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
| | - Burt Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
| | - Qiang Ding
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.C.); (M.W.)
- Correspondence: (Q.D.); (X.H.)
| | - Xiaosi Han
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
- Correspondence: (Q.D.); (X.H.)
| |
Collapse
|
29
|
Qiao D, Jin J, Xing J, Zhang Y, Jia N, Ren X, Lin Z, Jin N, Chen L, Piao Y. Baicalein Inhibits Gastric Cancer Cell Proliferation and Migration through a FAK Interaction via AKT/mTOR Signaling. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:525-541. [PMID: 33641654 DOI: 10.1142/s0192415x21500245] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gastric cancer is a common malignancy worldwide and is associated with high morbidity and mortality rates. However, very little is known about the underlying mechanism in human gastric cancer cells. Baicalein (BAI), a widely used Chinese herbal medicine, has shown anticancer effects on many types of human cancer cell lines. Here, we investigated the molecular mechanisms underlying BAI action on gastric cancer cell proliferation and migration. The results showed that BAI can expressively inhibit cell proliferation, colony-forming ability and migration ability in a dose-dependent manner, while in the meantime inducing cell apoptosis. Additionally, we found that BAI can suppress FAK and the phosphorylation of PI3K, AKT and mTOR in a dose-dependent manner. Furthermore, BAI significantly inhibited tumor growth in a xenograft model. Also, BAI can inhibit the proliferation and migration of gastric cancer cells and the expression of the pathway by downregulating the expression of FAK. In short, we demonstrated that BAI inhibited gastric cancer cell proliferation and migration through FAK interaction via downregulation in AKT/mTOR signaling, which signifies that BAI may be a latent therapeutic factor for the treatment of gastric cancer patients and that FAK might be a hopeful therapy target for the disease.
Collapse
Affiliation(s)
- Dan Qiao
- Key Laboratory of the State Ethnic Affairs Commission, Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China
| | - Jingchun Jin
- Key Laboratory of the State Ethnic Affairs Commission, Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China.,Department of Internal Medicine of Yanbian University Hospital, Yanji 133000, P. R. China
| | - Jian Xing
- Department of Image, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, P. R. China
| | - Yingying Zhang
- Key Laboratory of the State Ethnic Affairs Commission, Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China
| | - Nailing Jia
- Department of Internal Medicine of Yanbian University Hospital, Yanji 133000, P. R. China
| | - Xiangshan Ren
- Key Laboratory of the State Ethnic Affairs Commission, Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China
| | - Zhenhua Lin
- Key Laboratory of the State Ethnic Affairs Commission, Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China.,Department of Internal Medicine of Yanbian University Hospital, Yanji 133000, P. R. China
| | - Ningyi Jin
- Key Laboratory of the State Ethnic Affairs Commission, Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China.,Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, P. R. China
| | - Liyan Chen
- Key Laboratory of the State Ethnic Affairs Commission, Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China
| | - Yingshi Piao
- Key Laboratory of the State Ethnic Affairs Commission, Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanbian University Medical College, Yanji 133002, P. R. China
| |
Collapse
|
30
|
Abdullah NA, Md Hashim NF, Ammar A, Muhamad Zakuan N. An Insight into the Anti-Angiogenic and Anti-Metastatic Effects of Oridonin: Current Knowledge and Future Potential. Molecules 2021; 26:775. [PMID: 33546106 PMCID: PMC7913218 DOI: 10.3390/molecules26040775] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, with a mortality rate of more than 9 million deaths reported in 2018. Conventional anti-cancer therapy can greatly improve survival however treatment resistance is still a major problem especially in metastatic disease. Targeted anti-cancer therapy is increasingly used with conventional therapy to improve patients' outcomes in advanced and metastatic tumors. However, due to the complexity of cancer biology and metastasis, it is urgent to develop new agents and evaluate the anti-cancer efficacy of available treatments. Many phytochemicals from medicinal plants have been reported to possess anti-cancer properties. One such compound is known as oridonin, a bioactive component of Rabdosia rubescens. Several studies have demonstrated that oridonin inhibits angiogenesis in various types of cancer, including breast, pancreatic, lung, colon and skin cancer. Oridonin's anti-cancer effects are mediated through the modulation of several signaling pathways which include upregulation of oncogenes and pro-angiogenic growth factors. Furthermore, oridonin also inhibits cell migration, invasion and metastasis via suppressing epithelial-to-mesenchymal transition and blocking downstream signaling targets in the cancer metastasis process. This review summarizes the recent applications of oridonin as an anti-angiogenic and anti-metastatic drug both in vitro and in vivo, and its potential mechanisms of action.
Collapse
Affiliation(s)
- Nurul Akmaryanti Abdullah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Aula Ammar
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow City G61 1BD, UK;
| | - Noraina Muhamad Zakuan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
31
|
Díaz Galván C, Méndez Olvera ET, Martínez Gómez D, Gloria Trujillo A, Hernández García PA, Espinosa Ayala E, Palacios Martínez M, Lara Bueno A, Mendoza Martínez GD, Velázquez Cruz LA. Influence of a Polyherbal Mixture in Dairy Calves: Growth Performance and Gene Expression. Front Vet Sci 2021; 7:623710. [PMID: 33575280 PMCID: PMC7870704 DOI: 10.3389/fvets.2020.623710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 11/23/2022] Open
Abstract
A polyherbal feed mixture containing (Achyrantes aspera, Trachyspermum ammi, Citrullus colocynthis, Andrographis paniculata, and Azadirachta indica) was evaluated in growing calves through blood chemistry, blood biometry, and gene expression during the pre-ruminant to weaning period. Forty Holstein calves (initial BW 45.6 ± 3.2 kg; 22.8 ± 0.9 days post birth) from a dairy farm were randomly assigned to the following treatments: 0, 3, 4, and 5 g/d of a polyherbal mixture, dosed in colloid gels with gelatin. Calves were housed in individual outdoor boxes with ad libitum access to a 21.5% CP calf starter and water and fed individually with a mixture of milk and a non-medicated milk replacer (22% CP). Blood samples were collected on day 59 for blood chemistry, blood biometry, and gene expression analysis in leukocyte through microarray assays. Immunoglobulins were quantified by enzyme-linked immunosorbent assay. The animals treated with the polyherbal mixture showed a quadratic effect on final body weight, daily weight gain, final hip height, and final thoracic girth. The best performance results were obtained with a treatment dose of 4 g/d. The serum IgG increased linearly with the treatment doses. Gene set enrichment analysis of upregulated genes revealed that the three biological processes with higher fold change were tight junction, mucin type O-Glycan biosynthesis, and intestinal immune network for IgA production. Also, these upregulated genes influenced arachidonic acid metabolism, and pantothenate and CoA biosynthesis. Gene ontology enrichment analysis indicated that the pathways enriched were PELP1 estrogen receptor interacting protein pathways, nuclear receptors in lipid metabolism and toxicity, tight junction, ECM-receptor interaction, thyroid hormone signaling pathways, vascular smooth muscle contraction, ribosome function, glutamatergic synapse pathway, focal adhesion, Hippo, calcium, and MAPK signaling pathways.
Collapse
Affiliation(s)
- Cesar Díaz Galván
- Doctorado en Ciencias Agropecuarias, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, Mexico
| | - Estela Teresita Méndez Olvera
- Laboratorio de Biología Molecular, Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, Mexico
| | - Daniel Martínez Gómez
- Laboratorio de Microbiología Agropecuaria, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, Mexico
| | - Adrián Gloria Trujillo
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, Mexico
| | | | - Enrique Espinosa Ayala
- Centro Universitario UAEM Amecameca, Universidad Autónoma del Estado de México, Amecameca, Mexico
| | - Monika Palacios Martínez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, Mexico
| | | | - Germán David Mendoza Martínez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, Mexico
| | | |
Collapse
|
32
|
Chauhan A, Khan T. Focal adhesion kinase—An emerging viable target in cancer and development of focal adhesion kinase inhibitors. Chem Biol Drug Des 2020; 97:774-794. [DOI: 10.1111/cbdd.13808] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Akshita Chauhan
- Department of Quality Assurance Bhanuben Nanavati College of Pharmacy Mumbai India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry and Quality Assurance Bhanuben Nanavati College of Pharmacy Mumbai India
| |
Collapse
|
33
|
Xie H, Lin X, Zhang Y, Tan F, Chi B, Peng Z, Dong W, An D. Design, synthesis and biological evaluation of ring-fused pyrazoloamino pyridine/pyrimidine derivatives as potential FAK inhibitors. Bioorg Med Chem Lett 2020; 30:127459. [PMID: 32784087 DOI: 10.1016/j.bmcl.2020.127459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/04/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022]
Abstract
We report herein the synthesis of novel ring-fused pyrazoloamino pyridine/pyrimidine derivatives as potential FAK inhibitors and the evaluation of pharmaceutical activity against five cancer cell lines (MDA-MB-231, BXPC-3, NCI-H1975, DU145 and 786O). Generally, the majority of compounds displayed strong anti-FAK enzymatic potencies (IC50 < 1 nM) and could effectively inhibit several class of cancer cell lines within the concentration of 3 μM in comparison with GSK2256098 as a reference. Among them, compound 4o is considered to be the most effective due to high sensitivity in antiproliferation. In culture, 4o could not only inhibit FAK Y397 phosphorylation in MDA-MB-231 cell line, but also trigger apoptosis in a dose-dependent manner. Furthermore, computational docking analysis also suggested that 4o and TAE-226 displayed the similar interaction with FAK kinase domain.
Collapse
Affiliation(s)
- Hongming Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xinglong Lin
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co. Ltd, Dongguan 523871, PR China
| | - Yingjun Zhang
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co. Ltd, Dongguan 523871, PR China.
| | - Fuxing Tan
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co. Ltd, Dongguan 523871, PR China
| | - Bo Chi
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co. Ltd, Dongguan 523871, PR China
| | - Zhihong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| | - Wanrong Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Delie An
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
34
|
Li B, Li Y, Tomkiewicz-Raulet C, Dao P, Lietha D, Yen-Pon E, Du Z, Coumoul X, Garbay C, Etheve-Quelquejeu M, Chen H. Design, Synthesis, and Biological Evaluation of Covalent Inhibitors of Focal Adhesion Kinase (FAK) against Human Malignant Glioblastoma. J Med Chem 2020; 63:12707-12724. [PMID: 33119295 DOI: 10.1021/acs.jmedchem.0c01059] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human malignant glioblastoma (GBM) is a highly invasive and lethal brain tumor. Targeting of integrin downstream signaling mediators in GBM such as focal adhesion kinase (FAK) seems reasonable and recently demonstrated promising results in early clinical studies. Herein, we report the structure-guided development of a series of covalent inhibitors of FAK. These new compounds displayed highly potent inhibitory potency against FAK enzymatic activity with IC50 values in the nanomolar range. Several inhibitors retarded tumor cell growth as assessed by a cell viability assay in multiple human glioblastoma cell lines. They also significantly reduced the rate of U-87 cell migration and delayed the cell cycle progression by stopping cells in the G2/M phase. Furthermore, these inhibitors showed a potent decrease of autophosphorylation of FAK in glioblastoma cells and its downstream effectors Akt and Erk as well as nuclear factor-κB. These data demonstrated that these inhibitors may have the potential to offer a promising new targeted therapy for human glioblastomas.
Collapse
Affiliation(s)
- Bo Li
- Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France
| | - Yongliang Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Education Mega Center, Guangzhou 510006, China
| | - Céline Tomkiewicz-Raulet
- Toxicologie, Pharmacologie et Signalisation Cellulaire, INSERM, UMR S 1124, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France
| | - Pascal Dao
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France
| | - Daniel Lietha
- Cell Signalling and Adhesion Group, Structural and Chemical Biology, Biological Research Center (CIB), Spanish National Research Council (CSIC), Calle Ramiro de Maeztu, Madrid 28040, Spain
| | - Expédite Yen-Pon
- Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France
| | - Zhiyun Du
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Education Mega Center, Guangzhou 510006, China
| | - Xavier Coumoul
- Toxicologie, Pharmacologie et Signalisation Cellulaire, INSERM, UMR S 1124, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France
| | - Christiane Garbay
- Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France
| | - Mélanie Etheve-Quelquejeu
- Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France
| | - Huixiong Chen
- Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France
| |
Collapse
|
35
|
Deng Z, Zeng Q, Chai J, Zhang B, Zheng W, Xu X, Wu J. Disintegrin Tablysin-15 Suppresses Cancer Hallmarks in Melanoma Cells by Blocking FAK/Akt/ERK and NF-κB Signaling. Curr Cancer Drug Targets 2020; 20:306-315. [PMID: 31893992 DOI: 10.2174/1568009620666200101094736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/14/2019] [Accepted: 12/11/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Integrins are crucial anti-cancer therapy targets. We previously showed that tablysin-15 is an integrin antagonist with its Arg-Gly-Asp motif in a novel structural context. OBJECTIVE Here we investigated the anti-cancer effects and mechanisms of action of tablysin-15 in melanoma cells. METHODS Cell adhesion, competitive binding, cell viability, and ATP chemiluminescence assays were used to analyze the binding of tablysin-15 to αvβ3 integrin and its phenotypic effects. Wound healing, transwells, and zymography were performed to detect motility and matrix metalloproteinase- 2/-9 activities. PARP and caspase-3 cleavage were used as apoptosis assays, while LDH release and flow cytometry were used for necrosis and cell cycle analysis. The expression of mRNAs and proteins of target molecules was measured by qRT-PCR and western blotting, respectively. RESULTS Tablysin-15 dose-dependently inhibited the proliferation, migration, and invasion of M21 cells through integrin αvβ3. The proliferation inhibition caused by tablysin-15 was attributable to G0/G1 phase arrest rather than apoptosis or necrosis. Furthermore, tablysin-15 suppressed MMP-2/- 9 activities and the mRNA expression of MMP-2/-9 and COX-2 but was upregulated TIMP-1 in M21 cells. Meanwhile, tablysin-15 suppressed the expression of cyclin D1/E and CDK 2/6, the phosphorylation of FAK, Akt, and ERK, and nuclear translocation of NF-κB, while increasing the expression of the CDK inhibitor p21waf1/C1. Taken together, tablysin-15 might inhibit melanoma cell metastasis and proliferation by competing with αvβ3 integrin, thereby blocking FAK-associated signaling pathways and nuclear translocation of NF-κB. CONCLUSION Tablysin-15 has reliable anti-cancer effects against M21 melanoma cells, suggesting tablysin-15 is a promising anti-tumor drug.
Collapse
Affiliation(s)
- Zhenhui Deng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qingye Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenhong Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiguo Wu
- Guangdong Provincial Key Laboratory of Tropical Medicine, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
36
|
Li H, Ma RQ, Cheng HY, Ye X, Zhu HL, Chang XH. Fibrinogen alpha chain promotes the migration and invasion of human endometrial stromal cells in endometriosis through focal adhesion kinase/protein kinase B/matrix metallopeptidase 2 pathway†. Biol Reprod 2020; 103:779-790. [PMID: 32697296 DOI: 10.1093/biolre/ioaa126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/04/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Abstract
Fibrinogen alpha chain (FGA), a cell adhesion molecule, contains two arginyl-glycyl-aspartic acid (RGD) cell adhesion sequences. Our previous study demonstrated that FGA, as an up-regulated protein in endometriosis (EM), was closely related to disease severity and involved in the development of EM. However, the biological functions and underlying mechanism of FGA in EM have not been fully understood. To explore the roles of FGA in EM, we analyzed the effects of FGA on the biological behaviors of human primary eutopic endometrial stromal cells (EuESC). The results indicated FGA knockdown suppressed the migration and invasion ability of EuESC, which also altered the distribution of cytoskeletal filamentous and cell morphology. Western blot analysis demonstrated that knockdown of FGA attenuated the migration-related protein levels of vimentin and matrix metallopeptidase 2 (MMP-2), but not integrin subunit alpha V (ITGAV) and integrin subunit beta 3 (ITGB3). Meanwhile, integrin-linked transduction pathways were detected. We found FGA knockdown significantly suppressed the expression of focal adhesion kinase (FAK) level and protein kinase B (AKT) phosphorylation, without extracellular-signal-regulated kinase (ERK) dependent pathways. Treatment with the AKT inhibitor MK2206 or RGD antagonist highly decreased the effects of FGA on the migration and invasion of EuESC. RGD antagonist treatment strongly inhibited FAK- and AKT-dependent pathways, but not ERK pathways. Our data indicated that FGA may enhance the migration and invasion of EuESC through RGD sequences binding integrin and activating the FAK/AKT/MMP-2 signaling pathway. This novel finding suggests that FGA may provide a novel potential approach to the treatment of EM, which provides a new way to understand the pathogenesis of EM.
Collapse
Affiliation(s)
- Hui Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.,Center of Gynecological Oncology, Peking University People's Hospital, Beijing, China
| | - Rui-Qiong Ma
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.,Center of Gynecological Oncology, Peking University People's Hospital, Beijing, China
| | - Hong-Yan Cheng
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.,Center of Gynecological Oncology, Peking University People's Hospital, Beijing, China
| | - Xue Ye
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.,Center of Gynecological Oncology, Peking University People's Hospital, Beijing, China
| | - Hong-Lan Zhu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Xiao-Hong Chang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.,Center of Gynecological Oncology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
37
|
Mu LH, Wang LH, Wang YN, Liu P, Yan C. Antiangiogenic effects of AG36, a triterpenoid saponin from Ardisia gigantifolia stapf. J Nat Med 2020; 74:732-740. [PMID: 32643027 DOI: 10.1007/s11418-020-01427-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 06/22/2020] [Indexed: 11/28/2022]
Abstract
AG36 is a triterpenoid saponin from Ardisia gigantifolia stapf. Our recent studies proved that AG36 displayed prominent cytotoxicity against breast cancer cells both in vitro and in vivo. However, whether AG36 has antiangiogenic properties is unknown. Therefore, in the present study, we evaluated the antiangiogenic effect of AG36 and the underlying mechanism. The results indicated that AG36 could significantly inhibit the proliferation, migration and invasion of human umbilical vein endothelial cells (HUVEC). Further antiangiogenic molecular mechanism investigation showed that AG36 significantly suppressed phosphorylated FAK and AKT, and downregulated the expressions of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR2) in HUVECs. PI3K inhibitor (LY294002) and FAK inhibitor (PF562271) pretreatment could markedly enhance AG36-induced inhibition of HUVEC proliferation and p-FAK suppression, respectively. In addition, AG36 inhibited the tumor growth in xenograft model and expressions of p-VEGFR2 and p-Akt in vivo. Molecular docking simulation indicated that AG36 formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. The present study firstly revealed the high antiangiogenic potency and related underlying molecular of AG36, demonstrating that AG36 maybe a potential antiangiogenic cancer therapy agent or lead candidate.
Collapse
Affiliation(s)
- Li-Hua Mu
- Medical Supplies Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Li-Hua Wang
- Medical Supplies Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu-Ning Wang
- First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ping Liu
- Medical Supplies Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Can Yan
- Department of Basic Theory of Chinese Medicine, School of Pre-Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510060, China. .,The Research Centre of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510060, China.
| |
Collapse
|
38
|
Nakane Y, Kemmochi Y, Ogawa N, Sasase T, Ohta T, Higami Y, Fukai F. Hyperglycemia contributes to the development of Leydig cell hyperplasia in male Spontaneously Diabetic Torii rats. J Toxicol Pathol 2020; 33:121-129. [PMID: 32425345 PMCID: PMC7218238 DOI: 10.1293/tox.2019-0088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Spontaneously Diabetic Torii (SDT) rats are a well-known animal model of non-obese type 2 diabetes mellitus. Although this animal model has been studied extensively over the last decade, the incidence rates of Leydig cell hyperplasia and tumors in this model have not been reported. In this study, pathophysiological analyses of the testes were performed on male SDT rats, to understand the effect of insulin treatment on the development of Leydig cell hyperplasia and tumors and the expression of integrins and extracellular matrix proteins. Testicular Leydig cell hyperplasia and tumors were observed in SDT rats at 64 weeks of age but were rarely identified in Sprague-Dawley (SD) rats of the same age. Insulin treatment decreased plasma glucose and HbA1c levels, and interestingly, decreased the number of hyperplastic Leydig cell foci and Leydig cell tumors in treated animals. A similar reduction in the expression of Ki67 in these Leydig cell foci was also observed. In addition, insulin treatment decreased the expression of integrin α5, integrin β1, integrin αvβ3, fibronectin, and vitronectin in hyperplastic Leydig cell foci. These results suggest that insulin might decrease the incidence of Leydig cell hyperplasia by reducing Leydig cell proliferation and the expression of integrins and extracellular matrix proteins through the reduction of serum glucose concentrations in these animals.
Collapse
Affiliation(s)
- Yoshitomi Nakane
- Japan Tobacco Inc., Central Pharmaceutical Research Institute, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.,Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Laboratory of Molecular Pathophysiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yusuke Kemmochi
- Japan Tobacco Inc., Central Pharmaceutical Research Institute, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Naoto Ogawa
- Japan Tobacco Inc., Central Pharmaceutical Research Institute, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tomohiko Sasase
- Japan Tobacco Inc., Central Pharmaceutical Research Institute, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takeshi Ohta
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8502, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Fumio Fukai
- Laboratory of Molecular Pathophysiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
39
|
Xu L, Bi Y, Xu Y, Zhang Z, Xu W, Zhang S, Chen J. Oridonin inhibits the migration and epithelial-to-mesenchymal transition of small cell lung cancer cells by suppressing FAK-ERK1/2 signalling pathway. J Cell Mol Med 2020; 24:4480-4493. [PMID: 32168416 PMCID: PMC7176879 DOI: 10.1111/jcmm.15106] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/12/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Small cell lung cancer (SCLC) is a severe malignant with high morbidity; however, few effective and secure therapeutic strategy is used in current clinical practice. Oridonin is a small molecule from the traditional Chinese herb Rabdosia rubescens. This study mainly aimed to investigate the role of oridonin on inhibiting the process of H1688, a kind of small cell lung cancer cells from human. Oridonin could suppress H1688 cell proliferation and induce their apoptosis in a high dosage treatment (20 μmol/L). Meanwhile, cell migration was suppressed by oridonin (5 and 10 μmol/L) that did not affect cell proliferation and apoptosis. The expression level of E-cadherin was significantly increased, and the expression of vimentin, snail and slug was reduced after administration of oridonin. These expression changes were associated with the suppressed integrin β1, phosphorylation of focal adhesion kinase (FAK) and ERK1/2. In addition, oridonin (5 and 10 mg/kg) inhibited tumour growth in a nude mouse model; however, HE staining revealed a certain degree of cytotoxicity in hepatic tissue after treatment oridonin (10 mg/kg). Furthermore, the concentration of alanine aminotransferase (ALP) was significantly increased and lactate dehydrogenase (LDH) was reduced after oridonin treatment (10 mg/kg). Immunohistochemical analysis further revealed that oridonin increased E-cadherin expression and reduced vimentin and phospho-FAK levels in vivo. These findings indicated that oridonin can inhibit the migration and epithelial-to-mesenchymal transition (EMT) of SCLC cells by suppressing the FAK-ERK1/2 signalling pathway. Thus, oridonin may be a new drug candidate to offer an effect of anti-SCLC with relative safety.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China.,Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanli Bi
- Department of Clinical Laboratorial Examination, Air Force Hangzhou Special Service Recuperation Center Sanatorium Area 3, Hangzhou, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhuocheng Zhang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Wenjie Xu
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Sisi Zhang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jian Chen
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
40
|
Meng NN, Zhang RR, Liu C, Wang Q, Wang XK, Guo X, Wang PP, Sun JY. PDB-1 from Potentilla discolor Bunge suppresses lung cancer cell migration and invasion via FAK/Src and MAPK signaling pathways. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02527-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Ou L, He X, Liu N, Song Y, Li J, Gao L, Huang X, Deng Z, Wang X, Lin S. Sialylation of FGFR1 by ST6Gal‑I overexpression contributes to ovarian cancer cell migration and chemoresistance. Mol Med Rep 2020; 21:1449-1460. [PMID: 32016470 PMCID: PMC7003046 DOI: 10.3892/mmr.2020.10951] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/05/2019] [Indexed: 01/01/2023] Open
Abstract
Fibroblast growth factor receptors (FGFRs) have been implicated in the malignant transformation and chemoresistance of epithelial ovarian cancer; however, the underlying molecular mechanisms are poorly understood. Increased sialyltransferase activity that enhances protein sialylation is an important post‑translational process promoting cancer progression and malignancy. In the present study, α2,6‑sialyltransferase (ST6Gal‑I) overexpression or knockdown cell lines were developed, and FGFR1 was examined to understand the effect of sialylation on migration and drug resistance, and the underlying mechanisms. It was identified that cells with ST6Gal‑I overexpression had increased cell viability and migratory ability upon serum deprivation. Moreover, ST6Gal‑I overexpression cells had strong resistance to paclitaxel, as demonstrated by low growth inhibition rate and cell apoptosis level. A mechanistic study showed that ST6Gal‑I overexpression induced high α2,6‑sialylation of FGFR1 and increased the expression of phospho‑ERK1/2 and phospho‑focal adhesion kinase. Further study demonstrated that the FGFR1 inhibitor PD173047 reduced cell viability and induced apoptosis; however, ST6Gal‑I overexpression decreased the anticancer effect of PD173047. In addition, ST6Gal‑I overexpression attenuated the effect of Adriamycin on cancer cells. Collectively, these results suggested that FGFR1 sialylation plays an important role in cell migration and drug chemoresistance in ovarian cancer cells.
Collapse
Affiliation(s)
- Lingling Ou
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiuzhen He
- Chongqing Three Gorges Medical College, Chongqing 404120, P.R. China
| | - Naihua Liu
- Integrated Traditional and Western Medicine Research Center of The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yuwei Song
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jinyuan Li
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Lvfen Gao
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xinke Huang
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhendong Deng
- Integrated Traditional and Western Medicine Research Center of The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Xiaoyu Wang
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
- Dr Xiaoyu Wang, Department of Stomatology, The First Affiliated Hospital of Jinan University, 613 West Huangpu Avenue, Guangzhou, Guangdong 510632, P.R. China, E-mail:
| | - Shaoqiang Lin
- Integrated Traditional and Western Medicine Research Center of The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
- School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- Correspondence to: Dr Shaoqiang Lin, Integrated Traditional and Western Medicine Research Center of The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Guangzhou, Guangdong 510000, P.R. China, E-mail:
| |
Collapse
|
42
|
Ou L, He X, Liu N, Song Y, Li J, Gao L, Huang X, Deng Z, Wang X, Lin S. Sialylation of FGFR1 by ST6Gal‑I overexpression contributes to ovarian cancer cell migration and chemoresistance. Mol Med Rep 2020. [PMID: 32016470 DOI: 10.3892/mmr.2020.10951/html] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Fibroblast growth factor receptors (FGFRs) have been implicated in the malignant transformation and chemoresistance of epithelial ovarian cancer; however, the underlying molecular mechanisms are poorly understood. Increased sialyltransferase activity that enhances protein sialylation is an important post‑translational process promoting cancer progression and malignancy. In the present study, α2,6‑sialyltransferase (ST6Gal‑I) overexpression or knockdown cell lines were developed, and FGFR1 was examined to understand the effect of sialylation on migration and drug resistance, and the underlying mechanisms. It was identified that cells with ST6Gal‑I overexpression had increased cell viability and migratory ability upon serum deprivation. Moreover, ST6Gal‑I overexpression cells had strong resistance to paclitaxel, as demonstrated by low growth inhibition rate and cell apoptosis level. A mechanistic study showed that ST6Gal‑I overexpression induced high α2,6‑sialylation of FGFR1 and increased the expression of phospho‑ERK1/2 and phospho‑focal adhesion kinase. Further study demonstrated that the FGFR1 inhibitor PD173047 reduced cell viability and induced apoptosis; however, ST6Gal‑I overexpression decreased the anticancer effect of PD173047. In addition, ST6Gal‑I overexpression attenuated the effect of Adriamycin on cancer cells. Collectively, these results suggested that FGFR1 sialylation plays an important role in cell migration and drug chemoresistance in ovarian cancer cells.
Collapse
Affiliation(s)
- Lingling Ou
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiuzhen He
- Chongqing Three Gorges Medical College, Chongqing 404120, P.R. China
| | - Naihua Liu
- Integrated Traditional and Western Medicine Research Center of The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yuwei Song
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jinyuan Li
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Lvfen Gao
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xinke Huang
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhendong Deng
- Integrated Traditional and Western Medicine Research Center of The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Xiaoyu Wang
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Shaoqiang Lin
- Integrated Traditional and Western Medicine Research Center of The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
43
|
de Jonge MJA, Steeghs N, Lolkema MP, Hotte SJ, Hirte HW, van der Biessen DAJ, Abdul Razak AR, De Vos FYFL, Verheijen RB, Schnell D, Pronk LC, Jansen M, Siu LL. Phase I Study of BI 853520, an Inhibitor of Focal Adhesion Kinase, in Patients with Advanced or Metastatic Nonhematologic Malignancies. Target Oncol 2020; 14:43-55. [PMID: 30756308 PMCID: PMC6407740 DOI: 10.1007/s11523-018-00617-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Overexpression/activation of focal adhesion kinase (FAK) in human malignancies has led to its evaluation as a therapeutic target. We report the first-in-human phase I study of BI 853520, a novel, potent, highly selective FAK inhibitor. OBJECTIVE Our objectives were to identify the maximum tolerated dose (MTD), and to evaluate safety, pharmacokinetics (PK), pharmacodynamics (PD), biomarker expression, and preliminary activity. PATIENTS AND METHODS The study comprised a standard 3 + 3 dose-escalation phase followed by an expansion phase in patients with selected advanced, nonhematologic malignancies. RESULTS Thirty-three patients received BI 853520 in the dose-escalation phase; the MTD was 200 mg once daily (QD). Dose-limiting toxicities included proteinuria and fatigue, both of which were grade 3. Preliminary PK data supported QD dosing. In the expansion cohort, 63 patients received BI 853520 200 mg QD. Drug-related adverse events (AEs) in > 10% of patients included proteinuria (57%), nausea (57%), fatigue (51%), diarrhea (48%), vomiting (40%), decreased appetite (19%), and peripheral edema (16%). Most AEs were grade 1-2; grade 3 proteinuria, reported in 13 patients (21%), was generally reversible upon treatment interruption. Nineteen patients underwent dose reduction due to AEs, and three drug-related serious AEs were reported, none of which were fatal. Preliminary PD analysis indicated target engagement. Of 63 patients, 49 were evaluable; 17 (27%) achieved a best response of stable disease (4 with 150 + days), and 32 (51%) patients had progressive disease. CONCLUSIONS BI 853520 has a manageable and acceptable safety profile, favorable PK, and modest antitumor activity at an MTD of 200 mg QD in patients with selected advanced nonhematologic malignancies. CLINICALTRIALS. GOV IDENTIFIER NCT01335269.
Collapse
Affiliation(s)
- Maja J A de Jonge
- Department of Internal Oncology, Erasmus Medical Centre Cancer Institute, Dr. Molenwaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Neeltje Steeghs
- Department of Medical Oncology and Clinical Pharmacology, Netherlands Cancer Institute, Plesmanlaan 12, 11066 CX, Amsterdam, The Netherlands
| | - Martijn P Lolkema
- Department of Internal Oncology, Erasmus Medical Centre Cancer Institute, Dr. Molenwaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Medical Oncology, University Medical Center Utrecht, Utrecht Cancer Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Sebastien J Hotte
- Division of Medical Oncology, Juravinski Cancer Centre, 3rd Floor, 699 Concession Street, Hamilton, ON, L8V 5C2, Canada
| | - Hal W Hirte
- Division of Medical Oncology, Juravinski Cancer Centre, 3rd Floor, 699 Concession Street, Hamilton, ON, L8V 5C2, Canada
| | - Diane A J van der Biessen
- Department of Internal Oncology, Erasmus Medical Centre Cancer Institute, Dr. Molenwaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Albiruni R Abdul Razak
- Division of Medical Oncology, Princess Margaret Cancer Centre, 610 University Avenue, Suite 5-718, Toronto, ON, M5G 2M9, Canada
| | - Filip Y F L De Vos
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht Cancer Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Remy B Verheijen
- Department of Medical Oncology and Clinical Pharmacology, Netherlands Cancer Institute, Plesmanlaan 12, 11066 CX, Amsterdam, The Netherlands
| | - David Schnell
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str 65, 88397, Biberach, Germany
| | - Linda C Pronk
- Clinical Development Oncology, Boehringer Ingelheim España S.A., Parque Empresarial Alvento, Via de los Poblados, 1 Planta Baja-Edif. B Ofic. A y C, 28033, Madrid, Spain
| | - Monique Jansen
- Medical Department, Boehringer Ingelheim BV, Comeniusstraat 6, 1817 MS Alkmaar, PO Box 8037, 1802 KA, Aklmaar, The Netherlands
| | - Lillian L Siu
- Division of Medical Oncology, Princess Margaret Cancer Centre, 610 University Avenue, Suite 5-718, Toronto, ON, M5G 2M9, Canada
| |
Collapse
|
44
|
Verheijen RB, van der Biessen DAJ, Hotte SJ, Siu LL, Spreafico A, de Jonge MJA, Pronk LC, De Vos FYFL, Schnell D, Hirte HW, Steeghs N, Lolkema MP. Randomized, Open-Label, Crossover Studies Evaluating the Effect of Food and Liquid Formulation on the Pharmacokinetics of the Novel Focal Adhesion Kinase (FAK) Inhibitor BI 853520. Target Oncol 2020; 14:67-74. [PMID: 30742245 PMCID: PMC6407750 DOI: 10.1007/s11523-018-00618-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background BI 853520 is a potent inhibitor of focal adhesion kinase and is currently under clinical development for the treatment of non-hematological malignancies. Objective The objective of this study was to evaluate the effect of food and liquid dispersion on the pharmacokinetics of BI 853520 in two open-label, crossover substudies. Patients and Methods Sixteen patients with advanced solid tumors were enrolled in each substudy. The order of administration was randomized, and pharmacokinetic samples were collected for 48 h after administration of a 200 mg dose of BI 853520. Lack of effect would be demonstrated if the 90% confidence interval (CI) of the ratio of the adjusted geometric mean (GMR) of the area under the plasma curve (area under the plasma concentration–time curve from time zero to the last quantifiable concentration at tz [\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{AUC}}_{{0{-}t_{\text{z}} }}$$\end{document}AUC0-tz] and observed area under the plasma concentration–time curve extrapolated from time zero to infinity [AUC0–∞,obs]) and maximum plasma concentration (Cmax) did not cross the 80–125% (bioequivalence) boundaries. Results Adjusted GMRs (90% CIs) for the fed versus fasted state were 92.46% (74.24–115.16), 98.17% (78.53–122.74), and 87.34% (71.04–107.38) for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{AUC}}_{{0{-}t_{\text{z}} }}$$\end{document}AUC0-tz, AUC0–∞,obs, and Cmax, respectively. Although the 90% CIs were not within bioequivalence limits for the food-effect study, the limited reductions in these pharmacokinetic parameters after administration with a high-fat meal are unlikely to be clinically relevant. Compared with a tablet, administration of BI 853520 as a liquid dispersion did not strongly affect \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{AUC}}_{{0{-}t_{\text{z}} }}$$\end{document}AUC0-tz, AUC0–∞,obs, or Cmax, resulting in adjusted GMRs (90% CIs) of 1.00 (0.92–1.09), 0.98 (0.90–1.07), and 0.93 (0.86–1.01), respectively. Conclusions These studies demonstrate that BI 853520 can be given with no food restrictions, and as a liquid dispersion, without strongly impacting pharmacokinetics. These pharmacokinetic properties may help make BI 853520 dosing more convenient and flexible, improving treatment compliance. Clinical trials registration ClinicalTrials.gov identifier: NCT01335269. Electronic supplementary material The online version of this article (10.1007/s11523-018-00618-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Remy B Verheijen
- Department of Medical Oncology and Clinical Pharmacology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Diane A J van der Biessen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA, Rotterdam, The Netherlands
| | - Sebastien J Hotte
- Division of Medical Oncology, Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON, L8V 5C2, Canada
| | - Lillian L Siu
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, 700 University Avenue, 7th Floor, Toronto, ON, M5G 1Z5, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, 700 University Avenue, 7th Floor, Toronto, ON, M5G 1Z5, Canada
| | - Maja J A de Jonge
- Department of Internal Oncology, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA, Rotterdam, The Netherlands
| | - Linda C Pronk
- Clinical Development Oncology, Boehringer Ingelheim España S.A., Parque Empresarial Alvento, Via de los Poblados, 1 planta baja-Edif. B ofic. A y C, 28033, Madrid, Spain
| | - Filip Y F L De Vos
- Department of Medical Oncology, University Medical Center Utrecht Cancer Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - David Schnell
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH and Co. KG, Birkendorfer Str. 65, 88397, Biberach, Germany
| | - Hal W Hirte
- Division of Medical Oncology, Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON, L8V 5C2, Canada
| | - Neeltje Steeghs
- Department of Medical Oncology and Clinical Pharmacology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA, Rotterdam, The Netherlands. .,Department of Internal Oncology, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA, Rotterdam, The Netherlands.
| |
Collapse
|
45
|
Abstract
Physical stimuli are essential for the function of eukaryotic cells, and changes in physical signals are important elements in normal tissue development as well as in disease initiation and progression. The complexity of physical stimuli and the cellular signals they initiate are as complex as those triggered by chemical signals. One of the most important, and the focus of this review, is the effect of substrate mechanical properties on cell structure and function. The past decade has produced a nearly exponentially increasing number of mechanobiological studies to define how substrate stiffness alters cell biology using both purified systems and intact tissues. Here we attempt to identify common features of mechanosensing in different systems while also highlighting the numerous informative exceptions to what in early studies appeared to be simple rules by which cells respond to mechanical stresses.
Collapse
Affiliation(s)
- Paul A Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, University of California-Berkeley, Berkeley, California; and Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Daniel A Fletcher
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, University of California-Berkeley, Berkeley, California; and Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Cynthia A Reinhart-King
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, University of California-Berkeley, Berkeley, California; and Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
46
|
Hu C, Zhou H, Liu Y, Huang J, Liu W, Zhang Q, Tang Q, Sheng F, Li G, Zhang R. ROCK1 promotes migration and invasion of non‑small‑cell lung cancer cells through the PTEN/PI3K/FAK pathway. Int J Oncol 2019; 55:833-844. [PMID: 31485605 PMCID: PMC6741846 DOI: 10.3892/ijo.2019.4864] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Rho-associated protein kinase 1 (ROCK1), a member of the ROCK family, serves an important function in cell migration and invasion in neoplasms. ROCK1 has been found to be overexpressed in several types of cancers. However, the role of ROCK1 in non-small-cell lung cancer (NSCLC) is poorly understood. In the present study, ROCK1 was found to be overexpressed in NSCLC cells and tissues, and it was associated with poor survival of NSCLC patients. Subsequently, ROCK1 knockdown NSCLC cell lines were established using shRNA. ROCK1 knockdown significantly reduced the migration and invasion ability in the cell monolayer scratching and Transwell assays. ROCK1 knockdown was also found to markedly inhibit cell adhesion ability. Moreover, the phosphorylation of focal adhesion kinase (FAK) was inhibited by ROCK1 knockdown, reducing NSCLC cell migration and invasion ability. This mechanistic study revealed that ROCK1 significantly enhanced cell migration and invasion by inhibiting the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/FAK pathway. More importantly, the interruption of the PTEN/PI3K/FAK pathway markedly rescued the inhibition of cell migration and invasion mediated by ROCK1 knockdown. Taken together, these results suggest a novel role for ROCK1 in cell migration and invasion by inhibiting cell adhesion ability, and indicate that ROCK1 may be of value as a therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yali Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Fangfang Sheng
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
47
|
Deng Z, Chai J, Zeng Q, Zhang B, Ye T, Chen X, Xu X. The anticancer properties and mechanism of action of tablysin-15, the RGD-containing disintegrin, in breast cancer cells. Int J Biol Macromol 2019; 129:1155-1167. [PMID: 30660566 DOI: 10.1016/j.ijbiomac.2019.01.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
αvβ3 integrin expressed on cancer cell surfaces is associated with important cancer hallmarks including survival and metastasis and is thus a potential anticancer drug target. Tablysin-15 contains the RGD motif and is a high-affinity αvβ3 integrin antagonist. The aim of this study was to investigate the antitumor effect and mechanism of action of tablysin-15 against αvβ3 integrin high-expressing breast cancer cell lines in vitro and in vivo. Tablysin-15 dose-dependently inhibited the proliferation, migration, and invasion of two breast cancer cell lines via the αvβ3 integrin in vitro. Proliferation inhibition was attributable to G0/G1 phase cell cycle arrest rather than apoptosis or necrosis. Furthermore, tablysin-15 downregulated the activity and mRNA expression of MMP-2/-9, VEGF, and COX-2 but upregulated TIMP-1/-2 mRNA in both cell lines. Further, tablysin-15 suppressed the expression of CDK2, CDK6, cyclin D1, and cyclin E, the phosphorylation of FAK, Akt, GSK-3β, and ERK, and the nuclear translocation of NF-κB while increasing the expression of the CDK inhibitor p21waf1/C1. Lastly, tablysin-15 provided effective antitumor protection in vivo. Thus, tablysin-15 inhibits the metastasis and proliferation of breast cancer cells through binding αvβ3 integrin and blocking FAK-associated signaling pathways as well as nuclear translocation of NF-κB.
Collapse
Affiliation(s)
- Zhenhui Deng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qingye Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tiaofei Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
48
|
Zheng L, Zhu X, Yang K, Zhu M, Farooqi AA, Kang D, Sun M, Xu Y, Lin X, Feng Y, Liang F, Zhang F, Linhardt RJ. PBN11-8, a Cytotoxic Polypeptide Purified from Marine Bacillus, Suppresses Invasion and Migration of Human Hepatocellular Carcinoma Cells by Targeting Focal Adhesion Kinase Pathways. Polymers (Basel) 2018; 10:polym10091043. [PMID: 30960968 PMCID: PMC6403900 DOI: 10.3390/polym10091043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/20/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
The development of antitumor drugs has attracted cancer researchers and the identification of novel antitumor lead compounds is certainly of great interest. The fermentation broth of Bacillus sp. N11-8, which was isolated from the Antarctic waters, showed cytotoxicity towards different cells. A cytotoxic polypeptide, PBN11-8, was purified from the fermentation broth of Bacillus sp. N11-8 using ultrafiltration, ammonium sulfate precipitation, anion exchange liquid chromatography and high performance liquid chromatography (HPLC). Cloning and sequence analysis showed that PBN11-8 polypeptide (MW: ~19 kDa by the electrospray-ionization (ESI)) displayed high similarity with peptidase M84 from Bacillus pumilus. PBN11-8 possessed moderate cytotoxicity towards several cancer cell lines with IC50 values of 1.56, 1.80, 1.57, and 1.73 µg/mL against human hepatocellular carcinoma cell line BEL-7402, human renal clear cell adenocarcinoma cell line 786-0, human hepatocellular carcinoma cell line HepG2, and human pancreatic cancer cell line Panc-28, respectively. Moreover, the polypeptide displayed weak cytotoxicity towards normal cell line renal tubular epithelial cell line HK2 and human normal liver cell line L02 cells. Wound healing migration and Transwell experiments demonstrate that PBN11-8 could inhibit the migration and invasion of BEL-7402. Further investigation revealed that PBN11-8 suppresses focal adhesion kinase (FAK)-mediated adhesion, migration, and invasion by disturbing FAK/extracellular regulated protein kinases (ERK) signaling and matrix metalloproteinase-2(MMP-2) and matrix metalloproteinase-9 (MMP-9) in BEL-7402 cells. Thus, PBN11-8 represents a potential novel anti-cancer lead compound.
Collapse
Affiliation(s)
- Lanhong Zheng
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Xiangjie Zhu
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
- Shanghai Ocean University, Shanghai 201306, China.
| | - Kangli Yang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Meihong Zhu
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | - Daole Kang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Mi Sun
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Xiukun Lin
- Department of Pharmacology, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yingang Feng
- Shandong Provincial Key Laboratory of Energy Genetics and Qingdao Engineering Laboratory of Single Cell Oil, Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China.
| | - Fangfang Liang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Fuming Zhang
- Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Robert J Linhardt
- Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
49
|
The proteoglycan-like domain of carbonic anhydrase IX mediates non-catalytic facilitation of lactate transport in cancer cells. Oncotarget 2018; 9:27940-27957. [PMID: 29963253 PMCID: PMC6021347 DOI: 10.18632/oncotarget.25371] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/19/2018] [Indexed: 12/20/2022] Open
Abstract
Highly glycolytic tumor cells release vast amounts of lactate and protons via monocarboxylate transporters (MCTs), which exacerbate extracellular acidification and support the formation of a hostile environment. Transport activity of MCTs can be facilitated by non-catalytic interaction with carbonic anhydrase IX (CAIX), the expression of which has been shown to be upregulated under hypoxia. We have now studied the mechanisms that enable CAIX-mediated facilitation of proton-coupled lactate transport in breast cancer cells and Xenopus oocytes. Our results indicate that the proteoglycan like (PG) domain of CAIX could function as ‘proton antenna’ to facilitate MCT transport activity. Truncation of the PG domain and application of a PG-binding antibody significantly reduced proton-coupled lactate transport in MCT-expressing oocytes and hypoxic breast cancer cells, respectively. Furthermore, application of the PG-binding antibody reduced proliferation and migration of hypoxic cancer cells, suggesting that facilitation of proton-coupled lactate flux by the CAIX PG domain contributes to cancer cell survival under hypoxic conditions.
Collapse
|
50
|
Fa Z, Min Z, Tang J, Liu C, Yan G, Xi J. MicroRNA-150 suppresses the growth and malignant behavior of papillary thyroid carcinoma cells via downregulation of MUC4. Exp Ther Med 2018; 16:45-52. [PMID: 29896226 PMCID: PMC5995047 DOI: 10.3892/etm.2018.6197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Previous studies have revealed that microRNA (miR)-150 can act as an oncomiR or a tumor suppressor in numerous types of hematological malignancy and solid tumor. However, the function of miR-150 in papillary thyroid carcinoma (PTC) remains elusive. The present study aimed to investigate the function of miR-150 in PTC and its underlying molecular mechanism. The expression of miR-150 was identified to be significantly downregulated, whereas that of mucin (MUC)4 was significantly upregulated in PTC tissues and cell lines compared with corresponding controls. Further experiments demonstrated that MUC4 is a direct target of miR-150. PTC cell proliferation and capacity for migration and invasion decreased following miR-150 overexpression. It was also demonstrated that miR-150-mediated MUC4 downregulation was associated with an accompanying decrease in human epidermal growth factor receptor 2, as well as its phosphorylated form, resulting in suppressed activation of downstream signaling. In conclusion, the present study demonstrated that miR-150 may serve a key function in suppressing the malignant growth and aggressive behavior of PTC cells through the downregulation of MUC4. These findings may provide a novel approach for diagnostic and therapeutic strategies for PTC.
Collapse
Affiliation(s)
- Zhenzhong Fa
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University, Changzhou, Jiangsu 213002, P.R. China.,Department of General Surgery, Changzhou Wujin People's Hospital, Changzhou, Jiangsu 213002, P.R. China
| | - Zhenyu Min
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University, Changzhou, Jiangsu 213002, P.R. China.,Department of General Surgery, Changzhou Wujin People's Hospital, Changzhou, Jiangsu 213002, P.R. China
| | - Jianjun Tang
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University, Changzhou, Jiangsu 213002, P.R. China.,Department of General Surgery, Changzhou Wujin People's Hospital, Changzhou, Jiangsu 213002, P.R. China
| | - Chuanlei Liu
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University, Changzhou, Jiangsu 213002, P.R. China.,Department of General Surgery, Changzhou Wujin People's Hospital, Changzhou, Jiangsu 213002, P.R. China
| | - Guodu Yan
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University, Changzhou, Jiangsu 213002, P.R. China.,Department of General Surgery, Changzhou Wujin People's Hospital, Changzhou, Jiangsu 213002, P.R. China
| | - Jianbo Xi
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University, Changzhou, Jiangsu 213002, P.R. China.,Department of General Surgery, Changzhou Wujin People's Hospital, Changzhou, Jiangsu 213002, P.R. China
| |
Collapse
|