1
|
Chen Y, Li Z, Ji G, Wang S, Mo C, Ding B. Lung regeneration: diverse cell types and the therapeutic potential. MedComm (Beijing) 2024; 5:e494. [PMID: 38405059 PMCID: PMC10885188 DOI: 10.1002/mco2.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Lung tissue has a certain regenerative ability and triggers repair procedures after injury. Under controllable conditions, lung tissue can restore normal structure and function. Disruptions in this process can lead to respiratory system failure and even death, causing substantial medical burden. The main types of respiratory diseases are chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute respiratory distress syndrome (ARDS). Multiple cells, such as lung epithelial cells, endothelial cells, fibroblasts, and immune cells, are involved in regulating the repair process after lung injury. Although the mechanism that regulates the process of lung repair has not been fully elucidated, clinical trials targeting different cells and signaling pathways have achieved some therapeutic effects in different respiratory diseases. In this review, we provide an overview of the cell type involved in the process of lung regeneration and repair, research models, and summarize molecular mechanisms involved in the regulation of lung regeneration and fibrosis. Moreover, we discuss the current clinical trials of stem cell therapy and pharmacological strategies for COPD, IPF, and ARDS treatment. This review provides a reference for further research on the molecular and cellular mechanisms of lung regeneration, drug development, and clinical trials.
Collapse
Affiliation(s)
- Yutian Chen
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Zhen Li
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gaili Ji
- Department of GynecologyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shaochi Wang
- Department of Translational MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Bi‐Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
2
|
Obata T, Mizoguchi S, Greaney AM, Adams T, Yuan Y, Edelstein S, Leiby KL, Rivero R, Wang N, Kim H, Yang J, Schupp JC, Stitelman D, Tsuchiya T, Levchenko A, Kaminski N, Niklason LE, Brickman Raredon MS. Organ Boundary Circuits Regulate Sox9+ Alveolar Tuft Cells During Post-Pneumonectomy Lung Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574469. [PMID: 38260691 PMCID: PMC10802449 DOI: 10.1101/2024.01.07.574469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Tissue homeostasis is controlled by cellular circuits governing cell growth, organization, and differentation. In this study we identify previously undescribed cell-to-cell communication that mediates information flow from mechanosensitive pleural mesothelial cells to alveolar-resident stem-like tuft cells in the lung. We find mesothelial cells to express a combination of mechanotransduction genes and lineage-restricted ligands which makes them uniquely capable of responding to tissue tension and producing paracrine cues acting on parenchymal populations. In parallel, we describe a large population of stem-like alveolar tuft cells that express the endodermal stem cell markers Sox9 and Lgr5 and a receptor profile making them uniquely sensitive to cues produced by pleural Mesothelium. We hypothesized that crosstalk from mesothelial cells to alveolar tuft cells might be central to the regulation of post-penumonectomy lung regeneration. Following pneumonectomy, we find that mesothelial cells display radically altered phenotype and ligand expression, in a pattern that closely tracks with parenchymal epithelial proliferation and alveolar tissue growth. During an initial pro-inflammatory stage of tissue regeneration, Mesothelium promotes epithelial proliferation via WNT ligand secretion, orchestrates an increase in microvascular permeability, and encourages immune extravasation via chemokine secretion. This stage is followed first by a tissue remodeling period, characterized by angiogenesis and BMP pathway sensitization, and then a stable return to homeostasis. Coupled with key changes in parenchymal structure and matrix production, the cumulative effect is a now larger organ including newly-grown, fully-functional tissue parenchyma. This study paints Mesothelial cells as a key orchestrating cell type that defines the boundary of the lung and exerts critical influence over the tissue-level signaling state regulating resident stem cell populations. The cellular circuits unearthed here suggest that human lung regeneration might be inducible through well-engineered approaches targeting the induction of tissue regeneration and safe return to homeostasis.
Collapse
Affiliation(s)
- Tomohiro Obata
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satoshi Mizoguchi
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Allison M. Greaney
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of technology, Cambridge, MA, 02139
| | - Taylor Adams
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Yifan Yuan
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Sophie Edelstein
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Katherine L. Leiby
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Rachel Rivero
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Nuoya Wang
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Haram Kim
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Junchen Yang
- Computational Biology and Biomedical Informatics, Yale University, New Haven, CT, 06511, USA
| | - Jonas C. Schupp
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Respiratory Medicine, Hanover Medical School, Hanover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hanover, Germany
| | - David Stitelman
- Department of Surgery, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Tomoshi Tsuchiya
- Department of Thoracic Surgery, University of Toyama, Toyama, 9300194, Japan
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, New Haven, CT, 06511, USA
- Department of Physics, Yale University, New Haven, CT, 06511, USA
| | - Naftali Kaminski
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Laura E. Niklason
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Humacyte, Inc., Durham, North Carolina
| | - Micha Sam Brickman Raredon
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics, Yale School of Medicine, New Haven, CT, 06511, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06511, USA
- Pulmonary, Critical Care, & Sleep Medicine, Internal Medicine, Yale School of Medicine, New Haven, CT, 06511, USA
| |
Collapse
|
3
|
Tesfaigzi Y, Curtis JL, Petrache I, Polverino F, Kheradmand F, Adcock IM, Rennard SI. Does Chronic Obstructive Pulmonary Disease Originate from Different Cell Types? Am J Respir Cell Mol Biol 2023; 69:500-507. [PMID: 37584669 PMCID: PMC10633838 DOI: 10.1165/rcmb.2023-0175ps] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 08/17/2023] Open
Abstract
The onset of chronic obstructive pulmonary disease (COPD) is heterogeneous, and current approaches to define distinct disease phenotypes are lacking. In addition to clinical methodologies, subtyping COPD has also been challenged by the reliance on human lung samples from late-stage diseases. Different COPD phenotypes may be initiated from the susceptibility of different cell types to cigarette smoke, environmental pollution, and infections at early stages that ultimately converge at later stages in airway remodeling and destruction of the alveoli when the disease is diagnosed. This perspective provides discussion points on how studies to date define different cell types of the lung that can initiate COPD pathogenesis, focusing on the susceptibility of macrophages, T and B cells, mast cells, dendritic cells, endothelial cells, and airway epithelial cells. Additional cell types, including fibroblasts, smooth muscle cells, neuronal cells, and other rare cell types not covered here, may also play a role in orchestrating COPD. Here, we discuss current knowledge gaps, such as which cell types drive distinct disease phenotypes and/or stages of the disease and which cells are primarily affected by the genetic variants identified by whole genome-wide association studies. Applying new technologies that interrogate the functional role of a specific cell type or a combination of cell types as well as single-cell transcriptomics and proteomic approaches are creating new opportunities to understand and clarify the pathophysiology and thereby the clinical heterogeneity of COPD.
Collapse
Affiliation(s)
- Yohannes Tesfaigzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey L. Curtis
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Irina Petrache
- Division of Pulmonary Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado
- University of Colorado, Denver, Colorado
| | - Francesca Polverino
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Baylor University, Houston, Texas
| | - Farrah Kheradmand
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Baylor University, Houston, Texas
| | - Ian M. Adcock
- Department of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Stephen I. Rennard
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
4
|
Liu C, Liu J, Yuan M, Cheng K, Luo D, Zeng L, Xu C. Pulmonary function after lobectomy in children: a systematic review and meta-analysis. BMJ Paediatr Open 2023; 7:e001979. [PMID: 37848263 PMCID: PMC10582896 DOI: 10.1136/bmjpo-2023-001979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/26/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND The influence of lobectomy on pulmonary function in children was still controversial. A systematic review and meta-analysis were essential to explore whether pulmonary function was impaired after lobectomy in children. METHODS PubMed, Embase and Web of Science were searched from 1 January 1946 to 1 July 2022. Forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC and total lung capacity were extracted from the studies as the primary analysis indicators. Subgroup analyses were performed between the congenital lung malformation (CLM) group and other diseases group, early surgery and late surgery group (1 year old as the dividing line). RESULTS A total of 5302 articles were identified through the search strategy; finally, 10 studies met the inclusion criteria. Through the meta-analysis, we found a mild obstructive ventilatory disorder in children who underwent lobectomy. However, a normal pulmonary function could be found in young children with CLM who underwent lobectomy, and the time of operation had no significant influence on their pulmonary function. CONCLUSIONS The overall result of pulmonary function after lobectomy in children was good. Surgeons may not need to be excessively concerned about the possibility of lung surgery affecting pulmonary function in children, particularly in patients with CLM. PROSPERO REGISTRATION NUMBER CRD42022342243.
Collapse
Affiliation(s)
- Chenyu Liu
- Department of Pediatric Surgery, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Jie Liu
- Department of Pediatric Surgery, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Miao Yuan
- Department of Pediatric Surgery, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Kaisheng Cheng
- Department of Pediatric Surgery, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Dengke Luo
- Department of Pediatric Surgery, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Li Zeng
- Department of Pediatric Surgery, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Chang Xu
- Department of Pediatric Surgery, Sichuan University West China Hospital, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Iskender I, Pecoraro Y, Moreno Casado P, Kubisa B, Schiavon M, Faccioli E, Ehrsam J, Damarco F, Nosotti M, Inci I, Venuta F, Van Raemdonck D, Ceulemans LJ. Lung transplantation in patients with a history of anatomical native lung resection. Interact Cardiovasc Thorac Surg 2022; 35:6758257. [PMID: 36218975 PMCID: PMC9583932 DOI: 10.1093/icvts/ivac256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES History of anatomical lung resection complicates lung transplantation (LTx). Our aim was to identify indications, intraoperative approach, and outcome in these challenging cases in a retrospective multicentre cohort analysis. METHODS Members of the ESTS Lung Transplantation Working Group were invited to submit data on patients undergoing LTx after a previous anatomical native lung resection between 01/2005 and 07/2020. The primary end-point was overall survival (Kaplan-Meier estimation). RESULTS Out of 2690 patients at 7 European centers, 26 (1%) patients (14 male; median age 33 years) underwent LTx after a previous anatomical lung resection. Median time from previous lung resection to LTx was 12 years. The most common indications for lung resection were infections (n = 17), emphysema (n = 5), lung tumour (n = 2), and others (n = 2). Bronchiectasis (cystic fibrosis (CF) or non-CF related) was the main indication for LTx (n = 21), followed by COPD (n = 5). Two patients with a previous pneumonectomy underwent contralateral single LTx and 1 patient with a previous lobectomy had ipsilateral single LTx. The remaining 23 patients underwent bilateral LTx. Clamshell incision was performed in 12 (46%) patients. Moreover, LTx was possible without extracorporeal life support in 13 (50%) patients. 90-day mortality was 8% (n = 2) and the median survival was 8.7 years. CONCLUSIONS History of anatomical lung resection is rare in LTx candidates. The majority of patients are young and diagnosed with bronchiectasis. Although the numbers were limited, survival after LTx in patients with previous anatomical lung resection, including pneumonectomy is comparable to reported conventional LTx for bronchiectasis.
Collapse
Affiliation(s)
- Ilker Iskender
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium,Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, KU Leuven, Leuven, Belgium
| | - Ylenia Pecoraro
- Department of Thoracic Surgery, Policlinico Umberto I, University of Rome La Sapienza, Rome, Italy
| | - Paula Moreno Casado
- Department of Thoracic Surgery, University Hospital Reina Sofia, Cordoba, Spain
| | - Bartosz Kubisa
- Department of Thoracic Surgery, Pomeranian Medical University of Szczecin, Szczecin, Poland
| | - Marco Schiavon
- Department of Thoracic Surgery, University of Padua, Padua, Italy
| | | | - Jonas Ehrsam
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Francesco Damarco
- Department of Thoracic Surgery, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Nosotti
- Department of Thoracic Surgery, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ilhan Inci
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Federico Venuta
- Department of Thoracic Surgery, Policlinico Umberto I, University of Rome La Sapienza, Rome, Italy
| | - Dirk Van Raemdonck
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium,Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, KU Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Corresponding author. Thoraxheelkunde, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium. Tel: +32-16346820; e-mail: (L.J. Ceulemans)
| |
Collapse
|
6
|
Eenjes E, Tibboel D, Wijnen RM, Rottier RJ. Lung epithelium development and airway regeneration. Front Cell Dev Biol 2022; 10:1022457. [PMID: 36299482 PMCID: PMC9589436 DOI: 10.3389/fcell.2022.1022457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
The lung is composed of a highly branched airway structure, which humidifies and warms the inhaled air before entering the alveolar compartment. In the alveoli, a thin layer of epithelium is in close proximity with the capillary endothelium, allowing for an efficient exchange of oxygen and carbon dioxide. During development proliferation and differentiation of progenitor cells generates the lung architecture, and in the adult lung a proper function of progenitor cells is needed to regenerate after injury. Malfunctioning of progenitors during development results in various congenital lung disorders, such as Congenital Diaphragmatic Hernia (CDH) and Congenital Pulmonary Adenomatoid Malformation (CPAM). In addition, many premature neonates experience continuous insults on the lung caused by artificial ventilation and supplemental oxygen, which requires a highly controlled mechanism of airway repair. Malfunctioning of airway progenitors during regeneration can result in reduction of respiratory function or (chronic) airway diseases. Pathways that are active during development are frequently re-activated upon damage. Understanding the basic mechanisms of lung development and the behavior of progenitor cell in the ontogeny and regeneration of the lung may help to better understand the underlying cause of lung diseases, especially those occurring in prenatal development or in the immediate postnatal period of life. This review provides an overview of lung development and the cell types involved in repair of lung damage with a focus on the airway.
Collapse
Affiliation(s)
- Evelien Eenjes
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Rene M.H. Wijnen
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Robbert J. Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Robbert J. Rottier,
| |
Collapse
|
7
|
Radiologic evaluation of compensatory lung growth using computed tomography by comparison with histological data from a large animal model. Sci Rep 2022; 12:2520. [PMID: 35169160 PMCID: PMC8847356 DOI: 10.1038/s41598-022-06398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 01/11/2022] [Indexed: 11/08/2022] Open
Abstract
Non-invasive analysis using computed tomography (CT) data may be a promising candidate to evaluate neo-alveolarization in adult lungs following lung resection. This study evaluates and compares the validity of CT analysis with histologic morphometry for compensatory lung growth in a large animal model. We calculated the radiologic tissue volume and the radiologic lung weight from CT data taken at 1, 3, and 6 months post-surgery on 15 male beagle dogs that had a right thoractotomy, bilobectomy, or pneumonectomy (n = 5 in each group). Results were analyzed using one-way ANOVA and were subsequently compared to histologic findings of tissue samples at 6 months post-surgery using Pearson's correlation. An increase in radiologic tissue volume and radiologic lung weight was identified, which was positively correlated with histologic lung parenchymal amounts (correlation coefficient = 0.955 and 0.934, respectively, p < 0.001). Histology of lung specimens at 6 months post-surgery revealed an increase in the tissue amount in both Bilobectomy and Peumonectomy groups, which was consistent with compensatory lung growth. Radiologic tissue volume and radiologic lung weight reflected compensatory lung growth following lung resection. Radiologic assessment using CT data can be a promising clinical modality to evaluate postoperative lung growth.
Collapse
|
8
|
Napolioni V, Bianconi F, Potenza R, Carpi FM, Ludovini V, Picciolini M, Tofanetti FR, Bufalari A, Pallotti S, Poggi C, Anile M, Daddi N, Venuta F, Puma F, Vannucci J. Genome-wide expression of the residual lung reacting to experimental Pneumonectomy. BMC Genomics 2021; 22:881. [PMID: 34872491 PMCID: PMC8650537 DOI: 10.1186/s12864-021-08171-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Background Acute or chronic irreversible respiratory failure may occur in patients undergoing pneumonectomy. Aim of this study was to determine transcriptome expression changes after experimental pneumonectomy in swine model. Experimental left pneumonectomy was performed in five pigs under general anaesthesia. Both the resected and the remaining lung, after 60 post-operative completely uneventful days, underwent genome-wide bulk RNA-Sequencing (RNA-Seq). Results Histological analysis showed dilation of air spaces and rupture of interalveolar septa. In addition, mild inflammation, no fibrosis, radial stretch of the bronchus, strong enlargement of airspaces and thinning of the blood supply were observed. Bioinformatic analyses of bulk RNA-Seq data identified 553 Differentially Expressed Genes (DEGs) at adjusted P-value below 0.001, between pre- and post-pneumonectomy. The top 10 up-regulated DEGs were Edn1, Areg, Havcr2, Gadd45g, Depp1, Cldn4, Atf3, Myc, Gadd45b, Socs3; the top 10 down-regulated DEGs were Obscn, Cdkn2b, ENSSSCG00000015738, Prrt2, Amer1, Flrt3, Efnb2, Tox3, Znf793, Znf365. Leveraging digital cytometry tools, no difference in cellular abundance was found between the two experimental groups, while the analysis of cell type-specific gene expression patterns highlighted a striking predominance of macrophage-specific genes among the DEGs. DAVID-based gene ontology analysis showed a significant enrichment of “Extrinsic apoptotic signaling pathway” (FDR q = 7.60 × 10− 3) and “Response to insulin” (FDR q = 7.60 × 10− 3) genes, along with an enrichment of genes involved as “Negative regulators of DDX58/IFIH1 signaling” (FDR q = 7.50 × 10− 4) found by querying the REACTOME pathway database. Gene network analyses indicated a general dysregulation of gene inter-connections. Conclusion This translational genomics study highlighted the existence both of individual genes, mostly dysregulated in certain cellular populations (e.g., macrophages), and gene-networks involved in pulmonary reaction after left pneumonectomy. Their involvement in lung homeostasis is largely supported by previous studies, carried out both in humans and in other animal models (under homeostatic or disease-related conditions), that adopted candidate-gene approaches. Overall, the present findings represent a preliminary assessment for future, more focused, studies on compensatory lung adaptation, pulmonary regeneration and functional reload. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08171-3.
Collapse
Affiliation(s)
- Valerio Napolioni
- Genomic and Molecular Epidemiology (GAME) Lab., School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Rossella Potenza
- Department of Thoracic Surgery, University of Perugia Medical School, Perugia, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Vienna Ludovini
- Department of Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | | | - Francesca R Tofanetti
- Department of Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Antonello Bufalari
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Stefano Pallotti
- Genetics and Animal Breeding Group, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Camilla Poggi
- Department of Thoracic Surgery, University of Rome Sapienza, Policlinico Umberto I, Viale del Policlinico 155, 00161, Rome, Italy
| | - Marco Anile
- Department of Thoracic Surgery, University of Rome Sapienza, Policlinico Umberto I, Viale del Policlinico 155, 00161, Rome, Italy
| | - Niccolò Daddi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Federico Venuta
- Department of Thoracic Surgery, University of Rome Sapienza, Policlinico Umberto I, Viale del Policlinico 155, 00161, Rome, Italy
| | - Francesco Puma
- Department of Thoracic Surgery, University of Perugia Medical School, Perugia, Italy
| | - Jacopo Vannucci
- Department of Thoracic Surgery, University of Rome Sapienza, Policlinico Umberto I, Viale del Policlinico 155, 00161, Rome, Italy.
| |
Collapse
|
9
|
DZHURAEV GEORGY, RODRÍGUEZ‐CASTILLO JOSÉALBERTO, RUIZ‐CAMP JORDI, SALWIG ISABELLE, SZIBOR MARTIN, VADÁSZ ISTVÁN, HEROLD SUSANNE, BRAUN THOMAS, AHLBRECHT KATRIN, ATZBERGER ANN, MÜHLFELD CHRISTIAN, SEEGER WERNER, MORTY RORYE. Estimation of absolute number of alveolar epithelial type 2 cells in mouse lungs: a comparison between stereology and flow cytometry. J Microsc 2019; 275:36-50. [DOI: 10.1111/jmi.12800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 12/26/2022]
Affiliation(s)
- GEORGY DZHURAEV
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung ResearchBad Nauheim and German Center for Lung Research (DZL) Giessen Germany
- Department of Internal Medicine (Pulmonology)University of Giessen and Marburg Lung Center (UGMLC) and German Center for Lung Research (DZL) Giessen Germany
| | - JOSÉ ALBERTO RODRÍGUEZ‐CASTILLO
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung ResearchBad Nauheim and German Center for Lung Research (DZL) Giessen Germany
- Department of Internal Medicine (Pulmonology)University of Giessen and Marburg Lung Center (UGMLC) and German Center for Lung Research (DZL) Giessen Germany
| | - JORDI RUIZ‐CAMP
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung ResearchBad Nauheim and German Center for Lung Research (DZL) Giessen Germany
- Department of Internal Medicine (Pulmonology)University of Giessen and Marburg Lung Center (UGMLC) and German Center for Lung Research (DZL) Giessen Germany
| | - ISABELLE SALWIG
- Department of Cardiac Development and RemodellingMax Planck Institute for Heart and Lung Research and German Center for Lung Research (DZL) Bad Nauheim Germany
| | - MARTIN SZIBOR
- Department of Cardiac Development and RemodellingMax Planck Institute for Heart and Lung Research and German Center for Lung Research (DZL) Bad Nauheim Germany
| | - ISTVÁN VADÁSZ
- Department of Internal Medicine (Pulmonology)University of Giessen and Marburg Lung Center (UGMLC) and German Center for Lung Research (DZL) Giessen Germany
| | - SUSANNE HEROLD
- Department of Internal Medicine (Pulmonology)University of Giessen and Marburg Lung Center (UGMLC) and German Center for Lung Research (DZL) Giessen Germany
| | - THOMAS BRAUN
- Department of Cardiac Development and RemodellingMax Planck Institute for Heart and Lung Research and German Center for Lung Research (DZL) Bad Nauheim Germany
| | - KATRIN AHLBRECHT
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung ResearchBad Nauheim and German Center for Lung Research (DZL) Giessen Germany
- Department of Internal Medicine (Pulmonology)University of Giessen and Marburg Lung Center (UGMLC) and German Center for Lung Research (DZL) Giessen Germany
| | - ANN ATZBERGER
- Flow Cytometry UnitMax Planck Institute for Heart and Lung Research and German Center for Lung Research (DZL) Bad Nauheim Germany
| | - CHRISTIAN MÜHLFELD
- Hannover Medical SchoolInstitute of Functional and Applied Anatomy Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) and German Center for Lung Research (DZL) Hannover Germany
| | - WERNER SEEGER
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung ResearchBad Nauheim and German Center for Lung Research (DZL) Giessen Germany
- Department of Internal Medicine (Pulmonology)University of Giessen and Marburg Lung Center (UGMLC) and German Center for Lung Research (DZL) Giessen Germany
| | - RORY E. MORTY
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung ResearchBad Nauheim and German Center for Lung Research (DZL) Giessen Germany
- Department of Internal Medicine (Pulmonology)University of Giessen and Marburg Lung Center (UGMLC) and German Center for Lung Research (DZL) Giessen Germany
| |
Collapse
|
10
|
Vidal LWDM, Cabral PGA, dos Santos MB, Antunes F, da Mota MR, da Silva TOB, Monteiro GAS, Scheffer JP, Ribeiro MDS, Oliveira ALDA. Videothermometry to evaluate metabolic activity in real time during pneumectomy in rats. Acta Cir Bras 2019; 34:e201900302. [PMID: 30916139 PMCID: PMC6585892 DOI: 10.1590/s0102-865020190030000002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/07/2019] [Accepted: 02/02/2019] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To evaluate, in rats, the open field videothermometry in real time while performing left pneumonectomy for early diagnosis of cardiopulmonary changes. METHODS Twelve non-specific pathogen-free Wistar rats were randomly allocated into two groups; pneumectomy group (GP) and sham surgery group (GS). Mean arterial pressure, videothermometry in real time, of the right lung, and histopathological analysis of the remaining lung were evaluated in all animals. RESULTS Videothermometry in real time allowed identification of temperature variance of right lung after pneumectomy, indicating a significant decrease in temperature during evaluation. There was a statistical difference between M0 and M1, M1 and M2 and M0 and M2 (p<0.004) in GS, and significant difference between M0 and M1, M1 and M2, and M2 and M0 with p<0.0001 in GP. CONCLUSIONS Left pneumonectomy in rats shows initial histopathological changes after 60 minutes of its completion, indicating a possible compensation beginning. The open-field videothermometry in real time proved to be efficient identifying the temperature changes of the remaining lung.
Collapse
Affiliation(s)
- Leonardo Waldstein de Moura Vidal
- Fellow Master degree, Postgraduate Program in Animal Science, Animal
Experimentation Unit (UEA), Universidade Estadual do Norte Fluminense (UENF), Rio de
Janeiro-RJ, Brazil. Scientific, intellectual, conception and design of the study;
acquisition, analysis and interpretation of data; technical procedures; manuscript
preparation and writing, critical revision
| | - Paula Gebe Abreu Cabral
- MSc, UEA, UENF, Rio de Janeiro-RJ, Brazil. Scientific and
intellectual content of the study; acquisition, analysis and interpretation of data;
technical procedures; manuscript preparation
| | - Marcelo Borges dos Santos
- MSc, UEA, UENF, Rio de Janeiro-RJ, Brazil. Scientific and
intellectual content of the study, manuscript preparation and writing
| | - Fernanda Antunes
- PhD, Associate Professor, UEA, UENF, Rio de Janeiro-RJ, Brazil.
Scientific and intellectual content of the study, statistics analysis
| | - Matheus Roberto da Mota
- MSc, UEA, UENF, Rio de Janeiro-RJ, Brazil. Scientific and
intellectual content of the study, technical procedures
| | | | | | - Jussara Peters Scheffer
- MSc, UEA, UENF, Rio de Janeiro-RJ, Brazil. Scientific and
intellectual content of the study, manuscript preparation
| | - Mariana da Silva Ribeiro
- PhD, UEA, UENF, Rio de Janeiro-RJ, Brazil. Scientific and
intellectual content of the study, technical procedures
| | - André Lacerda de Abreu Oliveira
- PhD, Associate Professor, UEA, UENF, Rio de Janeiro-RJ, Brazil.
Scientific and intellectual content of the study, critical revision, final
approval
| |
Collapse
|
11
|
Vascular Endothelial Growth Factor Enhances Compensatory Lung Growth in Piglets. Surgery 2018; 164:1279-1286. [PMID: 30193736 DOI: 10.1016/j.surg.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Vascular endothelial growth factor has been found to accelerate compensatory lung growth after left pneumonectomy in mice. The aim of this study was to determine the natural history and the effects of vascular endothelial growth factor on compensatory lung growth in a large animal model. METHODS To determine the natural history of compensatory lung growth, female Yorkshire piglets underwent a left pneumonectomy on days of life 10-11. Tissue harvest and volume measurement of the right lung were performed at baseline (n = 5) and on postoperative days 7 (n = 5), 14 (n = 4), and 21 (n = 5). For pharmacokinetic studies, vascular endothelial growth factor was infused via a central venous catheter, with plasma vascular endothelial growth factor levels measured at various time points. To test the effect of vascular endothelial growth factor on compensatory lung growth, 26 female Yorkshire piglets underwent a left pneumonectomy followed by daily infusion of vascular endothelial growth factor at 200 µg/kg or isovolumetric 0.9% NaCl (saline control). Lungs were harvested on postoperative day 7 for volume measurement and morphometric analyses. RESULTS Compared with baseline, right lung volume after left pneumonectomy increased by factors of 2.1 ± 0.6, 3.3 ± 0.6, and 3.6 ± 0.4 on postoperative days 7, 14, and 21, respectively. The half-life of VEGF ranged from 89 to 144 minutes. Lesser doses of vascular endothelial growth factor resulted in better tolerance, volume of distribution, and clearance. Compared with the control group, piglets treated with vascular endothelial growth factor had greater lung volume (P < 0.0001), alveolar volume (P = 0.001), septal surface area (P = 0.007) and total alveolar count (P = 0.01). CONCLUSION Vascular endothelial growth factor enhanced alveolar growth in neonatal piglets after unilateral pneumonectomy.
Collapse
|
12
|
Shikuma K, Chen-Yoshikawa TF, Oguma T, Kubo T, Ohata K, Hamaji M, Kawaguchi A, Motoyama H, Hijiya K, Aoyama A, Matsumoto H, Muro S, Date H. Radiologic and Functional Analysis of Compensatory Lung Growth After Living-Donor Lobectomy. Ann Thorac Surg 2017; 105:909-914. [PMID: 29273322 DOI: 10.1016/j.athoracsur.2017.09.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/29/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Whether compensatory lung growth occurs in adult humans is controversial. The aim of this study was to confirm compensatory lung growth by analyzing ipsilateral residual lung after lower lobectomy in living lung transplant donors with quantitative and qualitative computed tomography assessments. METHODS Chest computed tomography and pulmonary function tests were performed in 31 eligible donors before and 1 year after donor lobectomy. Ipsilateral residual lung volume was measured with three-dimensional computed tomography volumetry. The computed tomography-estimated volumes of low, middle, and high attenuations in the lung were calculated. Assessment of the D value, a coefficient of the cumulative size distribution of low-density area clusters, was performed to evaluate the structural quality of the residual lung. RESULTS Postoperative pulmonary function test values were significantly larger than preoperative estimated values. Although postoperative total volume, low attenuation volume, middle attenuation volume, and high attenuation volume of the ipsilateral residual lung were significantly larger than the preoperative volumes, with 50.2%, 50.0%, 41.5%, and 43.1% increase in the median values, respectively (all p < 0.0001), the differences in D values before and after donor lobectomy were not significant (p = 0.848). The total volume of ipsilateral residual lung was increased by more than 600 mL (50%). CONCLUSIONS The volume of ipsilateral residual lung increased, but its structural quality did not change before and after donor lobectomy. The existence of compensatory lung growth in adult humans was suggested by quantitative and qualitative computed tomography assessments.
Collapse
Affiliation(s)
- Kei Shikuma
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Kubo
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keiji Ohata
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masatsugu Hamaji
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Kawaguchi
- Section of Clinical Cooperation System, Center for Comprehensive Community Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Hideki Motoyama
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kyoko Hijiya
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Aoyama
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hisako Matsumoto
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
13
|
Ahmed E, Sansac C, Assou S, Gras D, Petit A, Vachier I, Chanez P, De Vos J, Bourdin A. Lung development, regeneration and plasticity: From disease physiopathology to drug design using induced pluripotent stem cells. Pharmacol Ther 2017; 183:58-77. [PMID: 28987320 DOI: 10.1016/j.pharmthera.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lungs have a complex structure composed of different cell types that form approximately 17 million airway branches of gas-delivering bronchioles connected to 500 million gas-exchanging alveoli. Airways and alveoli are lined by epithelial cells that display a low rate of turnover at steady-state, but can regenerate the epithelium in response to injuries. Here, we review the key points of lung development, homeostasis and epithelial cell plasticity in response to injury and disease, because this knowledge is required to develop new lung disease treatments. Of note, canonical signaling pathways that are essential for proper lung development during embryogenesis are also involved in the pathophysiology of most chronic airway diseases. Moreover, the perfect control of these interconnected pathways is needed for the successful differentiation of induced pluripotent stem cells (iPSC) into lung cells. Indeed, differentiation of iPSC into airway epithelium and alveoli is based on the use of biomimetics of normal embryonic and fetal lung development. In vitro iPSC-based models of lung diseases can help us to better understand the impaired lung repair capacity and to identify new therapeutic targets and new approaches, such as lung cell therapy.
Collapse
Affiliation(s)
- Engi Ahmed
- Department of Respiratory Diseases, Hôpital Arnaud de Villeneuve, Montpellier F34000, France; CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, Montpellier F34000, France; INSERM, U1183, Montpellier F34000, France; Université de MONTPELLIER, UFR de Médecine, Montpellier F34000, France
| | - Caroline Sansac
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, Montpellier F34000, France
| | - Said Assou
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, Montpellier F34000, France; INSERM, U1183, Montpellier F34000, France; Université de MONTPELLIER, UFR de Médecine, Montpellier F34000, France
| | - Delphine Gras
- Dept of Respiratory Diseases APHM, INSERM CNRS U 1067, UMR7333, Aix-Marseille University, Marseille, France
| | - Aurélie Petit
- INSERM, U1046, PhyMedExp, Montpellier F34000, France
| | | | - Pascal Chanez
- Dept of Respiratory Diseases APHM, INSERM CNRS U 1067, UMR7333, Aix-Marseille University, Marseille, France
| | - John De Vos
- CHU Montpellier, Institute for Regenerative Medicine and Biotherapy, Hôpital Saint-Eloi, Montpellier F34000, France; INSERM, U1183, Montpellier F34000, France; Université de MONTPELLIER, UFR de Médecine, Montpellier F34000, France; CHU Montpellier, Unit for Cellular Therapy, Hospital Saint-Eloi, Montpellier F 34000, France.
| | - Arnaud Bourdin
- Department of Respiratory Diseases, Hôpital Arnaud de Villeneuve, Montpellier F34000, France; Université de MONTPELLIER, UFR de Médecine, Montpellier F34000, France; INSERM, U1046, PhyMedExp, Montpellier F34000, France.
| |
Collapse
|
14
|
Shah JA, Tanabe T, Yamada K. Role of Intrinsic Factors in the Growth of Transplanted Organs Following Transplantation. JOURNAL OF IMMUNOBIOLOGY 2017; 2. [PMID: 28725880 DOI: 10.4172/2476-1966.1000122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shortages in the availability of transplantable organs have forced the transplant community to seek alternative methods to increase the supply of available organs. In our recent study following α-1,3-galactocyltransferase knockout (GalT-KO) pig-to-baboon kidney xenotransplantation, we found that certain recipients developed increased serum creatinine, possibly due to the rapid growth of orthotopic pig grafts in smaller baboon recipients. To test our hypothesis, we assessed whether the growth of outbred (Yorkshire) organ transplants (kidney and lung) in miniature swine was regulated by intrinsic (graft) factors. Yorkshire kidneys reached 3.7× their initial volume over 3 months vs. 1.2× for miniature swine kidneys over a similar time period. A similar pattern was seen in porcine lung allografts as well. Following xenotransplantation, a review of our results suggests that there is a threshold for kidney graft volume of 25 cm3/kg of recipient body weight at which cortical ischemia is induced in transplanted GalT-KO kidneys in baboons. These results suggest that intrinsic factors are in part responsible for the growth of donor organs and this should be taken into consideration for growth-curve-mismatched transplants.
Collapse
Affiliation(s)
- Jigesh A Shah
- Department of Surgery, Transplantation Biology Research Center Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| | - Tatsu Tanabe
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, USA
| | - Kazuhiko Yamada
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, USA
| |
Collapse
|
15
|
Tanabe T, Watanabe H, Shah JA, Sahara H, Shimizu A, Nomura S, Asfour A, Danton M, Boyd L, Meyers AD, Ekanayake-Alper DK, Sachs DH, Yamada K. Role of Intrinsic (Graft) Versus Extrinsic (Host) Factors in the Growth of Transplanted Organs Following Allogeneic and Xenogeneic Transplantation. Am J Transplant 2017; 17:1778-1790. [PMID: 28117931 PMCID: PMC5489354 DOI: 10.1111/ajt.14210] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/08/2016] [Accepted: 01/09/2017] [Indexed: 01/25/2023]
Abstract
In our studies of life-supporting α-1,3-galactocyltransferase knockout (GalT-KO) pig-to-baboon kidneys, we found that some recipients developed increased serum creatinine with growth of the grafts, without histological or immunological evidence of rejection. We hypothesized that the rapid growth of orthotopic pig grafts in smaller baboon recipients may have led to deterioration of organ function. To test this hypothesis for both kidneys and lungs, we assessed whether the growth of outbred (Yorkshire) organ transplants in miniature swine was regulated by intrinsic (graft) or extrinsic (host environment) factors. Yorkshire kidneys exhibited persistent growth in miniature swine, reaching 3.7 times their initial volume over 3 mo versus 1.2 times for miniature swine kidneys over the same time period. Similar rapid early growth of lung allografts was observed and, in this case, led to organ dysfunction. For xenograft kidneys, a review of our results suggests that there is a threshold for kidney graft volume of 25 cm3 /kg of recipient body weight at which cortical ischemia is induced in transplanted GalT-KO kidneys in baboons. These results suggest that intrinsic factors are responsible, at least in part, for growth of donor organs and that this property should be taken into consideration for growth-curve-mismatched transplants, especially for life-supporting organs transplanted into a limited recipient space.
Collapse
Affiliation(s)
- Tatsu Tanabe
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY,Transplantation Biology Research Center Laboratory, Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Hironosuke Watanabe
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Jigesh A Shah
- Transplantation Biology Research Center Laboratory, Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Hisashi Sahara
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY,Division of Organ Replacement and Xenotransplantation Surgery, Center for Advanced Biomedical Science and Swine Research, Kagoshima University, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shunichiro Nomura
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Arsenoi Asfour
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Makenzie Danton
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Lennan Boyd
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Adrienne Dardenne Meyers
- Skirball Center for Cardiovascular Research, Cardiovascular Research Foundation, Orangeburg, New York
| | | | - David H Sachs
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY,Transplantation Biology Research Center Laboratory, Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Kazuhiko Yamada
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY,Transplantation Biology Research Center Laboratory, Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA,Corresponding author: Kazuhiko Yamada, M.D, PhD., Columbia Center for Translational Immunology, 630 W 168th St, BB1705, New York, NY, USA, Tel: +1-212-304-5695,
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Advances in medical therapy have increased survival of extremely premature infants and changed the pathology of bronchopulmonary dysplasia (BPD) from one of acute lung injury to a disease of disrupted lung development. With this evolution, new questions emerge regarding the molecular mechanisms that control postnatal lung development, the effect of early disruptions of postnatal lung development on long-term lung function, and the existence of endogenous mechanisms that permit lung regeneration after injury. RECENT FINDINGS Recent data demonstrate that a significant component of alveolarization, the final stage of lung development, occurs postnatally. Further, clinical and experimental studies demonstrate that premature birth disrupts alveolarization, decreasing the gas exchange surface area of the lung and causing BPD. BPD is associated with significant short-term morbidity, and new longitudinal, clinical data demonstrate that survivors of BPD have long-standing deficits in lung function and may be at risk for the development of additional lung disease as adults. Unfortunately, current care is mainly supportive with few effective therapies that prevent or treat established BPD. These studies underscore the need to further elucidate the mechanisms that direct postnatal lung growth and develop innovative strategies to stimulate lung regeneration. SUMMARY Despite significant improvements in the care and survival of extremely premature infants, BPD remains a major clinical problem. Although efforts should remain focused on the prevention of preterm labor and BPD, novel research aimed at promoting postnatal alveolarization offers a unique opportunity to develop effective strategies to treat established BPD.
Collapse
|