1
|
Shepherd J. Biomimetic Approaches in the Development of Optimised 3D Culture Environments for Drug Discovery in Cardiac Disease. Biomimetics (Basel) 2025; 10:204. [PMID: 40277603 PMCID: PMC12024959 DOI: 10.3390/biomimetics10040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/09/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Cardiovascular disease remains the leading cause of death worldwide, yet despite massive investment in drug discovery, the progress of cardiovascular drugs from lab to clinic remains slow. It is a complex, costly pathway from drug discovery to the clinic and failure becomes more expensive as a drug progresses along this pathway. The focus has begun to shift to optimisation of in vitro culture methodologies, not only because these must be undertaken are earlier on in the drug discovery pathway, but also because the principles of the 3Rs have become embedded in national and international legislation and regulation. Numerous studies have shown myocyte cell behaviour to be much more physiologically relevant in 3D culture compared to 2D culture, highlighting the advantages of using 3D-based models, whether microfluidic or otherwise, for preclinical drug screening. This review aims to provide an overview of the challenges in cardiovascular drug discovery, the limitations of traditional routes, and the successes in the field of preclinical models for cardiovascular drug discovery. It focuses on the particular role biomimicry can play, but also the challenges around implementation within commercial drug discovery.
Collapse
Affiliation(s)
- Jenny Shepherd
- School of Engineering, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
2
|
Hong Y, Huang X, Li F, Huang S, Weng Q, Fraidenraich D, Voiculescu I. Data-Driven Maturity Level Evaluation for Cardiomyocytes Derived from Human Pluripotent Stem Cells (Invited Paper). ELECTRONICS 2024; 13:4985. [PMID: 39886380 PMCID: PMC11780988 DOI: 10.3390/electronics13244985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Cardiovascular disease is a leading cause of death worldwide. The differentiation of human pluripotent stem cells (hPSCs) into functional cardiomyocytes offers significant potential for disease modeling and cell-based cardiac therapies. However, hPSC-derived cardiomyocytes (hPSC-CMs) remain largely immature, limiting their experimental and clinical applications. A critical challenge in current in vitro culture systems is the absence of standardized metrics to quantify maturity. This study presents a data-driven pipeline to quantify hPSC-CM maturity using gene expression data across various stages of cardiac development. We determined that culture time serves as a feasible proxy for maturity. To improve prediction accuracy, machine learning algorithms were employed to identify heart-related genes whose expression strongly correlates with culture time. Our results reduced the average discrepancy between predicted and observed culture time to 4.461 days and CASQ2 (Calsequestrin 2), a gene involved in calcium ion storage and transport, was identified as the most critical cardiac gene associated with culture duration. This novel framework for maturity assessment moves beyond traditional qualitative methods, providing deeper insights into hPSC-CM maturation dynamics. It establishes a foundation for developing advanced lab-on-chip devices capable of real-time maturity monitoring and adaptive stimulus selection, paving the way for improved maturation strategies and broader experimental/clinical applications.
Collapse
Affiliation(s)
- Yan Hong
- Department of Computer Science, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Xueqing Huang
- Department of Computer Science, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Fang Li
- Department of Mechanical Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Siqi Huang
- School of AI and Advanced Computing, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Qibiao Weng
- Department of Computer Science, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Diego Fraidenraich
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Ioana Voiculescu
- Department of Mechanical Engineering, City College of New York, New York, NY 10031, USA
| |
Collapse
|
3
|
Hutschalik T, Özgül O, Casini M, Szabó B, Peyronnet R, Bártulos Ó, Argenziano M, Schotten U, Matsa E. Immune response caused by M1 macrophages elicits atrial fibrillation-like phenotypes in coculture model with isogenic hiPSC-derived cardiomyocytes. Stem Cell Res Ther 2024; 15:280. [PMID: 39227896 PMCID: PMC11373469 DOI: 10.1186/s13287-024-03814-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/24/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Atrial fibrillation has an estimated prevalence of 1.5-2%, making it the most common cardiac arrhythmia. The processes that cause and sustain the disease are still not completely understood. An association between atrial fibrillation and systemic, as well as local, inflammatory processes has been reported. However, the exact mechanisms underlying this association have not been established. While it is understood that inflammatory macrophages can influence cardiac electrophysiology, a direct, causative relationship to atrial fibrillation has not been described. This study investigated the pro-arrhythmic effects of activated M1 macrophages on human induced pluripotent stem cell (hiPSC)-derived atrial cardiomyocytes, to propose a mechanistic link between inflammation and atrial fibrillation. METHODS Two hiPSC lines from healthy individuals were differentiated to atrial cardiomyocytes and M1 macrophages and integrated in an isogenic, pacing-free, atrial fibrillation-like coculture model. Electrophysiology characteristics of cocultures were analysed for beat rate irregularity, electrogram amplitude and conduction velocity using multi electrode arrays. Cocultures were additionally treated using glucocorticoids to suppress M1 inflammation. Bulk RNA sequencing was performed on coculture-isolated atrial cardiomyocytes and compared to meta-analyses of atrial fibrillation patient transcriptomes. RESULTS Multi electrode array recordings revealed M1 to cause irregular beating and reduced electrogram amplitude. Conduction analysis further showed significantly lowered conduction homogeneity in M1 cocultures. Transcriptome sequencing revealed reduced expression of key cardiac genes such as SCN5A, KCNA5, ATP1A1, and GJA5 in the atrial cardiomyocytes. Meta-analysis of atrial fibrillation patient transcriptomes showed high correlation to the in vitro model. Treatment of the coculture with glucocorticoids showed reversal of phenotypes, including reduced beat irregularity, improved conduction, and reversed RNA expression profiles. CONCLUSIONS This study establishes a causal relationship between M1 activation and the development of subsequent atrial arrhythmia, documented as irregularity in spontaneous electrical activation in atrial cardiomyocytes cocultured with activated macrophages. Further, beat rate irregularity could be alleviated using glucocorticoids. Overall, these results point at macrophage-mediated inflammation as a potential AF induction mechanism and offer new targets for therapeutic development. The findings strongly support the relevance of the proposed hiPSC-derived coculture model and present it as a first of its kind disease model.
Collapse
Affiliation(s)
- Thomas Hutschalik
- Ncardia Services B.V, J.H. Oortweg 21, 2333 CH, Leiden, The Netherlands
- Dept. of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Ozan Özgül
- Dept. of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Marilù Casini
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen and Faculty of Medicine, Freiburg im Breisgau, 79110, Germany
| | - Brigitta Szabó
- Ncardia Services B.V, J.H. Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen and Faculty of Medicine, Freiburg im Breisgau, 79110, Germany
| | - Óscar Bártulos
- Ncardia Services B.V, J.H. Oortweg 21, 2333 CH, Leiden, The Netherlands
| | | | - Ulrich Schotten
- Dept. of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
- Dept. of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Elena Matsa
- Ncardia Services B.V, J.H. Oortweg 21, 2333 CH, Leiden, The Netherlands.
- , Rue Edouard Belin 2, 1435, CellisticMont-Saint-Guibert, Belgium.
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
- National Institute for Bioprocessing Research and Training, Dublin, Ireland.
| |
Collapse
|
4
|
Lee SG, Rhee J, Seok J, Kim J, Kim MW, Song GE, Park S, Jeong KS, Lee S, Lee YH, Jeong Y, Kim CY, Chung HM. Promotion of maturation of human pluripotent stem cell-derived cardiomyocytes via treatment with the peroxisome proliferator-activated receptor alpha agonist Fenofibrate. Stem Cells Transl Med 2024; 13:750-762. [PMID: 38946019 PMCID: PMC11328931 DOI: 10.1093/stcltm/szae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/04/2024] [Indexed: 07/02/2024] Open
Abstract
As research on in vitro cardiotoxicity assessment and cardiac disease modeling becomes more important, the demand for human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is increasing. However, it has been reported that differentiated hPSC-CMs are in a physiologically immature state compared to in vivo adult CMs. Since immaturity of hPSC-CMs can lead to poor drug response and loss of acquired heart disease modeling, various approaches have been attempted to promote maturation of CMs. Here, we confirm that peroxisome proliferator-activated receptor alpha (PPARα), one of the representative mechanisms of CM metabolism and cardioprotective effect also affects maturation of CMs. To upregulate PPARα expression, we treated hPSC-CMs with fenofibrate (Feno), a PPARα agonist used in clinical hyperlipidemia treatment, and demonstrated that the structure, mitochondria-mediated metabolism, and electrophysiology-based functions of hPSC-CMs were all mature. Furthermore, as a result of multi electrode array (MEA)-based cardiotoxicity evaluation between control and Feno groups according to treatment with arrhythmia-inducing drugs, drug response was similar in a dose-dependent manner. However, main parameters such as field potential duration, beat period, and spike amplitude were different between the 2 groups. Overall, these results emphasize that applying matured hPSC-CMs to the field of preclinical cardiotoxicity evaluation, which has become an essential procedure for new drug development, is necessary.
Collapse
Affiliation(s)
- Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Gwangjin-Gu, Seoul 05029, Republic of Korea
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jooeon Rhee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin Seok
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin Kim
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Min Woo Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Gyeong-Eun Song
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Shinhye Park
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyu Sik Jeong
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Suemin Lee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun Hyeong Lee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Youngin Jeong
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Gwangjin-Gu, Seoul 05029, Republic of Korea
- Miraecell Bio Co. Ltd., Seoul 04795, Korea
| |
Collapse
|
5
|
Gu CC, Matter A, Turner A, Aggarwal P, Yang W, Sun X, Hunt SC, Lewis CE, Arnett DK, Anson B, Kattman S, Broeckel U. Transcriptional Variabilities in Human hiPSC-derived Cardiomyocytes: All Genes Are Not Equal and Their Robustness May Foretell Donor's Disease Susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.584138. [PMID: 38659937 PMCID: PMC11042381 DOI: 10.1101/2024.04.18.584138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Human induced pluripotent stem cells (hiPSCs) are frequently used to study disease-associated variations. We characterized transcriptional variability from a hiPSC-derived cardiomyocyte (hiPSC-CM) study of left ventricular hypertrophy (LVH) using donor samples from the HyperGEN study. Multiple hiPSC-CM differentiations over reprogramming events (iPSC generation) across 7 donors were used to assess variabilities from reprogramming, differentiation, and donor LVH status. Variability arising from pathological alterations was assessed using a cardiac stimulant applied to the hiPSC-CMs to trigger hypertrophic responses. We found that for most genes (73.3%~85.5%), technical variability was smaller than biological variability. Further, we identified and characterized lists of "noise" genes showing greater technical variability and "signal" genes showing greater biological variability. Together, they support a "genetic robustness" hypothesis of disease-modeling whereby cellular response to relevant stimuli in hiPSC-derived somatic cells from diseased donors tends to show more transcriptional variability. Our findings suggest that hiPSC-CMs can provide a valid model for cardiac hypertrophy and distinguish between technical and disease-relevant transcriptional changes.
Collapse
|
6
|
Jeong DP, Montes D, Chang HC, Hanjaya-Putra D. Fractal dimension to characterize interactions between blood and lymphatic endothelial cells. Phys Biol 2023; 20:045004. [PMID: 37224822 PMCID: PMC10258918 DOI: 10.1088/1478-3975/acd898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
Spatial patterning of different cell types is crucial for tissue engineering and is characterized by the formation of sharp boundary between segregated groups of cells of different lineages. The cell-cell boundary layers, depending on the relative adhesion forces, can result in kinks in the border, similar to fingering patterns between two viscous partially miscible fluids which can be characterized by its fractal dimension. This suggests that mathematical models used to analyze the fingering patterns can be applied to cell migration data as a metric for intercellular adhesion forces. In this study, we develop a novel computational analysis method to characterize the interactions between blood endothelial cells (BECs) and lymphatic endothelial cells (LECs), which form segregated vasculature by recognizing each other through podoplanin. We observed indiscriminate mixing with LEC-LEC and BEC-BEC pairs and a sharp boundary between LEC-BEC pair, and fingering-like patterns with pseudo-LEC-BEC pairs. We found that the box counting method yields fractal dimension between 1 for sharp boundaries and 1.3 for indiscriminate mixing, and intermediate values for fingering-like boundaries. We further verify that these results are due to differential affinity by performing random walk simulations with differential attraction to nearby cells and generate similar migration pattern, confirming that higher differential attraction between different cell types result in lower fractal dimensions. We estimate the characteristic velocity and interfacial tension for our simulated and experimental data to show that the fractal dimension negatively correlates with capillary number (Ca), further indicating that the mathematical models used to study viscous fingering pattern can be used to characterize cell-cell mixing. Taken together, these results indicate that the fractal analysis of segregation boundaries can be used as a simple metric to estimate relative cell-cell adhesion forces between different cell types.
Collapse
Affiliation(s)
- Donghyun Paul Jeong
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Daniel Montes
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Hsueh-Chia Chang
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Center for Stem Cell and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Donny Hanjaya-Putra
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States of America
- Center for Stem Cell and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, United States of America
| |
Collapse
|
7
|
Strasburger JF, Eckstein G, Butler M, Noffke P, Wacker‐Gussmann A. Fetal Arrhythmia Diagnosis and Pharmacologic Management. J Clin Pharmacol 2022; 62 Suppl 1:S53-S66. [PMID: 36106782 PMCID: PMC9543141 DOI: 10.1002/jcph.2129] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
Abstract
One of the most successful achievements of fetal intervention is the pharmacologic management of fetal arrhythmias. This management usually takes place during the second or third trimester. While most arrhythmias in the fetus are benign, both tachy- and bradyarrhythmias can lead to fetal hydrops or cardiac dysfunction and require treatment under certain conditions. This review will highlight precise diagnosis by fetal echocardiography and magnetocardiography, the 2 primary means of diagnosing fetuses with arrhythmia. Additionally, transient or hidden arrhythmias such as bundle branch block, QT prolongation, and torsades de pointes, which can lead to cardiomyopathy and sudden unexplained death in the fetus, may also need pharmacologic treatment. The review will address the types of drug therapies; current knowledge of drug usage, efficacy, and precautions; and the transition to neonatal treatments when indicated. Finally, we will highlight new assessments, including the role of the nurse in the care of fetal arrhythmias. The prognosis for the human fetus with arrhythmias continues to improve as we expand our ability to provide intensive care unit-like monitoring, to better understand drug treatments, to optimize subsequent pregnancy monitoring, to effectively predict timing for delivery, and to follow up these conditions into the neonatal period and into childhood. Coordinated initiatives that facilitate clinical fetal research are needed to address gaps in knowledge and to facilitate fetal drug and device development.
Collapse
Affiliation(s)
- Janette F. Strasburger
- Division of CardiologyDepartments of Pediatrics and Biomedical EngineeringChildren's Wisconsin, Herma Heart Institute, and Medical College of WisconsinMilwaukeeWisconsinUSA
| | - Gretchen Eckstein
- Division of CardiologyDepartments of Pediatrics and Biomedical EngineeringChildren's Wisconsin, Herma Heart Institute, and Medical College of WisconsinMilwaukeeWisconsinUSA
| | - Mary Butler
- College of NursingUniversity of Wisconsin–OshkoshOshkoshWisconsinUSA
| | - Patrick Noffke
- Division of CardiologyDepartments of Pediatrics and Biomedical EngineeringChildren's Wisconsin, Herma Heart Institute, and Medical College of WisconsinMilwaukeeWisconsinUSA
| | - Annette Wacker‐Gussmann
- German Heart CenterDepartment of Congenital Heart Disease and Pediatric Cardiology MunichMunchenBavariaGermany
| |
Collapse
|
8
|
Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, Sellgren CM, Lauschke VM. Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development-Current State-of-the-Art and Future Perspectives. Pharmacol Rev 2022; 74:141-206. [PMID: 35017176 DOI: 10.1124/pharmrev.120.000238] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time. Here, we review the state of the art of available organotypic culture techniques and critically review emerging models of human tissues with key importance for pharmacokinetics, pharmacodynamics, and toxicity. In addition, developments in bioprinting and microfluidic multiorgan cultures to emulate systemic drug disposition are summarized. We close by highlighting important trends regarding the fabrication of organotypic culture platforms and the choice of platform material to limit drug absorption and polymer leaching while supporting the phenotypic maintenance of cultured cells and allowing for scalable device fabrication. We conclude that organotypic and microphysiological human tissue models constitute promising systems to promote drug discovery and development by facilitating drug target identification and improving the preclinical evaluation of drug toxicity and pharmacokinetics. There is, however, a critical need for further validation, benchmarking, and consolidation efforts ideally conducted in intersectoral multicenter settings to accelerate acceptance of these novel models as reliable tools for translational pharmacology and toxicology. SIGNIFICANCE STATEMENT: Organotypic and microphysiological culture of human cells has emerged as a promising tool for preclinical drug discovery and development that might be able to narrow the translation gap. This review discusses recent technological and methodological advancements and the use of these systems for hit discovery and the evaluation of toxicity, clearance, and absorption of lead compounds.
Collapse
Affiliation(s)
- Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Lena Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Selgin D Cakal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Francesco S Paqualini
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Sravan K Goparaju
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Johan Ulrik Lind
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| |
Collapse
|
9
|
Soepriatna AH, Kim TY, Daley MC, Song E, Choi BR, Coulombe KLK. Human Atrial Cardiac Microtissues for Chamber-Specific Arrhythmic Risk Assessment. Cell Mol Bioeng 2021; 14:441-457. [PMID: 34777603 DOI: 10.1007/s12195-021-00703-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/02/2021] [Indexed: 01/10/2023] Open
Abstract
Introduction Although atrial fibrillation is the most prevalent disorder of electrical conduction, the mechanisms behind atrial arrhythmias remain elusive. To address this challenge, we developed a robust in vitro model of 3D atrial microtissue from human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and evaluated chamber-specific chemical responses experimentally and computationally. Methods We differentiated atrial and ventricular cardiomyocytes (aCMs/vCMs) from GCaMP6f-expressing hiPSCs and assessed spontaneous AP activity using fluorescence imaging. Self-assembling 3D microtissues were formed with lactate purified CMs and 5% human cardiac fibroblasts and electrically stimulated for one week before high resolution action potential (AP) optical mapping. AP responses to the atrial-specific potassium repolarizing current I Kur-blocker 4-Aminopyridine (4-AP) and funny current I f-blocker Ivabradine were characterized within their therapeutic window. Finally, we expanded upon a published hiPSC-CM computational model by incorporating the atrial-specific I Kur current, modifying ion channel conductances to match the AP waveforms of our microtissues, and employing the updated model to reinforce our experimental findings. Results High purity CMs (> 75% cTnT+) demonstrated subtype specification by MLC2v expression. Spontaneous beating rates significantly decreased following 3D microtissue formation, with atrial microtissues characterized by their faster spontaneous beating rate, slower AP rise time, and shorter AP duration (APD) compared to ventricular microtissues. We measured atrial-specific responses, including dose-dependent APD prolongation with 4-AP treatment and dose-dependent reduction in spontaneous activity post-Ivabradine treatment. Conclusion The presented in vitro platform for screening atrial-specific responses is both robust and sensitive, with high throughput, enabling studies focused at elucidating the mechanisms underlying atrial arrhythmias. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00703-x.
Collapse
Affiliation(s)
- Arvin H Soepriatna
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI USA
| | - Tae Yun Kim
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI USA
| | - Mark C Daley
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI USA
| | - Elena Song
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI USA
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI USA
| |
Collapse
|
10
|
A Novel High-Content Screening-Based Method for Anti- Trypanosoma cruzi Drug Discovery Using Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells Int 2021; 2021:2642807. [PMID: 34434238 PMCID: PMC8380504 DOI: 10.1155/2021/2642807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/05/2021] [Accepted: 08/01/2021] [Indexed: 11/18/2022] Open
Abstract
Chagas disease is caused by Trypanosoma cruzi infection and remains a relevant cause of chronic heart failure in Latin America. The pharmacological arsenal for Chagas disease is limited, and the available anti-T. cruzi drugs are not effective when administered during the chronic phase. Cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) have the potential to accelerate the process of drug discovery for Chagas disease, through predictive preclinical assays in target human cells. Here, we aimed to establish a novel high-content screening- (HCS-) based method using hiPSC-CMs to simultaneously evaluate anti-T. cruzi activity and cardiotoxicity of chemical compounds. To provide proof-of-concept data, the reference drug benznidazole and three compounds with known anti-T. cruzi activity (a betulinic acid derivative named BA5 and two thiazolidinone compounds named GT5A and GT5B) were evaluated in the assay. hiPSC-CMs were infected with T. cruzi and incubated for 48 h with serial dilutions of the compounds for determination of EC50 and CC50 values. Automated multiparametric analyses were performed using an automated high-content imaging system. Sublethal toxicity measurements were evaluated through morphological measurements related to the integrity of the cytoskeleton by phalloidin staining, nuclear score by Hoechst 33342 staining, mitochondria score following MitoTracker staining, and quantification of NT-pro-BNP, a peptide released upon mechanical myocardial stress. The compounds showed EC50 values for anti-T. cruzi activity similar to those previously described for other cell types, and GT5B showed a pronounced trypanocidal activity in hiPSC-CMs. Sublethal changes in cytoskeletal and nucleus scores correlated with NT-pro-BNP levels in the culture supernatant. Mitochondrial score changes were associated with increased cytotoxicity. The assay was feasible and allowed rapid assessment of anti-T. cruzi action of the compounds, in addition to cardiotoxicity parameters. The utilization of hiPSC-CMs in the drug development workflow for Chagas disease may help in the identification of novel compounds.
Collapse
|
11
|
Gharanei M, Shafaattalab S, Sangha S, Gunawan M, Laksman Z, Hove-Madsen L, Tibbits GF. Atrial-specific hiPSC-derived cardiomyocytes in drug discovery and disease modeling. Methods 2021; 203:364-377. [PMID: 34144175 DOI: 10.1016/j.ymeth.2021.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/19/2022] Open
Abstract
The discovery and application of human-induced pluripotent stem cells (hiPSCs) have been instrumental in the investigation of the pathophysiology of cardiovascular diseases. Patient-specific hiPSCs can now be generated, genome-edited, and subsequently differentiated into various cell types and used for regenerative medicine, disease modeling, drug testing, toxicity screening, and 3D tissue generation. Modulation of the retinoic acid signaling pathway has been shown to direct cardiomyocyte differentiation towards an atrial lineage. A variety of studies have successfully differentiated patient-specific atrial cardiac myocytes (hiPSC-aCM) and atrial engineered heart tissue (aEHT) that express atrial specific genes (e.g., sarcolipin and ANP) and exhibit atrial electrophysiological and contractility profiles. Identification of protocols to differentiate atrial cells from patients with atrial fibrillation and other inherited diseases or creating disease models using genetic mutation studies has shed light on the mechanisms of atrial-specific diseases and identified the efficacy of atrial-selective pharmacological compounds. hiPSC-aCMs and aEHTs can be used in drug discovery and drug screening studies to investigate the efficacy of atrial selective drugs on atrial fibrillation models. Furthermore, hiPSC-aCMs can be effective tools in studying the mechanism, pathophysiology and treatment options of atrial fibrillation and its genetic underpinnings. The main limitation of using hiPSC-CMs is their immature phenotype compared to adult CMs. A wide range of approaches and protocols are used by various laboratories to optimize and enhance CM maturation, including electrical stimulation, culture time, biophysical cues and changes in metabolic factors.
Collapse
Affiliation(s)
- Mayel Gharanei
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Sanam Shafaattalab
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Sarabjit Sangha
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Marvin Gunawan
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Zachary Laksman
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Leif Hove-Madsen
- Cardiac Rhythm and Contraction Group, IIBB-CSIC, CIBERCV, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
A predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues. Sci Rep 2021; 11:10228. [PMID: 33986332 PMCID: PMC8119415 DOI: 10.1038/s41598-021-89478-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiotoxicity of pharmaceutical drugs, industrial chemicals, and environmental toxicants can be severe, even life threatening, which necessitates a thorough evaluation of the human response to chemical compounds. Predicting risks for arrhythmia and sudden cardiac death accurately is critical for defining safety profiles. Currently available approaches have limitations including a focus on single select ion channels, the use of non-human species in vitro and in vivo, and limited direct physiological translation. We have advanced the robustness and reproducibility of in vitro platforms for assessing pro-arrhythmic cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts in 3-dimensional microtissues. Using automated algorithms and statistical analyses of eight comprehensive evaluation metrics of cardiac action potentials, we demonstrate that tissue-engineered human cardiac microtissues respond appropriately to physiological stimuli and effectively differentiate between high-risk and low-risk compounds exhibiting blockade of the hERG channel (E4031 and ranolazine, respectively). Further, we show that the environmental endocrine disrupting chemical bisphenol-A (BPA) causes acute and sensitive disruption of human action potentials in the nanomolar range. Thus, this novel human 3D in vitro pro-arrhythmic risk assessment platform addresses critical needs in cardiotoxicity testing for both environmental and pharmaceutical compounds and can be leveraged to establish safe human exposure levels.
Collapse
|
13
|
Ahmed U, Ahmed R, Masoud MS, Tariq M, Ashfaq UA, Augustine R, Hasan A. Stem cells based in vitro models: trends and prospects in biomaterials cytotoxicity studies. Biomed Mater 2021; 16:042003. [PMID: 33686970 DOI: 10.1088/1748-605x/abe6d8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Advanced biomaterials are increasingly used for numerous medical applications from the delivery of cancer-targeted therapeutics to the treatment of cardiovascular diseases. The issues of foreign body reactions induced by biomaterials must be controlled for preventing treatment failure. Therefore, it is important to assess the biocompatibility and cytotoxicity of biomaterials on cell culture systems before proceeding to in vivo studies in animal models and subsequent clinical trials. Direct use of biomaterials on animals create technical challenges and ethical issues and therefore, the use of non-animal models such as stem cell cultures could be useful for determination of their safety. However, failure to recapitulate the complex in vivo microenvironment have largely restricted stem cell cultures for testing the cytotoxicity of biomaterials. Nevertheless, properties of stem cells such as their self-renewal and ability to differentiate into various cell lineages make them an ideal candidate for in vitro screening studies. Furthermore, the application of stem cells in biomaterials screening studies may overcome the challenges associated with the inability to develop a complex heterogeneous tissue using primary cells. Currently, embryonic stem cells, adult stem cells, and induced pluripotent stem cells are being used as in vitro preliminary biomaterials testing models with demonstrated advantages over mature primary cell or cell line based in vitro models. This review discusses the status and future directions of in vitro stem cell-based cultures and their derivatives such as spheroids and organoids for the screening of their safety before their application to animal models and human in translational research.
Collapse
Affiliation(s)
- Uzair Ahmed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000 Punjab, Pakistan
| | | | | | | | | | | | | |
Collapse
|
14
|
Truong KM, Feng W, Pessah IN. Ryanodine Receptor Type 2: A Molecular Target for Dichlorodiphenyltrichloroethane- and Dichlorodiphenyldichloroethylene-Mediated Cardiotoxicity. Toxicol Sci 2020; 178:159-172. [PMID: 32894766 PMCID: PMC7850024 DOI: 10.1093/toxsci/kfaa139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyl-dichloroethylene (DDE) are ubiquitously found in the environment and linked to cardiovascular diseases-with a majority of the work focused on hypertension. Studies investigating whether DDx can interact with molecular targets on cardiac tissue to directly affect cardiac function are lacking. Therefore, we investigated whether o,p'-DDT, p,p'-DDT, o,p'-DDE, or p,p'-DDE (DDx, collectively) can directly alter the function of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) by assessing their effect(s) on hiPSC-CMs Ca2+ dynamics. DDx (0.1-10 µM) affected hiPSC-CMs synchronous Ca2+ oscillation frequency in a concentration-dependent manner, with p,p'-DDT and p,p'-DDE also decreasing Ca2+ stores. HEK-RyR2 cells cultured under antibiotic selection to induce expression of wild-type mouse ryanodine receptor type 2 (RyR2) are used to further investigate whether DDx alters hiPSC-CMs Ca2+ dynamics through engagement with RyR2, a protein critical for cardiac muscle excitation-contraction coupling (ECC). Acute treatment with 10 µM DDx failed to induce Ca2+ release in HEK293-RyR2, whereas pretreatment with DDx (0.1-10 µM) for 12- or 24-h significantly decreased sarcoplasmic reticulum Ca2+ stores in HEK-RyR2 cells challenged with caffeine (1 mM), an RyR agonist. [3H]ryanodine-binding analysis using murine cardiac RyR2 homogenates further confirmed that all DDx isomers (10 µM) can directly engage with RyR2 to favor an open (leaky) confirmation, whereas only the DDT isomers (10 µM) modestly (≤10%) inhibited SERCA2a activity. The data demonstrate that DDx increases heart rate and depletes Ca2+ stores in human cardiomyocytes through a mechanism that impairs RyR2 function and Ca2+ dynamics. IMPACT STATEMENT DDT/DDE interactions with RyR2 alter cardiomyocyte Ca2+ dynamics that may contribute to adverse cardiovascular outcomes associated with exposures.
Collapse
Affiliation(s)
- Kim M Truong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616-5270
| | - Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616-5270
| | - Isaac N Pessah
- To whom correspondence should be addressed at Department of Molecular Biosciences, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive, Davis, CA 95616. E-mail:
| |
Collapse
|
15
|
Pálóczi J, Szántai Á, Kobolák J, Bock I, Ruivo E, Kiss B, Gáspár R, Pipis J, Ocsovszki I, Táncos Z, Fehér A, Dinnyés A, Onódi Z, Madonna R, Ferdinandy P, Görbe A. Systematic analysis of different pluripotent stem cell-derived cardiac myocytes as potential testing model for cardiocytoprotection. Vascul Pharmacol 2020; 133-134:106781. [PMID: 32827678 DOI: 10.1016/j.vph.2020.106781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/13/2020] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Stem cell-derived cardiac myocytes are potential sources for testing cardiocytoprotective molecules against ischemia/reperfusion injury in vitro. MATERIALS AND METHODS Here we performed a systematic analysis of two different induced pluripotent stem cell lines (iPSC 3.4 and 4.1) and an embryonic stem cell (ESC) line-derived cardiac myocytes at two different developmental stages. Cell viability in simulated ischemia/reperfusion (SI/R)-induced injury and a known cardiocytoprotective NO-donor, S-nitroso-n-acetylpenicillamine (SNAP) was tested. RESULTS After analysis of full embryoid bodies (EBs) and cardiac marker (VCAM and cardiac troponin I) positive cells of three lines at 6 conditions (32 different conditions altogether), we found significant SI/R injury-induced cell death in both full EBs and VCAM+ cardiac cells at later stage of their differentiation. Moreover, full EBs of the iPS 4.1 cell line after oxidative stress induction by SNAP was protected at day-8 samples. CONCLUSION We have shown that 4.1 iPS-derived cardiomyocyte line could serve as a testing platform for cardiocytoprotection.
Collapse
Affiliation(s)
- J Pálóczi
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, 6720 Hungary
| | - Á Szántai
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, 6720 Hungary
| | - J Kobolák
- Biotalentum Ltd., Gödöllő, 2100 Hungary
| | - I Bock
- Biotalentum Ltd., Gödöllő, 2100 Hungary
| | - E Ruivo
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, 6720 Hungary
| | - B Kiss
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, 6720 Hungary; MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, 1085 Hungary
| | - R Gáspár
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, 6720 Hungary
| | - J Pipis
- Pharmahungary Group, Szeged, 6722 Hungary
| | - I Ocsovszki
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, 6720 Hungary
| | - Z Táncos
- Biotalentum Ltd., Gödöllő, 2100 Hungary
| | - A Fehér
- Biotalentum Ltd., Gödöllő, 2100 Hungary
| | - A Dinnyés
- Biotalentum Ltd., Gödöllő, 2100 Hungary; Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, 2100 Hungary
| | - Z Onódi
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, 1085 Hungary
| | - R Madonna
- Institute of Cardiology, Department of Surgical, Medical and Molecular Pathology and Critical Area Medicine, University of Pisa, 56124 Pisa; Internal Medicine, Cardiology Division, University of Texas Medical School in Houston, Houston, Texas
| | - P Ferdinandy
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, 6720 Hungary; Pharmahungary Group, Szeged, 6722 Hungary; MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, 1085 Hungary; Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720, Hungary
| | - A Görbe
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, 6720 Hungary; Pharmahungary Group, Szeged, 6722 Hungary; MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, 1085 Hungary; Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720, Hungary.
| |
Collapse
|
16
|
Cao L, der Meer ADV, Verbeek FJ, Passier R. Automated image analysis system for studying cardiotoxicity in human pluripotent stem cell-Derived cardiomyocytes. BMC Bioinformatics 2020; 21:187. [PMID: 32408861 PMCID: PMC7222481 DOI: 10.1186/s12859-020-3466-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cardiotoxicity, characterized by severe cardiac dysfunction, is a major problem in patients treated with different classes of anticancer drugs. Development of predictable human-based models and assays for drug screening are crucial for preventing potential drug-induced adverse effects. Current animal in vivo models and cell lines are not always adequate to represent human biology. Alternatively, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) show great potential for disease modelling and drug-induced toxicity screenings. Fully automated high-throughput screening of drug toxicity on hiPSC-CMs by fluorescence image analysis is, however, very challenging, due to clustered cell growth patterns and strong intracellular and intercellular variation in the expression of fluorescent markers. RESULTS In this paper, we report on the development of a fully automated image analysis system for quantification of cardiotoxic phenotypes from hiPSC-CMs that are treated with various concentrations of anticancer drugs doxorubicin or crizotinib. This high-throughput system relies on single-cell segmentation by nuclear signal extraction, fuzzy C-mean clustering of cardiac α-actinin signal, and finally nuclear signal propagation. When compared to manual segmentation, it generates precision and recall scores of 0.81 and 0.93, respectively. CONCLUSIONS Our results show that our fully automated image analysis system can reliably segment cardiomyocytes even with heterogeneous α-actinin signals.
Collapse
Affiliation(s)
- Lu Cao
- Imaging and Bioinformatics group, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Niels Bohrweg 1, Leiden, 2333 CA, The Netherlands
| | - Andries D van der Meer
- Dept of Applied Stem Cell Technologies, MIRA Institute, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Fons J Verbeek
- Imaging and Bioinformatics group, Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Niels Bohrweg 1, Leiden, 2333 CA, The Netherlands.
| | - Robert Passier
- Dept of Applied Stem Cell Technologies, MIRA Institute, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands. .,Dept of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands.
| |
Collapse
|
17
|
Ahmed RE, Anzai T, Chanthra N, Uosaki H. A Brief Review of Current Maturation Methods for Human Induced Pluripotent Stem Cells-Derived Cardiomyocytes. Front Cell Dev Biol 2020; 8:178. [PMID: 32266260 PMCID: PMC7096382 DOI: 10.3389/fcell.2020.00178] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Therefore, the discovery of induced pluripotent stem cells (iPSCs) and the subsequent generation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) was a pivotal point in regenerative medicine and cardiovascular research. They constituted an appealing tool for replacing dead and dysfunctional cardiac tissue, screening cardiac drugs and toxins, and studying inherited cardiac diseases. The problem is that these cells remain largely immature, and in order to utilize them, they must reach a functional degree of maturity. To attempt to mimic in vivo environment, various methods including prolonging culture time, co-culture and modulations of chemical, electrical, mechanical culture conditions have been tried. In addition to that, changing the topology of the culture made huge progress with the introduction of the 3D culture that closely resembles the in vivo cardiac topology and overcomes many of the limitations of the conventionally used 2D models. Nonetheless, 3D culture alone is not enough, and using a combination of these methods is being explored. In this review, we summarize the main differences between immature, fetal-like hiPSC-CMs and adult cardiomyocytes, then glance at the current approaches used to promote hiPSC-CMs maturation. In the second part, we focus on the evolving 3D culture model - it's structure, the effect on hiPSC-CMs maturation, incorporation with different maturation methods, limitations and future prospects.
Collapse
Affiliation(s)
- Razan Elfadil Ahmed
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Tatsuya Anzai
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Nawin Chanthra
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
18
|
Sirenko O, Parham F, Dea S, Sodhi N, Biesmans S, Mora-Castilla S, Ryan K, Behl M, Chandy G, Crittenden C, Vargas-Hurlston S, Guicherit O, Gordon R, Zanella F, Carromeu C. Functional and Mechanistic Neurotoxicity Profiling Using Human iPSC-Derived Neural 3D Cultures. Toxicol Sci 2019; 167:58-76. [PMID: 30169818 DOI: 10.1093/toxsci/kfy218] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neurological disorders affect millions of people worldwide and appear to be on the rise. Whereas the reason for this increase remains unknown, environmental factors are a suspected contributor. Hence, there is an urgent need to develop more complex, biologically relevant, and predictive in vitro assays to screen larger sets of compounds with the potential for neurotoxicity. Here, we employed a human induced pluripotent stem cell (iPSC)-based 3D neural platform composed of mature cortical neurons and astrocytes as a model for this purpose. The iPSC-derived human 3D cortical neuron/astrocyte co-cultures (3D neural cultures) present spontaneous synchronized, readily detectable calcium oscillations. This advanced neural platform was optimized for high-throughput screening in 384-well plates and displays highly consistent, functional performance across different wells and plates. Characterization of oscillation profiles in 3D neural cultures was performed through multi-parametric analysis that included the calcium oscillation rate and peak width, amplitude, and waveform irregularities. Cellular and mitochondrial toxicity were assessed by high-content imaging. For assay characterization, we used a set of neuromodulators with known mechanisms of action. We then explored the neurotoxic profile of a library of 87 compounds that included pharmaceutical drugs, pesticides, flame retardants, and other chemicals. Our results demonstrated that 57% of the tested compounds exhibited effects in the assay. The compounds were then ranked according to their effective concentrations based on in vitro activity. Our results show that a human iPSC-derived 3D neural culture assay platform is a promising biologically relevant tool to assess the neurotoxic potential of drugs and environmental toxicants.
Collapse
Affiliation(s)
| | - Frederick Parham
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Steven Dea
- StemoniX, Inc, Maple Grove, Minnesota 55311
| | - Neha Sodhi
- StemoniX, Inc, Maple Grove, Minnesota 55311
| | | | | | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Mamta Behl
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee HA, Kwon M, Kim HA, Kim KS. Antitumor profiles and cardiac electrophysiological effects of aurora kinase inhibitor ZM447439. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:393-402. [PMID: 31496876 PMCID: PMC6717794 DOI: 10.4196/kjpp.2019.23.5.393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 11/15/2022]
Abstract
Aurora kinases inhibitors, including ZM447439 (ZM), which suppress cell division, have attracted a great deal of attention as potential novel anti-cancer drugs. Several recent studies have confirmed the anti-cancer effects of ZM in various cancer cell lines. However, there have been no studies regarding the cardiac safety of this agent. We performed several cytotoxicity, invasion and migration assays to examine the anti-cancer effects of ZM. To evaluate the potential effects of ZM on cardiac repolarisation, whole-cell patch-clamp experiments were performed with human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and cells with heterogeneous cardiac ion channel expression. We also conducted a contractility assay with rat ventricular myocytes to determine the effects of ZM on myocardial contraction and/or relaxation. In tests to determine in vitro efficacy, ZM inhibited the proliferation of A549, H1299 (lung cancer), MCF-7 (breast cancer) and HepG2 (hepatoma) cell lines with IC50 in the submicromolar range, and attenuated the invasive and metastatic capacity of A549 cells. In cardiac toxicity testing, ZM did not significantly affect INa, IKs or IK1, but decreased IhERG in a dose-dependent manner (IC50: 6.53 µM). In action potential (AP) assay using hiPSC-CMs, ZM did not induce any changes in AP parameters up to 3 µM, but it at 10 µM induced prolongation of AP duration. In summary, ZM showed potent broad-spectrum anti-tumor activity, but relatively low levels of cardiac side effects compared to the effective doses to tumor. Therefore, ZM has a potential to be a candidate as an anti-cancer with low cardiac toxicity.
Collapse
Affiliation(s)
- Hyang-Ae Lee
- R&D Center for Advanced Pharmaceuticals & Evaluation, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Miso Kwon
- R&D Center for Advanced Pharmaceuticals & Evaluation, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.,Fertility Center, CHA Bunding Medical Center, CHA University, Seongnam 13496, Korea
| | - Hyeon-A Kim
- R&D Center for Advanced Pharmaceuticals & Evaluation, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Ki-Suk Kim
- R&D Center for Advanced Pharmaceuticals & Evaluation, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| |
Collapse
|
20
|
Ross GR, Rizvi F, Emelyanova L, Tajik AJ, Jahangir A. Prolonged post-differentiation culture influences the expression and biophysics of Na + and Ca 2+ channels in induced pluripotent stem cell-derived ventricular-like cardiomyocytes. Cell Tissue Res 2019; 378:59-66. [PMID: 31041505 DOI: 10.1007/s00441-019-03030-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/04/2019] [Indexed: 12/18/2022]
Abstract
Several studies have been reported in various domains from induction methods to utilities of somatic cell pluripotent reprogramming. However, one of the major struggles facing the research field of induced pluripotent stem cell (iPSC)-derived target cells is the lack of consistency in observations. This could be due to variety of reasons including varied culture periods post-differentiation. The cardiomyocytes (CMs) derived from iPSCs are commonly studied and proposed to be utilized in the comprehensive in vitro proarrhythmia initiative for drug safety screening. As the influence of varied culture periods on the electrophysiological properties of iPSC-CMs is not clearly known, using whole-cell patch clamp technique, we compared two groups of differentiated ventricular-like iPSC-CMs that are cultured for 10 to 15 days (D10-15) and more than 30 days (≥ D30) both under current and voltage clamps. The prolonged culture imparts increased excitability with high-frequency spontaneous action potentials, robust increase in the magnitude of peak Na+ current density, relatively shallow inactivation kinetics of Na+ channels, faster recovery from inactivation, and augmented Ca2+ current density. Quantitative real-time PCR studies of α-subunit transcripts showed enhanced mRNA expression of SCN1A, SCN5A Na+ channel subtypes, and CACNA1C, CACNA1G, and CACNA1I Ca2+ channel subtypes, in ≥ D30 group. Conclusively, the prolonged culture of differentiated iPSC-CMs affects the excitability, single-cell electrophysiological properties, and ion channel expressions. Therefore, following standard periods of culture across research studies while utilizing ventricular-like iPSC-CMs for in vitro health/disease modeling to study cellular functional mechanisms or test high-throughput drugs' efficacy and toxicity becomes crucial.
Collapse
Affiliation(s)
- Gracious R Ross
- Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Health Care, 2900 W Oklahoma Ave, Milwaukee, WI, 53215, USA.
| | - Farhan Rizvi
- Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Health Care, 2900 W Oklahoma Ave, Milwaukee, WI, 53215, USA
| | - Larisa Emelyanova
- Center for Integrative Research on Cardiovascular Aging, Aurora Research Institute, Aurora Health Care, 2900 W Oklahoma Ave, Milwaukee, WI, 53215, USA
| | - A Jamil Tajik
- Aurora Cardiovascular Services, Aurora Sinai/St. Luke's Medical Centers, Milwaukee, WI, USA
| | - Arshad Jahangir
- Aurora Cardiovascular Services, Aurora Sinai/St. Luke's Medical Centers, Milwaukee, WI, USA
| |
Collapse
|
21
|
Mo B, Wu X, Wang X, Xie J, Ye Z, Li L. miR-30e-5p Mitigates Hypoxia-Induced Apoptosis in Human Stem Cell-Derived Cardiomyocytes by Suppressing Bim. Int J Biol Sci 2019; 15:1042-1051. [PMID: 31182924 PMCID: PMC6535791 DOI: 10.7150/ijbs.31099] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/06/2019] [Indexed: 01/09/2023] Open
Abstract
Coronary microembolization can cause slow or no reflow, which is one of the crucial reasons for reverse of clinical advantage from cardiac reperfusion therapy. miRNAs and apoptosis are dramatically involved in the occurrence and process of cardiovascular diseases. Fortunately, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as an appealing model for the evaluation of cardiovascular diseases. Therefore, our study was designed to explore the role of miR-30e-5p and apoptosis in a hypoxia-induced hiPSC-CM injury model. Our results showed that the expression levels of miR-30e-5p were overtly downregulated in a time-dependent manner under hypoxic conditions. Expression of miR-30e-5p was significantly downregulated after 24 hours of hypoxia, hypoxia treatment dramatically induced apoptosis. Calcium handling capability significantly decreased after 24 hours of hypoxia treatment. miR-30e-5p overexpression partially mitigated hypoxia-induced apoptosis and rescued hypoxia-induced calcium handling defects in hiPSC-CMs. The luciferase reporter assay showed that miR-30e-5p can directly target the 3'-UTR of Bim, which is an apoptosis activator and autophagy suppressor. The mRNA and protein of Bim remarkably increased after hypoxia treatment and reduced with miR-30e-5p overexpression. Moreover, downregulation of Bim mitigated hypoxia-induced apoptosis and activated autophagy. These results demonstrated that miR-30e-5p mitigated hypoxia-induced apoptosis in hiPSC-CMs at least in part via Bim suppression and subsequent autophagy activation. Our study suggested miR-30e-5p may act as a potential therapeutic target for coronary microembolization.
Collapse
Affiliation(s)
- Binhai Mo
- Department of cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning 530021, China
| | - Xiaodan Wu
- Department of cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning 530021, China
| | - Xiantao Wang
- Department of cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning 530021, China
| | - Jian Xie
- Department of cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning 530021, China
| | - Ziliang Ye
- Department of cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning 530021, China
| | - Lang Li
- Department of cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning 530021, China
| |
Collapse
|
22
|
Chen Z, Xian W, Bellin M, Dorn T, Tian Q, Goedel A, Dreizehnter L, Schneider CM, Ward-van Oostwaard D, Ng JKM, Hinkel R, Pane LS, Mummery CL, Lipp P, Moretti A, Laugwitz KL, Sinnecker D. Subtype-specific promoter-driven action potential imaging for precise disease modelling and drug testing in hiPSC-derived cardiomyocytes. Eur Heart J 2019; 38:292-301. [PMID: 28182242 PMCID: PMC5381588 DOI: 10.1093/eurheartj/ehw189] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/18/2016] [Accepted: 04/19/2016] [Indexed: 12/30/2022] Open
Affiliation(s)
- Zhifen Chen
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Wenying Xian
- Institute for Molecular Cell Biology, Medical Faculty, University Homburg/Saar, Universität des Saarlandes, Homburg/Saar 66421, Germany
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333, The Netherlands
| | - Tatjana Dorn
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Qinghai Tian
- Institute for Molecular Cell Biology, Medical Faculty, University Homburg/Saar, Universität des Saarlandes, Homburg/Saar 66421, Germany
| | - Alexander Goedel
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Lisa Dreizehnter
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Christine M Schneider
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Dorien Ward-van Oostwaard
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333, The Netherlands
| | - Judy King Man Ng
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | | | - Luna Simona Pane
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333, The Netherlands
| | - Peter Lipp
- Institute for Molecular Cell Biology, Medical Faculty, University Homburg/Saar, Universität des Saarlandes, Homburg/Saar 66421, Germany
| | | | | | - Daniel Sinnecker
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| |
Collapse
|
23
|
Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models. Biosens Bioelectron 2019; 124-125:129-135. [DOI: 10.1016/j.bios.2018.10.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022]
|
24
|
Jebeniani I, Ding S, Pucéat M. Improved Protocol for Cardiac Differentiation and Maturation of Pluripotent Stem Cells. Methods Mol Biol 2019; 1994:71-77. [PMID: 31124105 DOI: 10.1007/978-1-4939-9477-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pluripotent stem cells feature the capacity to differentiate into any somatic cell types including cardiomyocytes. We report a cost-effective and simple protocol for the differentiation of specific ventricular cardiomyocytes. These cells are elongated, do not spontaneously beat, and do not feature any Ca2+-transient, an index of their stage of maturation toward adult cardiac cells. They represent a suitable model to screen both the efficiency and toxicology of drugs.
Collapse
Affiliation(s)
- Imen Jebeniani
- INSERM U1251 Université Aix-Marseille, MMG, Marseille, France
| | - Shunli Ding
- INSERM U1251 Université Aix-Marseille, MMG, Marseille, France
| | - Michel Pucéat
- INSERM U1251 Université Aix-Marseille, MMG, Marseille, France.
| |
Collapse
|
25
|
Apáti Á, Varga N, Berecz T, Erdei Z, Homolya L, Sarkadi B. Application of human pluripotent stem cells and pluripotent stem cell-derived cellular models for assessing drug toxicity. Expert Opin Drug Metab Toxicol 2018; 15:61-75. [PMID: 30526128 DOI: 10.1080/17425255.2019.1558207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Human pluripotent stem cells (hPSCs) are capable of differentiating into all types of cells in the body and so provide suitable toxicology screening systems even for hard-to-obtain human tissues. Since hPSCs can also be generated from differentiated cells and current gene editing technologies allow targeted genome modifications, hPSCs can be applied for drug toxicity screening both in normal and disease-specific models. Targeted hPSC differentiation is still a challenge but cardiac, neuronal or liver cells, and complex cellular models are already available for practical applications. Areas covered: The authors review new gene-editing and cell-biology technologies to generate sensitive toxicity screening systems based on hPSCs. Then the authors present the use of undifferentiated hPSCs for examining embryonic toxicity and discuss drug screening possibilities in hPSC-derived models. The authors focus on the application of human cardiomyocytes, hepatocytes, and neural cultures in toxicity testing, and discuss the recent possibilities for drug screening in a 'body-on-a-chip' model system. Expert opinion: hPSCs and their genetically engineered derivatives provide new possibilities to investigate drug toxicity in human tissues. The key issues in this regard are still the selection and generation of proper model systems, and the interpretation of the results in understanding in vivo drug effects.
Collapse
Affiliation(s)
- Ágota Apáti
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Nóra Varga
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Tünde Berecz
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Zsuzsa Erdei
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - László Homolya
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Balázs Sarkadi
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| |
Collapse
|
26
|
Quach B, Krogh-Madsen T, Entcheva E, Christini DJ. Light-Activated Dynamic Clamp Using iPSC-Derived Cardiomyocytes. Biophys J 2018; 115:2206-2217. [PMID: 30447994 PMCID: PMC6289097 DOI: 10.1016/j.bpj.2018.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/23/2018] [Accepted: 10/02/2018] [Indexed: 01/31/2023] Open
Abstract
iPSC-derived cardiomyocytes (iPSC-CMs) are a potentially advantageous platform for drug screening because they provide a renewable source of human cardiomyocytes. One obstacle to their implementation is their immature electrophysiology, which reduces relevance to adult arrhythmogenesis. To address this, dynamic clamp is used to inject current representing the insufficient potassium current, IK1, thereby producing more adult-like electrophysiology. However, dynamic clamp requires patch clamp and is therefore low throughput and ill-suited for large-scale drug screening. Here, we use optogenetics to generate such a dynamic-clamp current. The optical dynamic clamp (ODC) uses outward-current-generating opsin, ArchT, to mimic IK1, resulting in more adult-like action potential morphology, similar to IK1 injection via classic dynamic clamp. Furthermore, in the presence of an IKr blocker, ODC revealed expected action potential prolongation and reduced spontaneous excitation. The ODC presented here still requires an electrode to measure Vm but provides a first step toward contactless dynamic clamp, which will not only enable high-throughput screening but may also allow control within multicellular iPSC-CM formats to better recapitulate adult in vivo physiology.
Collapse
Affiliation(s)
- Bonnie Quach
- Cardiovascular Research Institute, New York, New York; Weill Cornell Medicine, New York, New York
| | - Trine Krogh-Madsen
- Cardiovascular Research Institute, New York, New York; Weill Cornell Medicine, New York, New York
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - David J Christini
- Cardiovascular Research Institute, New York, New York; Weill Cornell Medicine, New York, New York.
| |
Collapse
|
27
|
Goedel A, Zawada DM, Zhang F, Chen Z, Moretti A, Sinnecker D. Subtype-specific Optical Action Potential Recordings in Human Induced Pluripotent Stem Cell-derived Ventricular Cardiomyocytes. J Vis Exp 2018. [PMID: 30320759 DOI: 10.3791/58134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cardiomyocytes generated from human induced pluripotent stem cells (iPSC-CMs) are an emerging tool in cardiovascular research. Rather than being a homogenous population of cells, the iPSC-CMs generated by current differentiation protocols represent a mixture of cells with ventricular-, atrial-, and nodal-like phenotypes, which complicates phenotypic analyses. Here, a method to optically record action potentials specifically from ventricular-like iPSC-CMs is presented. This is achieved by lentiviral transduction with a construct in which a genetically-encoded voltage indicator is under the control of a ventricular-specific promoter element. When iPSC-CMs are transduced with this construct, the voltage sensor is expressed exclusively in ventricular-like cells, enabling subtype-specific optical membrane potential recordings using time-lapse fluorescence microscopy.
Collapse
Affiliation(s)
- Alexander Goedel
- Medical Department I, University Hospital Klinikum rechts der Isar, Technical University of Munich; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance
| | - Dorota M Zawada
- Medical Department I, University Hospital Klinikum rechts der Isar, Technical University of Munich
| | - Fangfang Zhang
- Medical Department I, University Hospital Klinikum rechts der Isar, Technical University of Munich
| | - Zhifen Chen
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Alessandra Moretti
- Medical Department I, University Hospital Klinikum rechts der Isar, Technical University of Munich; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance
| | - Daniel Sinnecker
- Medical Department I, University Hospital Klinikum rechts der Isar, Technical University of Munich; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance;
| |
Collapse
|
28
|
Fermini B, Coyne KP, Coyne ST. Challenges in designing and executing clinical trials in a dish studies. J Pharmacol Toxicol Methods 2018; 94:73-82. [PMID: 30267757 DOI: 10.1016/j.vascn.2018.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022]
Abstract
The ever-increasing cost of drug discovery and development represents a significant challenge for the pharmaceutical industry and new strategies to bridge studies between preclinical testing and clinical trials are needed to reduce the knowledge gap prior to first human exposures, and to allow earlier decisions to be made on the further development of drugs. A number of studies have demonstrated that various cell types differentiated from human induced pluripotent stem cells (iPSCs) do not just respond similarly to human tissues in general, but rather recapitulate the drug response of their specific donor's, when exposed to the same drug in vivo. This recapitulation opens the doors to Clinical Trials in a Dish (CTiD), a platform which involves testing, in vitro, medical therapies for safety on cells collected from a sample of human patients, before moving into clinical trials. However, the science behind CTiD is complex, and every element of the process from tissue acquisition to data generation must be assessed and designed to meet quality metrics and standards. Without such rigorous assessment and design, the basic scientific integrity of CTiD constructs is likely compromised, and the results questionable. Given the lack of standard process and/or quality metrics in place for the use of stem cell-based products for in vitro testing per se, we discuss here the key elements that one needs to consider when designing, implementing and executing CTiD studies, in order to ensure an approach that will reliably mimic clinical trials, and allow obtaining reproducible and reliable experimental data.
Collapse
Affiliation(s)
- Bernard Fermini
- Coyne Scientific, 1899 Powers Ferry Road SE, Atlanta, GA 30339, USA.
| | - Kevin P Coyne
- Coyne Scientific, 1899 Powers Ferry Road SE, Atlanta, GA 30339, USA
| | - Shawn T Coyne
- Coyne Scientific, 1899 Powers Ferry Road SE, Atlanta, GA 30339, USA
| |
Collapse
|
29
|
Hoang P, Huebsch N, Bang SH, Siemons BA, Conklin BR, Healy KE, Ma Z, Jacquir S. Quantitatively characterizing drug-induced arrhythmic contractile motions of human stem cell-derived cardiomyocytes. Biotechnol Bioeng 2018; 115:1958-1970. [PMID: 29663322 PMCID: PMC6283051 DOI: 10.1002/bit.26709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/07/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022]
Abstract
Quantification of abnormal contractile motions of cardiac tissue has been a noteworthy challenge and significant limitation in assessing and classifying the drug-induced arrhythmias (i.e., Torsades de pointes). To overcome these challenges, researchers have taken advantage of computational image processing tools to measure contractile motion from cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs). However, the amplitude and frequency analysis of contractile motion waveforms does not produce sufficient information to objectively classify the degree of variations between two or more sets of cardiac contractile motions. In this paper, we generated contractile motion data from beating hiPSC-CMs using motion tracking software based on optical flow analysis, and then implemented a computational algorithm, phase space reconstruction (PSR), to derive parameters (embedding, regularity, and fractal dimensions) to further characterize the dynamic nature of the cardiac contractile motions. Application of drugs known to cause cardiac arrhythmia induced significant changes to these resultant dimensional parameters calculated from PSR analysis. Integrating this new computational algorithm with the existing analytical toolbox of cardiac contractile motions will allow us to expand current assessments of cardiac tissue physiology into an automated, high-throughput, and quantifiable manner which will allow more objective assessments of drug-induced proarrhythmias.
Collapse
Affiliation(s)
- Plansky Hoang
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA
- Syracuse Biomaterials Institute, Syracuse University, NY, USA
| | - Nathaniel Huebsch
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Department of Material Science & Engineering, University of California, Berkeley, CA, USA
| | - Shin Hyuk Bang
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA
| | - Brian A. Siemons
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Bruce R. Conklin
- Glastone Institute of Cardiovascular Diseases, San Francisco, CA, USA
- Department of Medicine, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Kevin E. Healy
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Department of Material Science & Engineering, University of California, Berkeley, CA, USA
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, USA
- Syracuse Biomaterials Institute, Syracuse University, NY, USA
| | - Sabir Jacquir
- Laboratoire LE2I UMR CNRS 6306, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
30
|
Fermini B, Coyne ST, Coyne KP. Clinical Trials in a Dish: A Perspective on the Coming Revolution in Drug Development. SLAS DISCOVERY 2018; 23:765-776. [PMID: 29862873 PMCID: PMC6104197 DOI: 10.1177/2472555218775028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The pharmaceutical industry is facing unprecedented challenges as the cost of developing
new drugs has reached unsustainable levels, fueled in large parts by a high attrition rate
in clinical development. Strategies to bridge studies between preclinical testing and
clinical trials are needed to reduce the knowledge gap and allow earlier decisions to be
made on the continuation or discontinuation of further development of drugs. The discovery
and development of human induced pluripotent stem cells (hiPSCs) have opened up new
avenues that support the concept of screening for cell-based safety and toxicity at the
level of a population. This approach, termed “Clinical Trials in a Dish” (CTiD), allows
testing medical therapies for safety or efficacy on cells collected from a representative
sample of human patients, before moving into actual clinical trials. It can be applied to
the development of drugs for specific populations, and it allows predicting not only the
magnitude of effects but also the incidence of patients in a population who will benefit
or be harmed by these drugs. This, in turn, can lead to the selection of safer drugs to
move into clinical development, resulting in a reduction in attrition. The current article
offers a perspective of this new model for “humanized” preclinical drug development.
Collapse
|
31
|
In vitro assessment of chemotherapy-induced neuronal toxicity. Toxicol In Vitro 2018; 50:109-123. [PMID: 29427706 DOI: 10.1016/j.tiv.2018.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/13/2017] [Accepted: 02/06/2018] [Indexed: 12/14/2022]
Abstract
Neurotoxicity is a major concern during drug development, and together with liver and cardio-toxicity, it is one of the main causes of clinical drug attrition. Current pre-clinical models may not sufficiently identify and predict the risk for central or peripheral nervous system toxicity. One such example is clinically dose-limiting neuropathic effects after the administration of chemotherapeutic agents. Thus, the need to establish novel in vitro tools to evaluate the risk of neurotoxicities, such as neuropathy, remains unmet in drug discovery. Though in vitro studies have been conducted using primary and immortalized cell lines, some limitations include the utility for higher throughput methodologies, method reproducibility, and species extrapolation. As a novel alternative, human induced-pluripotent stem cell (iPSC)-derived neurons appear promising for testing new drug candidates. These iPSC-derived neurons are readily available and can be manipulated as required. Here, we describe a novel approach to assess neurotoxicity caused by different classes of chemotherapeutics using kinetic monitoring of neurite dynamic changes and apoptosis in human iPSC-neurons. These studies show promising changes in neurite dynamics in response to clinical inducers of neuropathy, as well as the ability to rank-order and gather mechanistic insight into class-specific compound induced neurotoxicity. This platform can be utilized in early drug development, as part of a weight of evidence approach, to screen drug candidates, and potentially reduce clinical attrition due to neurotoxicity.
Collapse
|
32
|
Takeda M, Miyagawa S, Fukushima S, Saito A, Ito E, Harada A, Matsuura R, Iseoka H, Sougawa N, Mochizuki-Oda N, Matsusaki M, Akashi M, Sawa Y. Development of In Vitro Drug-Induced Cardiotoxicity Assay by Using Three-Dimensional Cardiac Tissues Derived from Human Induced Pluripotent Stem Cells. Tissue Eng Part C Methods 2017; 24:56-67. [PMID: 28967302 PMCID: PMC5757089 DOI: 10.1089/ten.tec.2017.0247] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An in vitro drug-induced cardiotoxicity assay is a critical step in drug discovery for clinical use. The use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is promising for this purpose. However, single hiPSC-CMs are limited in their ability to mimic native cardiac tissue structurally and functionally, and the generation of artificial cardiac tissue using hiPSC-CMs is an ongoing challenging. We therefore developed a new method of constructing three-dimensional (3D) artificial tissues in a short time by coating extracellular matrix (ECM) components on cell surfaces. We hypothesized that 3D cardiac tissues derived from hiPSC-CMs (3D-hiPSC-CT) could be used for an in vitro drug-induced cardiotoxicity assay. 3D-hiPSC-CT were generated by fibronectin and gelatin nanofilm coated single hiPSC-CMs. Histologically, 3D-hiPSC-CT exhibited a sarcomere structure in the myocytes and ECM proteins, such as fibronectin, collagen type I/III, and laminin. The administration of cytotoxic doxorubicin at 5.0 μM induced the release of lactate dehydrogenase, while that at 2.0 μM reduced the cell viability. E-4031, human ether-a-go-go related gene (hERG)-type potassium channel blocker, and isoproterenol induced significant changes both in the Ca transient parameters and contractile parameters in a dose-dependent manner. The 3D-hiPSC-CT exhibited doxorubicin-sensitive cytotoxicity and hERG channel blocker/isoproterenol-sensitive electrical activity in vitro, indicating its usefulness for drug-induced cardiotoxicity assays or drug screening systems for drug discovery.
Collapse
Affiliation(s)
- Maki Takeda
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Shigeru Miyagawa
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Satsuki Fukushima
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Atsuhiro Saito
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Emiko Ito
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Akima Harada
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Ryohei Matsuura
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Hiroko Iseoka
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Nagako Sougawa
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Noriko Mochizuki-Oda
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Michiya Matsusaki
- 2 Department of Applied Chemistry, Osaka University Graduate School of Engineering , Osaka, Japan
| | - Mitsuru Akashi
- 3 Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University , Suita, Japan
| | - Yoshiki Sawa
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| |
Collapse
|
33
|
Abstract
The development of stem cell biology has revolutionized regenerative medicine and its clinical applications. Another aspect through which stem cells would benefit human health is their use in toxicology. In fact, owing to their ability to differentiate into all the lineages of the human body, including germ cells, stem cells, and, in particular, pluripotent stem cells, can be utilized for the assessment, in vitro, of embryonic, developmental, reproductive, organ, and functional toxicities, relevant to human physiology, without employing live animal tests and with the possibility of high throughput applications. Thus, stem cell toxicology would tremendously assist in the toxicological evaluation of the increasing number of synthetic chemicals that we are exposed to, of which toxicity information is limited. In this review, we introduce stem cell toxicology, as an emerging branch of in vitro toxicology, which offers quick and efficient alternatives to traditional toxicology assessments. We first discuss the development of stem cell toxicology, and we then emphasize its advantages and highlight the achievements of human pluripotent stem cell-based toxicity research.
Collapse
Affiliation(s)
- Shuyu Liu
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences, Beijing, P.R. China .,2 College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, P.R. China
| | - Nuoya Yin
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences, Beijing, P.R. China .,2 College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, P.R. China
| | - Francesco Faiola
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences, Beijing, P.R. China .,2 College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, P.R. China
| |
Collapse
|
34
|
Watanabe H, Honda Y, Deguchi J, Yamada T, Bando K. Usefulness of cardiotoxicity assessment using calcium transient in human induced pluripotent stem cell-derived cardiomyocytes. J Toxicol Sci 2017; 42:519-527. [PMID: 28717111 DOI: 10.2131/jts.42.519] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Monitoring dramatic changes in intracellular calcium ion levels during cardiac contraction and relaxation, known as calcium transient, in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) would be an attractive strategy for assessing compounds on cardiac contractility. In addition, as arrhythmogenic compounds are known to induce characteristic waveform changes in hiPSC-CMs, it is expected that calcium transient would allow evaluation of not only compound-induced effects on cardiac contractility, but also compound arrhythmogenic potential. Using a combination of calcium transient in hiPSC-CMs and a fast kinetic fluorescence imaging detection system, we examined in this study changes in calcium transient waveforms induced by a series of 17 compounds that include positive/negative inotropic agents as well as cardiac ion channel activators/inhibitors. We found that all positive inotropic compounds induced an increase in peak frequency and/or peak amplitude. The effects of a negative inotropic compound could clearly be detected in the presence of a β-adrenergic receptor agonist. Furthermore, most arrhythmogenic compounds raised the ratio of peak decay time to peak rise time (D/R ratio) in calcium transient waveforms. Compound concentrations at which these parameters exceeded cutoff values correlated well with systemic exposure levels at which arrhythmias were reported to be evoked. In conclusion, we believe that peak analysis of calcium transient and determination of D/R ratio are reliable methods for assessing compounds' cardiac contractility and arrhythmogenic potential, respectively. Using these approaches would allow selection of compounds with low cardiotoxic potential at the early stage of drug discovery.
Collapse
Affiliation(s)
- Hitoshi Watanabe
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd
| | - Yayoi Honda
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd
| | - Jiro Deguchi
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd
| | - Toru Yamada
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd
| | - Kiyoko Bando
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd
| |
Collapse
|
35
|
Phenotypic Assays for Characterizing Compound Effects on Induced Pluripotent Stem Cell-Derived Cardiac Spheroids. Assay Drug Dev Technol 2017; 15:280-296. [DOI: 10.1089/adt.2017.792] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
36
|
Kane C, Terracciano CMN. Concise Review: Criteria for Chamber-Specific Categorization of Human Cardiac Myocytes Derived from Pluripotent Stem Cells. Stem Cells 2017; 35:1881-1897. [PMID: 28577296 PMCID: PMC5575566 DOI: 10.1002/stem.2649] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/25/2017] [Accepted: 05/12/2017] [Indexed: 11/30/2022]
Abstract
Human pluripotent stem cell‐derived cardiomyocytes (PSC‐CMs) have great potential application in almost all areas of cardiovascular research. A current major goal of the field is to build on the past success of differentiation strategies to produce CMs with the properties of those originating from the different chambers of the adult human heart. With no anatomical origin or developmental pathway to draw on, the question of how to judge the success of such approaches and assess the chamber specificity of PSC‐CMs has become increasingly important; commonly used methods have substantial limitations and are based on limited evidence to form such an assessment. In this article, we discuss the need for chamber‐specific PSC‐CMs in a number of areas as well as current approaches used to assess these cells on their likeness to those from different chambers of the heart. Furthermore, describing in detail the structural and functional features that distinguish the different chamber‐specific human adult cardiac myocytes, we propose an evidence‐based tool to aid investigators in the phenotypic characterization of differentiated PSC‐CMs. Stem Cells2017;35:1881–1897
Collapse
Affiliation(s)
- Christopher Kane
- Imperial College London, National Heart and Lung Institute, Hammersmith Campus, BHF Centre for Regenerative Medicine, London, United Kingdom
| | - Cesare M N Terracciano
- Imperial College London, National Heart and Lung Institute, Hammersmith Campus, BHF Centre for Regenerative Medicine, London, United Kingdom
| |
Collapse
|
37
|
Translational trio of myocardial biomarkers for prediction, monitoring and controlling toxicologic response: Mechanistic (high content analysis), leakage (high-sensitivity cardiac troponin I) and function biomarkers (B-type natriuretic peptide). CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Sala L, Ward-van Oostwaard D, Tertoolen LGJ, Mummery CL, Bellin M. Electrophysiological Analysis of human Pluripotent Stem Cell-derived Cardiomyocytes (hPSC-CMs) Using Multi-electrode Arrays (MEAs). J Vis Exp 2017. [PMID: 28570546 PMCID: PMC5607948 DOI: 10.3791/55587] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiomyocytes can now be derived with high efficiency from both human embryonic and human induced-Pluripotent Stem Cells (hPSC). hPSC-derived cardiomyocytes (hPSC-CMs) are increasingly recognized as having great value for modeling cardiovascular diseases in humans, especially arrhythmia syndromes. They have also demonstrated relevance as in vitro systems for predicting drug responses, which makes them potentially useful for drug-screening and discovery, safety pharmacology and perhaps eventually for personalized medicine. This would be facilitated by deriving hPSC-CMs from patients or susceptible individuals as hiPSCs. For all applications, however, precise measurement and analysis of hPSC-CM electrical properties are essential for identifying changes due to cardiac ion channel mutations and/or drugs that target ion channels and can cause sudden cardiac death. Compared with manual patch-clamp, multi-electrode array (MEA) devices offer the advantage of allowing medium- to high-throughput recordings. This protocol describes how to dissociate 2D cell cultures of hPSC-CMs to small aggregates and single cells and plate them on MEAs to record their spontaneous electrical activity as field potential. Methods for analyzing the recorded data to extract specific parameters, such as the QT and the RR intervals, are also described here. Changes in these parameters would be expected in hPSC-CMs carrying mutations responsible for cardiac arrhythmias and following addition of specific drugs, allowing detection of those that carry a cardiotoxic risk.
Collapse
Affiliation(s)
- Luca Sala
- Department of Anatomy and Embryology, Leiden University Medical Center
| | | | | | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center; Department of Applied Stem Cell Technologies, University of Twente
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center;
| |
Collapse
|
39
|
Non-invasive phenotyping and drug testing in single cardiomyocytes or beta-cells by calcium imaging and optogenetics. PLoS One 2017; 12:e0174181. [PMID: 28379974 PMCID: PMC5381843 DOI: 10.1371/journal.pone.0174181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/04/2017] [Indexed: 12/18/2022] Open
Abstract
Identification of drug induced electrical instability of the heart curtails development, and introduction, of potentially proarrhythmic drugs. This problem usually requires complimentary contact based approaches such as patch-clamp electrophysiology combined with field stimulation electrodes to observe and control the cell. This produces data with high signal to noise but requires direct physical contact generally preventing high-throughput, or prolonged, phenotyping of single cells or tissues. Combining genetically encoded optogenetic control and spectrally compatible calcium indicator tools into a single adenoviral vector allows the analogous capability for cell control with simultaneous cellular phenotyping without the need for contact. This combination can be applied to single rodent primary adult cardiomyocytes, and human stem cell derived cardiomyocytes, enabling contactless small molecule evaluation for inhibitors of sodium, potassium and calcium channels suggesting it may be useful for early toxicity work. In pancreatic beta-cells it reveals the effects of glucose and the KATP inhibitor gliclazide.
Collapse
|
40
|
Sinnecker D. Cardiac regeneration using HLA-matched induced pluripotent stem cells-no monkey business, but still a long and winding road ahead. J Thorac Dis 2017; 9:492-494. [PMID: 28449453 DOI: 10.21037/jtd.2017.03.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daniel Sinnecker
- 1st Medical Department, The University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
41
|
Sirenko O, Grimm FA, Ryan KR, Iwata Y, Chiu WA, Parham F, Wignall JA, Anson B, Cromwell EF, Behl M, Rusyn I, Tice RR. In vitro cardiotoxicity assessment of environmental chemicals using an organotypic human induced pluripotent stem cell-derived model. Toxicol Appl Pharmacol 2017; 322:60-74. [PMID: 28259702 DOI: 10.1016/j.taap.2017.02.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/24/2017] [Accepted: 02/27/2017] [Indexed: 01/22/2023]
Abstract
An important target area for addressing data gaps through in vitro screening is the detection of potential cardiotoxicants. Despite the fact that current conservative estimates relate at least 23% of all cardiovascular disease cases to environmental exposures, the identities of the causative agents remain largely uncharacterized. Here, we evaluate the feasibility of a combinatorial in vitro/in silico screening approach for functional and mechanistic cardiotoxicity profiling of environmental hazards using a library of 69 representative environmental chemicals and drugs. Human induced pluripotent stem cell-derived cardiomyocytes were exposed in concentration-response for 30min or 24h and effects on cardiomyocyte beating and cellular and mitochondrial toxicity were assessed by kinetic measurements of intracellular Ca2+ flux and high-content imaging using the nuclear dye Hoechst 33342, the cell viability marker Calcein AM, and the mitochondrial depolarization probe JC-10. More than half of the tested chemicals exhibited effects on cardiomyocyte beating after 30min of exposure. In contrast, after 24h, effects on cell beating without concomitant cytotoxicity were observed in about one third of the compounds. Concentration-response data for in vitro bioactivity phenotypes visualized using the Toxicological Prioritization Index (ToxPi) showed chemical class-specific clustering of environmental chemicals, including pesticides, flame retardants, and polycyclic aromatic hydrocarbons. For environmental chemicals with human exposure predictions, the activity-to-exposure ratios between modeled blood concentrations and in vitro bioactivity were between one and five orders of magnitude. These findings not only demonstrate that some ubiquitous environmental pollutants might have the potential at high exposure levels to alter cardiomyocyte function, but also indicate similarities in the mechanism of these effects both within and among chemicals and classes.
Collapse
Affiliation(s)
| | - Fabian A Grimm
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Kristen R Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Yasuhiro Iwata
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Frederick Parham
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Blake Anson
- Cellular Dynamics International, Madison, WI, USA
| | | | - Mamta Behl
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Raymond R Tice
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
42
|
|
43
|
Behavior of leucine-rich repeat-containing G-protein coupled receptor 5-expressing cells in the reprogramming process. Stem Cell Res 2017; 20:1-9. [PMID: 28192743 DOI: 10.1016/j.scr.2017.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/15/2016] [Accepted: 01/03/2017] [Indexed: 01/10/2023] Open
Abstract
It remains unclear what cells are proper for the generation of induced pluripotent stem cells (iPSCs). Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) is well known as a tissue stem cell and progenitor marker, both of which are reported to be sensitive to reprogramming. In the present study, we examined the reprogramming behavior of Lgr5-expressing cells (Lgr5+ cells). First, we compared reprogramming behavior using mouse Lgr5+ and Lgr5 negative (Lgr5-) hair follicles (HFs). The number of alkaline phosphatase staining-positive cells was lesser in a well of Lgr5+ HFs than in Lgr5- HFs; however, the ratio of Nanog+ SSEA1+ cells in the cell mixture derived from Lgr5+ HFs was much higher than that from Lgr5- HFs. Lgr5+ cells could be induced from mouse embryonic fibroblasts (MEFs) after transduction with Yamanaka factors. As shown in HFs, the progeny of Lgr5+ cells arising from MEFs highly converted into Nanog+ cells and did not form Nanog- colonies. The progeny represented the status of the late reprogramming phase to a higher degree than the nonprogeny. We also confirmed this using human Lg5+ cells. Our findings suggest that the use of Lgr5+ cells will minimize sorting efforts for obtaining superior iPSCs.
Collapse
|
44
|
Kishta SS, Kishta SA, El-Shenawy R. Statin (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor)-based therapy for hepatitis C virus (HCV) infection-related diseases in the era of direct-acting antiviral agents. F1000Res 2017; 5:223. [PMID: 27583130 PMCID: PMC4988296 DOI: 10.12688/f1000research.7970.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 12/17/2022] Open
Abstract
Recent improvements have been made in the treatment of hepatitis C virus (HCV) infection with the introduction of direct-acting antiviral agents (DAAs). However, despite successful viral clearance, many patients continue to have HCV-related disease progression. Therefore, new treatments must be developed to achieve viral clearance and prevent the risk of HCV-related diseases. In particular, the use of pitavastatin together with DAAs may improve the antiviral efficacy as well as decrease the progression of liver fibrosis and the incidence of HCV-related hepatocellular carcinoma. To investigate the management methods for HCV-related diseases using pitavastatin and DAAs, clinical trials should be undertaken. However, concerns have been raised about potential drug interactions between statins and DAAs. Therefore, pre-clinical trials using a replicon system, human hepatocyte-like cells, human neurons and human cardiomyocytes from human-induced pluripotent stem cells should be conducted. Based on these pre-clinical trials, an optimal direct-acting antiviral agent could be selected for combination with pitavastatin and DAAs. Following the pre-clinical trial, the combination of pitavastatin and the optimal direct-acting antiviral agent should be compared to other combinations of DAAs (
e.g., sofosbuvir and velpatasvir) according to the antiviral effect on HCV infection, HCV-related diseases and cost-effectiveness.
Collapse
Affiliation(s)
- Sara Sobhy Kishta
- Medical Biotechnology Lab, Microbial Biotechnology Department, National Research Center, Egypt, Cairo, Egypt
| | | | - Reem El-Shenawy
- Medical Biotechnology Lab, Microbial Biotechnology Department, National Research Center, Egypt, Cairo, Egypt
| |
Collapse
|
45
|
Stillitano F, Hansen J, Kong CW, Karakikes I, Funck-Brentano C, Geng L, Scott S, Reynier S, Wu M, Valogne Y, Desseaux C, Salem JE, Jeziorowska D, Zahr N, Li R, Iyengar R, Hajjar RJ, Hulot JS. Modeling susceptibility to drug-induced long QT with a panel of subject-specific induced pluripotent stem cells. eLife 2017; 6:e19406. [PMID: 28134617 PMCID: PMC5279943 DOI: 10.7554/elife.19406] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
A large number of drugs can induce prolongation of cardiac repolarization and life-threatening cardiac arrhythmias. The prediction of this side effect is however challenging as it usually develops in some genetically predisposed individuals with normal cardiac repolarization at baseline. Here, we describe a platform based on a genetically diverse panel of induced pluripotent stem cells (iPSCs) that reproduces susceptibility to develop a cardiotoxic drug response. We generated iPSC-derived cardiomyocytes from patients presenting in vivo with extremely low or high changes in cardiac repolarization in response to a pharmacological challenge with sotalol. In vitro, the responses to sotalol were highly variable but strongly correlated to the inter-individual differences observed in vivo. Transcriptomic profiling identified dysregulation of genes (DLG2, KCNE4, PTRF, HTR2C, CAMKV) involved in downstream regulation of cardiac repolarization machinery as underlying high sensitivity to sotalol. Our findings offer novel insights for the development of iPSC-based screening assays for testing individual drug reactions.
Collapse
Affiliation(s)
- Francesca Stillitano
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Jens Hansen
- Department of Pharmacology and Systems Therapeutics, Systems Biology Center, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Chi-Wing Kong
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Ioannis Karakikes
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Christian Funck-Brentano
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, INSERM, CIC-1421, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Lin Geng
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Stuart Scott
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| | | | - Ma Wu
- Cellectis Stem Cells, Paris, France
| | | | | | - Joe-Elie Salem
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, INSERM, CIC-1421, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Dorota Jeziorowska
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, INSERM, CIC-1421, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Noël Zahr
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, INSERM, CIC-1421, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Ronald Li
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, United States
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Stockholm, Sweden
- Dr. Li Dak-Sum Centre, The University of Hong Kong – Karolinska Institutet Collaboration in Regenerative Medicine, Pokfulam, Hong Kong
| | - Ravi Iyengar
- Department of Pharmacology and Systems Therapeutics, Systems Biology Center, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Jean-Sébastien Hulot
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, United States
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, INSERM, CIC-1421, Institute of Cardiometabolism and Nutrition, Paris, France
| |
Collapse
|
46
|
Pesl M, Pribyl J, Caluori G, Cmiel V, Acimovic I, Jelinkova S, Dvorak P, Starek Z, Skladal P, Rotrekl V. Phenotypic assays for analyses of pluripotent stem cell-derived cardiomyocytes. J Mol Recognit 2016; 30. [PMID: 27995655 DOI: 10.1002/jmr.2602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/04/2016] [Accepted: 11/13/2016] [Indexed: 12/27/2022]
Abstract
Stem cell-derived cardiomyocytes (CMs) hold great hopes for myocardium regeneration because of their ability to produce functional cardiac cells in large quantities. They also hold promise in dissecting the molecular principles involved in heart diseases and also in drug development, owing to their ability to model the diseases using patient-specific human pluripotent stem cell (hPSC)-derived CMs. The CM properties essential for the desired applications are frequently evaluated through morphologic and genotypic screenings. Even though these characterizations are necessary, they cannot in principle guarantee the CM functionality and their drug response. The CM functional characteristics can be quantified by phenotype assays, including electrophysiological, optical, and/or mechanical approaches implemented in the past decades, especially when used to investigate responses of the CMs to known stimuli (eg, adrenergic stimulation). Such methods can be used to indirectly determine the electrochemomechanics of the cardiac excitation-contraction coupling, which determines important functional properties of the hPSC-derived CMs, such as their differentiation efficacy, their maturation level, and their functionality. In this work, we aim to systematically review the techniques and methodologies implemented in the phenotype characterization of hPSC-derived CMs. Further, we introduce a novel approach combining atomic force microscopy, fluorescent microscopy, and external electrophysiology through microelectrode arrays. We demonstrate that this novel method can be used to gain unique information on the complex excitation-contraction coupling dynamics of the hPSC-derived CMs.
Collapse
Affiliation(s)
- Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Pribyl
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Guido Caluori
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Vratislav Cmiel
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Ivana Acimovic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Zdenek Starek
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Petr Skladal
- CEITEC, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
47
|
Sewell F, Edwards J, Prior H, Robinson S. Opportunities to Apply the 3Rs in Safety Assessment Programs. ILAR J 2016; 57:234-245. [PMID: 28053076 PMCID: PMC5886346 DOI: 10.1093/ilar/ilw024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 08/01/2016] [Accepted: 09/01/2016] [Indexed: 12/16/2022] Open
Abstract
Before a potential new medicine can be administered to humans it is essential that its safety is adequately assessed. Safety assessment in animals forms an integral part of this process, from early drug discovery and initial candidate selection to the program of recommended regulatory tests in animals. The 3Rs (replacement, reduction, and refinement of animals in research) are integrated in the current regulatory requirements and expectations and, in the EU, provide a legal and ethical framework for in vivo research to ensure the scientific objectives are met whilst minimizing animal use and maintaining high animal welfare standards. Though the regulations are designed to uncover potential risks, they are intended to be flexible, so that the most appropriate approach can be taken for an individual product. This article outlines current and future opportunities to apply the 3Rs in safety assessment programs for pharmaceuticals, and the potential (scientific, financial, and ethical) benefits to the industry, across the drug discovery and development process. For example, improvements to, or the development of, novel, early screens (e.g., in vitro, in silico, or nonmammalian screens) designed to identify compounds with undesirable characteristics earlier in development have the potential to reduce late-stage attrition by improving the selection of compounds that require regulatory testing in animals. Opportunities also exist within the current regulatory framework to simultaneously reduce and/or refine animal use and improve scientific outcomes through improvements to technical procedures and/or adjustments to study designs. It is important that approaches to safety assessment are continuously reviewed and challenged to ensure they are science-driven and predictive of relevant effects in humans.
Collapse
Affiliation(s)
- Fiona Sewell
- Fiona Sewell, PhD, is a Programme Manager in Toxicology and Regulatory Sciences at the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK.Joanna Edwards, PhD, is a Programme Manager in Technology Development at the NC3Rs, London, UK.Helen Prior, PhD, is a Programme Manager in Drug Development at the NC3Rs, London, UK.Sally Robinson, PhD, is Head of Laboratory Animal Sciences at AstraZeneca, Alderley Park, UK
| | - Joanna Edwards
- Fiona Sewell, PhD, is a Programme Manager in Toxicology and Regulatory Sciences at the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK.Joanna Edwards, PhD, is a Programme Manager in Technology Development at the NC3Rs, London, UK.Helen Prior, PhD, is a Programme Manager in Drug Development at the NC3Rs, London, UK.Sally Robinson, PhD, is Head of Laboratory Animal Sciences at AstraZeneca, Alderley Park, UK
| | - Helen Prior
- Fiona Sewell, PhD, is a Programme Manager in Toxicology and Regulatory Sciences at the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK.Joanna Edwards, PhD, is a Programme Manager in Technology Development at the NC3Rs, London, UK.Helen Prior, PhD, is a Programme Manager in Drug Development at the NC3Rs, London, UK.Sally Robinson, PhD, is Head of Laboratory Animal Sciences at AstraZeneca, Alderley Park, UK
| | - Sally Robinson
- Fiona Sewell, PhD, is a Programme Manager in Toxicology and Regulatory Sciences at the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK.Joanna Edwards, PhD, is a Programme Manager in Technology Development at the NC3Rs, London, UK.Helen Prior, PhD, is a Programme Manager in Drug Development at the NC3Rs, London, UK.Sally Robinson, PhD, is Head of Laboratory Animal Sciences at AstraZeneca, Alderley Park, UK
| |
Collapse
|
48
|
Sala L, Yu Z, Ward-van Oostwaard D, van Veldhoven JP, Moretti A, Laugwitz KL, Mummery CL, IJzerman AP, Bellin M. A new hERG allosteric modulator rescues genetic and drug-induced long-QT syndrome phenotypes in cardiomyocytes from isogenic pairs of patient induced pluripotent stem cells. EMBO Mol Med 2016; 8:1065-81. [PMID: 27470144 PMCID: PMC5009811 DOI: 10.15252/emmm.201606260] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Long-QT syndrome (LQTS) is an arrhythmogenic disorder characterised by prolongation of the QT interval in the electrocardiogram, which can lead to sudden cardiac death. Pharmacological treatments are far from optimal for congenital forms of LQTS, while the acquired form, often triggered by drugs that (sometimes inadvertently) target the cardiac hERG channel, is still a challenge in drug development because of cardiotoxicity. Current experimental models in vitro fall short in predicting proarrhythmic properties of new drugs in humans. Here, we leveraged a series of isogenically matched, diseased and genetically engineered, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients to test a novel hERG allosteric modulator for treating congenital LQTS, drug-induced LQTS or a combination of the two. By slowing IK r deactivation and positively shifting IK r inactivation, the small molecule LUF7346 effectively rescued all of these conditions, demonstrating in a human system that allosteric modulation of hERG may be useful as an approach to treat inherited and drug-induced LQTS Furthermore, our study provides experimental support of the value of isogenic pairs of patient hiPSC-CMs as platforms for testing drug sensitivities and performing safety pharmacology.
Collapse
Affiliation(s)
- Luca Sala
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhiyi Yu
- Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Jacobus Pd van Veldhoven
- Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Alessandra Moretti
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Karl-Ludwig Laugwitz
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
49
|
Points to consider for a validation study of iPS cell-derived cardiomyocytes using a multi-electrode array system. J Pharmacol Toxicol Methods 2016; 81:196-200. [DOI: 10.1016/j.vascn.2016.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 12/16/2022]
|
50
|
Hill AP, Perry MD, Abi-Gerges N, Couderc JP, Fermini B, Hancox JC, Knollmann BC, Mirams GR, Skinner J, Zareba W, Vandenberg JI. Computational cardiology and risk stratification for sudden cardiac death: one of the grand challenges for cardiology in the 21st century. J Physiol 2016; 594:6893-6908. [PMID: 27060987 PMCID: PMC5134408 DOI: 10.1113/jp272015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/16/2016] [Indexed: 12/25/2022] Open
Abstract
Risk stratification in the context of sudden cardiac death has been acknowledged as one of the major challenges facing cardiology for the past four decades. In recent years, the advent of high performance computing has facilitated organ-level simulation of the heart, meaning we can now examine the causes, mechanisms and impact of cardiac dysfunction in silico. As a result, computational cardiology, largely driven by the Physiome project, now stands at the threshold of clinical utility in regards to risk stratification and treatment of patients at risk of sudden cardiac death. In this white paper, we outline a roadmap of what needs to be done to make this translational step, using the relatively well-developed case of acquired or drug-induced long QT syndrome as an exemplar case.
Collapse
Affiliation(s)
- Adam P Hill
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Matthew D Perry
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Najah Abi-Gerges
- AnaBios Corporation, 3030 Bunker Hill St., San Diego, CA, 92109, USA
| | | | - Bernard Fermini
- Global Safety Pharmacology, Pfizer Inc, MS8274-1347 Eastern Point Road, Groton, CT, 06340, USA
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Bjorn C Knollmann
- Vanderbilt University School of Medicine, 1285 Medical Research Building IV, Nashville, Tennessee, 37232, USA
| | - Gary R Mirams
- Computational Biology, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Jon Skinner
- Cardiac Inherited Disease Group, Starship Hospital, Auckland, New Zealand
| | - Wojciech Zareba
- University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|