1
|
Korbelik M, Heger M, Girotti AW. Participation of lipids in the tumor response to photodynamic therapy and its exploitation for therapeutic gain. J Lipid Res 2025; 66:100729. [PMID: 39675508 PMCID: PMC11911859 DOI: 10.1016/j.jlr.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Hydroperoxides of unsaturated membrane lipids (LOOHs) are the most abundant non-radical intermediates generated by photodynamic therapy (PDT) of soft tissues such as tumors and have far longer average lifetimes than singlet oxygen or oxygen radicals formed during initial photodynamic action. LOOH-initiated post-irradiation damage to remaining membrane lipids (chain peroxidation) or to membrane-associated proteins remains largely unrecognized. Such after-light processes could occur during clinical oncological PDT, but this is not well-perceived by practitioners of this therapy. In general, the pivotal influence of lipids in tumor responses to PDT needs to be better appreciated. Of related importance is the fact that most malignant tumors have dramatically different lipid metabolism compared with healthy tissues, and this too is often ignored. The response of tumors to PDT appears especially vulnerable to manipulations within the tumor lipid microenvironment. This can be exploited for therapeutic gain with PDT, as exemplified here by the combined treatment with the antitumor lipid edelfosine.
Collapse
Affiliation(s)
- Mladen Korbelik
- Department of Integrative Oncology, BC Cancer, Vancouver, BC, Canada
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, P. R. China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Elmaghrabi YA, Roseblade A, Rahman K, Rawling T, Murray M. Carbon Chain Length in a Novel Anticancer Aryl-Urea Fatty Acid Modulates Mitochondrial Targeting, Reactive Oxygen Species Production and Cell Killing. ChemMedChem 2024; 19:e202400281. [PMID: 38945837 DOI: 10.1002/cmdc.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The cancer cell mitochondrion could be a promising target for the development of new anticancer agents. 16-([3-chloro-5-(trifluoromethyl)-phenyl]carbamoylamino)hexadecanoic acid (2) is a novel aryl-urea fatty acid that targets the mitochondrion in MDA-MB-231 breast cancer cells and activates cell death. In the present study, the relationships between alkyl chain length in 2 analogues, mitochondrial disruption and cell killing were evaluated. The chain-contracted C13-analogue 7 c optimally disrupted the mitochondrial membrane potential (IC50 4.8±0.8 μM). In addition, annexin V-FITC/7-AAD assays demonstrated that 7 c was the most effective cell killing analogue and C11 BODIPY (581/591) assays demonstrated that 7 c was also most effective in generating reactive oxygen species in MDA-MB-231 cells. Together, carbon chain length is a key factor that determines the capacity of 2 analogues to disrupt the mitochondrial membrane, induce the production of reactive oxygen species and kill breast cancer cells. As an aryl-urea with enhanced activity and improved drug-like properties, 7 c may be a suitable lead molecule for entry into a program of development of these molecules as anticancer agents.
Collapse
Affiliation(s)
- Yasmin A Elmaghrabi
- Discipline of Pharmacology and Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Camperdown NSW, 2006, Australia
| | - Ariane Roseblade
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW, 2007, Australia
| | - Khalilur Rahman
- Discipline of Pharmacology and Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Camperdown NSW, 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW, 2007, Australia
| | - Michael Murray
- Discipline of Pharmacology and Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Camperdown NSW, 2006, Australia
| |
Collapse
|
3
|
Dikeocha IJ, Wardill HR, Coller JK, Bowen JM. Dietary interventions and tumor response to chemotherapy in breast cancer: A comprehensive review of preclinical and clinical data. Clin Nutr ESPEN 2024; 63:462-475. [PMID: 39018241 DOI: 10.1016/j.clnesp.2024.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND & AIMS Optimizing treatment efficacy is still a critical part in advancing the treatment of breast cancer. Dietary interventions have drawn significant attention for their potential to increase tumor sensitivity, with a plethora of strategies evaluated both preclinically and clinically. The aim of this paper is to explore these strategies, ranging from entire dietary programs to specific supplements, for their potential to directly enhance tumor sensitivity and chemotherapy adherence. METHODS PubMed, Scopus, Embase and Web of Science databases were searched up to September 2023. In this comprehensive review, preclinical and clinical research on dietary interventions used in conjunction with chemotherapy for breast cancer was examined and synthesized, to identify potential causal mechanisms. RESULTS 42 studies in total were identified and synthesized, 32 pre-clinical and 8 clinical studies. CONCLUSION Although a topic of intense interest, the heterogeneity in approaches has resulted in a large but minimally impactful evidence base, further complicated by a limited understanding of the mechanisms at play. This review highlights the areas for further research to increase opportunities for nutritional-based interventions as adjuvant to chemotherapy for breast cancer.
Collapse
Affiliation(s)
- Ifeoma J Dikeocha
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Level 2 Helen Mayo South, North Terrace, Adelaide, SA 5000, Australia.
| | - Hannah R Wardill
- Supportive Oncology Research Group, Precision Cancer Medicine, The South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Janet K Coller
- Discipline of Pharmacology, School of Biomedicine, The University of Adelaide, Level 2 Helen Mayo South, North Terrace, Adelaide, SA 5000, Australia
| | - Joanne M Bowen
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Level 2 Helen Mayo South, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
4
|
Çetinel ZÖ, Bilge D. Investigation of miltefosine-model membranes interactions at the molecular level for two different PS levels modeling cancer cells. J Bioenerg Biomembr 2024; 56:461-473. [PMID: 38833041 PMCID: PMC11217121 DOI: 10.1007/s10863-024-10025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024]
Abstract
Miltefosine (MLT) is a broad-spectrum drug included in the alkylphospholipids (APL) used against leishmania and various types of cancer. The most crucial feature of APLs is that they are thought to only kill cancerous cells without harming normal cells. However, the molecular mechanism of action of APLs is not completely understood. The increase in the phosphatidylserine (PS) ratio is a marker showing the stage of cancer and even metastasis. The goal of this research was to investigate the molecular effects of miltefosine at the molecular level in different PS ratios. The effects of MLT on membrane phase transition, membrane orders, and dynamics were studied using DPPC/DPPS (3:1) and DPPC/DPPS (1:1) multilayer (MLV) vesicles mimicking DPPS ratio variation, Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared spectroscopy (FTIR). Our findings indicate that miltefosine is evidence at the molecular level that it is directed towards the tumor cell and that the drug's effect increases with the increase of anionic lipids in the membrane depending on the stage of cancer.
Collapse
Affiliation(s)
| | - Duygu Bilge
- Department of Physics, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey.
| |
Collapse
|
5
|
Lin X, Zheng J, Cai X, Liu L, Jiang S, Liu Q, Sun Y. Glycometabolism and lipid metabolism related genes predict the prognosis of endometrial carcinoma and their effects on tumor cells. BMC Cancer 2024; 24:571. [PMID: 38720279 PMCID: PMC11080313 DOI: 10.1186/s12885-024-12327-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Glycometabolism and lipid metabolism are critical in cancer metabolic reprogramming. The primary aim of this study was to develop a prognostic model incorporating glycometabolism and lipid metabolism-related genes (GLRGs) for accurate prognosis assessment in patients with endometrial carcinoma (EC). METHODS Data on gene expression and clinical details were obtained from publicly accessible databases. GLRGs were obtained from the Genecards database. Through nonnegative matrix factorization (NMF) clustering, molecular groupings with various GLRG expression patterns were identified. LASSO Cox regression analysis was employed to create a prognostic model. Use rich algorithms such as GSEA, GSVA, xCELL ssGSEA, EPIC,CIBERSORT, MCPcounter, ESTIMATE, TIMER, TIDE, and Oncoppredict to analyze functional pathway characteristics of the forecast signal, immune status, anti-tumor therapy, etc. The expression was assessed using Western blot and quantitative real-time PCR techniques. A total of 113 algorithm combinations were combined to screen out the most significant GLRGs in the signature for in vitro experimental verification, such as colony formation, EdU cell proliferation, wound healing, apoptosis, and Transwell assays. RESULTS A total of 714 GLRGs were found, and 227 of them were identified as prognostic-related genes. And ten GLRGs (AUP1, ESR1, ERLIN2, ASS1, OGDH, BCKDHB, SLC16A1, HK2, LPCAT1 and PGR-AS1) were identified to construct the prognostic model of patients with EC. Based on GLRGs, the risk model's prognosis and independent prognostic value were established. The signature of GLRGs exhibited a robust correlation with the infiltration of immune cells and the sensitivity to drugs. In cytological experiments, we selected HK2 as candidate gene to verify its value in the occurrence and development of EC. Western blot and qRT-PCR revealed that HK2 was substantially expressed in EC cells. According to in vitro experiments, HK2 knockdown can increase EC cell apoptosis while suppressing EC cell migration, invasion, and proliferation. CONCLUSION The GLRGs signature constructed in this study demonstrated significant prognostic value for patients with endometrial carcinoma, thereby providing valuable guidance for treatment decisions.
Collapse
Affiliation(s)
- Xuefen Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Jianfeng Zheng
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Xintong Cai
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China
| | - Li Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China
| | - Shan Jiang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China
- Fujian University of Chinese Medicine, Fuzhou, 350014, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Yang Sun
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420, Fuma Road, Jin'an District, Fuzhou City, Fujian Province, 350014, P. R. China.
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
6
|
Murray M. Omega-3 polyunsaturated fatty acid derived lipid mediators: a comprehensive update on their application in anti-cancer drug discovery. Expert Opin Drug Discov 2024; 19:617-629. [PMID: 38595031 DOI: 10.1080/17460441.2024.2340493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION ω-3 Polyunsaturated fatty acids (PUFAs) have a range of health benefits, including anticancer activity, and are converted to lipid mediators that could be adapted into pharmacological strategies. However, the stability of these mediators must be improved, and they may require formulation to achieve optimal tissue concentrations. AREAS COVERED Herein, the author reviews the literature around chemical stabilization and formulation of ω-3 PUFA mediators and their application in anticancer drug discovery. EXPERT OPINION Aryl-urea bioisosteres of ω-3 PUFA epoxides that killed cancer cells targeted the mitochondrion by a novel dual mechanism: as protonophoric uncouplers and as inhibitors of electron transport complex III that activated ER-stress and disrupted mitochondrial integrity. In contrast, aryl-ureas that contain electron-donating substituents prevented cancer cell migration. Thus, aryl-ureas represent a novel class of agents with tunable anticancer properties. Stabilized analogues of other ω-3 PUFA-derived mediators could also be adapted into anticancer strategies. Indeed, a cocktail of agents that simultaneously promote cell killing, inhibit metastasis and angiogenesis, and that attenuate the pro-inflammatory microenvironment is a novel future anticancer strategy. Such regimen may enhance anticancer drug efficacy, minimize the development of anticancer drug resistance and enhance outcomes.
Collapse
Affiliation(s)
- Michael Murray
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, NSW, Australia
- Woolcock Institute of Medical Research, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
7
|
Korbelik M. Photodynamic Therapy Supported by Antitumor Lipids. Pharmaceutics 2023; 15:2723. [PMID: 38140064 PMCID: PMC10747669 DOI: 10.3390/pharmaceutics15122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Photodynamic therapy (PDT) destroys tumors by generating cytotoxic oxidants that induce oxidative stress in targeted cancer cells. Antitumor lipids developed for cancer therapy act also by inflicting similar stress. The present study investigated whether tumor response to PDT can be improved by adjuvant treatment with such lipids using the prototype molecule edelfosine. Cellular stress intensity following Photofrin-based PDT, edelfosine treatment, or their combination was assessed by the expression of heat shock protein 70 (HSP70) on the surface of treated SCCVII tumor cells by FITC-conjugated anti-HSP70 antibody staining and flow cytometry. Surface HSP70 levels that became elevated after either PDT or edelfosine rose much higher after their combined treatment. The impact of Photofrin-PDT-plus-edelfosine treatment was studied with three types of tumor models grown in syngeneic mice. With both SCCVII squamous cell carcinomas and MCA205 fibrosarcoma, the greatest impact was with edelfosine peritumoral injection at 24 h after PDT, which substantially improved tumor cure rates. With Lewis lung carcinomas, edelfosine was highly effective in elevating PDT-mediated tumor cure rates even when injected peritumorally immediately after PDT. Edelfosine used before PDT was ineffective as adjuvant with all tumor models. The study findings provide proof-in-principle for use of cancer lipids with tumor PDT.
Collapse
Affiliation(s)
- Mladen Korbelik
- Department of Integrative Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
8
|
Kong F, Wang N, Gao F, Liang Y, Li L, Yu M, Zhao L, Zhang D, Jia Y. The clinical application of atorvastatin in patients with small-cell lung cancer with dyslipidemia. J Cancer Res Clin Oncol 2023; 149:13697-13704. [PMID: 37522924 DOI: 10.1007/s00432-023-05102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Various experimental studies demonstrated that atorvastatin exerted additive effects with anticancer drugs to impair tumor growth, delay relapse, and prolong survival time in lung cancer. However, it is indistinct whether there are survival benefits of atorvastatin in the treatment of small-cell lung cancer (SCLC) patients with dyslipidemia. Therefore, this study aimed to evaluate the efficacy and safety of atorvastatin plus first-line standard chemotherapy in SCLC combined dyslipidemia. METHODS This was a retrospective analysis of 91 eligible SCLC patients with dyslipidemia registered at the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine from October 2018 to October 2022. SCLC patients with confirmed dyslipidemia were assigned to the treatment group to receive atorvastatin plus first-line standard chemotherapy (n = 45) or to the control group to accept chemotherapy (n = 46) until disease progression or unmanageable toxicity occurred. The clinicopathological parameters and survival data were collected and analyzed. Univariate and multivariate analyses were performed to investigate the prognostic significance of SCLC. The median progression-free survival (mPFS) was considered to be the pivotal symbol as the primary endpoint. The second endpoints were recognized as the median overall survival (mOS) and toxicity. RESULTS In the total of 91 enrolled patients, the curative effect can be evaluated in all patients. Research results showed that atorvastatin added to first-line standard chemotherapy was associated with a significant improvement in survival (mPFS: 7.4 vs 6.8 months, P = 0.031; mOS: 14.7 vs 13.2 months, P = 0.002). CONCLUSION Atorvastatin added to first-line standard chemotherapy achieved prospective efficacy and manageable safety in SCLC combined dyslipidemia.
Collapse
Affiliation(s)
- Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Na Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Fangfang Gao
- Department of Pediatrics, Tianjin Medical University General Hospital, Anshan Road, Tianjin, 300052, China
| | - Yangyueying Liang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Longhui Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Minghui Yu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Lu Zhao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Dou Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| |
Collapse
|
9
|
Wang S, Wang P, Li SJ, Chen YH, Sun ZJ, Lei A. Electrochemical flow aziridination of unactivated alkenes. Natl Sci Rev 2023; 10:nwad187. [PMID: 38059062 PMCID: PMC10697417 DOI: 10.1093/nsr/nwad187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 12/08/2023] Open
Abstract
Aziridines derived from bioactive molecules may have unique pharmacological activities, making them useful in pharmacology (e.g. mitomycin C). Furthermore, the substitution of the epoxide moiety in epothilone B with aziridine, an analog of epoxides, yielded a pronounced enhancement in its anticancer efficacy. Thus, there is interest in developing novel synthetic technologies to produce aziridines from bioactive molecules. However, known methods usually require metal catalysts, stoichiometric oxidants and/or pre-functionalized amination reagents, causing difficulty in application. A practical approach without a metal catalyst and extra-oxidant for the aziridination of bioactive molecules is in demand, yet challenging. Herein, we report an electro-oxidative flow protocol that accomplishes an oxidant-free aziridination of natural products. This process is achieved by an oxidative sulfonamide/alkene cross-coupling, in which sulfonamide and alkene undergo simultaneous oxidation or alkene is oxidized preferentially. Further anticancer treatments in cell lines have demonstrated the pharmacological activities of these aziridines, supporting the potential of this method for drug discovery.
Collapse
Affiliation(s)
- Shengchun Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China
| | - Pengjie Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China
| | - Shu-Jin Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yi-Hung Chen
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China
| |
Collapse
|
10
|
Li Q, Li J, Wang K, Liao L, Li Y, Liang H, Huang C, Gan J, Dong X, Hu Y, Cheng J, Ji H, Liu C, Zeng M, Yu S, Wang B, Qian J, Tang Z, Peng Y, Tang S, Li M, Zhou J, Yan J, Li C. Activation of Sphingomyelin Phosphodiesterase 3 in Liver Regeneration Impedes the Progression of Colorectal Cancer Liver Metastasis Via Exosome-Bound Intercellular Transfer of Ceramides. Cell Mol Gastroenterol Hepatol 2023; 16:385-410. [PMID: 37245564 PMCID: PMC10372907 DOI: 10.1016/j.jcmgh.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND & AIMS The machinery that prevents colorectal cancer liver metastasis (CRLM) in the context of liver regeneration (LR) remains elusive. Ceramide (CER) is a potent anti-cancer lipid involved in intercellular interaction. Here, we investigated the role of CER metabolism in mediating the interaction between hepatocytes and metastatic colorectal cancer (CRC) cells to regulate CRLM in the context of LR. METHODS Mice were intrasplenically injected with CRC cells. LR was induced by 2/3 partial hepatectomy (PH) to mimic the CRLM in the context of LR. The alteration of corresponding CER-metabolizing genes was examined. The biological roles of CER metabolism in vitro and in vivo were examined by performing a series of functional experiments. RESULTS Induction of LR augmented apoptosis but promoted matrix metalloproteinase 2 (MMP2) expression and epithelial-mesenchymal transition (EMT) to increase the invasiveness of metastatic CRC cells, resulting in aggressive CRLM. Up-regulation of sphingomyelin phosphodiesterase 3 (SMPD3) was determined in the regenerating hepatocytes after LR induction and persisted in the CRLM-adjacent hepatocytes after CRLM formation. Hepatic Smpd3 knockdown was found to further promote CRLM in the context of LR by abolishing mitochondrial apoptosis and augmenting the invasiveness in metastatic CRC cells by up-regulating MMP2 and EMT through promoting the nuclear translocation of β-catenin. Mechanistically, we found that hepatic SMPD3 controlled the generation of exosomal CER in the regenerating hepatocytes and the CRLM-adjacent hepatocytes. The SMPD3-produced exosomal CER critically conducted the intercellular transfer of CER from the hepatocytes to metastatic CRC cells and impeded CRLM by inducing mitochondrial apoptosis and restricting the invasiveness in metastatic CRC cells. The administration of nanoliposomal CER was found to suppress CRLM in the context of LR substantially. CONCLUSIONS SMPD3-produced exosomal CER constitutes a critical anti-CRLM mechanism in LR to impede CRLM, offering the promise of using CER as a therapeutic agent to prevent the recurrence of CRLM after PH.
Collapse
Affiliation(s)
- Qingping Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jieyuan Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Leyi Liao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyi Li
- Department of Radiation Oncology, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hanbiao Liang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Can Huang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Gan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoyu Dong
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaowen Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaxin Cheng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongli Ji
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Cuiting Liu
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Minghui Zeng
- Institute of Scientific Research, Southern Medical University, Guangzhou, Guangdong, China
| | - Sheng Yu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongshun Tang
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Yonghong Peng
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Shanhua Tang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengxuan Li
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Song R, Li W, Deng S, Zhao Y, Tao N. Assessment of lipid composition and eicosapentaenoic acid/docosahexaenoic acid bioavailability in fish oil obtained through different enrichment methods. Front Nutr 2023; 10:1136490. [PMID: 36998903 PMCID: PMC10043196 DOI: 10.3389/fnut.2023.1136490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
In this study, we analyzed the eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA) lipid composition of fish oil obtained through enzymatic treatment, fractional distillation and silica gel column purification, and further assessed EPA/DHA bioavailability. Lipid subclass composition information was obtained through ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS), and bioavailability tests were performed using the Caco-2 cell monolayer model. Results showed that enzymatic treatment improved the incorporation of EPA/DHA as diacylglycerol (DG) while silica gel column chromatography enriched the content of EPA/DHA as phosphatidylglycerol (PG) (12.58%) and phosphatidylethanolamine (PE) (4.99%). Furthermore, increasing the purity of EPA/DHA could improve its bioavailability and after 24 incubation, binding forms of triglyceride (TG) was superior to ethyl ester (EE) (p < 0.05) at the same purity level. Those findings are helpful to provide research basis for exploring the bioactivity of fish oil.
Collapse
Affiliation(s)
- Rongzhen Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wen Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- *Correspondence: Ningping Tao,
| |
Collapse
|
12
|
Conte C, Longobardi G, Barbieri A, Palma G, Luciano A, Dal Poggetto G, Avitabile C, Pecoraro A, Russo A, Russo G, Laurienzo P, Romanelli A, Quaglia F. Non-covalent strategies to functionalize polymeric nanoparticles with NGR peptides for targeting breast cancer. Int J Pharm 2023; 633:122618. [PMID: 36657553 DOI: 10.1016/j.ijpharm.2023.122618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Surface functionalization of nanoparticles (NPs) with tumor-targeting peptides is an emerging approach with a huge potential to translate in the clinic and ameliorate the efficacy of nano-oncologicals. One major challenge is to find straightforward strategies for anchoring peptides on the surface of biodegradable NPs and ensuring their correct exposure and orientation to bind the target receptor. Here, we propose a non-covalent strategy to functionalize polyester aminic NPs based on the formation of either electrostatic or lipophilic interactions between NPs and the peptide modified with an anchoring moiety. We selected an iNGRt peptide containing a CendR motif (CRNGR) targeting neuropilin receptor 1 (NRP-1), which is upregulated in several cancers. iNGRt was linked with either a short poly(glutamic acid) chain (polyE) or a palmitoyl chain (Palm) and used to functionalize the surface of NPs made of a diamine poly(ε-caprolactone). iNGRt-PolyE was adsorbed on preformed cationic NPs through electrostatic interaction, whereas iNGRt-Palm was integrated into the forming NPs through interactions. In both cases, peptides were strongly associated with NPs of ∼100 nm, low polydispersity indexes, and positive zeta potential values. NPs entered MDA-MB231 breast cancer cells overexpressing NRP-1 via receptor-mediated endocytosis and showed a different cell localization depending on the mode of peptide anchoring. When loaded with the lipophilic anticancer drug docetaxel (DTX), NPs functionalized with the iNGRt-Palm variant exerted a time- and dose-dependent cytotoxicity similar to DTX in MDA-MB-231 cells but were less toxic than DTX toward control MRC-5 human fibroblasts, not expressing NRP-1. In a heterotopic mouse model of triple negative breast cancer, iNGRt-Palm NPs were tolerated better than free DTX and demonstrated superior anticancer activity and survival compared to both free DTX and NPs without peptide functionalization. We foresee that the functionalization strategy with palmitoylated peptides proposed here can be extended to other biodegradable NPs and peptide sequences designed for therapeutic or targeting purposes.
Collapse
Affiliation(s)
- Claudia Conte
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.
| | - Giuseppe Longobardi
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Antonio Barbieri
- Animal Facility Unit, Istituto Nazionale Tumori "Fondazione Pascale", Via M. Semmola, 52, 80131 (NA) Naples, Italy
| | - Giuseppe Palma
- Animal Facility Unit, Istituto Nazionale Tumori "Fondazione Pascale", Via M. Semmola, 52, 80131 (NA) Naples, Italy
| | - Antonio Luciano
- Animal Facility Unit, Istituto Nazionale Tumori "Fondazione Pascale", Via M. Semmola, 52, 80131 (NA) Naples, Italy
| | - Giovanni Dal Poggetto
- Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | | | - Annalisa Pecoraro
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Annapina Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Paola Laurienzo
- Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | | | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| |
Collapse
|
13
|
Rahman MK, Umashankar B, Choucair H, Pazderka C, Bourget K, Chen Y, Dunstan CR, Rawling T, Murray M. Inclusion of the in-chain sulfur in 3-thiaCTU increases the efficiency of mitochondrial targeting and cell killing by anticancer aryl-urea fatty acids. Eur J Pharmacol 2023; 939:175470. [PMID: 36543287 DOI: 10.1016/j.ejphar.2022.175470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Mitochondria in tumor cells are functionally different from those in normal cells and could be targeted to develop new anticancer agents. We showed recently that the aryl-ureido fatty acid CTU is the prototype of a new class of mitochondrion-targeted agents that kill cancer cells by increasing the production of reactive oxygen species (ROS), activating endoplasmic reticulum (ER)-stress and promoting apoptosis. However, prolonged treatment with high doses of CTU were required for in vivo anti-tumor activity. Thus, new strategies are now required to produce agents that have enhanced anticancer activity over CTU. In the present study we prepared a novel aryl-urea termed 3-thiaCTU, that contained an in-chain sulfur heteroatom, for evaluation in tumor cell lines and in mice carrying tumor xenografts. The principal finding to emerge was that 3-thiaCTU was several-fold more active than CTU in the activation of aryl-urea mechanisms that promoted cancer cell killing. Thus, in in vitro studies 3-thiaCTU disrupted the mitochondrial membrane potential, increased ROS production, activated ER-stress and promoted tumor cell apoptosis more effectively than CTU. 3-ThiaCTU was also significantly more active than CTUin vivo in mice that carried MDA-MB-231 cell xenografts. Compared to CTU, 3-thiaCTU prevented tumor growth more effectively and at much lower doses. These findings indicate that, in comparison to CTU, 3-thiaCTU is an aryl-urea with markedly enhanced activity that could now be suitable for development as a novel anticancer agent.
Collapse
Affiliation(s)
- Md Khalilur Rahman
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia
| | - Balasubrahmanyam Umashankar
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia
| | - Hassan Choucair
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia
| | - Curtis Pazderka
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Kirsi Bourget
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia
| | - Yongjuan Chen
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia; Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, New South Wales, 2006, Australia
| | - Colin R Dunstan
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, New South Wales, 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
14
|
Lipid Metabolism and Homeostasis in Patients with Neuroendocrine Neoplasms: From Risk Factor to Potential Therapeutic Target. Metabolites 2022; 12:metabo12111057. [PMID: 36355141 PMCID: PMC9692415 DOI: 10.3390/metabo12111057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Lipid metabolism is known to be involved in tumorigenesis and disease progression in many common cancer types, including colon, lung, breast and prostate, through modifications of lipid synthesis, storage and catabolism. Furthermore, lipid alterations may arise as a consequence of cancer treatment and may have a role in treatment resistance. Neuroendocrine neoplasms (NENs) are a heterogeneous group of malignancies with increasing incidence, whose mechanisms of cancer initiation and progression are far from being fully understood. Alterations of lipid metabolism may be common across various cancer types, but data about NENs are scattered and heterogeneous. Herein, we provide an overview of the relevant literature on lipid metabolism and alterations in NENs. The available evidence both in basic and clinical research about lipid metabolism in NENs, including therapeutic effects on lipid homeostasis, are summarized. Additionally, the potential of targeting the lipid profile in NEN therapy is also discussed, and areas for further research are proposed.
Collapse
|
15
|
Li X, Liu M, Liu H, Chen J. Tumor metabolic reprogramming in lung cancer progression. Oncol Lett 2022; 24:287. [PMID: 35814833 PMCID: PMC9260716 DOI: 10.3892/ol.2022.13407] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/25/2022] [Indexed: 11/06/2022] Open
Abstract
Metabolic reprogramming is an important characteristic of tumor cells. Tumor cells reprogram their metabolic pathways to meet the material, energy and redox force needs for rapid proliferation. Metabolic reprogramming changes the level or type of specific metabolites inside and outside cells, and promotes tumor growth by affecting gene expression, cell state and the tumor microenvironment. Glucose metabolism, glutamine metabolism and lipid metabolism are significant metabolic pathways in tumors. Targeting metabolic reprogramming can significantly inhibit tumor growth and induce apoptosis. Metabolic reprogramming also plays an important role in maintaining the growth advantage of tumor cells and enhancing the chemotherapy tolerance of lung cancer. This review summarizes abnormal changes in the metabolism of glucose, fat and amino acids in lung cancer, and the underlying molecular mechanism, with the aim of providing novel ideas for the prevention, early diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Xin Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Minghui Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
16
|
Cui MY, Yi X, Zhu DX, Wu J. The Role of Lipid Metabolism in Gastric Cancer. Front Oncol 2022; 12:916661. [PMID: 35785165 PMCID: PMC9240397 DOI: 10.3389/fonc.2022.916661] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Gastric cancer has been one of the most common cancers worldwide with extensive metastasis and high mortality. Chemotherapy has been found as a main treatment for metastatic gastric cancer, whereas drug resistance limits the effectiveness of chemotherapy and leads to treatment failure. Chemotherapy resistance in gastric cancer has a complex and multifactorial mechanism, among which lipid metabolism plays a vital role. Increased synthesis of new lipids or uptake of exogenous lipids can facilitate the rapid growth of cancer cells and tumor formation. Lipids form the structural basis of biofilms while serving as signal molecules and energy sources. It is noteworthy that lipid metabolism is capable of inducing drug resistance in gastric cancer cells by reshaping the tumor micro-environment. In this study, new mechanisms of lipid metabolism in gastric cancer and the metabolic pathways correlated with chemotherapy resistance are reviewed. In particular, we discuss the effects of lipid metabolism on autophagy, biomarkers treatment and drug resistance in gastric cancer from the perspective of lipid metabolism. In brief, new insights can be gained into the development of promising therapies through an in-depth investigation of the mechanism of lipid metabolism reprogramming and resensitization to chemotherapy in gastric cancer cells, and scientific treatment can be provided by applying lipid-key enzyme inhibitors as cancer chemical sensitizers in clinical settings.
Collapse
Affiliation(s)
| | | | | | - Jun Wu
- *Correspondence: Jun Wu, ; Dan-Xia Zhu,
| |
Collapse
|
17
|
Nitta S, Kandori S, Tanaka K, Sakka S, Siga M, Nagumo Y, Negoro H, Kojima T, Mathis BJ, Shimazui T, Miyamoto T, Matsuzaka T, Shimano H, Nishiyama H. ELOVL5-mediated fatty acid elongation promotes cellular proliferation and invasion in renal cell carcinoma. Cancer Sci 2022; 113:2738-2752. [PMID: 35670054 PMCID: PMC9357625 DOI: 10.1111/cas.15454] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022] Open
Abstract
Renal cell carcinoma (RCC) features altered lipid metabolism and accumulated polyunsaturated fatty acids (PUFAs). Elongation of very long–chain fatty acid (ELOVL) family enzymes catalyze fatty acid elongation, and ELOVL5 is indispensable for PUFAs elongation, but its role in RCC progression remains unclear. Here, we show that higher levels of ELOVL5 correlate with poor RCC clinical prognosis. Liquid chromatography/electrospray ionization‐tandem mass spectrometry analysis showed decreases in ELOVL5 end products (arachidonic acid and eicosapentaenoic acid) under CRISPR/Cas9‐mediated knockout of ELOVL5 while supplementation with these fatty acids partially reversed the cellular proliferation and invasion effects of ELOVL5 knockout. Regarding cellular proliferation and invasion, CRISPR/Cas9‐mediated knockout of ELOVL5 suppressed the formation of lipid droplets and induced apoptosis via endoplasmic reticulum stress while suppressing renal cancer cell proliferation and in vivo tumor growth. Furthermore, CRISPR/Cas9‐mediated knockout of ELOVL5 inhibited AKT Ser473 phosphorylation and suppressed renal cancer cell invasion through chemokine (C‐C motif) ligand‐2 downregulation by AKT‐mTOR‐STAT3 signaling. Collectively, these results suggest that ELOVL5‐mediated fatty acid elongation promotes not only cellular proliferation but also invasion in RCC.
Collapse
Affiliation(s)
- Satoshi Nitta
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shuya Kandori
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ken Tanaka
- Department of Urology, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Shotaro Sakka
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masanobu Siga
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshiyuki Nagumo
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiromitsu Negoro
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takahiro Kojima
- Department of Urology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Bryan J Mathis
- International Medical Center, University of Tsukuba Affiliated Hospital, Tsukuba, Japan
| | - Toru Shimazui
- Department of Urology, Ibaraki Prefectural Central Hospital, Kasama, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
18
|
Çetinel ZÖ, Bilge D. The effects of miltefosine on the structure and dynamics of DPPC and DPPS liposomes mimicking normal and cancer cell membranes: FTIR and DSC studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Jafari E, Rezaeinasab R, Khodarahmi G. Quinazolinone-based hybrids with diverse biological activities: A mini-review. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2022; 27:68. [PMID: 36353342 PMCID: PMC9639715 DOI: 10.4103/jrms.jrms_1025_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/12/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022]
Abstract
Quinazolinone and quinazoline have been shown different pharmacological activities, namely anticancer, anti-inflammatory, anti-hyperlipidemia, analgesic, antihypertensive, and antibacterial. On the other hand, molecular hybridization is a structural modification technique in the design of new ligands which consist of two or more pharmacologically active molecules in one structure. Therefore, due to the importance of the biological activities of quinazolinones for the development of new therapeutic agents, this review emphasizes current findings on various quinazolinone-based hybrids in medicinal chemistry. Moreover, it highlights the biological activities and structure-activity relationship of these hybrids.
Collapse
|
20
|
Yu L, Hua Z, Luo X, Zhao T, Liu Y. Systematic interaction of plasma albumin with the efficacy of chemotherapeutic drugs. Biochim Biophys Acta Rev Cancer 2021; 1877:188655. [PMID: 34780933 DOI: 10.1016/j.bbcan.2021.188655] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
Albumin, as the most abundant plasma protein, plays an integral role in the transport of a variety of exogenous and endogenous ligands in the bloodstream and extravascular spaces. For exogenous drugs, especially chemotherapeutic drugs, binding to and being delivered by albumin can significantly affect their efficacy. Meanwhile, albumin can also bind to many endogenous ligands, such as fatty acids, with important physiological significance that can affect tumor proliferation and metabolism. In this review, we summarize how albumin with unique properties affects chemotherapeutic drugs efficacy from the aspects of drug outcome in blood, toxicity, tumor accumulation and direct or indirect interactions with fatty acids, plus application of albumin-based carriers for anti-tumor drug delivery.
Collapse
Affiliation(s)
- Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
21
|
Oxidative stress and cancer: Role of n-3 PUFAs. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Cortés Fuentes IA, Burotto M, Retamal MA, Frelinghuysen M, Caglevic C, Gormaz JG. Potential use of n-3 PUFAs to prevent oxidative stress-derived ototoxicity caused by platinum-based chemotherapy. Free Radic Biol Med 2020; 160:263-276. [PMID: 32827639 DOI: 10.1016/j.freeradbiomed.2020.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Platinum-based compounds are widely used for the treatment of different malignancies due to their high effectiveness. Unfortunately, platinum-based treatment may lead to ototoxicity, an often-irreversible side effect without a known effective treatment and prevention plan. Platinum-based compound-related ototoxicity results mainly from the production of toxic levels of reactive oxygen species (ROS) rather than DNA-adduct formation, which has led to test strategies based on direct ROS scavengers to ameliorate hearing loss. However, favorable clinical results have been associated with several complications, including potential interactions with chemotherapy efficacy. To understand the contribution of the different cytotoxic mechanisms of platinum analogues on malignant cells and auditory cells, the particular susceptibility and response of both kinds of cells to molecules that potentially interfere with these mechanisms, is fundamental to develop innovative strategies to prevent ototoxicity without affecting antineoplastic effects. The n-3 long-chain polyunsaturated fatty acids (n-3 PUFAs) have been tried in different clinical settings, including with cancer patients. Nevertheless, their use to decrease cisplatin-induced ototoxicity has not been explored to date. In this hypothesis paper, we address the mechanisms of platinum compounds-derived ototoxicity, focusing on the differences between the effects of these compounds in neoplastic versus auditory cells. We discuss the basis for a strategic use of n-3 PUFAs to potentially protect auditory cells from platinum-derived injury without affecting neoplastic cells and chemotherapy efficacy.
Collapse
Affiliation(s)
- Ignacio A Cortés Fuentes
- Otorhinolaryngology Service, Hospital Barros Luco-Trudeau, San Miguel, Santiago, Chile; Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mauricio Burotto
- Oncology Department, Clínica Universidad de Los Andes, Santiago, Chile; Bradford Hill, Clinical Research Center, Santiago, Chile
| | - Mauricio A Retamal
- Universidad Del Desarrollo, Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Santiago, Chile.
| | | | - Christian Caglevic
- Cancer Research Department, Fundación Arturo López Pérez, Santiago, Chile
| | - Juan G Gormaz
- Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
23
|
Municoy M, González-Benjumea A, Carro J, Aranda C, Linde D, Renau-Mínguez C, Ullrich R, Hofrichter M, Guallar V, Gutiérrez A, Martínez AT. Fatty-Acid Oxygenation by Fungal Peroxygenases: From Computational Simulations to Preparative Regio- and Stereoselective Epoxidation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03165] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martí Municoy
- Barcelona Supercomputing Center, Jordi Girona 29, Barcelona E-08034, Spain
| | | | - Juan Carro
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, Madrid E-28040, Spain
| | - Carmen Aranda
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes 10, Seville E-41012, Spain
| | - Dolores Linde
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, Madrid E-28040, Spain
| | - Chantal Renau-Mínguez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, Madrid E-28040, Spain
| | - René Ullrich
- Technische Universität Dresden, International Institute Zittau, Markt 23, Zittau D-02763, Germany
| | - Martin Hofrichter
- Technische Universität Dresden, International Institute Zittau, Markt 23, Zittau D-02763, Germany
| | - Victor Guallar
- Barcelona Supercomputing Center, Jordi Girona 29, Barcelona E-08034, Spain
- ICREA, Passeig Lluís Companys 23, Barcelona E-08010, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes 10, Seville E-41012, Spain
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, Madrid E-28040, Spain
| |
Collapse
|
24
|
Dong Y, Wang H, Shan D, Yu Z. [Research Progress on the Relationship between Blood Lipids and
Lung Cancer Risk and Prognosis]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:824-829. [PMID: 32773011 PMCID: PMC7519960 DOI: 10.3779/j.issn.1009-3419.2020.102.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
近年来,肺癌成为导致癌症相关死亡的主要原因。越来越多证据表明,许多脂类和脂类类似物是肿瘤发生的关键调节因子,吸烟、饮食及肥胖等影响血脂水平的因素可能与癌症的风险相关。目前随着脂质与肿瘤发生过程关系的研究逐渐深入,探索血脂与肺癌风险及预后相关性已成为研究的热点。本文就血脂水平与肺癌发病风险、血脂水平与肺癌患者预后相关性及调整血脂药物与防治肺癌方向的研究进展进行综述。
Collapse
Affiliation(s)
- Ya Dong
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Haocheng Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Dongfeng Shan
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zhuang Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
25
|
Roy R, Roseblade A, Rawling T. Expansion of the structure-activity relationship of branched chain fatty acids: Effect of unsaturation and branching group size on anticancer activity. Chem Phys Lipids 2020; 232:104952. [PMID: 32814085 DOI: 10.1016/j.chemphyslip.2020.104952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/10/2023]
Abstract
Branched chain fatty acids (BCFAs) are a class of fatty acid with promising anticancer activity. The BCFA 13-methyltetradecanoic acid (13-MTD) inhibits tumour growth in vivo without toxicity but efficacy is limited by moderate potency, a property shared by all known BCFAs. The mechanism of action of BCFAs has not been fully elucidated, and in the absence of a clearly defined target optimisation of BCFA potency must rely on structure-activity relationships. Our current understanding of the structural features that promote BCFA anticancer activity is limited by the low structural diversity of reported BCFAs.The aim of this study was to examine the effects of two new structural modifications- unsaturation and branching group size- on BCFA activity. Thus, homologous series of saturated and cis-Δ11 unsaturated BCFAs were synthesised bearing methyl, ethyl, propyl and butyl branching groups, and were screened in vitro for activity against three human cancer cell lines. Potencies of the new BCFAs were compared to 13-MTD and an unbranched monounstaurated fatty acid (MUFA) bearing a cis-Δ11 double bond. The principal findings to emerge were that the anticancer activity of BCFAs was adversly affected by larger branching groups but significantly improved by incorporation of a cis-Δ11 double bond into the BCFA alkyl chain. This study provides new structure-activity relationship insights that may be used to develop BCFAs with improved potency and therapeutic potential.
Collapse
Affiliation(s)
- Ritik Roy
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Ariane Roseblade
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
26
|
Murray M, Roseblade A, Chen Y, Bourget K, Rawling T. Carbon Chain Length Modulates MDA‐MB‐231 Breast Cancer Cell Killing Mechanisms by Mitochondrially Targeted Aryl−Urea Fatty Acids. ChemMedChem 2020; 15:247-255. [DOI: 10.1002/cmdc.201900577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Michael Murray
- Discipline of Pharmacology School of Medical Sciences Faculty of Medicine and HealthUniversity of Sydney Camperdown, New South Wales 2006 Australia
| | - Ariane Roseblade
- School of Mathematical and Physical Sciences Faculty of ScienceUniversity of Technology Sydney Ultimo, New South Wales 2007 Australia
| | - Yongjuan Chen
- Discipline of Pharmacology School of Medical Sciences Faculty of Medicine and HealthUniversity of Sydney Camperdown, New South Wales 2006 Australia
| | - Kirsi Bourget
- Discipline of Pharmacology School of Medical Sciences Faculty of Medicine and HealthUniversity of Sydney Camperdown, New South Wales 2006 Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences Faculty of ScienceUniversity of Technology Sydney Ultimo, New South Wales 2007 Australia
| |
Collapse
|
27
|
Meng F, Kwon S, Wang J, Yeo Y. Immunoactive drug carriers in cancer therapy. BIOMATERIALS FOR CANCER THERAPEUTICS 2020:53-94. [DOI: 10.1016/b978-0-08-102983-1.00003-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Sanfilippo C, Paterna A, Biondi DM, Patti A. Lyophilized extracts from vegetable flours as valuable alternatives to purified oxygenases for the synthesis of oxylipins. Bioorg Chem 2019; 93:103325. [PMID: 31586707 DOI: 10.1016/j.bioorg.2019.103325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/31/2022]
Abstract
In this work, the whole aqueous extracts of soybean flour and oat flour have been used as valuable alternatives to purified oxygenase enzymes for the preparation of oxylipins derived from (5Z,8Z,11Z,14Z,17Z)-eicosapentaenoic acid (EPA). The lipoxygenase activity in the aqueous extracts of soybean (Glycine max. L.) flour was monitored with linoleic acid as substrate and compared with the commercially available purified enzyme (LOX-1). Oat flour extracts (Avena sativa L.) were evaluated for their peroxygenase activity by comparing different enzyme preparations in the epoxidation of methyl oleate. It was found that lyophilization of the aqueous extracts from these vegetable flours offers advantages in terms of enzyme stability, reproducibility and applicability to preparative organic synthesis. The lyophilized enzyme preparations were tested for the oxyfunctionalization of EPA and the formed products were isolated in satisfactory yields. In the presence of lyophilized extract from soybean, EPA gave 15S-hydroxy-(5Z,8Z,11Z,13E,17Z)-eicosapentaenoic acid in enantiopure form as exclusive product. Peroxygenase from oat flour was less selective and catalyzed the formation of different epoxides of EPA. However, the biocatalyzed epoxidation of EPA under controlled conditions allowed to obtain optically active (17R,18S)-epoxy-(5Z,8Z,11Z,14Z)-eicosatetraenoic acid (65% ee) as the main monoepoxide, among the five possible ones.
Collapse
Affiliation(s)
- Claudia Sanfilippo
- CNR - Istituto di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Angela Paterna
- CNR - Istituto di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Daniela M Biondi
- CNR - Istituto di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Angela Patti
- CNR - Istituto di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126 Catania, Italy.
| |
Collapse
|
29
|
Contaifer D, Roberts CH, Kumar NG, Natarajan R, Fisher BJ, Leslie K, Reed J, Toor AA, Wijesinghe DS. A Preliminary Investigation towards the Risk Stratification of Allogeneic Stem Cell Recipients with Respect to the Potential for Development of GVHD via Their Pre-Transplant Plasma Lipid and Metabolic Signature. Cancers (Basel) 2019; 11:E1051. [PMID: 31349646 PMCID: PMC6721383 DOI: 10.3390/cancers11081051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
The clinical outcome of allogeneic hematopoietic stem cell transplantation (SCT) may be influenced by the metabolic status of the recipient following conditioning, which in turn may enable risk stratification with respect to the development of transplant-associated complications such as graft vs. host disease (GVHD). To better understand the impact of the metabolic profile of transplant recipients on post-transplant alloreactivity, we investigated the metabolic signature of 14 patients undergoing myeloablative conditioning followed by either human leukocyte antigen (HLA)-matched related or unrelated donor SCT, or autologous SCT. Blood samples were taken following conditioning and prior to transplant on day 0 and the plasma was comprehensively characterized with respect to its lipidome and metabolome via liquid chromatography/mass spectrometry (LCMS) and gas chromatography/mass spectrometry (GCMS). A pro-inflammatory metabolic profile was observed in patients who eventually developed GVHD. Five potential pre-transplant biomarkers, 2-aminobutyric acid, 1-monopalmitin, diacylglycerols (DG 38:5, DG 38:6), and fatty acid FA 20:1 demonstrated high sensitivity and specificity towards predicting post-transplant GVHD. The resulting predictive model demonstrated an estimated predictive accuracy of risk stratification of 100%, with area under the curve of the ROC of 0.995. The likelihood ratio of 1-monopalmitin (infinity), DG 38:5 (6.0), and DG 38:6 (6.0) also demonstrated that a patient with a positive test result for these biomarkers following conditioning and prior to transplant will be at risk of developing GVHD. Collectively, the data suggest the possibility that pre-transplant metabolic signature may be used for risk stratification of SCT recipients with respect to development of alloreactivity.
Collapse
Affiliation(s)
- Daniel Contaifer
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Catherine H Roberts
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Naren Gajenthra Kumar
- Department of Microbiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ramesh Natarajan
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Bernard J Fisher
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Kevin Leslie
- Department of Physics, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jason Reed
- Department of Physics, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Amir A Toor
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Dayanjan S Wijesinghe
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA.
- Institute for Structural Biology Drug Discovery and Development (ISB3D), VCU School of Pharmacy, Richmond, VA 23298, USA.
- Da Vinci Center, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
30
|
Nutrition and Breast Cancer: A Literature Review on Prevention, Treatment and Recurrence. Nutrients 2019; 11:nu11071514. [PMID: 31277273 PMCID: PMC6682953 DOI: 10.3390/nu11071514] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is the second most common cancer worldwide and the most commonly occurring malignancy in women. There is growing evidence that lifestyle factors, including diet, body weight and physical activity, may be associated with higher BC risk. However, the effect of dietary factors on BC recurrence and mortality is not clearly understood. Here, we provide an overview of the current evidence obtained from the PubMed databases in the last decade, assessing dietary patterns, as well as the consumption of specific food-stuffs/food-nutrients, in relation to BC incidence, recurrence and survival. Data from the published literature suggest that a healthy dietary pattern characterized by high intake of unrefined cereals, vegetables, fruit, nuts and olive oil, and a moderate/low consumption of saturated fatty acids and red meat, might improve overall survival after diagnosis of BC. BC patients undergoing chemotherapy and/or radiotherapy experience a variety of symptoms that worsen patient quality of life. Studies investigating nutritional interventions during BC treatment have shown that nutritional counselling and supplementation with some dietary constituents, such as EPA and/or DHA, might be useful in limiting drug-induced side effects, as well as in enhancing therapeutic efficacy. Therefore, nutritional intervention in BC patients may be considered an integral part of the multimodal therapeutic approach. However, further research utilizing dietary interventions in large clinical trials is required to definitively establish effective interventions in these patients, to improve long-term survival and quality of life.
Collapse
|
31
|
Aryl-urea fatty acids that activate the p38 MAP kinase and down-regulate multiple cyclins decrease the viability of MDA-MB-231 breast cancer cells. Eur J Pharm Sci 2019; 129:87-98. [DOI: 10.1016/j.ejps.2018.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/03/2018] [Accepted: 12/21/2018] [Indexed: 01/07/2023]
|
32
|
Alam MM, Hassan AH, Lee KW, Cho MC, Yang JS, Song J, Min KH, Hong J, Kim DH, Lee YS. Design, synthesis and cytotoxicity of chimeric erlotinib-alkylphospholipid hybrids. Bioorg Chem 2019; 84:51-62. [DOI: 10.1016/j.bioorg.2018.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/03/2018] [Accepted: 11/17/2018] [Indexed: 11/25/2022]
|
33
|
Yang CJ, Kuo CT, Wu LH, Chen MC, Pangilinan CR, Phacharapiyangkul N, Liu W, Chen YH, Lee CH. Eicosapentaenoic acids enhance chemosensitivity through connexin 43 upregulation in murine melanoma models. Int J Med Sci 2019; 16:636-643. [PMID: 31217730 PMCID: PMC6566740 DOI: 10.7150/ijms.30889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/29/2019] [Indexed: 12/19/2022] Open
Abstract
Chemotherapy is now in common use for the treatment of tumors; however, with tumor growth retardation comes the severe side effects that occur after a chemotherapy cycle. Eicosapentaenoic acids (EPA) used in combination with chemotherapy has an additive effects and provides a rationale for using EPA in tandem with chemotherapy. To improve the efficacy and safety of this combination therapy, a further understanding that EPA modulates with the tumor microenvironment is necessary. Connexin 43 (Cx43) is involved in enhancing chemosensitivity that was suppressed in a tumor microenvironment. We aim to investigate the role of EPA in chemosensitivity in murine melanoma by inducing Cx43 expression. The dose-dependent upregulation of Cx43 expression and gap junction intercellular communication were observed in B16F10 cells after EPA treatment. Furthermore, EPA significantly increased the expression levels of mitogen-activated protein kinases (MAPK) signaling pathways. The EPA-induced Cx43 expression was reduced after MAPK inhibitors. Knockdown Cx43 in B16F10 cells reduced the therapeutic effects of combination therapy (EPA plus 5-Fluorouracil). Our results demonstrate that the treatment of EPA is a tumor induced Cx43 gap junction communication and enhances the combination of EPA and chemotherapeutic effects.
Collapse
Affiliation(s)
- Chih-Jen Yang
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Chi-Te Kuo
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Li-Hsien Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Man-Chin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | | | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Huey Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
34
|
In vitro effects of the antitumor drug miltefosine on human erythrocytes and molecular models of its membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:17-25. [DOI: 10.1016/j.bbamem.2018.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/31/2022]
|
35
|
Development of alkyl glycerone phosphate synthase inhibitors: Structure-activity relationship and effects on ether lipids and epithelial-mesenchymal transition in cancer cells. Eur J Med Chem 2018; 163:722-735. [PMID: 30576903 DOI: 10.1016/j.ejmech.2018.11.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/06/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
In aggressive tumors, alkylglyceronephosphate synthase (AGPS) controls cellular ether phospholipid utilization and metabolism to promote cancer cell proliferation and motility. SAR studies on the first-in-class AGPS inhibitor 1, discovered by our group, led to the 2,6-difluoro analog 2i which showed higher binding affinity than 1in vitro. In 231MFP cancer cells, 2i reduced ether lipids levels and cell migration rate. When tested in PC-3 and MDA-MB-231 cancer cells, 2i specifically impaired epithelial to mesenchymal transition (EMT) by modulating E-cadherin, Snail and MMP2 expression levels. Moreover, the combination of siRNAs against AGPS and 2i provided no additive effect, confirming that the modulation of 2i on EMT specifically relies on AGPS inhibition. Finally, this compound also affected cancer cell proliferation especially in MDA-MB-231 cells expressing higher AGPS level, whereas it provided negligible effects on MeT5A, a non-tumorigenic cell line, thus showing cancer specificity.
Collapse
|
36
|
Dadfarma A, Shayanfar M, Benisi-Kohansal S, Mohammad-Shirazi M, Sharifi G, Hosseini S, Esmaillzadeh A. Dietary Polyunsaturated Fat Intake in Relation to Glioma: A Case-Control Study. Nutr Cancer 2018; 70:1026-1033. [PMID: 30321055 DOI: 10.1080/01635581.2018.1494845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This study aimed to assess the association of dietary polyunsaturated fatty acid (PUFA) and risk of glioma among the Iranian population. A case-control study carried out among 128 newly diagnosed glioma adult patients with pathologically confirmed samples along with 256 sex- and age-matched controls. Dietary intake was examined by means of a validated semiquantitative food frequency questionnaire (FFQ). Total PUFA intake was computed by summing up dietary PUFAs from all food items in the questionnaire. Participants were categorized based on quartile cut-points of dietary PUFA intake. After taking into account the effect of age, sex and energy intake, individuals in the top quartile of PUFA intake were 77% less likely to have glioma than those in the bottom quartile (OR: 0.23; 95% CI: 0.11-0.48). Further adjustment for other potential variables strengthened the association. Additional controlling of nutrients did not alter the findings (OR: 0.19; 95% CI: 0.04-0.78). When we took into account the effect of body mass index (BMI), we found those in the highest quartile of PUFA intake has lower odds of glioma than those in the lowest (OR: 0.20; 95% CI: 0.05-0.84). We found dietary PUFA intake was inversely associated with risk of glioma in this case-control study on Iranian adults.
Collapse
Affiliation(s)
- Alireza Dadfarma
- a Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics , International Campus, Tehran University of Medical Sciences (IC-TUMS) , Tehran , Iran
| | - Mehdi Shayanfar
- b Department of Clinical Nutrition and Dietetics , National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Sanaz Benisi-Kohansal
- c Department of Community Nutrition, School of Nutrition and Food Science , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Minoo Mohammad-Shirazi
- c Department of Community Nutrition, School of Nutrition and Food Science , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Giuve Sharifi
- d Department of Neurosurgery , Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Saeed Hosseini
- a Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics , International Campus, Tehran University of Medical Sciences (IC-TUMS) , Tehran , Iran.,e Endocrinology and Metabolism Research Center , Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences , Tehran , Iran
| | - Ahmad Esmaillzadeh
- f Obesity and Eating Habits Research Center , Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences , Tehran , Iran.,g Department of Community Nutrition, School of Nutritional Sciences and Dietetics , Tehran University of Medical Sciences , Tehran , Iran.,h Department of Community Nutrition , Isfahan University of Medical Sciences , Isfahan , Iran
| |
Collapse
|
37
|
Khadge S, Thiele GM, Sharp JG, McGuire TR, Klassen LW, Black PN, DiRusso CC, Cook L, Talmadge JE. Long-chain omega-3 polyunsaturated fatty acids decrease mammary tumor growth, multiorgan metastasis and enhance survival. Clin Exp Metastasis 2018; 35:797-818. [PMID: 30327985 DOI: 10.1007/s10585-018-9941-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023]
Abstract
Epidemiological studies show a reduced risk of breast cancer (BC) in women consuming high levels of long-chain (LC) omega-3 (ω-3) fatty acids (FAs) compared with women who consumed low levels. However, the regulatory and mechanistic roles of dietary ω-6 and LC-ω-3 FAs on tumor progression, metastasis and survival are poorly understood. Female BALB/c mice (10-week old) were pair-fed with a diet containing ω-3 or an isocaloric, isolipidic ω-6 diet for 16 weeks prior to the orthotopic implantation of 4T1 mammary tumor cells. Major outcomes studied included: mammary tumor growth, survival analysis, and metastases analyses in multiple organs including pulmonary, hepatic, bone, cardiac, renal, ovarian, and contralateral MG (CMG). The dietary regulation of the tumor microenvironment was evaluated in mice autopsied on day-35 post tumor injection. In mice fed the ω-3 containing diet, there was a significant delay in tumor initiation and prolonged survival relative to the ω-6 diet-fed group. The tumor size on day 35 post tumor injection in the ω-3 group was 50% smaller and the frequencies of pulmonary and bone metastases were significantly lower relative to the ω-6 group. Similarly, the incidence/frequencies and/or size of cardiac, renal, ovarian metastases were significantly lower in mice fed the ω-3 diet. The analyses of the tumor microenvironment showed that tumors in the ω-3 group had significantly lower numbers of proliferating tumor cells (Ki67+)/high power field (HPF), and higher numbers of apoptotic tumor cells (TUNEL+)/HPF, lower neo-vascularization (CD31+ vessels/HPF), infiltration by neutrophil elastase+ cells, and macrophages (F4/80+) relative to the tumors from the ω-6 group. Further, in tumors from the ω-3 diet-fed mice, T-cell infiltration was 102% higher resulting in a neutrophil to T-lymphocyte ratio (NLR) that was 76% lower (p < 0.05). Direct correlations were observed between NLR with tumor size and T-cell infiltration with the number of apoptotic tumor cells. qRT-PCR analysis revealed that tumor IL10 mRNA levels were significantly higher (six-fold) in the tumors from mice fed the ω-3 diet and inversely correlated with the tumor size. Our data suggest that dietary LC-ω-3FAs modulates the mammary tumor microenvironment slowing tumor growth, and reducing metastases to both common and less preferential organs resulting in prolonged survival. The surrogate analyses undertaken support a mechanism of action by dietary LC-ω-3FAs that includes, but is not limited to decreased infiltration by myeloid cells (neutrophils and macrophages), an increase in CD3+ lymphocyte infiltration and IL10 associated anti-inflammatory activity.
Collapse
Affiliation(s)
- Saraswoti Khadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-6495, USA
| | - Geoffrey M Thiele
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-6495, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-6495, USA.,Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - John Graham Sharp
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Timothy R McGuire
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lynell W Klassen
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-6495, USA.,Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Paul N Black
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Concetta C DiRusso
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Leah Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-6495, USA
| | - James E Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-6495, USA. .,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-6495, USA.
| |
Collapse
|
38
|
Nanoemulsion-Enabled Oral Delivery of Novel Anticancer ω-3 Fatty Acid Derivatives. NANOMATERIALS 2018; 8:nano8100825. [PMID: 30322115 PMCID: PMC6215190 DOI: 10.3390/nano8100825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/24/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
Lipid-based drugs are emerging as an interesting class of novel anticancer drugs with the potential to target specific cancer cell metabolic pathways linked to their proliferation and invasiveness. In particular, ω-3 polyunsaturated fatty acids (PUFA) derivatives such as epoxides and their bioisosteres have demonstrated the potential to suppress growth and promote apoptosis in triple-negative human breast cancer cells MDA-MB-231. In this study, 16-(4′-chloro-3′-trifluorophenyl)carbamoylamino]hexadecanoic acid (ClFPh-CHA), an anticancer lipid derived from ω-3,17,18-epoxyeicosanoic acid, was formulated as a stable nanoemulsion with size around 150 nm and narrow droplet size distribution (PDI < 0.200) through phase-inversion emulsification process followed by high pressure homogenization in view of an oral administration. The ClFPh-CHA-loaded nanoemulsions were able to significantly decrease the relative tumor volume in mice bearing an intramammary tumor xenograft at all doses tested (2.5, 10 and 40 mg/kg) after 32 days of daily oral administration. Furthermore, absolute tumor weight was decreased to 50% of untreated control at 10 and 40 mg/kg, while intraperitoneal administration could achieve a significant reduction only at the highest dose of 40 mg/kg. Results suggest that oral administration of ClFPh-CHA formulated as a nanoemulsion has a sufficient bioavailability to provide an anticancer effect in mice and that the activity is at least equal if not superior to that obtained by a conventional parenteral administration of equivalent doses of the same drug.
Collapse
|
39
|
Pazderka CW, Oliver B, Murray M, Rawling T. Omega-3 Polyunsaturated Fatty Acid Derived Lipid Mediators and their Application in Drug Discovery. Curr Med Chem 2018; 27:1670-1689. [PMID: 30259807 DOI: 10.2174/0929867325666180927100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022]
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play crucial and often opposing regulatory roles in health and in pathological conditions. n-3 and n-6 PUFA undergo biotransformation to parallel series of lipid mediators that are potent modulators of many cellular processes. A wide range of biological actions have been attributed to lipid mediators derived from n-6 PUFA, and these mediators have served as lead compounds in the development of numerous clinically approved drugs, including latanoprost (Xalatan: Pfizer), which is listed on the WHO Model List of Essential Medicines. n-3 PUFA-derived mediators have received less attention, in part because early studies suggested that n-3 PUFA act simply as competitive substrates for biotransformation enzymes and decrease the formation of n-6 PUFA-derived lipid mediators. However, more recent studies suggest that n-3 PUFA-derived mediators are biologically important in their own right. It is now emerging that many n-3 PUFA-derived lipid mediators have potent and diverse activities that are distinct from their n-6 counterparts. These findings provide new opportunities for drug discovery. Herein, we review the biosynthesis of n-3 PUFA-derived lipid mediators and highlight their biological actions that may be exploited for drug development. Lastly, we provide examples of medicinal chemistry research that has utilized n-3 PUFA-derived lipid mediators as novel lead compounds in drug design.
Collapse
Affiliation(s)
- Curtis W Pazderka
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Brian Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Michael Murray
- Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| |
Collapse
|
40
|
Effects of low-density lipoprotein docosahexaenoic acid nanoparticles on cancer stem cells isolated from human hepatoma cell lines. Mol Biol Rep 2018; 45:1023-1036. [DOI: 10.1007/s11033-018-4252-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
|
41
|
Recent advances in galactose-engineered nanocarriers for the site-specific delivery of siRNA and anticancer drugs. Drug Discov Today 2018; 23:960-973. [DOI: 10.1016/j.drudis.2017.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/17/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
|
42
|
Koolaji N, Rawling T, Bourget K, Murray M. Carboxylate Analogues of Aryl-Urea-Substituted Fatty Acids That Target the Mitochondria in MDA-MB-231 Breast Cancer Cells to Promote Cell Death. ChemMedChem 2018; 13:1036-1043. [DOI: 10.1002/cmdc.201800018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/19/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Nooshin Koolaji
- Discipline of Pharmacology; School of Medical Sciences, Sydney Medical School; The University of Sydney; Sydney New South Wales Australia
| | - Tristan Rawling
- School of Mathematics and Physical Sciences; Faculty of Science; The University of Technology Sydney; Ultimo New South Wales Australia
| | - Kirsi Bourget
- Discipline of Pharmacology; School of Medical Sciences, Sydney Medical School; The University of Sydney; Sydney New South Wales Australia
| | - Michael Murray
- Discipline of Pharmacology; School of Medical Sciences, Sydney Medical School; The University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
43
|
Wang CC, Yang CJ, Wu LH, Lin HC, Wen ZH, Lee CH. Eicosapentaenoic acid reduces indoleamine 2,3-dioxygenase 1 expression in tumor cells. Int J Med Sci 2018; 15:1296-1303. [PMID: 30275755 PMCID: PMC6158658 DOI: 10.7150/ijms.27326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/26/2018] [Indexed: 01/19/2023] Open
Abstract
Marine plants and animals have omega-3 fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). EPA is required for biological processes, but humans are unable to synthesize them and must be obtained from dietary sources. EPA has been used as an antitumor agent but the molecular mechanisms for the regulation of tumor microenvironment immunity by EPA are still unknown. The indoleamine 2,3-dioxygenase 1 (IDO) catalyzes conversion of tryptophan to kynurenine to induce immune evasion in tumor microenvironment. In this study, EPA inhibited the expression of IDO via downregulation of protein kinase B (Akt)/mammalian targets of rapamycin (mTOR) signaling pathway in tumor cells. Meanwhile, a significant decrease in kynurenine levels and increase in T cell survival were observed after tumor cells treated with EPA. The results demonstrated that EPA can activate host antitumor immunity by inhibiting tumor IDO expression. Therefore, our finding suggests that EPA can be enormous potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Chih-Chiang Wang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Chih-Jen Yang
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Li-Hsien Wu
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Han-Chen Lin
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
44
|
Lordan R, Tsoupras A, Zabetakis I. Phospholipids of Animal and Marine Origin: Structure, Function, and Anti-Inflammatory Properties. Molecules 2017; 22:E1964. [PMID: 29135918 PMCID: PMC6150200 DOI: 10.3390/molecules22111964] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/06/2017] [Accepted: 11/11/2017] [Indexed: 12/29/2022] Open
Abstract
In this review paper, the latest literature on the functional properties of phospholipids in relation to inflammation and inflammation-related disorders has been critically appraised and evaluated. The paper is divided into three sections: Section 1 presents an overview of the relationship between structures and biological activities (pro-inflammatory or anti-inflammatory) of several phospholipids with respect to inflammation. Section 2 and Section 3 are dedicated to the structures, functions, compositions and anti-inflammatory properties of dietary phospholipids from animal and marine sources. Most of the dietary phospholipids of animal origin come from meat, egg and dairy products. To date, there is very limited work published on meat phospholipids, undoubtedly due to the negative perception that meat consumption is an unhealthy option because of its putative associations with several chronic diseases. These assumptions are addressed with respect to the phospholipid composition of meat products. Recent research trends indicate that dairy phospholipids possess anti-inflammatory properties, which has led to an increased interest into their molecular structures and reputed health benefits. Finally, the structural composition of phospholipids of marine origin is discussed. Extensive research has been published in relation to ω-3 polyunsaturated fatty acids (PUFAs) and inflammation, however this research has recently come under scrutiny and has proved to be unreliable and controversial in terms of the therapeutic effects of ω-3 PUFA, which are generally in the form of triglycerides and esters. Therefore, this review focuses on recent publications concerning marine phospholipids and their structural composition and related health benefits. Finally, the strong nutritional value of dietary phospholipids are highlighted with respect to marine and animal origin and avenues for future research are discussed.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| |
Collapse
|
45
|
Alam MM, Hassan AHE, Kwon YH, Lee HJ, Kim NY, Min KH, Lee SY, Kim DH, Lee YS. Design, synthesis and evaluation of alkylphosphocholine-gefitinib conjugates as multitarget anticancer agents. Arch Pharm Res 2017; 41:35-45. [DOI: 10.1007/s12272-017-0977-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/19/2017] [Indexed: 01/28/2023]
|
46
|
Rawling T, Choucair H, Koolaji N, Bourget K, Allison SE, Chen YJ, Dunstan CR, Murray M. A Novel Arylurea Fatty Acid That Targets the Mitochondrion and Depletes Cardiolipin To Promote Killing of Breast Cancer Cells. J Med Chem 2017; 60:8661-8666. [DOI: 10.1021/acs.jmedchem.7b00701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tristan Rawling
- School
of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Hassan Choucair
- Discipline
of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nooshin Koolaji
- Discipline
of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kirsi Bourget
- Discipline
of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sarah E. Allison
- Discipline
of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yong-Juan Chen
- School
of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Colin R. Dunstan
- School
of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael Murray
- Discipline
of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
47
|
da Costa E, Melo T, Moreira ASP, Bernardo C, Helguero L, Ferreira I, Cruz MT, Rego AM, Domingues P, Calado R, Abreu MH, Domingues MR. Valorization of Lipids from Gracilaria sp. through Lipidomics and Decoding of Antiproliferative and Anti-Inflammatory Activity. Mar Drugs 2017; 15:E62. [PMID: 28257116 PMCID: PMC5367019 DOI: 10.3390/md15030062] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 01/15/2023] Open
Abstract
The lipidome of the red seaweed Gracilaria sp., cultivated on land-based integrated multitrophic aquaculture (IMTA) system, was assessed for the first time using hydrophilic interaction liquid chromatography-mass spectrometry and tandem mass spectrometry (HILIC-MS and MS/MS). One hundred and forty-seven molecular species were identified in the lipidome of the Gracilaria genus and distributed between the glycolipids classes monogalactosyl diacylglyceride (MGDG), digalactosyl diacylglyceride (DGDG), sulfoquinovosyl monoacylglyceride (SQMG), sulfoquinovosyl diacylglyceride (SQDG), the phospholipids phosphatidylcholine (PC), lyso-PC, phosphatidylglycerol (PG), lyso-PG, phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatic acid (PA), inositolphosphoceramide (IPC), and betaine lipids monoacylglyceryl- and diacylglyceryl-N,N,N-trimethyl homoserine (MGTS and DGTS). Antiproliferative and anti-inflammatory effects promoted by lipid extract of Gracilaria sp. were evaluated by monitoring cell viability in human cancer lines and by using murine macrophages, respectively. The lipid extract decreased cell viability of human T-47D breast cancer cells and of 5637 human bladder cancer cells (estimated half-maximal inhibitory concentration (IC50) of 12.2 μg/mL and 12.9 μg/mL, respectively) and inhibited the production of nitric oxide (NO) evoked by the Toll-like receptor 4 agonist lipopolysaccharide (LPS) on the macrophage cell line RAW 264.7 (35% inhibition at a concentration of 100 μg/mL). These findings contribute to increase the ranking in the value-chain of Gracilaria sp. biomass cultivated under controlled conditions on IMTA systems.
Collapse
Affiliation(s)
- Elisabete da Costa
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Tânia Melo
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana S P Moreira
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carina Bernardo
- Instituto de Biomedicina (IBIMED), Departamento de Ciências Médicas, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Luisa Helguero
- Instituto de Biomedicina (IBIMED), Departamento de Ciências Médicas, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Isabel Ferreira
- Centro de Neurociências e Biologia Celular (CNC), Universidade de Coimbra, 3004-517 Coimbra & Faculdade de Farmácia, Universidade de Coimbra, 3000-548 Coimbra, Portugal.
| | - Maria Teresa Cruz
- Centro de Neurociências e Biologia Celular (CNC), Universidade de Coimbra, 3004-517 Coimbra & Faculdade de Farmácia, Universidade de Coimbra, 3000-548 Coimbra, Portugal.
| | - Andreia M Rego
- ALGAplus-Produção e Comercialização de Algas e seus Derivados, Lda., 3830-196 Ílhavo, Portugal.
| | - Pedro Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ricardo Calado
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Maria H Abreu
- ALGAplus-Produção e Comercialização de Algas e seus Derivados, Lda., 3830-196 Ílhavo, Portugal.
| | - Maria Rosário Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
48
|
Advances in drug metabolism and pharmacogenetics research in Australia. Pharmacol Res 2017; 116:7-19. [DOI: 10.1016/j.phrs.2016.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 01/04/2023]
|
49
|
Blücher C, Stadler SC. Obesity and Breast Cancer: Current Insights on the Role of Fatty Acids and Lipid Metabolism in Promoting Breast Cancer Growth and Progression. Front Endocrinol (Lausanne) 2017; 8:293. [PMID: 29163362 PMCID: PMC5670108 DOI: 10.3389/fendo.2017.00293] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/13/2017] [Indexed: 12/20/2022] Open
Abstract
Obesity and excess accumulation of adipose tissue are known risk factors for several types of cancer, including breast cancer. With the incidence of obesity constantly rising worldwide, understanding the molecular details of the interaction between adipose tissue and breast tumors, the most common tumors in women, becomes an urgent task. In terms of lipid metabolism, most of the studies conducted so far focused on upregulated de novo lipid synthesis in cancer cells. More recently, the use of extracellular lipids as source of energy came into focus. Especially in obesity, associated dysfunctional adipose tissue releases increased amounts of fatty acids, but also dietary lipids can be involved in promoting tumor growth and progression. In addition, it was shown that breast cancer cells and adipocytes, which are a major component of the stroma of breast tumors, are able to directly interact with each other. Breast cancer cells and adjacent adipocytes exchange molecules such as growth factors, chemokines, and interleukins in a reciprocal manner. Moreover, it was shown that breast cancer cells can access and utilize fatty acids produced by neighboring adipocytes. Thus adipocytes, and especially hypertrophic adipocytes, can act as providers of lipids, which can be used as a source of energy for fatty acid oxidation and as building blocks for tumor cell growth.
Collapse
Affiliation(s)
- Christina Blücher
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- LIFE – Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Sonja C. Stadler
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- LIFE – Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- *Correspondence: Sonja C. Stadler,
| |
Collapse
|
50
|
Teng H, Huang Q, Chen L. Inhibition of cell proliferation and triggering of apoptosis by agrimonolide through MAP kinase (ERK and p38) pathways in human gastric cancer AGS cells. Food Funct 2016; 7:4605-4613. [PMID: 27747355 DOI: 10.1039/c6fo00715e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Data from the present study showed that agrimonolide exhibited a high anti-proliferation effect against human gastric cancer AGS cells. Flow cytometric analysis revealed that the number of total apoptotic cells increased after the treatment with the agrimonolide in a dose-dependent manner. In addition, it was found that agrimonolide-induced cell apoptosis was associated with the increase in the (Bcl-2 Associated X Protein, BAX)/(B-cell lymphoma-2, Bcl-2) ratio and the activation of cleaved caspase-3. MAPK (p38, c-Jun N-terminal kinase, and ERK1/2) signaling pathways were involved in agrimonolide-induced apoptosis. Cells were exposed to 40 μM of agrimonolide and the level of phospho-ERK/ERK protein was increased to 7.0-fold as compared to the control, and the expression of phospho-p38 protein showed a significant 6.2-fold increase after 24 h incubation, as compared to the control. The employment of protein kinase inhibitors of PD98059 and SB203580, showed the block effects of agrimonolide on the activation of caspase-3 and apoptosis.
Collapse
Affiliation(s)
- Hui Teng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Qun Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|