1
|
Chang HW, Frey G, Wang J, Liu H, Xing C, Chen J, Boyle WJ, Short JM. Preclinical development of ozuriftamab vedotin (BA3021), a novel ROR2-specific conditionally active biologic antibody-drug conjugate. MAbs 2025; 17:2490078. [PMID: 40202784 PMCID: PMC11988251 DOI: 10.1080/19420862.2025.2490078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025] Open
Abstract
Receptor tyrosine kinase-like orphan receptor (ROR2) has been identified as a highly relevant tumor-associated antigen in a variety of cancer indications of high unmet medical need, including melanoma, renal cell carcinoma, osteosarcoma, gastrointestinal stromal tumor, colorectal cancer, pancreatic ductal adenocarcinoma, and non-small cell lung cancer. Overexpression of ROR2 often correlates with advanced disease or poor prognosis, making it an attractive target for cancer therapy. We developed a novel, conditionally active biologic (CAB) antibody-drug conjugate (ADC), ozuriftamab vedotin (BA3021), which binds to ROR2 only in the acidic tumor microenvironment. In healthy tissue, binding to ROR2 is greatly reduced by a novel selection mechanism using physiological chemicals as protein-associated chemical switches (PaCS). The CAB anti-ROR2 ADC displays the anticipated binding properties and mediates potent lysis of ROR2-positive cancer cell lines. In vivo, BA3021 has potent and durable antitumor activity in human cancer xenograft mouse models, including patient-derived xenograft models. In non-human primates, BA3021 was well tolerated at doses of up to 10 mg/kg and showed excellent stability in vivo. These preclinical results indicate that CAB anti-ROR2 ADC is efficacious and well tolerated and may be a promising treatment for cancer patients with ROR2-expressing tumors.
Collapse
Affiliation(s)
| | - Gerhard Frey
- Research & Development, BioAtla Inc, San Diego, CA, USA
| | - Jing Wang
- Research & Development, BioAtla Inc, San Diego, CA, USA
| | - Haizhen Liu
- Research & Development, BioAtla Inc, San Diego, CA, USA
| | - Charles Xing
- Research & Development, BioAtla Inc, San Diego, CA, USA
| | - Jian Chen
- Research & Development, BioAtla Inc, San Diego, CA, USA
| | | | - Jay M. Short
- Research & Development, BioAtla Inc, San Diego, CA, USA
| |
Collapse
|
2
|
Wang J, Li Z, Zhao Q. Receptor tyrosine kinase-like orphan receptor serves as a potential target in cancer immunotherapy. J Leukoc Biol 2025; 117:qiae141. [PMID: 38973261 DOI: 10.1093/jleuko/qiae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Indexed: 07/09/2024] Open
Abstract
Receptor tyrosine kinase-like orphan receptor (ROR), consisting of ROR1 and ROR2, is a conserved family of receptor tyrosine kinase superfamily that plays crucial roles during embryonic development with limited expression in adult normal tissues. However, it is overexpressed in a range of hematological malignancies and solid tumors and functions in cellular processes including cell survival, polarity, and migration, serving as a potential target in cancer immunotherapy. This review summarizes the expression and structure of ROR in developmental morphogenesis and its function in cancers associated with Wnt5a signaling and highlights the cancer immunotherapy strategies targeting ROR.
Collapse
Affiliation(s)
- Jiaqi Wang
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Zhoufang Li
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
3
|
Hartman H, Uy G, Uchida K, Scarborough EA, Yang Y, Barr E, Williams S, Kavar SL, Brandimarto J, Li L, Lai L, Griffin J, Yucel N, Shewale S, Rajagopal H, Eaton DM, Dorwart T, Bedi KC, Conn CS, Margulies K, Prosser B, Arany Z, Edwards JJ. ROR2 drives right ventricular heart failure via disruption of proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.635961. [PMID: 39975092 PMCID: PMC11838457 DOI: 10.1101/2025.02.01.635961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background No therapies exist to reverse right ventricular failure (RVF), and the molecular mechanisms that drive RVF remain poorly studied. We recently reported that the developmentally restricted noncanonical WNT receptor ROR2 is upregulated in human RVF in proportion to severity of disease. Here we test mechanistic role of ROR2 in RVF pathogenesis. Methods ROR2 was overexpressed or knocked down in neonatal rat ventricular myocytes (NRVMs). ROR2-modified NRVMs were characterized using confocal microscopy, RNAseq, proteomics, proteostatic functional assays, and contractile properties with pacing. The impact of cardiac ROR2 expression was evaluated in mice by AAV9-mediated overexpression and by AAV9-mediated delivery of shRNA to knockdown ROR2 in a pulmonary artery banded pressure overload RVF model. ROR2-modified mice were evaluated by echocardiography, RV protein synthetic rates and proteasome activity. Results In NRVMs, we find that ROR2 profoundly dysregulates the coordination between protein translation and folding. This imbalance leads to excess protein clearance by the ubiquitin proteasome system (UPS) with dramatic impacts on sarcomere and cytoskeletal structure and function. In mice, forced cardiac ROR2 expression is sufficient to disrupt proteostasis and drive RVF, while conversely ROR2 knockdown partially rescues proteostasis and cardiac function in a pressure overload model of RVF. Conclusions In sum, ROR2 is a key driver of RVF pathogenesis through proteostatic disruption and, thus, provides a promising target to treat RVF.
Collapse
|
4
|
Li L, Huang W, Ren X, Wang Z, Ding K, Zhao L, Zhang J. Unlocking the potential: advancements and future horizons in ROR1-targeted cancer therapies. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2603-2616. [PMID: 39145866 DOI: 10.1007/s11427-024-2685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
While receptor tyrosine kinase-like orphan receptor 1 (ROR1) is typically expressed at low levels or absent in normal tissues, its expression is notably elevated in various malignant tumors and conditions, including chronic lymphocytic leukemia (CLL), breast cancer, ovarian cancer, melanoma, and lung adenocarcinoma. This distinctive feature positions ROR1 as an attractive target for tumor-specific treatments. Currently, several targeted drugs directed at ROR1 are undergoing clinical development, including monoclonal antibodies, antibody-drug conjugates (ADCs), and chimeric antigen receptor T-cell therapy (CAR-T). Additionally, there are four small molecule inhibitors designed to bind to ROR1, presenting promising avenues for the development of PROTAC degraders targeting ROR1. This review offers updated insights into ROR1's structural and functional characteristics, embryonic development implications, cell survival signaling pathways, and evolutionary targeting strategies, all of which have the potential to advance the treatment of malignant tumors.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Linxiang Zhao
- State Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jinwei Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
5
|
Liu Q, Zhao X, Shao X, Cheng P, Cui J, Han S. ROR2 promotes cell cycle progression and cell proliferation through the PI3K/AKT signaling pathway in gastric cancer. Mol Carcinog 2024; 63:2316-2331. [PMID: 39150155 DOI: 10.1002/mc.23811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Proliferation is a critical characteristic of the progression of gastric cancer (GC). Receptor tyrosine kinase-like orphan receptor 2 (ROR2), the orphan receptor tyrosine kinase-like receptor, exhibits effects on tumor growth due to its abnormal expression in cancer. The goal of our study was to assess the potential regulatory role exerted by the ROR2 on GC cells. Through previous bioinformatics analysis, we discovered an association between ROR2 and the G2/M phase of the GC cell cycle. However, little is known about the link between ROR2 and the G2/M phase cell cycle in GC. Here, the findings of our study indicate that ROR2, after transcribed expression by Twist1, activates the PI3K/AKT/mTOR/S6K signal transduction pathway, thus leading to the acceleration of the G2/M phase and subsequent promotion of cell proliferation in GC. Furthermore, the functional link among ROR2, Twist1, and G2/M phase of cell cycle was also confirmed in mouse xenograft tissues and human tissues. ROR2 expression was correlated with Twist expression and lower survival in vivo. Notably, our suggestion is that focusing on ROR2 as a potential therapeutic approach could show potential for the management of GC.
Collapse
Affiliation(s)
- Qi Liu
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital, Shandong University, Jinan, China
| | - Xin Zhao
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaowen Shao
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ping Cheng
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingyi Cui
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuyi Han
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital, Shandong University, Jinan, China
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Chuang WY, Lee CW, Fan WL, Liu TT, Lin ZH, Wang KC, Huang PJ, Yeh YM, Lin TC. Wnt-5a-Receptor Tyrosine Kinase-Like Orphan Receptor 2 Signaling Provokes Metastatic Colonization and Angiogenesis in Renal Cell Carcinoma, and Prunetin Supresses the Axis Activation. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1967-1985. [PMID: 39069169 DOI: 10.1016/j.ajpath.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Wnt-5a is a protein encoded by the WNT5A gene and is a ligand for the receptor tyrosine kinase-like orphan receptor 2 (ROR2). However, its biological impact on clear cell renal cell carcinoma (ccRCC) remains unclear. In this study, the prognostic significance of concurrent WNT5A and ROR2 expression levels was observed to predict unfavorable overall survival and disease-specific survival. High Wnt-5a expression was detected in a ccRCC cell line panel but not in HK-2 cells, a normal proximal tubular cell line. Inhibition of DNA methyltransferase by 5-azacytidine in 786-O and Caki-2 cells resulted in Wnt-5a up-regulation, indicating potential epigenetic modification. Furthermore, there was a repression of cell movement in vitro and metastatic colonization in vivo on WNT5A and ROR2 knockdown. Suppressions of angiogenesis in vivo and tubular-like structure formation in endothelial cells in vitro were also observed after silencing WNT5A and ROR2 expression. In addition, alteration in the downstream gene signature of the Wnt-5a-ROR2 signaling was similar to that in metastasis-associated gene 1-β-catenin axis. Moreover, prunetin treatment reversed the gene signature derived from Wnt-5a-ROR2 signaling activation and to abolish ccRCC cell migration and proliferation. Overall, this study demonstrates the clinical and functional significance of the Wnt-5a-ROR2 axis and identifies prunetin as a potential precision medicine for patients with ccRCC harboring aberrant Wnt-5a-ROR2 signaling pathways.
Collapse
Affiliation(s)
- Wen-Yu Chuang
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan; Chang Gung Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chao-Wei Lee
- Division of General Surgery, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Lang Fan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tsung-Ta Liu
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Zih-Han Lin
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Kuo-Chih Wang
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Po-Jung Huang
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
7
|
De Landtsheer S, Badkas A, Kulms D, Sauter T. Model ensembling as a tool to form interpretable multi-omic predictors of cancer pharmacosensitivity. Brief Bioinform 2024; 25:bbae567. [PMID: 39494610 PMCID: PMC11532660 DOI: 10.1093/bib/bbae567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Stratification of patients diagnosed with cancer has become a major goal in personalized oncology. One important aspect is the accurate prediction of the response to various drugs. It is expected that the molecular characteristics of the cancer cells contain enough information to retrieve specific signatures, allowing for accurate predictions based solely on these multi-omic data. Ideally, these predictions should be explainable to clinicians, in order to be integrated in the patients care. We propose a machine-learning framework based on ensemble learning to integrate multi-omic data and predict sensitivity to an array of commonly used and experimental compounds, including chemotoxic compounds and targeted kinase inhibitors. We trained a set of classifiers on the different parts of our dataset to produce omic-specific signatures, then trained a random forest classifier on these signatures to predict drug responsiveness. We used the Cancer Cell Line Encyclopedia dataset, comprising multi-omic and drug sensitivity measurements for hundreds of cell lines, to build the predictive models, and validated the results using nested cross-validation. Our results show good performance for several compounds (Area under the Receiver-Operating Curve >79%) across the most frequent cancer types. Furthermore, the simplicity of our approach allows to examine which omic layers have a greater importance in the models and identify new putative markers of drug responsiveness. We propose several models based on small subsets of transcriptional markers with the potential to become useful tools in personalized oncology, paving the way for clinicians to use the molecular characteristics of the tumors to predict sensitivity to therapeutic compounds.
Collapse
Affiliation(s)
- Sébastien De Landtsheer
- Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l’Université, L4365 Esch-sur-Alzette, Luxembourg
| | - Apurva Badkas
- Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l’Université, L4365 Esch-sur-Alzette, Luxembourg
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, Technische Universität-Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases, Technische Universität-Dresden, 01307 Dresden, Germany
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l’Université, L4365 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
8
|
Wang C, Fu R, Wang Y, Wei J, Yu Y, Hu L, Zhang C. miR-124-3p and miR-194-5p regulation of the PI3K/AKT pathway via ROR2 in medulloblastoma progression. Cancer Gene Ther 2024; 31:941-954. [PMID: 38632356 PMCID: PMC11192632 DOI: 10.1038/s41417-024-00762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Medulloblastoma (MB), a prevalent pediatric central nervous system tumor, is influenced by microRNAs (miRNAs) that impact tumor initiation and progression. However, the specific involvement of miRNAs in MB tumorigenesis remains unclear. Using single-cell RNA sequencing, we identified ROR2 expression in normal human fetal cerebellum. Subsequent analyses, including immunofluorescence, quantitative real-time PCR (qRT-PCR), and Western blot, assessed ROR2 expression in MB tissues and cell lines. We investigated miR-124-3p and miR-194-5p and their regulatory role in ROR2 expression through the dual-luciferase reporter, qRT-PCR, and western blot assays. Mechanistic insights were gained through functional assays exploring the impact of miR-124-3p, miR-194-5p, and ROR2 on MB growth in vitro and in vivo. We observed significantly reduced miR-124-3p and miR-194-5p expression and elevated ROR2 expression in MB tissues and cell lines. High ROR2 expression inversely correlated with overall survival in WNT and SHH subgroups of MB patients. Functionally, overexpressing miR-124-3p and miR-194-5p and inhibiting ROR2 suppressed in vitro malignant transformation and in vivo tumorigenicity. Mechanistically, miR-124-3p and miR-194-5p synergistically regulated the ROR2/PI3K/Akt pathway, influencing MB progression. Our findings indicate that miR-124-3p and miR-194-5p function as tumor suppressors, inhibiting MB progression via the ROR2/PI3K/Akt axis, suggesting a key mechanism and therapeutic targets for MB patients.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runxi Fu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yunkun Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Wei
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Yu
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liuhua Hu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Grither WR, Baker B, Morikis VA, Ilagan MXG, Fuh KC, Longmore GD. ROR2/Wnt5a Signaling Regulates Directional Cell Migration and Early Tumor Cell Invasion in Ovarian Cancer. Mol Cancer Res 2024; 22:495-507. [PMID: 38334461 PMCID: PMC11065611 DOI: 10.1158/1541-7786.mcr-23-0616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
Adhesion to and clearance of the mesothelial monolayer are key early events in metastatic seeding of ovarian cancer. ROR2 is a receptor tyrosine kinase that interacts with Wnt5a ligand to activate noncanonical Wnt signaling and has been previously shown to be upregulated in ovarian cancer tissue. However, no prior study has evaluated the mechanistic role of ROR2 in ovarian cancer. Through a cellular high-throughput genetic screen, we independently identified ROR2 as a driver of ovarian tumor cell adhesion and invasion. ROR2 expression in ovarian tumor cells serves to drive directed cell migration preferentially toward areas of high Wnt5a ligand, such as the mesothelial lined omentum. In addition, ROR2 promotes ovarian tumor cell adhesion and clearance of a mesothelial monolayer. Depletion of ROR2, in tumor cells, reduces metastatic tumor burden in a syngeneic model of ovarian cancer. These findings support the role of ROR2 in ovarian tumor cells as a critical factor contributing to the early steps of metastasis. Therapeutic targeting of the ROR2/Wnt5a signaling axis could provide a means of improving treatment for patients with advanced ovarian cancer. IMPLICATIONS This study demonstrates that ROR2 in ovarian cancer cells is important for directed migration to the metastatic niche and provides a potential signaling axis of interest for therapeutic targeting in ovarian cancer.
Collapse
Affiliation(s)
- Whitney R. Grither
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | - Breanna Baker
- Division of Oncology, Department of Medicine Washington University, St. Louis. MO 63110, USA
| | - Vasilios A. Morikis
- Division of Oncology, Department of Medicine Washington University, St. Louis. MO 63110, USA
| | - Ma. Xenia G. Ilagan
- High Throughput Screening Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine C. Fuh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology University of California, San Francisco, San Francisco, CA 94143 USA
| | - Gregory D. Longmore
- Division of Oncology, Department of Medicine Washington University, St. Louis. MO 63110, USA
- ICCE Institute, Washington University, St. Louis MO 63110, USA
| |
Collapse
|
10
|
Qi H, Deng Z, Ye F, Gou J, Huang M, Xiang H, Li H. Analysis of the differentially expressed genes in the combs and testes of Qingyuan partridge roosters at different developmental stages. BMC Genomics 2024; 25:33. [PMID: 38177997 PMCID: PMC10768254 DOI: 10.1186/s12864-024-09960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The sexual maturity of chickens is an important economic trait, and the breeding of precocious and delayed puberty roosters is an important selection strategy for broilers. The comb serves as an important secondary sexual characteristic of roosters and determines their sexual precocity. Moreover, comb development is closely associated with gonad development in roosters. However, the underlying molecular mechanism regulating the sexual maturity of roosters has not yet been fully explored. RESULTS In order to identify the genes related to precocious puberty in Qingyuan partridge roosters, and based on the synchrony of testis and combs development, combined with histological observation and RNA-seq method, the developmental status and gene expression profile of combs and testis were obtained. The results showed that during the early growth and development period (77 days of age), the development of combs and testis was significant in the high comb (H) group versus the low comb (L) group (p < 0.05); however, the morphological characteristic of the comb and testicular tissues converged during the late growth and development period (112 days of age) in the H and L groups. Based on these results, RNA-sequencing analysis was performed on the comb and testis tissues of the 77 and 112 days old Qingyuan Partridge roosters with different comb height traits. GO and KEGG analysis enrichment analysis showed that the differentially expressed genes were primarily enriched in MAPK signaling, VEGF signaling, and retinol metabolism pathways. Moreover, weighted correlation network analysis and module co-expression network analysis identified WNT6, AMH, IHH, STT3A, PEX16, KPNA7, CATHL2, ROR2, PAMR1, WISP2, IL17REL, NDRG4, CYP26B1, and CRHBP as the key genes associated with the regulation of precocity and delayed puberty in Qingyuan Partridge roosters. CONCLUSIONS In summary, we identified the key regulatory genes of sexual precocity in roosters, which provide a theoretical basis for understanding the developmental differences between precocious and delayed puberty in roosters.
Collapse
Affiliation(s)
- Hao Qi
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, 528225, Foshan, Guangdong, China
| | - Zhidan Deng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, 528225, Foshan, Guangdong, China
| | - Fei Ye
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, 528225, Foshan, Guangdong, China
| | - Junwei Gou
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, 528225, Foshan, Guangdong, China
| | - Miaoxin Huang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, 528225, Foshan, Guangdong, China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, 528225, Foshan, Guangdong, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, 528225, Foshan, Guangdong, China.
| |
Collapse
|
11
|
Zhang C, Brunt L, Ono Y, Rogers S, Scholpp S. Cytoneme-mediated transport of active Wnt5b-Ror2 complexes in zebrafish. Nature 2024; 625:126-133. [PMID: 38123680 PMCID: PMC10764289 DOI: 10.1038/s41586-023-06850-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
Chemical signalling is the primary means by which cells communicate in the embryo. The underlying principle refers to a group of ligand-producing cells and a group of cells that respond to this signal because they express the appropriate receptors1,2. In the zebrafish embryo, Wnt5b binds to the receptor Ror2 to trigger the Wnt-planar cell polarity (PCP) signalling pathway to regulate tissue polarity and cell migration3,4. However, it remains unclear how this lipophilic ligand is transported from the source cells through the aqueous extracellular space to the target tissue. In this study, we provide evidence that Wnt5b, together with Ror2, is loaded on long protrusions called cytonemes. Our data further suggest that the active Wnt5b-Ror2 complexes form in the producing cell and are handed over from these cytonemes to the receiving cell. Then, the receiving cell has the capacity to initiate Wnt-PCP signalling, irrespective of its functional Ror2 receptor status. On the tissue level, we further show that cytoneme-dependent spreading of active Wnt5b-Ror2 affects convergence and extension in the zebrafish gastrula. We suggest that cytoneme-mediated transfer of ligand-receptor complexes is a vital mechanism for paracrine signalling. This may prompt a reevaluation of the conventional concept of characterizing responsive and non-responsive tissues solely on the basis of the expression of receptors.
Collapse
Affiliation(s)
- Chengting Zhang
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Lucy Brunt
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Yosuke Ono
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Sally Rogers
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
12
|
Passaro A, Jänne PA, Peters S. Antibody-Drug Conjugates in Lung Cancer: Recent Advances and Implementing Strategies. J Clin Oncol 2023:JCO2300013. [PMID: 37224424 DOI: 10.1200/jco.23.00013] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 05/26/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are one of the fastest-growing oncology therapeutics, merging the cytotoxic effect of conjugated payload with the high specific ability and selectivity of monoclonal antibody targeted on a specific cancer cell membrane antigen. The main targets for ADC development are antigens commonly expressed by lung cancer cells, but not in normal tissues. They include human epidermal growth factor receptor 2, human epidermal growth factor receptor 3, trophoblast cell surface antigen 2, c-MET, carcinoembryonic antigen-related cell adhesion molecule 5, and B7-H3, each with one or more specific ADCs that showed encouraging results in the lung cancer field, more in non-small-cell lung cancer than in small-cell lung cancer histology. To date, multiple ADCs are under evaluation, alone or in combination with different molecules (eg, chemotherapy agents or immune checkpoint inhibitors), and the optimal strategy for selecting patients who may benefit from the treatment is evolving, including an improvement of biomarker understanding, involving markers of resistance or response to the payload, besides the antibody target. In this review, we discuss the available evidence and future perspectives on ADCs for lung cancer treatment, including a comprehensive discussion on structure-based drug design, mechanism of action, and resistance concepts. Data were summarized by specific target antigen, biology, efficacy, and safety, differing among ADCs according to the ADC payload and their pharmacokinetics and pharmacodynamics properties.
Collapse
Affiliation(s)
- Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University, Lausanne, Switzerland
| |
Collapse
|
13
|
Castro MV, Barbero GA, Máscolo P, Villanueva MB, Nsengimana J, Newton-Bishop J, Illescas E, Quezada MJ, Lopez-Bergami P. ROR2 promotes epithelial-mesenchymal transition by hyperactivating ERK in melanoma. J Cell Commun Signal 2023; 17:75-88. [PMID: 35723796 PMCID: PMC10030744 DOI: 10.1007/s12079-022-00683-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Receptor tyrosine kinase-like orphan receptor 2 (ROR2) is a protein with important functions during embryogenesis that is dysregulated in human cancer. An intriguing feature of this receptor is that it plays opposite roles in different tumor types either promoting or inhibiting tumor progression. Understanding the complex role of this receptor requires a more profound exploration of both the altered biological and molecular mechanisms. Here, we describe that ROR2 promotes Epithelial-Mesenchymal Transition (EMT) by inducing cadherin switch and the upregulation of the transcription factors ZEB1, Twist, Slug, Snail, and HIF1A, together with a mesenchymal phenotype and increased migration. We show that ROR2 activates both p38 and ERK mitogen-activated protein kinase pathways independently of Wnt5a. Further, we demonstrated that the upregulation of EMT-related proteins depends on the hyperactivation of the ERK pathway far above the typical high constitutive activity observed in melanoma. In addition, ROR2 also promoted ERK phosphorylation, EMT, invasion, and necrosis in xenotransplanted mice. ROR2 also associates with EMT in tumor samples from melanoma patients where analysis of large cohorts revealed that increased ROR2 levels are linked to EMT signatures. This important role of ROR2 translates into melanoma patient' s prognosis since elevated ROR2 levels reduced overall survival and distant metastasis-free survival of patients with lymph node metastasis. In sum, these results demonstrate that ROR2 contributes to melanoma progression by inducing EMT and necrosis and can be an attractive therapeutic target for melanoma.
Collapse
Affiliation(s)
- María Victoria Castro
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602., 1405, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina
| | - Gastón Alexis Barbero
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602., 1405, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina
| | - Paula Máscolo
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602., 1405, Buenos Aires, Argentina
| | - María Belén Villanueva
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602., 1405, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | - Edith Illescas
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602., 1405, Buenos Aires, Argentina
| | - María Josefina Quezada
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602., 1405, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602., 1405, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina.
| |
Collapse
|
14
|
RNF7 Facilitated the Tumorigenesis of Pancreatic Cancer by Activating PI3K/Akt Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1728463. [PMID: 36644576 PMCID: PMC9833898 DOI: 10.1155/2023/1728463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023]
Abstract
RING finger protein-7 (RNF7) functions as a positive regulator in the progression of multiple malignancies. However, the underlying mechanism by which RNF7 contributes to pancreatic cancer (PC) is lacking. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to test the level of RNF7expression in PC cell lines and tissues. The role of RNF7 in PC tumorigenesis was analyzed by Cell Counting Kit-8 (CCK-8). 5-Ethynyl-20-deoxyuridine (EdU), wound-healing/Transwell assays, as well as a subcutaneous tumorigenesis model were constructed to assess the role of RNF7 in PC cells. The association between RNF7 and PI3K/Akt signaling were assessed by western blot and further confirmed by rescue experiments. The PC patients with upregulated expression of RNF7 had poor survival. Overexpression of RNF7 significantly facilitated PC proliferative and migrative and invasive properties in vitro and vivo; however, knockdown of RNF7exhibited the opposite results. Mechanistically, RNF7 promoted PANC-1 and SW1990 cell growth through impacting the activation of the PI3K/Akt signaling pathway. Our data demonstrated that RNF7 promoted PC tumorigenesis via activating the PI3K/Akt signaling pathway and might be regarded as one of the potential therapies to PC.
Collapse
|
15
|
Xie X, Lee J, Fuson JA, Liu H, Iwase T, Yun K, Margain C, Tripathy D, Ueno NT. Emerging drug targets for triple-negative breast cancer: a guided tour of the preclinical landscape. Expert Opin Ther Targets 2022; 26:405-425. [PMID: 35574694 PMCID: PMC11972560 DOI: 10.1080/14728222.2022.2077188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is the most fatal molecular subtype of breast cancer because of its aggressiveness and resistance to chemotherapy. FDA-approved therapies for TNBC are limited to poly(ADP-ribose) polymerase inhibitors, immune checkpoint inhibitors, and trophoblast cell surface antigen 2-targeted antibody-drug conjugate. Therefore, developing a novel effective targeted therapy for TNBC is an urgent unmet need. AREAS COVERED In this narrative review, we discuss emerging targets for TNBC treatment discovered in early translational studies. We focus on cancer cell membrane molecules, hyperactive intracellular signaling pathways, and the tumor microenvironment (TME) based on their druggability, therapeutic potency, specificity to TNBC, and application in immunotherapy. EXPERT OPINION The significant challenges in the identification and validation of TNBC-associated targets are 1) application of appropriate genetic, molecular, and immunological approaches for modulating the target, 2) establishment of a proper mouse model that accurately represents the human immune TME, 3) TNBC molecular heterogeneity, and 4) failure translation of preclinical findings to clinical practice. To overcome those difficulties, future research needs to apply novel technology, such as single-cell RNA sequencing, thermostable group II intron reverse transcriptase sequencing, and humanized mouse models. Further, combination treatment targeting multiple pathways in both the TNBC tumor and its TME is essential for effective disease control.
Collapse
Affiliation(s)
- Xuemei Xie
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jangsoon Lee
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jon A. Fuson
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huey Liu
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Toshiaki Iwase
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyuson Yun
- Research Institute at Houston Methodist, Weill Cornell Medical College, Houston, TX 77030, USA
| | | | - Debu Tripathy
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naoto T. Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Cancer Biology and Therapeutics, University of Hawai’i Cancer Center, Honolulu, HI 96813, USA
| |
Collapse
|
16
|
Ror2-mediated cholesterol accumulation regulates autophagic activity within BCG-infected macrophages. Microb Pathog 2022; 167:105564. [DOI: 10.1016/j.micpath.2022.105564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022]
|
17
|
Ziad A, Abdurahman A, Misako N. A comprehensive review on antibody-drug conjugates (ADCs) in the treatment landscape of non-small cell lung cancer (NSCLC). Cancer Treat Rev 2022; 106:102393. [DOI: 10.1016/j.ctrv.2022.102393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/02/2022] [Accepted: 04/10/2022] [Indexed: 11/28/2022]
|
18
|
Castro MV, Barbero GA, Máscolo P, Ramos R, Quezada MJ, Lopez-Bergami P. ROR2 increases the chemoresistance of melanoma by regulating p53 and Bcl2-family proteins via ERK hyperactivation. Cell Mol Biol Lett 2022; 27:23. [PMID: 35260073 PMCID: PMC8903712 DOI: 10.1186/s11658-022-00327-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/22/2022] [Indexed: 12/28/2022] Open
Abstract
Background ROR2 is a tyrosine-kinase receptor whose expression is dysregulated in many human diseases. In cancer, ROR2 stimulates proliferation, survival, migration, and metastasis, and is associated with more aggressive tumor stages. The purpose of this work is to study the role of ROR2 in the chemoresistance of melanoma. Methods Gain- and loss-of-function experiments were used to study the biological function of ROR2 in melanoma. Cell death induced by chemotherapeutic drugs and BH-3 mimetics was evaluated using crystal violet cytotoxicity assays and annexin V/propidium iodide staining. Western blots were used to evaluate the expression of proteins implicated in cell death. The differences observed between cells with manipulation of ROR2 levels and control cells were evaluated using both Student’s t-test and ANOVA. Results We describe that ROR2 contributes to tumor progression by enhancing the resistance of melanoma cells to both chemotherapeutic drugs and BH-3 mimetics. We demonstrate that ROR2 reduced cell death upon treatment with cisplatin, dacarbazine, lomustine, camptothecin, paclitaxel, ABT-737, TW-37, and venetoclax. This effect was mediated by the inhibition of apoptosis. In addition, we investigated the molecular mechanisms implicated in this role of ROR2. We identified the MDM2/p53 pathway as a novel target of ROR2 since ROR2 positively regulates MDM2 levels, thus leading to p53 downregulation. We also showed that ROR2 also upregulates Mcl-1 and Bcl2-xL while it negatively regulates Bax and Bid expression. The effect of ROR2 on the expression of these proteins is mediated by the hyperactivation of ERK. Conclusions These results demonstrate that ROR2 contributes to melanoma progression by inhibiting apoptosis and increasing chemoresistance. These results not only position ROR2 as a marker of chemoresistance but also support its use as a novel therapeutic target in cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00327-7.
Collapse
Affiliation(s)
- María Victoria Castro
- Centro de Estudios Biomédicos, Básicos, Biotecnológicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602, 1405, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina
| | - Gastón Alexis Barbero
- Centro de Estudios Biomédicos, Básicos, Biotecnológicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602, 1405, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina
| | - Paula Máscolo
- Centro de Estudios Biomédicos, Básicos, Biotecnológicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602, 1405, Buenos Aires, Argentina
| | - Rocío Ramos
- Centro de Estudios Biomédicos, Básicos, Biotecnológicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602, 1405, Buenos Aires, Argentina
| | - María Josefina Quezada
- Centro de Estudios Biomédicos, Básicos, Biotecnológicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602, 1405, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Biotecnológicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602, 1405, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Rozen EJ, Shohet JM. Systematic review of the receptor tyrosine kinase superfamily in neuroblastoma pathophysiology. Cancer Metastasis Rev 2022; 41:33-52. [PMID: 34716856 PMCID: PMC8924100 DOI: 10.1007/s10555-021-10001-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neuroblastoma is a devastating disease accounting for 15% of all childhood cancer deaths. Yet, our understanding of key molecular drivers such as receptor tyrosine kinases (RTKs) in this pathology remains poorly clarified. Here, we provide a systematic analysis of the RTK superfamily in the context of neuroblastoma pathogenesis. METHODS Statistical correlations for all RTK family members' expression to neuroblastoma patient survival across 10 independent patient cohorts were annotated, synthesized, and ranked using the R2: Genomics Analysis and Visualization Platform. Gene expression of selected members across different cancer cell lines was further analyzed in the Cancer Cell Line Encyclopedia, part of the Cancer Dependency Map portal (depmap portal ( http://depmap.org )). Finally, we provide a detailed literature review for highly ranked candidates. RESULTS Our analysis defined two subsets of RTKs showing robust associations with either better or worse survival, constituting potential novel players in neuroblastoma pathophysiology, diagnosis, and therapy. We review the available literature regarding the oncogenic functions of these RTKs, their roles in neuroblastoma pathophysiology, and potential utility as therapeutic targets. CONCLUSIONS Our systematic analysis and review of the RTK superfamily in neuroblastoma pathogenesis provides a new resource to guide the research community towards focused efforts investigating signaling pathways that contribute to neuroblastoma tumor establishment, growth, and/or aggressiveness and targeting these druggable molecules in novel therapeutic strategies.
Collapse
Affiliation(s)
- Esteban Javier Rozen
- Department of Pediatrics, UMass Chan Medical School, Lazare Research Building LRB603, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Jason Matthew Shohet
- Division of Hematology/Oncology, Department of Pediatrics, UMass Chan Medical School, Lazare Research Building LRB603, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
20
|
He X, Yang Z, Chu XY, Li YX, Zhu B, Huang YX, Wang W, Gao CY, Chen X, Zheng CY, Yang K, Zhang DL. ROR2 downregulation activates the MSX2/NSUN2/p21 regulatory axis and promotes dental pulp stem cell senescence. Stem Cells 2022; 40:290-302. [PMID: 35356984 DOI: 10.1093/stmcls/sxab024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022]
Abstract
Abstract
Cellular senescence severely limits the research and the application of dental pulp stem cells (DPSCs). A previous study conducted by our research group revealed a close implication of ROR2 in DPSC senescence, although the mechanism underlying the regulation of ROR2 in DPSCs remains poorly understood so far. In the present study, it was revealed that the expression of the ROR2-interacting transcription factor MSX2 was increased in aging DPSCs. It was demonstrated that the depletion of MSX2 inhibits the senescence of DPSCs and restores their self-renewal capacity, and the simultaneous overexpression of ROR2 enhanced this effect. Moreover, MSX2 knockdown suppressed the transcription of NSUN2, which regulates the expression of p21 by binding to and causing the m5C methylation of the 3'-UTR of p21 mRNA. Interestingly, ROR2 downregulation elevated the levels of MSX2 protein, and not the MSX2 mRNA expression, by reducing the phosphorylation level of MSX2 and inhibiting the RNF34-mediated MSX2 ubiquitination degradation. The results of the present study demonstrated the vital role of the ROR2/MSX2/NSUN2 axis in the regulation of DPSC senescence, thereby revealing a potential target for antagonizing DPSC aging.
Collapse
Affiliation(s)
- Xin He
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, China
| | - Zhan Yang
- Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, Shijiazhang, China
| | - Xiao-yang Chu
- Department of Stomatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yun-xia Li
- Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Biao Zhu
- Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan-xia Huang
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, China
| | - Chun-yan Gao
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, China
| | - Xu Chen
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, China
| | - Chun-yan Zheng
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Dong-liang Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Vyas D, Patel M, Wairkar S. Strategies for active tumor targeting-an update. Eur J Pharmacol 2022; 915:174512. [PMID: 34555395 DOI: 10.1016/j.ejphar.2021.174512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 01/26/2023]
Abstract
A complete cure for cancer is still the holy grail for scientists. The existing treatment of cancer is primarily focused on surgery, radiation and conventional chemotherapy. However, chemotherapeutic agents also affect healthy tissues or organs due to a lack of specificity. While passive targeting is studied for anticancer drugs focused on the enhanced permeability and retention effect, it failed to achieve drug accumulation at the tumor site and desired therapeutic efficacy. This review presents an outline of the current significant targets for active tumor drug delivery systems and provides insight into the direction of active tumor-targeting strategies. For this purpose, a systematic understanding of the physiological factors, tumor microenvironment and its components, overexpressed receptor and associated proteins are covered here. We focused on angiogenesis mediated targeting, receptor-mediated targeting and peptide targeting. This active targeting along with integration with nano delivery systems helps in achieving specific action, thus reducing the associated adverse effects to healthy tissues. Although the tumor-targeting methods and possibilities explored so far seem revolutionary in cancer treatment, in-depth clinical studies data is required for its commercial translation.
Collapse
Affiliation(s)
- Darshan Vyas
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Mital Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
22
|
Castro MV, Lopez-Bergami P. Cellular and molecular mechanisms implicated in the dual role of ROR2 in cancer. Crit Rev Oncol Hematol 2022; 170:103595. [PMID: 35032666 DOI: 10.1016/j.critrevonc.2022.103595] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
ROR1 and ROR2 are Wnt receptors that are critical for β-catenin-independent Wnt pathways and have been linked to processes driving tumor progression, such as cell proliferation, survival, invasion, and therapy resistance. Both receptors have garnered interest as potential therapeutic targets since they are largely absent in adult tissue, are overexpressed in several cancers, and, as members of the receptor tyrosine kinase family, are easier to target than all other components of the pathway. Unlike ROR1 which always promotes tumorigenesis, ROR2 has a very complex role in cancer acting either to promote or inhibit tumor progression in different tumor types. In the present article, we summarize the findings on ROR2 expression in cancer patients and its impact on clinical outcome. Further, we review the biological processes and signaling pathways regulated by ROR2 that explain its dual role in cancer. Finally, we describe the ongoing strategies to target ROR2 in cancer.
Collapse
Affiliation(s)
- María Victoria Castro
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina.
| |
Collapse
|
23
|
Castro MV, Barbero GA, Villanueva MB, Grumolato L, Nsengimana J, Newton-Bishop J, Illescas E, Quezada MJ, Lopez-Bergami P. ROR2 has a protective role in melanoma by inhibiting Akt activity, cell-cycle progression, and proliferation. J Biomed Sci 2021; 28:76. [PMID: 34774050 PMCID: PMC8590781 DOI: 10.1186/s12929-021-00776-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/07/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Receptor tyrosine kinase-like orphan receptor 2 (ROR2) is a Wnt5a receptor aberrantly expressed in cancer that was shown to either suppress or promote carcinogenesis in different tumor types. Our goal was to study the role of ROR2 in melanoma. METHODS Gain and loss-of-function strategies were applied to study the biological function of ROR2 in melanoma. Proliferation assays, flow cytometry, and western blotting were used to evaluate cell proliferation and changes in expression levels of cell-cycle and proliferation markers. The role of ROR2 in tumor growth was assessed in xenotransplantation experiments followed by immunohistochemistry analysis of the tumors. The role of ROR2 in melanoma patients was assessed by analysis of clinical data from the Leeds Melanoma Cohort. RESULTS Unlike previous findings describing ROR2 as an oncogene in melanoma, we describe that ROR2 prevents tumor growth by inhibiting cell-cycle progression and the proliferation of melanoma cells. The effect of ROR2 is mediated by inhibition of Akt phosphorylation and activity which, in turn, regulates the expression, phosphorylation, and localization of major cell-cycle regulators including cyclins (A, B, D, and E), CDK1, CDK4, RB, p21, and p27. Xenotransplantation experiments demonstrated that ROR2 also reduces proliferation in vivo, resulting in inhibition of tumor growth. In agreement with these findings, a higher ROR2 level favors thin and non-ulcerated primary melanomas with reduced mitotic rate and better prognosis. CONCLUSION We conclude that the expression of ROR2 slows down the growth of primary tumors and contributes to prolonging melanoma survival. Our results demonstrate that ROR2 has a far more complex role than originally described.
Collapse
Affiliation(s)
- María Victoria Castro
- grid.440480.c0000 0000 9361 4204Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, 1405 Buenos Aires, Argentina ,grid.423606.50000 0001 1945 2152Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425 Buenos Aires, Argentina
| | - Gastón Alexis Barbero
- grid.440480.c0000 0000 9361 4204Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, 1405 Buenos Aires, Argentina ,grid.423606.50000 0001 1945 2152Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425 Buenos Aires, Argentina
| | - María Belén Villanueva
- grid.440480.c0000 0000 9361 4204Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, 1405 Buenos Aires, Argentina ,grid.423606.50000 0001 1945 2152Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425 Buenos Aires, Argentina
| | - Luca Grumolato
- grid.10400.350000 0001 2108 3034INSERM U982, Institute for Research and Innovation in Biomedicine, University of Rouen, 76183 Rouen, France
| | - Jérémie Nsengimana
- grid.1006.70000 0001 0462 7212Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | | | - Edith Illescas
- grid.440480.c0000 0000 9361 4204Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, 1405 Buenos Aires, Argentina
| | - María Josefina Quezada
- grid.440480.c0000 0000 9361 4204Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, 1405 Buenos Aires, Argentina ,grid.423606.50000 0001 1945 2152Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425 Buenos Aires, Argentina
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, 1405, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina. .,Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimonides, Hidalgo 775, 6th Floor, Lab 602., 1405, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Prognostic Significance of ROR2 Expression in Patients with Urothelial Carcinoma. Biomedicines 2021; 9:biomedicines9081054. [PMID: 34440262 PMCID: PMC8392262 DOI: 10.3390/biomedicines9081054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/01/2023] Open
Abstract
We investigated the association of receptor tyrosine kinase-like orphan receptor 2 (ROR2) expression with clinicopathological features and oncologic outcomes in large urothelial carcinoma (UC) of the upper tract (UTUC) and urinary bladder (UBUC) cohorts. Through transcriptomic profiling of a published dataset (GSE31684), ROR2 was discovered to be the most upregulated gene during UC progression, focusing on the JNK cascade (GO:0007254). Initially, the evaluation of ROR2 mRNA expression in 50 frozen UBUCs showed significantly upregulated levels in high-stage UC. Moreover, high ROR2 immunoexpression significantly correlated with high tumor stage, high tumor grade, lymph node metastasis, and vascular invasion (all p < 0.05). In multivariate analysis, after adjusting for standard clinicopathological features, ROR2 expression status was an independent prognosticator of cancer-specific survival and metastasis-free survival in UTUC and UBUC (all p < 0.01). In the subgroup analysis, it also significantly predicted bladder tumor recurrence in non-muscle invasive UBUC. Furthermore, the GO enrichment analysis showed that fatty acid, monocarboxylic acid, carboxylic acid metabolic processes, negative regulation of neutrophil migration, and negative regulation of granulocyte and neutrophil chemotaxis were significantly enriched by ROR2 dysregulation. In conclusion, high ROR2 immunoexpression was associated with aggressive pathological characteristics in UC and independently predicted worse prognosis, suggesting it could play roles in clinical risk stratification and therapy decisions.
Collapse
|
25
|
Antibody Conjugates for Sarcoma Therapy: How Far along Are We? Biomedicines 2021; 9:biomedicines9080978. [PMID: 34440182 PMCID: PMC8392509 DOI: 10.3390/biomedicines9080978] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 01/12/2023] Open
Abstract
Sarcomas are one of the most difficult type of cancer to manage and treat because of their extremely heterogeneous molecular and morphological features. Despite the progress made over the years in the establishment of standard protocols for high and low grading/staging sarcoma patients, mostly with chemotherapy and/or radiotherapy, 50% of treated patients experience relapse episodes. Because of this, in the last 20 years, new therapeutic approaches for sarcoma treatment have been evaluated in preclinical and clinical studies. Among them, antibody-based therapies have been the most studied. Immunoconjugates consist of a carrier portion, frequently represented by an antibody, linked to a toxic moiety, i.e., a drug, toxin, or radionuclide. While the efficacy of immunoconjugates is well demonstrated in the therapy of hematological tumors and more recently also of epithelial ones, their potential as therapeutic agents against sarcomas is still not completely explored. In this paper, we summarize the results obtained with immunoconjugates targeting sarcoma surface antigens, considering both preclinical and clinical studies. To date, the encouraging results obtained in preclinical studies allowed nine immunoconjugates to enter clinical trials, demonstrating the validity of immunotherapy as a promising pharmacological tool also for sarcoma therapy.
Collapse
|
26
|
Satpathy S, Krug K, Jean Beltran PM, Savage SR, Petralia F, Kumar-Sinha C, Dou Y, Reva B, Kane MH, Avanessian SC, Vasaikar SV, Krek A, Lei JT, Jaehnig EJ, Omelchenko T, Geffen Y, Bergstrom EJ, Stathias V, Christianson KE, Heiman DI, Cieslik MP, Cao S, Song X, Ji J, Liu W, Li K, Wen B, Li Y, Gümüş ZH, Selvan ME, Soundararajan R, Visal TH, Raso MG, Parra ER, Babur Ö, Vats P, Anand S, Schraink T, Cornwell M, Rodrigues FM, Zhu H, Mo CK, Zhang Y, da Veiga Leprevost F, Huang C, Chinnaiyan AM, Wyczalkowski MA, Omenn GS, Newton CJ, Schurer S, Ruggles KV, Fenyö D, Jewell SD, Thiagarajan M, Mesri M, Rodriguez H, Mani SA, Udeshi ND, Getz G, Suh J, Li QK, Hostetter G, Paik PK, Dhanasekaran SM, Govindan R, Ding L, Robles AI, Clauser KR, Nesvizhskii AI, Wang P, Carr SA, Zhang B, Mani DR, Gillette MA. A proteogenomic portrait of lung squamous cell carcinoma. Cell 2021; 184:4348-4371.e40. [PMID: 34358469 PMCID: PMC8475722 DOI: 10.1016/j.cell.2021.07.016] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/26/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.
Collapse
Affiliation(s)
- Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Pierre M Jean Beltran
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Yongchao Dou
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Shayan C Avanessian
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Suhas V Vasaikar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Erik J Bergstrom
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Vasileios Stathias
- Sylvester Comprehensive Cancer Center and Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Karen E Christianson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Song Cao
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wenke Liu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yize Li
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Myvizhi Esai Selvan
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tanvi H Visal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria G Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Özgün Babur
- Computer Science Department, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Pankaj Vats
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shankara Anand
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Tobias Schraink
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - MacIntosh Cornwell
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Houxiang Zhu
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Chia-Kuei Mo
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Chen Huang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Stephan Schurer
- Sylvester Comprehensive Cancer Center and Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Namrata D Udeshi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - James Suh
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Qing Kay Li
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | | | - Paul K Paik
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Ramaswamy Govindan
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Li Ding
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Dong X, Huang Y, Yang Z, Chu X, Wu J, Wang S, He X, Gao C, Chen X, Yang K, Zhang D. Downregulation of ROR2 promotes dental pulp stem cell senescence by inhibiting STK4-FOXO1/SMS1 axis in sphingomyelin biosynthesis. Aging Cell 2021; 20:e13430. [PMID: 34278704 PMCID: PMC8373368 DOI: 10.1111/acel.13430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/09/2021] [Accepted: 05/30/2021] [Indexed: 12/20/2022] Open
Abstract
Dental pulp stem cells (DPSCs) play a vital role in tooth restoration, regeneration, and homeostasis. The link between DPSC senescence and tooth aging has been well‐recognized. ROR2 plays an important role in aging‐related gene expression. However, the expression and function of ROR2 in DPSC aging remain largely unknown. In this study, we found that ROR2 expression was significantly decreased in aged pulp tissues and DPSCs. The depletion of ROR2 in young DPSCs inhibits their self‐renewal capacity, while its overexpression in aged DPSCs restores their self‐renewal capacity. Interestingly, we found that sphingomyelin (SM) is involved in the senescence of DPSCs regulated by ROR2. Mechanistically, we confirmed that ROR2 inhibited the phosphorylation of STK4, which promoted the translocation of Forkhead Box O1 (FOXO1) to the nucleus. STK4 inhibition or knockdown of FOXO1 markedly increased the proliferation of DPSCs and upregulated the expression of SMS1, which catalyzed SM biogenesis. Moreover, FOXO1 directly bound to the SMS1 promoter, repressing its transcription. Our findings demonstrated the critical role of the ROR2/STK4‐FOXO1/SMS1 axis in the regulation of SM biogenesis and DPSC senescence, providing a novel target for antagonizing tooth aging.
Collapse
Affiliation(s)
- Xing‐yue Dong
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Yan‐xia Huang
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Zhan Yang
- Molecular Biology Laboratory, Talent and Academic Exchange Center The Second Hospital of Hebei Medical University Shijiazhang China
| | - Xiao‐yang Chu
- Department of Stomatology Fifth Medical Center of Chinese, PLA General HospitalBeijing China
| | - Jue Wu
- Translational Medical Research Center Medical Innovation Research Division of Chinese PLA General HospitalBeijing China
| | - Shan Wang
- Translational Medical Research Center Medical Innovation Research Division of Chinese PLA General HospitalBeijing China
| | - Xin He
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Chun‐Yan Gao
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Xu Chen
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Kai Yang
- Prenatal Diagnosis Center Beijing Obstetrics and Gynecology Hospital Capital Medical University Beijing China
| | - Dong‐liang Zhang
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| |
Collapse
|
28
|
Zuo W, Kwok HF. Development of Marine-Derived Compounds for Cancer Therapy. Mar Drugs 2021; 19:md19060342. [PMID: 34203870 PMCID: PMC8232666 DOI: 10.3390/md19060342] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer has always been a threat to human health with its high morbidity and mortality rates. Traditional therapy, including surgery, chemotherapy and radiotherapy, plays a key role in cancer treatment. However, it is not able to prevent tumor recurrence, drug resistance and treatment side effects, which makes it a very attractive challenge to search for new effective and specific anticancer drugs. Nature is a valuable source of multiple pharmaceuticals, and most of the anticancer drugs are natural products or derived from them. Marine-derived compounds, such as nucleotides, proteins, peptides and amides, have also shed light on cancer therapy, and they are receiving a fast-growing interest due to their bioactive properties. Their mechanisms contain anti-angiogenic, anti-proliferative and anti-metastasis activities; cell cycle arrest; and induction of apoptosis. This review provides an overview on the development of marine-derived compounds with anticancer properties, both their applications and mechanisms, and discovered technologies.
Collapse
Affiliation(s)
- Weimin Zuo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao;
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao;
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao
- Correspondence:
| |
Collapse
|
29
|
Gui B, Yu C, Li X, Zhao S, Zhao H, Yan Z, Cheng X, Lin J, Zheng H, Shao J, Zhao Z, Zhao L, Niu Y, Zhao Z, Wang H, Xie B, Wei X, Gui C, Li C, Chen S, Wang Y, Song Y, Gong C, Zhang TJ, Fan X, Wu Z, Chen Y, Wu N. Heterozygous Recurrent Mutations Inducing Dysfunction of ROR2 Gene in Patients With Short Stature. Front Cell Dev Biol 2021; 9:661747. [PMID: 33937263 PMCID: PMC8080376 DOI: 10.3389/fcell.2021.661747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE ROR2, a member of the ROR family, is essential for skeletal development as a receptor of Wnt5a. The present study aims to investigate the mutational spectrum of ROR2 in children with short stature and to identify the underlying molecular mechanisms. METHODS We retrospectively analyzed clinical phenotype and whole-exome sequencing (WES) data of 426 patients with short stature through mutation screening of ROR2. We subsequently examined the changes in protein expression and subcellular location in ROR2 caused by the mutations. The mRNA expression of downstream signaling molecules of the Wnt5a-ROR2 pathway was also examined. RESULTS We identified 12 mutations in ROR2 in 21 patients, including 10 missense, one nonsense, and one frameshift. Among all missense variants, four recurrent missense variants [c.1675G > A(p.Gly559Ser), c.2212C > T(p.Arg738Cys), c.1930G > A(p.Asp644Asn), c.2117G > A(p.Arg706Gln)] were analyzed by experiments in vitro. The c.1675G > A mutation significantly altered the expression and the cellular localization of the ROR2 protein. The c.1675G > A mutation also caused a significantly decreased expression of c-Jun. In contrast, other missense variants did not confer any disruptive effect on the biological functions of ROR2. CONCLUSION We expanded the mutational spectrum of ROR2 in patients with short stature. Functional experiments potentially revealed a novel molecular mechanism that the c.1675G > A mutation in ROR2 might affect the expression of downstream Wnt5a-ROR2 pathway gene by disturbing the subcellular localization and expression of the protein.
Collapse
Affiliation(s)
- Baoheng Gui
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
| | - Chenxi Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xiaoxin Li
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Hengqiang Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xi Cheng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Jiachen Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Haiyang Zheng
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
| | - Jiashen Shao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zhengye Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Lina Zhao
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuchen Niu
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhi Zhao
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Huizi Wang
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bobo Xie
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
| | - Xianda Wei
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunrong Gui
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chuan Li
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shaoke Chen
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi Wang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Yanning Song
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Chunxiu Gong
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Fan
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujun Chen
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Klaus T, Deshmukh S. pH-responsive antibodies for therapeutic applications. J Biomed Sci 2021; 28:11. [PMID: 33482842 PMCID: PMC7821552 DOI: 10.1186/s12929-021-00709-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/15/2021] [Indexed: 11/29/2022] Open
Abstract
Therapeutic antibodies are instrumental in improving the treatment outcome for certain disease conditions. However, to enhance their efficacy and specificity, many efforts are continuously made. One of the approaches that are increasingly explored in this field are pH-responsive antibodies capable of binding target antigens in a pH-dependent manner. We reviewed suitability and examples of these antibodies that are functionally modulated by the tumor microenvironment. Provided in this review is an update about antigens targeted by pH-responsive, sweeping, and recycling antibodies. Applicability of the pH-responsive antibodies in the engineering of chimeric antigen receptor T-cells (CAR-T) and in improving drug delivery to the brain by the enhanced crossing of the blood-brain barrier is also discussed. The pH-responsive antibodies possess strong treatment potential. They emerge as next-generation programmable engineered biologic drugs that are active only within the targeted biological space. Thus, they are valuable in targeting acidified tumor microenvironment because of improved spatial persistence and reduced on-target off-tumor toxicities. We predict that the programmable pH-dependent antibodies become powerful tools in therapies of cancer.
Collapse
Affiliation(s)
- Tomasz Klaus
- Research and Development Department, Pure Biologics, Inc., Dunska 11, 54427, Wrocław, Poland
| | - Sameer Deshmukh
- Research and Development Department, Pure Biologics, Inc., Dunska 11, 54427, Wrocław, Poland.
| |
Collapse
|
31
|
Ma Y, Jing J, Feng J, Yuan Y, Wen Q, Han X, He J, Chen S, Ho TV, Chai Y. Ror2-mediated non-canonical Wnt signaling regulates Cdc42 and cell proliferation during tooth root development. Development 2021; 148:dev.196360. [PMID: 33323370 PMCID: PMC7847279 DOI: 10.1242/dev.196360] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
The control of size and shape is an important part of regulatory process during organogenesis. Tooth formation is a highly complex process that fine-tunes the size and shape of the tooth, which are crucial for its physiological functions. Each tooth consists of a crown and one or more roots. Despite comprehensive knowledge of the mechanism that regulates early tooth crown development, we have limited understanding of the mechanism regulating root patterning and size during development. Here, we show that Ror2-mediated non-canonical Wnt signaling in the dental mesenchyme plays a crucial role in cell proliferation, and thereby regulates root development size in mouse molars. Furthermore, Cdc42 acts as a potential downstream mediator of Ror2 signaling in root formation. Importantly, activation of Cdc42 can restore cell proliferation and partially rescue the root development size defects in Ror2 mutant mice. Collectively, our findings provide novel insights into the function of Ror2-mediated non-canonical Wnt signaling in regulating tooth morphogenesis, and suggest potential avenues for dental tissue engineering. Summary: The function of Ror2-mediated non-canonical Wnt signaling and its effect on Cdc42 activation is crucial in regulating progenitor cell proliferation, odontoblast differentiation and Hertwig's epithelial root sheath formation during tooth root morphogenesis.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Guangdong Provincial Key Laboratory of Stomatology, Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Quan Wen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
32
|
Chen Y, Chen Z, Tang Y, Xiao Q. The involvement of noncanonical Wnt signaling in cancers. Biomed Pharmacother 2020; 133:110946. [PMID: 33212376 DOI: 10.1016/j.biopha.2020.110946] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022] Open
Abstract
Wnt signaling is one of the key cascades regulating normal tissue development and has been tightly associated with cancer. The Wnt signaling can be subdivided into two categories: canonical & noncanonical. Noncanonical Wnt signaling pathways mainly include Wnt/PCP (planar cell polarity) signaling and Wnt-cGMP (cyclic guanosine monophosphate) /Ca2+ signaling. It has been well studied by previous researches that noncanonical Wnt signaling regulates multiple cell functions including proliferation, differentiation, adhesion, polarity, motility, and migration. The aberrant activation or inhibition of noncanonical Wnt signaling is crucial in cancer progression, exerting both oncogenic and tumor-suppressive effects. Recent studies show the involvement of noncanonical Wnt in regulating cancer cell invasion, metastasis, metabolism, and inflammation. Here, we review current insights into novel components of non-canonical signalings and describe their involvement in various cancer types. We also summarize recent biological and clinical discoveries that outline non-canonical Wnt signaling in tumorigenesis. Finally, we provide an overview of current strategies to target non-canonical Wnt signaling in cancer and challenges that are associated with such approaches.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of General Surgery, Zhejiang Yuhuan People's Hospital, Taizhou, Zhejiang, China
| | - Zhengxi Chen
- Department of Orthodontics, Shanghai Ninth People׳s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China; Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States
| | - Yin Tang
- Omni Family Health, Bakersfield, CA, United States
| | - Qian Xiao
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
33
|
Gipson GR, Goebel EJ, Hart KN, Kappes EC, Kattamuri C, McCoy JC, Thompson TB. Structural perspective of BMP ligands and signaling. Bone 2020; 140:115549. [PMID: 32730927 PMCID: PMC7502536 DOI: 10.1016/j.bone.2020.115549] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
The Bone Morphogenetic Proteins (BMPs) are the largest class signaling molecules within the greater Transforming Growth Factor Beta (TGFβ) family, and are responsible for a wide array of biological functions, including dorsal-ventral patterning, skeletal development and maintenance, as well as cell homeostasis. As such, dysregulation of BMPs results in a number of diseases, including fibrodysplasia ossificans progressiva (FOP) and pulmonary arterial hypertension (PAH). Therefore, understanding BMP signaling and regulation at the molecular level is essential for targeted therapeutic intervention. This review discusses the recent advances in the structural and biochemical characterization of BMPs, from canonical ligand-receptor interactions to co-receptors and antagonists. This work aims to highlight how BMPs differ from other members of the TGFβ family, and how that information can be used to further advance the field. Lastly, this review discusses several gaps in the current understanding of BMP structures, with the aim that discussion of these gaps will lead to advancements in the field.
Collapse
Affiliation(s)
- Gregory R Gipson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Kaitlin N Hart
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Emily C Kappes
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA.
| |
Collapse
|
34
|
Identification of microRNA-451a as a Novel Circulating Biomarker for Colorectal Cancer Diagnosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5236236. [PMID: 32908896 PMCID: PMC7474364 DOI: 10.1155/2020/5236236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022]
Abstract
Background Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide. Successful treatment of CRC relies on accurate early diagnosis, which is currently a challenge due to its complexity and personalized pathologies. Thus, novel molecular biomarkers are needed for early CRC detection. Methods Gene and microRNA microarray profiling of CRC tissues and miRNA-seq data were analyzed. Candidate microRNA biomarkers were predicted using both CRC-specific network and miRNA-BD tool. Validation analyses were carried out to interrogate the identified candidate CRC biomarkers. Results We identified miR-451a as a potential early CRC biomarker circulating in patient's serum. The dysregulation of miR-451a was revealed both in primary tumors and in patients' sera. Downstream analysis validated the tumor suppressor role of miR-451a and high sensitivity of miR-451a in CRC patients, further confirming its potential role as CRC circulation biomarker. Conclusion The miR-451a is a potential circulating biomarker for early CRC diagnosis.
Collapse
|
35
|
Huang H, Li J, Shen J, Lin L, Wu X, Xiang S, Li Y, Xu Y, Zhao Q, Zhao Y, Kaboli PJ, Li M, Li X, Wang W, Wen Q, Xiao Z. Increased ABCC4 Expression Induced by ERRα Leads to Docetaxel Resistance via Efflux of Docetaxel in Prostate Cancer. Front Oncol 2020; 10:1474. [PMID: 33014785 PMCID: PMC7493678 DOI: 10.3389/fonc.2020.01474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Docetaxel is a major treatment for advanced prostate cancer (PCa); however, its resistance compromises clinical effectiveness. Estrogen receptor-related receptor alpha (ERRα) belongs to an orphan nuclear receptor superfamily and was recently found to be closely involved in cancer. In the present study, we found that ERRα was involved in docetaxel resistance in PCa. Overexpression of ERRα conferred docetaxel resistance in PCa cell lines, and cells with ERRα downregulation were more sensitive to docetaxel. Among the drug resistance-related genes, ABCC4 demonstrated synchronous expression after ERRα manipulation in cells. Moreover, both ERRα and ABCC4 were overexpressed in the docetaxel-resistant cell, which could be reversed by ERRα knockdown. The knockdown of ERRα also reversed the reduced drug accumulation in the docetaxel-resistant cell. We also demonstrated for the first time that ABCC4 was a direct target of ERRα as determined by the CHIP and luciferase assays. Bioinformatics analysis revealed high expression of ERRα and ABCC4 in PCa patients, and a number of potential ERRα/ABCC4 targets were predicted. In conclusion, our study demonstrated a critical role for ERRα in docetaxel resistance by directly targeting ABCC4 and stressed the importance of ERRα as a potential therapeutic target for drug-resistant PCa.
Collapse
Affiliation(s)
- Houbao Huang
- Department of Urology, Yijishan Affiliated Hospital, Wannan Medical College, Wuhu, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Ling Lin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yawei Li
- Department of Urology, Yijishan Affiliated Hospital, Wannan Medical College, Wuhu, China
| | - Yujie Xu
- Department of Urology, Yijishan Affiliated Hospital, Wannan Medical College, Wuhu, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xiang Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Weiping Wang
- Department of Pharmacy, Yijishan Affiliated Hospital, Wannan Medical College, Wuhu, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
36
|
ROR1 is upregulated in endometrial cancer and represents a novel therapeutic target. Sci Rep 2020; 10:13906. [PMID: 32807831 PMCID: PMC7431863 DOI: 10.1038/s41598-020-70924-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
ROR1 and ROR2 are receptor tyrosine kinases with altered expression in a range of cancers. Silencing ROR1 or ROR2 in different tumour types has been shown to inhibit proliferation and decrease metastatic potential. The aim of this study was to investigate the role of ROR1 and ROR2 in endometrial cancer via immunohistochemistry (IHC) in a large endometrial cancer patient cohort (n = 499) and through in vitro analysis in endometrial cancer cell lines. Correlation was assessed between ROR1/2 expression and clinicopathological parameters. Kaplan Meier curves were produced for 5-year progression free survival (PFS) and overall survival (OS) with low/moderate versus high ROR1/2 intensity. Cox multivariate regression was applied to analyse the effect of selected covariates on the PFS and OS. The effect of ROR1 and/or ROR2 modulation on cell proliferation, adhesion, migration and invasion was analysed in two endometrial cancer cell lines (KLE and MFE-296). We observed a significant decrease in OS and PFS in patients with high ROR1 expression. ROR1 silencing and ROR2 overexpression significantly inhibited proliferation of KLE endometrial cancer cells and decreased migration. This study supports the oncogenic role of ROR1 in endometrial cancer, and warrants investigation of future application of ROR1-targeting therapies in endometrial cancer patients.
Collapse
|
37
|
Guo M, Ma G, Zhang X, Tang W, Shi J, Wang Q, Cheng Y, Zhang B, Xu J. ROR2 knockdown suppresses breast cancer growth through PI3K/ATK signaling. Aging (Albany NY) 2020; 12:13115-13127. [PMID: 32614787 PMCID: PMC7377870 DOI: 10.18632/aging.103400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
The receptor tyrosine kinase like orphan receptor 2 (ROR2) has been implicated in the pathogenesis of a variety of human cancers, including breast cancer. Here, we analyzed the clinical significance of ROR2 in breast cancer (BC) progression, and its function in the regulation of BC cell proliferation and growth. Analysis of ROR2 mRNA levels in 45 BC tissues and adjacent non-tumor tissues revealed that ROR2 expression was significantly increased in BC tissues, and that it correlated with tumor diameter. Kaplan-Meier disease-free survival (DFS) analysis demonstrated that BC patients with higher ROR2 expression had lower DFS. Knockdown of ROR2 suppressed in vitro proliferation of BC cells and promoted apoptosis, while ROR2 overexpression induced BC cell proliferation and suppressed apoptosis. Importantly, ROR2 suppression also reduced the tumor growth in mouse BC xenografts, indicating that ROR2 promotes BC tumorigenesis in vivo. In addition, our data revealed that ROR2 promotes proliferation of BC cells by activating the PI3K/AKT signaling pathway. Together, our results indicate that ROR2 acts as an oncogenic gene in breast cancer, and suggest that the ROR2/PI3K/AKT regulatory network contributes to breast cancer progression.
Collapse
Affiliation(s)
- Muhong Guo
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ge Ma
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiaolan Zhang
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junfeng Shi
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bin Zhang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases. Mol Cell 2020; 79:390-405.e7. [PMID: 32619402 DOI: 10.1016/j.molcel.2020.06.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/03/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
Despite their apparent lack of catalytic activity, pseudokinases are essential signaling molecules. Here, we describe the structural and dynamic properties of pseudokinase domains from the Wnt-binding receptor tyrosine kinases (PTK7, ROR1, ROR2, and RYK), which play important roles in development. We determined structures of all pseudokinase domains in this family and found that they share a conserved inactive conformation in their activation loop that resembles the autoinhibited insulin receptor kinase (IRK). They also have inaccessible ATP-binding pockets, occluded by aromatic residues that mimic a cofactor-bound state. Structural comparisons revealed significant domain plasticity and alternative interactions that substitute for absent conserved motifs. The pseudokinases also showed dynamic properties that were strikingly similar to those of IRK. Despite the inaccessible ATP site, screening identified ATP-competitive type-II inhibitors for ROR1. Our results set the stage for an emerging therapeutic modality of "conformational disruptors" to inhibit or modulate non-catalytic functions of pseudokinases deregulated in disease.
Collapse
|
39
|
Goydel RS, Weber J, Peng H, Qi J, Soden J, Freeth J, Park H, Rader C. Affinity maturation, humanization, and co-crystallization of a rabbit anti-human ROR2 monoclonal antibody for therapeutic applications. J Biol Chem 2020; 295:5995-6006. [PMID: 32193207 PMCID: PMC7196640 DOI: 10.1074/jbc.ra120.012791] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antibodies are widely used as cancer therapeutics, but their current use is limited by the low number of antigens restricted to cancer cells. A receptor tyrosine kinase, receptor tyrosine kinase-like orphan receptor 2 (ROR2), is normally expressed only during embryogenesis and is tightly down-regulated in postnatal healthy tissues. However, it is up-regulated in a diverse set of hematologic and solid malignancies, thus ROR2 represents a candidate antigen for antibody-based cancer therapy. Here we describe the affinity maturation and humanization of a rabbit mAb that binds human and mouse ROR2 but not human ROR1 or other human cell-surface antigens. Co-crystallization of the parental rabbit mAb in complex with the human ROR2 kringle domain (hROR2-Kr) guided affinity maturation by heavy-chain complementarity-determining region 3 (HCDR3)-focused mutagenesis and selection. The affinity-matured rabbit mAb was then humanized by complementarity-determining region (CDR) grafting and framework fine tuning and again co-crystallized with hROR2-Kr. We show that the affinity-matured and humanized mAb retains strong affinity and specificity to ROR2 and, following conversion to a T cell-engaging bispecific antibody, has potent cytotoxicity toward ROR2-expressing cells. We anticipate that this humanized affinity-matured mAb will find application for antibody-based cancer therapy of ROR2-expressing neoplasms.
Collapse
Affiliation(s)
- Rebecca S. Goydel
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458
| | - Justus Weber
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458
| | - Junpeng Qi
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458
| | - Jo Soden
- Retrogenix Ltd., Chinley, High Peak SK23 6FJ, United Kingdom
| | - Jim Freeth
- Retrogenix Ltd., Chinley, High Peak SK23 6FJ, United Kingdom
| | - HaJeung Park
- X-Ray Crystallography Core, The Scripps Research Institute, Jupiter, Florida 33458
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida 33458, To whom correspondence should be addressed:
Dept. of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way #2C1, Jupiter, FL 33458. Tel.:
561-228-2053; E-mail:
| |
Collapse
|
40
|
Flores-Hernández E, Velázquez DM, Castañeda-Patlán MC, Fuentes-García G, Fonseca-Camarillo G, Yamamoto-Furusho JK, Romero-Avila MT, García-Sáinz JA, Robles-Flores M. Canonical and non-canonical Wnt signaling are simultaneously activated by Wnts in colon cancer cells. Cell Signal 2020; 72:109636. [PMID: 32283254 DOI: 10.1016/j.cellsig.2020.109636] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/26/2022]
Abstract
The Wnt signaling pathway is a crucial regulator of the intestinal epithelium homeostasis and is altered in most colon cancers. While the role of aberrant canonical, β-catenin-dependent Wnt signaling has been well established in colon cancer promotion, much less is known about the role played by noncanonical, β-catenin-independent Wnt signaling in this type of cancer. This work aimed to characterize the noncanonical signal transduction pathway in colon cancer cells. To this end, we used the prototype noncanonical ligand, Wnt5a, in comparison with Wnt3a, the prototype of a canonical β-catenin activating ligand. The analysis of the expression profile of Wnt receptors in colon cancer cell lines showed a clear increase in both level expression and variety of Frizzled receptor types expressed in colon cancer cells compared with non-malignant cells. We found that Wnt5a activates a typical Wnt/Ca++ - noncanonical signaling pathway in colon malignant cells, inducing the hyperphosphorylation of Dvl1, Dvl2 and Dvl3, promoting Ca++ mobilization as a result of phospholipase C (PLC) activation via pertussis toxin-sensitive G-protein, and inducing PLC-dependent cell migration. We also found that while the co-receptor Ror2 tyrosine kinase activity is not required for Ca++ mobilization-induced by Wnt5a, it is required for the inhibitory effects of Wnt5a on the β-catenin-dependent transcriptional activity. Unexpectedly, we found that although the prototype canonical Wnt3a ligand was unique in stimulating the β-catenin-dependent transcriptional activity, it also simultaneously activated PLC, promoted Ca++ mobilization, and induced Rho kinase and PLC-dependent cell migration. Our data indicate, therefore, that a Wnt ligand can activate at the same time the so-called Wnt canonical and noncanonical pathways inducing the formation of complex signaling networks to integrate both pathways in colon cancer cells.
Collapse
Affiliation(s)
- Eric Flores-Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Dora M Velázquez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - M Cristina Castañeda-Patlán
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Gabriela Fuentes-García
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Gabriela Fonseca-Camarillo
- Inflammatory Bowel Disease Clinic, Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jesús K Yamamoto-Furusho
- Inflammatory Bowel Disease Clinic, Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - M Teresa Romero-Avila
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - J Adolfo García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
41
|
Xu J, Shi J, Tang W, Jiang P, Guo M, Zhang B, Ma G. ROR2 promotes the epithelial-mesenchymal transition by regulating MAPK/p38 signaling pathway in breast cancer. J Cell Biochem 2020; 121:4142-4153. [PMID: 32048761 DOI: 10.1002/jcb.29666] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 12/09/2019] [Indexed: 01/06/2023]
Abstract
Receptor tyrosine kinase-like orphan receptor 2 (ROR2) is a tyrosine-protein kinase receptor highly implicated in the growth plate and cartilage development, which may be involved in epithelial-mesenchymal transition (EMT) in breast cancer (BC) cells. Although ROR2 is known to promote the migration of BC cells, the detailed mechanism of this event is still not clear. Here, we found that ROR2 expression was significantly increased in BC lymphatic metastatic tissue as well as BC samples compared to normal adjacent breast tissues. A higher expression of ROR2 in MDA-MB-231 and a lower expression of ROR2 in MCF-7 cells were observed. MDA-MB-231-siROR2 cells with ROR2 knockdown inhibited MDA-MB-231 cell invasion, migration, and clonal formation, while MCF-7-OvROR2 cells with overexpression showed the opposite results. The underlying mechanisms involved in ROR2-induced EMT in MDA-MB-231 and MCF-7 cells were further investigated. ROR2 may activate EMT progression in BC cells by altering MAPK kinase 3/6 (MKK3/6) expression. The expressions of transforming growth factor-β, matrix metalloproteinase-2 (MMP-2), and MMP-9, which were related to tumor cell invasion activities, were notably increased in MCF-7-OvROR2 cells. The EMT markers, including snail, N-cadherin, tissue inhibitor of metalloproteinases-1, and vimentin, were significantly upregulated in MCF-7-OvROR2 cells. On the contrary, E-cadherin was obviously reduced expressed in MCF-7-OvROR2 cells. ROR2 may regulate the malignant phenotype of BC cells possibly via activation of mitogen-activated protein kinase (MAPK)/p38 signaling pathway. Collectively, ROR2 promotes BC carcinogenesis by mediating the MAPK/p38 pathway, which is independent of Wnt5α.
Collapse
Affiliation(s)
- Jin Xu
- Department of Thyroid and Mammary Gland Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Junfeng Shi
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Department of Thyroid and Mammary Gland Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Jiang
- Department of Thyroid and Mammary Gland Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Muhong Guo
- Department of Thyroid and Mammary Gland Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bin Zhang
- Department of Thyroid and Mammary Gland Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ge Ma
- Department of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Novel Mutation Hotspots within Non-Coding Regulatory Regions of the Chronic Lymphocytic Leukemia Genome. Sci Rep 2020; 10:2407. [PMID: 32051441 PMCID: PMC7015923 DOI: 10.1038/s41598-020-59243-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/27/2020] [Indexed: 01/17/2023] Open
Abstract
Mutations in non-coding DNA regions are increasingly recognized as cancer drivers. These mutations can modify gene expression in cis or by inducing high-order chormatin structure modifications with long-range effects. Previous analysis reported the detection of recurrent and functional non-coding DNA mutations in the chronic lymphocytic leukemia (CLL) genome, such as those in the 3′ untranslated region of NOTCH1 and in the PAX5 super-enhancer. In this report, we used whole genome sequencing data produced by the International Cancer Genome Consortium in order to analyze regions with previously reported regulatory activity. This approach enabled the identification of numerous recurrently mutated regions that were frequently positioned in the proximity of genes involved in immune and oncogenic pathways. By correlating these mutations with expression of their nearest genes, we detected significant transcriptional changes in genes such as PHF2 and S1PR2. More research is needed to clarify the function of these mutations in CLL, particularly those found in intergenic regions.
Collapse
|
43
|
Kamizaki K, Endo M, Minami Y, Kobayashi Y. Role of noncanonical Wnt ligands and Ror-family receptor tyrosine kinases in the development, regeneration, and diseases of the musculoskeletal system. Dev Dyn 2020; 250:27-38. [PMID: 31925877 DOI: 10.1002/dvdy.151] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
The Ror-family receptor tyrosine kinases (RTKs), consisting of Ror1 and Ror2, play crucial roles in morphogenesis and formation of various tissues/organs, including the bones and skeletal muscles, the so-called musculoskeletal system, during embryonic development, by acting as receptors or coreceptors for a noncanonical Wnt protein Wnt5a. Furthermore, several lines of evidence have indicated that Ror1 and/or Ror2 play critical roles in the regeneration and maintenance of the musculoskeletal system in adults. Considering the anatomical and functional relationship between the skeleton and skeletal muscles, their structural and functional association might be tightly regulated during their embryonic development, development after birth, and their regeneration after injury in adults. Importantly, in addition to their congenital anomalies, much attention has been paid onto the age-related disorders of the musculoskeletal system, including osteopenia and sarcopenia, which affect severely the quality of life. In this article, we overview recent advances in our understanding of the roles of Ror1- and/or Ror2-mediated signaling in the embryonic development, regeneration in adults, and congenital and age-related disorders of the musculoskeletal system and discuss possible therapeutic approaches to locomotive syndromes by modulating Ror1- and/or Ror2-mediated signaling.
Collapse
Affiliation(s)
- Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | | |
Collapse
|
44
|
Frenquelli M, Caridi N, Antonini E, Storti F, Viganò V, Gaviraghi M, Occhionorelli M, Bianchessi S, Bongiovanni L, Spinelli A, Marcatti M, Belloni D, Ferrero E, Karki S, Brambilla P, Martinelli-Boneschi F, Colla S, Ponzoni M, DePinho RA, Tonon G. The WNT receptor ROR2 drives the interaction of multiple myeloma cells with the microenvironment through AKT activation. Leukemia 2020; 34:257-270. [PMID: 31148590 PMCID: PMC7617051 DOI: 10.1038/s41375-019-0486-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022]
Abstract
Multiple myeloma is the second most frequent hematological cancer after lymphoma and remains an incurable disease. The pervasive support provided by the bone marrow microenvironment to myeloma cells is crucial for their survival. Here, an unbiased assessment of receptor tyrosine kinases overexpressed in myeloma identified ROR2, a receptor for the WNT noncanonical pathway, as highly expressed in myeloma cells. Its ligand, WNT5A is the most abundant growth factor in the bone marrow of myeloma patients. ROR2 mediates myeloma cells interactions with the surrounding bone marrow and its depletion resulted in detachment of myeloma cells from their niche in an in vivo model, triggering apoptosis and thus markedly delaying disease progression. Using in vitro and ex vivo 3D-culture systems, ROR2 was shown to exert a pivotal role in the adhesion of cancer cells to the microenvironment. Genomic studies revealed that the pathways mostly deregulated by ROR2 overexpression were PI3K/AKT and mTOR. Treatment of cells with specific PI3K inhibitors already used in the clinic reduced myeloma cell adhesion to the bone marrow. Together, our findings support the view that ROR2 and its downstream targets represent a novel therapeutic strategy for the large subgroup of MM patients whose cancer cells show ROR2 overexpression.
Collapse
Affiliation(s)
- M Frenquelli
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - N Caridi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - E Antonini
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Molecular Haematology Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - F Storti
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - V Viganò
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - M Gaviraghi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Occhionorelli
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Bianchessi
- Laboratory of Lymphoid Organ Development, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - L Bongiovanni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - A Spinelli
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Marcatti
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - D Belloni
- Tumor Microenvironment, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - E Ferrero
- Tumor Microenvironment, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Karki
- Cardiovascular Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - P Brambilla
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - F Martinelli-Boneschi
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Neurology and Multiple Sclerosis (MS) Research Centre, IRCCS Policlinico San Donato, San Donato Milanese, MI, Italy
| | - S Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Ponzoni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - R A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
45
|
Yang K, Zhu J, Tan Y, Sun X, Zhao H, Tang G, Zhang D, Qi H. Whole-exome sequencing identified compound heterozygous variants in ROR2 gene in a fetus with Robinow syndrome. J Clin Lab Anal 2019; 34:e23074. [PMID: 31617258 PMCID: PMC7031599 DOI: 10.1002/jcla.23074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/12/2019] [Accepted: 09/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background Autosomal recessive Robinow syndrome (ARRS) is a rare genetic disorder, which affects the development of multiple systems, particularly the bones. Objectives The aim of this study was to investigate the genetic cause of a ARRS fetus and to evaluate the reliability of whole‐exome sequencing (WES) in prenatal diagnosis on cases with indistinguishable multiple malformation. Methods Clinical and ultrasonic evaluations were conducted on the fetus, and multiplatform genetic techniques were used to identify the variation responsible for RS. The pathogenicity of the novel variation was evaluated by in silico methods. Western blotting (WB) and immunohistochemistry (IHC) were performed on fetal tissues after the fetus' stillbirth and postabortal autopsy. Results A compound heterozygous variation consisting c.613C > T and c.904C > T in ROR2 gene was identified. In silico prediction suggested that c.904C > T was a deleterious variant. IHC result demonstrated that ror2 expression level of the proband in osteochondral tissue significantly increased comparing with that of the control sample. Conclusions For the first time in Chinese population, we characterized a novel variation in ROR2 gene causing ARRS. This study extended the mutation spectrum of ARRS and provided a promising strategy for prenatal diagnosis of cases with ambiguous multiple deformities.
Collapse
Affiliation(s)
- Kai Yang
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Jianjiang Zhu
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| | - Ya Tan
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Xiaofei Sun
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| | - Huawei Zhao
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| | - Guodong Tang
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| | - Dongliang Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Hong Qi
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
46
|
Karvonen H, Barker H, Kaleva L, Niininen W, Ungureanu D. Molecular Mechanisms Associated with ROR1-Mediated Drug Resistance: Crosstalk with Hippo-YAP/TAZ and BMI-1 Pathways. Cells 2019; 8:cells8080812. [PMID: 31382410 PMCID: PMC6721603 DOI: 10.3390/cells8080812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Signaling via the Wnt-related receptor tyrosine kinase-like orphan receptor 1 (ROR1) triggers tumorigenic features associated with cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT), while aberrant expression of ROR1 is strongly linked to advanced disease progression and chemoresistance. Several recent studies have shown that Wnt5a binding to ROR1 promotes oncogenic signaling by activating multiple pathways such as RhoA/Rac1 GTPases and PI3K/AKT, which in turn could induce transcriptional coactivator YAP/TAZ or polycomb complex protein BMI-1 signaling, respectively, to sustain stemness, metastasis and ultimately drug-resistance. These data point towards a new feedback loop during cancer development, linking Wnt5a-ROR1 signaling activation to YAP/TAZ or BMI-1 upregulation that could play an important role in disease progression and treatment resistance. This review focuses on the crosstalk between Wnt5a-ROR1 and YAP/TAZ or the BMI-1 signaling network, together with the current advancements in targeted strategies for ROR1-positive cancers.
Collapse
Affiliation(s)
- Hanna Karvonen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
| | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Laura Kaleva
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
| | - Wilhelmiina Niininen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
| | - Daniela Ungureanu
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland.
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland.
| |
Collapse
|
47
|
Li Y, Han X, Xu W, Rao Z, Li X. Purification and characterization of the extracellular region of human receptor tyrosine kinase like orphan receptor 2 (ROR2). Protein Expr Purif 2019; 158:74-80. [PMID: 30826310 DOI: 10.1016/j.pep.2019.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 11/25/2022]
Abstract
Receptor tyrosine kinase like orphan receptor 2 (ROR2) is a co-receptor for some Wnt proteins including Wnt5a that activate the noncanonical Wnt/planar cell polarity (PCP) signaling pathway. Upregulation of ROR2 is associated with several cancer forms. The extracellular region of ROR2, which contains an immunoglobulin (Ig)-like domain, a Frizzled like cysteine-rich domain (CRD) and a Kringle domain, is a potential anticancer drug target. The structural and biochemical properties of the ROR2 extracellular region remain largely unexplored. Here we describe the mapping and purification, using a baculovirus - insect cell system, of a near-full-length ROR2 extracellular fragment (residues 53-402), which is well-behaved and suitable for future structural and biochemical analysis. We show that the extracellular region of ROR2 per se is monomeric in solution. Different monoclonal antibodies raised against the purified ROR2 protein can specifically recognize the protein and can either inhibit or activate the PCP activity in a cell-based assay, and are thus potentially useful for future mechanistic and therapeutic/diagnostic studies. The biological relevance of these antibodies further demonstrates that the purified recombinant ROR2 protein is properly folded and biochemically active.
Collapse
Affiliation(s)
- Yuan Li
- Collage of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xu Han
- Collage of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA.
| | - Zihe Rao
- Collage of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Xin Li
- Collage of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
48
|
Fostok SF, El-Sibai M, El-Sabban M, Talhouk RS. Gap Junctions and Wnt Signaling in the Mammary Gland: a Cross-Talk? J Mammary Gland Biol Neoplasia 2019; 24:17-38. [PMID: 30194659 DOI: 10.1007/s10911-018-9411-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022] Open
Abstract
Connexins (Cxs), the building blocks of gap junctions (GJs), exhibit spatiotemporal patterns of expression and regulate the development and differentiation of the mammary gland, acting via channel-dependent and channel-independent mechanisms. Impaired Cx expression and localization are reported in breast cancer, suggesting a tumor suppressive role for Cxs. The signaling events that mediate the role of GJs in the development and tumorigenesis of the mammary gland remain poorly identified. The Wnt pathways, encompassing the canonical or the Wnt/β-catenin pathway and the noncanonical β-catenin-independent pathway, also play important roles in those processes. Indeed, aberrant Wnt signaling is associated with breast cancer. Despite the coincident roles of Cxs and Wnt pathways, the cross-talk in the breast tissue is poorly defined, although this is reported in a number of other tissues. Our previous studies revealed a channel-independent role for Cx43 in inducing differentiation or suppressing tumorigenesis of mammary epithelial cells by acting as a negative regulator of the Wnt/β-catenin pathway. Here, we provide a brief overview of mammary gland development, with emphasis on the role of Cxs in development and tumorigenesis of this tissue. We also discuss the role of Wnt signaling in similar contexts, and review the literature illustrating interplay between Cxs and Wnt pathways.
Collapse
Affiliation(s)
- Sabreen F Fostok
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut (AUB), P.O. Box: 11-0236, Beirut, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut (AUB), Beirut, Lebanon
| | - Rabih S Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut (AUB), P.O. Box: 11-0236, Beirut, Lebanon.
| |
Collapse
|
49
|
Dong H, Jiang S, Fu Y, Luo Y, Gui R, Liu J. Upregulation of lncRNA NR_046683 Serves as a Prognostic Biomarker and Potential Drug Target for Multiple Myeloma. Front Pharmacol 2019; 10:45. [PMID: 30766487 PMCID: PMC6365438 DOI: 10.3389/fphar.2019.00045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
Aim: To investigate the prognostic value of lncRNA NR_046683 in multiple myeloma (MM). Methods: High-throughput lncRNA array was combined with bioinformatics techniques to screen differentially expressed lncRNA in MM. qRT-PCR was adopted to determine the expression of target lncRNAs in MM patients and controls. Results: It was found for the first time that lncRNA NR_046683 is closely related to the prognosis of MM. It was also detected in tumor cell lines KM3, U266, especially in drug-resistant cell lines KM3/BTZ and MM1R. The NR_046683 expression differed significantly in patients of different MM subtypes and staging. Moreover, the overexpression of NR-046683 is closely related to β2-microglobulin. We also found that the overexpression of NR-046683 correlates to chromosomal aberrations, such as del(13q14), gain 1q21, and t(4;14). Conclusion: lncRNA NR_046683 can serve as a novel biomarker for potential drug target and prognostic prediction in MM.
Collapse
Affiliation(s)
- Hang Dong
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Siyi Jiang
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yanwei Luo
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
50
|
Nevenzal H, Noach-Hirsh M, Skornik-Bustan O, Brio L, Barbiro-Michaely E, Glick Y, Avrahami D, Lahmi R, Tzur A, Gerber D. A high-throughput integrated microfluidics method enables tyrosine autophosphorylation discovery. Commun Biol 2019; 2:42. [PMID: 30729180 PMCID: PMC6353932 DOI: 10.1038/s42003-019-0286-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 12/21/2018] [Indexed: 01/22/2023] Open
Abstract
Autophosphorylation of receptor and non-receptor tyrosine kinases is a common molecular switch with broad implications for pathogeneses and therapy of cancer and other human diseases. Technologies for large-scale discovery and analysis of autophosphorylation are limited by the inherent difficulty to distinguish between phosphorylation and autophosphorylation in vivo and by the complexity associated with functional assays of receptors kinases in vitro. Here, we report a method for the direct detection and analysis of tyrosine autophosphorylation using integrated microfluidics and freshly synthesized protein arrays. We demonstrate the efficacy of our platform in detecting autophosphorylation activity of soluble and transmembrane tyrosine kinases, and the dependency of in vitro autophosphorylation assays on membranes. Our method, Integrated Microfluidics for Autophosphorylation Discovery (IMAD), is high-throughput, requires low reaction volumes and can be applied in basic and translational research settings. To our knowledge, it is the first demonstration of posttranslational modification analysis of membrane protein arrays.
Collapse
Affiliation(s)
- Hadas Nevenzal
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Meirav Noach-Hirsh
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Or Skornik-Bustan
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Lev Brio
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Efrat Barbiro-Michaely
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Yair Glick
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Dorit Avrahami
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Roxane Lahmi
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Amit Tzur
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| | - Doron Gerber
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Building #206, Ramat-Gan, 5290002 Israel
| |
Collapse
|