1
|
Simon AG, Lyu SI, Schultheis AM, Stahl D, Wuerdemann N, Walter S, Hieggelke L, Buettner R, Bruns CJ, Eysel P, Schiffmann LM, Knipper K, Mallmann P, Quaas A, Ullrich R. Exploration of histone protein γ-H2AX as a prognostic factor in soft tissue sarcomas and its association with biological behavior, immune cell environment and survival in leiomyosarcoma. Int J Cancer 2025; 156:2237-2250. [PMID: 39707602 PMCID: PMC11970547 DOI: 10.1002/ijc.35310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
This study evaluates the H2AX/γ-H2AX expression in soft tissue sarcomas (STS), its implications for biological behavior and immune environment, and its potential as a prognostic biomarker. RNA-Seq data from 237 STS were obtained from The Cancer Genome Atlas project. Patients were stratified by H2AX mRNA expression using a survival-associated cutoff. Differentially expressed genes and pathways as well as immune signatures between H2AXhigh- and H2AXlow tumors were identified with DESeq2 analysis, gene set enrichment analyses (GSEA), Enrichr pathway analysis and CIBERSORTx. Tissue microarrays of a different cohort of 291 STS were generated for immunohistochemical staining to assess γ-H2AX protein expression, followed by statistical evaluation. High H2AX mRNA expression was associated with shorter overall survival (OS) in STS (p = 0.02), particularly in leiomyosarcomas (LMS) (p < 0.001), and was a negative prognostic factor in LMS (HR 11.15, p < 0.001). H2AXhigh LMS tumors showed upregulation of cell cycle-related pathways, while H2AXlow LMS exhibited increased inflammatory activity, including elevated M1 macrophage signatures and resting mast cell signatures (both p < 0.001). High γ-H2AX protein levels were an independent negative prognostic factor in the total LMS cohort (HR 12.12, p = 0.025) and in the subgroup of non-uterine LMS (HR 153.80, p = 0.013). Consistent with CIBERSORTx analysis, γ-H2AXlow LMS showed higher mast cell infiltration than γ-H2AXhigh LMS (p = 0.038). In conclusion, H2AX mRNA and γ-H2AX protein expression are associated with distinct biological behavior, differences in the immune cell environment, and might serve as useful prognostic biomarkers in LMS.
Collapse
Affiliation(s)
- Adrian Georg Simon
- Institute of Pathology, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Su Ir Lyu
- Institute of Pathology, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Anne Maria Schultheis
- Institute of Pathology, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
- Institute for Surgical Pathology, Medical Center‐University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburg im BreisgauGermany
| | - David Stahl
- Department I of Internal Medicine/Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Nora Wuerdemann
- Department I of Internal Medicine/Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Sebastian Walter
- Department for Orthopedics and Trauma Surgery, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Lena Hieggelke
- Institute of Pathology, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Reinhard Buettner
- Institute of Pathology, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Christiane Josephine Bruns
- Department of General, Visceral and Cancer and Transplant Surgery, University Hospital of Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Peer Eysel
- Department for Orthopedics and Trauma Surgery, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Lars Mortimer Schiffmann
- Department of General, Visceral and Cancer and Transplant Surgery, University Hospital of Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Karl Knipper
- Department of General, Visceral and Cancer and Transplant Surgery, University Hospital of Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Peter Mallmann
- Department of Obstetrics and Gynecology, University Hospital of Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Alexander Quaas
- Institute of Pathology, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
| | - Roland Ullrich
- Department I of Internal Medicine/Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University Hospital Cologne, Faculty of MedicineUniversity of CologneCologneGermany
- Centre for Molecular MedicineUniversity of CologneCologneGermany
| |
Collapse
|
2
|
Le X, Chen Q, Wen Q, Cao S, Zhang L, Hu L, Hu G, Li Q, Chen Z. Design, synthesis and optimization of Apcin analogues as Cdc20 inhibitors for triple-negative breast cancer therapy. Eur J Med Chem 2025; 289:117434. [PMID: 40020424 DOI: 10.1016/j.ejmech.2025.117434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Cell division cycle 20 homologue (Cdc20) is an essential mitotic regulator whose overexpression is closely associated with tumorigenesis and poor prognosis in triple-negative breast cancer (TNBC). Targeting Cdc20 has therefore emerged as a promising therapeutic avenue for this aggressive malignancy. In the present study, a receptor-based drug design approach was employed to optimize Apcin analogues as Cdc20 inhibitors. Through a two-step strategy-concept validation followed by structural optimization-we identified compound 14c, which demonstrated remarkable Cdc20 binding affinity (KD: 7.65 μM), potent antiproliferative effects against MDA-MB-231 TNBC cells (IC50: 3.28 μM), and a favorable selectivity index (4.22 for MCF-7 non-TNBC cells and 7.27 for MCF 10A normal cells). 14c effectively inhibited Cdc20 activity, induced G2/M phase arrest, promoted DNA damage accumulation, and stabilized key substrates such as Cyclin B1 and Bim, leading to enhanced apoptosis and suppression of tumor cell proliferation and migration. In vivo, 14c significantly inhibited tumor growth in an MDA-MB-231 xenograft model with a 90 % tumor inhibition rate and no observable toxicity. These results highlight the potential of 14c as a potent Cdc20 inhibitor, offering a promising therapeutic approach for TNBC.
Collapse
Affiliation(s)
- Xiangyang Le
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Department of Pharmacy, Yiyang Central Hospital, Yiyang, Hunan, 413000, China
| | - Qingsong Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Qiwan Wen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Shuyang Cao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Lei Zhang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Liqing Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China.
| |
Collapse
|
3
|
Zheng S, Wang H, Wang Y. Thyroid hormone receptor interacting protein 13 is associated with prognosis and immunotherapy efficacy in human cancers: a pan-cancer analysis. Discov Oncol 2025; 16:580. [PMID: 40253660 PMCID: PMC12009794 DOI: 10.1007/s12672-025-02385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 04/14/2025] [Indexed: 04/22/2025] Open
Abstract
Thyroid hormone receptor-interacting protein 13 (TRIP13) is involved in the regulation of mitosis and is overexpressed in multiple cancers. However, there is no systematic assessment of the role of TRIP13 in the immunotherapy response across human cancers. Therefore, a pan-cancer analysis involving expression, prognosis, immune-related mechanisms, and biomarker values was performed to explore the associations between TRIP13 expression and the immunotherapy response. TRIP13 is highly expressed in various types of cancer, increasing patient outcomes in eight types of cancer. TRIP13 expression was correlated with significant tumor mutation burden and microsatellite instability, and its mutations were linked with poor prognosis in patients with adrenocortical carcinoma. TRIP13 promoted endothelial cell and hematopoietic stem cell infiltration in human cancers. Additionally, TRIP13 mutation significantly increased the infiltration of CD8 + T cells in kidney renal clear cell carcinoma, which might contribute to poor prognosis. Furthermore, three key genes that interact with TRIP13 were identified: CDC20, RAD1, and MAD2L1, which are related to the cell cycle and ultimately promote tumorigenesis and proliferation. The expression of TRIP13 was significantly greater in kidney renal clear cell carcinoma, liver hepatocellular carcinoma, and pancreatic adenocarcinoma cells than in corresponding normal cells according to qPCR. Taken together, these findings indicate that TRIP13 is associated with poor prognosis in eight human cancers and serves as a novel biomarker for predicting immunotherapy efficacy. Our first pan-cancer study contributes to personalized precision medicine in cancer immunotherapy, promoting subsequent clinical management and improving patient prognosis.
Collapse
Affiliation(s)
- ShengYao Zheng
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - HongYi Wang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingyi Wang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Wang Z, Zhang Z. Biomarkers associated with cell-in-cell structure in kidney renal clear cell carcinoma based on transcriptome sequencing. PeerJ 2025; 13:e19246. [PMID: 40256740 PMCID: PMC12009028 DOI: 10.7717/peerj.19246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/12/2025] [Indexed: 04/22/2025] Open
Abstract
Background Kidney renal clear cell carcinoma (KIRC), the main histological subtype of renal cell carcinoma, has a high incidence globally. Cell-in-cell structures (CICs), as a cellular biological phenomenon, play pivotal roles in cell competition, immune evasion and tumor progression in the context of KIRC. Methods Data for this study were sourced from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases. Differentially expressed genes (DEGs) were identified using the limma package. Enrichment analyses were performed using the clusterProfiler package. Support vector machine-recursive feature elimination (SVM-RFE) and Least Absolute Shrinkage and Selection Operator (LASSO) regression, implemented via the caret and glmnet packages in R, were used to select biomarkers. The accuracy of these biomarkers was verified by using the receiver operating characteristic (ROC) curve as well as in vitro experiments (CCK-8 assay, wound healing assay, Transwell assay, and quantitative real-time PCR). The CIBERSORT algorithm was applied to explore the association between immune infiltration and the biomarkers. Further analysis explored the association between these biomarkers and clinicopathological characteristics of KIRC. For single-cell data, the Seurat package is used to read the sample data, and the SCTransform function is employed for normalization. Results This study identified 1,256 DEGs which enriched in T-cell immune system regulation processes. Five hub genes (CDKN2A, VIM, TGFB1, CTSS, and CDC20) were biomarkers with area under the curve (AUC) values > 0.8, indicating high predictive performance. In vitro validation experiments demonstrated that the expressions of all five biomarkers in KIRC cells were elevated, and the knockdown of CTSS could inhibit the migration and invasion of KIRC cells. Immune infiltration analysis showed higher proportions of T-cells and macrophages in tumor tissues. CDKN2A and CDC20 expressions correlated significantly with stage and grade, while TGFB1, CDKN2A, and CDC20 were highly expressed in proliferative tumor cells. Conclusion This study provides new biomarkers for KIRC, offering valuable insights into its developmental mechanisms for the research of CIC in this disease.
Collapse
Affiliation(s)
- Zehua Wang
- Department of Urology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhongxiao Zhang
- Department of Urology, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| |
Collapse
|
5
|
Wang J, Song M, Tang J, Yue H, Guo X, Chen Z, Shen X, Cao M. Expression, prognosis and preliminary investigation of the mechanism of action of ACTR6, a member of the ARPs gene family, in hepatocellular carcinoma. Front Med (Lausanne) 2025; 12:1513233. [PMID: 40130245 PMCID: PMC11931126 DOI: 10.3389/fmed.2025.1513233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the third most prevalent cause of cancer-related mortality globally and the sixth most common cancer overall. It is critical to investigate new biomarkers and prognostic variables because there are currently no early diagnostic indicators. Actin-related proteins (ARPs) are involved in transcriptional regulation, chromatin remodeling, and DNA repair-all processes that have been connected to the development of cancer. However, it's still unclear how ARPs and HCC are related. Methods Through the examination of databases like The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC), we examined the variations in the expression of ARPs between the transcriptomes of normal tissue and HCC. Furthermore, univariate and multivariate Cox analysis were used to assess the prognostic effects of ARPs. The investigation of immune cell infiltration and possible functional enrichment followed. Additionally, tissue chips containing regional liver cancer specimens were used to confirm ACTR6 expression and the clinical impact of prognosis using an immunohistochemistry (IHC) test. Finally, to investigate the expression and function of ACTR6 in liver cancer cells, real-time qPCR (RT-qPCR) assays, CCK-8, clone creation, cell cycle, and transwell migration and invasion experiments were carried out. Results We found that, in addition to ACTR3C, 17 ARPs were significantly overexpressed in HCC compared with normal tissues. In both univariate and multivariate Cox models, ACTR6 and ACTL6A were identified as potential independent risk factors for the prognosis of HCC, with ACTR6 having the lowest p-value. Clinical samples also confirmed this conclusion. Furthermore, ACTR6 overexpression showed a strong connection with immune cell infiltration levels and clinical and pathological factors linked to a poor prognosis. Functionally, knocking down ACTR6 inhibited cell migration and proliferation, produced a G1 cell cycle arrest, and decreased the viability of liver cancer cells. Conclusion These findings demonstrate that ACTR6 is highly expressed in HCC and is associated with poor prognosis. In addition, ACTR6 may induce immune cell infiltration and promote hepatocarcinogenesis by regulating the cell cycle.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gastroenterology, People’s Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Meng Song
- Henan Provincial International Coalition Laboratory of Oncology Precision Treatment, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinming Tang
- Department of Gastroenterology, People’s Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Haoran Yue
- Department of Gastroenterology, People’s Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaoyang Guo
- Department of Gastroenterology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhan Chen
- Department of Gastroenterology, People’s Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaolan Shen
- Department of Gastroenterology, People’s Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mingbo Cao
- Department of Gastroenterology, People’s Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Gastroenterology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Nalkiran I, Sevim Nalkiran H. Repurposing ProTAME for Bladder Cancer: A Combined Therapeutic Approach Targeting Cell Migration and MMP Regulation. BIOLOGY 2025; 14:263. [PMID: 40136519 PMCID: PMC11939954 DOI: 10.3390/biology14030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
Bladder cancer, the fourth most common cancer type among men, remains a therapeutic challenge due to its heterogeneity and frequent development of chemoresistance. Cisplatin-based chemotherapy, often combined with gemcitabine, is the standard treatment, yet resistance and off-target effects in non-cancerous tissues limit its efficacy. This study evaluated the effects of cisplatin, gemcitabine, and the APC/C inhibitor proTAME, both individually and in combination, on cell migration and MMP2/MMP9 expression in RT4 bladder cancer and ARPE-19 normal epithelial cells. Molecular docking analyses were conducted to investigate the interactions of these compounds with MMP2 and MMP9. IC20 values for gemcitabine, cisplatin, and proTAME were applied in scratch-wound healing and quantitative real-time PCR (qRT-PCR) assays. Docking results predicted that proTAME may interact favorably with MMP2 (-9.2 kcal/mol) and MMP9 (-8.7 kcal/mol), showing high computational binding affinities and potential key hydrogen bonds; however, these interactions require further experimental validation. Scratch-wound healing and qRT-PCR assays demonstrated that proTAME-containing combinations were associated with reduced cell migration and decreased MMP2 and MMP9 expression in RT4 cells. Cisplatin combined with proTAME showed the most pronounced reduction in MMP expression and cell migration, with proTAME alone also exhibiting notable inhibitory effects. In ARPE-19 cells, gemcitabine and cisplatin upregulated MMP2 and MMP9 expression, suggesting a potential stress response, whereas proTAME mitigated this effect. These differential effects show the importance of tumor-specific responses in RT4 cells, where proTAME shows promise in enhancing the efficacy of chemotherapy by modulating MMP-related pathways involved in tumor migration and invasion. In conclusion, this study highlights the potential of proTAME as a repurposed agent in bladder cancer treatment due to its association with reduced cell migration and MMP downregulation. While these in vitro and in silico findings suggest a promising role for proTAME in combination therapies, further validation in advanced preclinical models is necessary to assess its therapeutic applicability and safety.
Collapse
Affiliation(s)
| | - Hatice Sevim Nalkiran
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye;
| |
Collapse
|
7
|
Glaviano A, Singh SK, Lee EHC, Okina E, Lam HY, Carbone D, Reddy EP, O'Connor MJ, Koff A, Singh G, Stebbing J, Sethi G, Crasta KC, Diana P, Keyomarsi K, Yaffe MB, Wander SA, Bardia A, Kumar AP. Cell cycle dysregulation in cancer. Pharmacol Rev 2025; 77:100030. [PMID: 40148026 DOI: 10.1016/j.pharmr.2024.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/12/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer is a systemic manifestation of aberrant cell cycle activity and dysregulated cell growth. Genetic mutations can determine tumor onset by either augmenting cell division rates or restraining normal controls such as cell cycle arrest or apoptosis. As a result, tumor cells not only undergo uncontrolled cell division but also become compromised in their ability to exit the cell cycle accurately. Regulation of cell cycle progression is enabled by specific surveillance mechanisms known as cell cycle checkpoints, and aberrations in these signaling pathways often culminate in cancer. For instance, DNA damage checkpoints, which preclude the generation and augmentation of DNA damage in the G1, S, and G2 cell cycle phases, are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Notably, tumors have evolved to become dependent on checkpoints for their survival. For example, checkpoint pathways such as the DNA replication stress checkpoint and the mitotic checkpoint rarely undergo mutations and remain intact because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation leading to cell death. In this review, we initially focus on cell cycle control pathways and specific functions of checkpoint signaling involved in normal and cancer cells and then proceed to examine how cell cycle control and checkpoint mechanisms can provide new therapeutic windows that can be exploited for cancer therapy. SIGNIFICANCE STATEMENT: DNA damage checkpoints are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Conversely, DNA replication stress and mitotic checkpoints rarely undergo mutations because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation, leading to cancer cell death. This review focuses on the checkpoint signaling mechanisms involved in cancer cells and how an emerging understanding of these pathways can provide new therapeutic opportunities for cancer therapy.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Samarendra K Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark J O'Connor
- Discovery Centre, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Andrew Koff
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York
| | - Garima Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Justin Stebbing
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karen Carmelina Crasta
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore, Singapore
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael B Yaffe
- MIT Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Broad Institute, Massachusetts Institute of Technology, Cambridge, Boston, Massachusetts
| | - Seth A Wander
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aditya Bardia
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Mayah A, Arenas RB, Bastida A, Bolanos-Garcia VM. The Use of APC/C Antagonists to Promote Mitotic Catastrophe in Cancer Cells. Methods Mol Biol 2025; 2874:207-213. [PMID: 39614058 DOI: 10.1007/978-1-0716-4236-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
The multiprotein subunit E3 ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C) plays a key role in the control of mitosis progression. APC/C is the ultimate effector of the Spindle Assembly Checkpoint (SAC), the signaling system of higher organisms including the human that monitors the proper attachment of chromosomes to microtubules during cell division. Defects in this process result in genome instability, aneuploidy, premature aging, and cancer. APC/C roles in the SAC require its activation by the protein Cdc20. Interfering with APC/C activation by Cdc20 impairs APC/C substrate recognition, resulting in a delayed mitotic exit and eventually inducing cell death. This may be advantageous for the treatment of cancer and malignancies associated with SAC dysregulation. Here we describe a protocol to interfere with mitotic exit through the use of commercially available (Apcin, proTAME) as well as innovative small molecules we have developed that function as antagonists of APC/C activation by Cdc20. We show that the use of these molecules alone and in combination is effective to promote mitotic catastrophe and suppress cell expansion in 2D and 3D (spheroids) cancer cells of different tissue origin, including breast, cervical, and ovarian cancer.
Collapse
Affiliation(s)
- Ammar Mayah
- Oxford Target Therapeutics (OTT), Bioinnovation Hub, Oxford, UK
| | | | - Agatha Bastida
- Departamento de Química Bio-orgánica, IQOG, Madrid, Spain.
| | - Victor M Bolanos-Garcia
- Oxford Target Therapeutics (OTT), Bioinnovation Hub, Oxford, UK.
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
9
|
Sevim Nalkiran H, Biri I, Nalkiran I, Uzun H, Durur S, Bedir R. CDC20 and CCNB1 Overexpression as Prognostic Markers in Bladder Cancer. Diagnostics (Basel) 2024; 15:59. [PMID: 39795587 PMCID: PMC11719780 DOI: 10.3390/diagnostics15010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/05/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Bladder cancer (BC) is one of the ten most common cancers worldwide, with a high recurrence rate and significant variation in clinical outcomes based on tumor grade and stage. This study aimed to investigate the gene expression profiles at different cancer stages to assess their potential prognostic value. Methods: RNA was extracted from paraffin-embedded BC tissues and the gene expression levels of CDC20 and CCNB1 were analyzed using qRT-PCR. A total of 54 BC patient samples were included in the analysis and categorized into low-grade (LG) (n = 23) and high-grade (HG) (n = 31) tumors, as well as stages pTa, pT1, and pT2. Results: CDC20 gene expression was significantly higher in the HG group (mean fold-change: 16.1) compared to the LG group (mean fold-change: 10.54), indicating a significant association with tumor grade (p = 0.039). However, no significant differences were observed in CDC20 expression across the cancer stages. For CCNB1, while gene expression was significantly elevated in higher-stage tumors (pT2 vs. pTa; p = 0.038), no significant association was found between CCNB1 expression and tumor grade. Survival analysis revealed that increased CCNB1 expression and advanced cancer stage were associated with poorer overall survival, whereas no significant impact of CDC20 expression or tumor grade on survival was observed. Correlation analysis indicated a positive relationship between CDC20 expression and tumor grade (r = 0.284, p = 0.038) and between CCNB1 expression and tumor stage (r = 0.301, p = 0.027). Conclusions: Our findings suggest that CDC20 overexpression is linked to higher tumor grades, while CCNB1 overexpression is associated with more advanced cancer stages in BC. These results underscore the potential utility of CDC20 and CCNB1 as biomarkers for tumor prognosis and as therapeutic targets. Further studies with larger cohorts are needed to validate these findings and better understand the molecular mechanisms driving BC progression.
Collapse
Affiliation(s)
- Hatice Sevim Nalkiran
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye; (H.S.N.); (I.B.); (S.D.)
| | - Ilknur Biri
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye; (H.S.N.); (I.B.); (S.D.)
| | - Ihsan Nalkiran
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye; (H.S.N.); (I.B.); (S.D.)
| | - Hakki Uzun
- Department of Urology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye;
| | - Sumeyye Durur
- Department of Medical Biology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye; (H.S.N.); (I.B.); (S.D.)
| | - Recep Bedir
- Department of Medical Pathology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Türkiye;
| |
Collapse
|
10
|
Dan W, Fan Y, Wang Y, Hou T, Wei Y, Liu B, Li M, Chen J, Fang Q, Que T, Lei Y, Guo C, Wang C, Gao Y, Zeng J, Li L. The Tumor Suppressor TPD52-Governed Endoplasmic Reticulum Stress is Modulated by APC Cdc20. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405441. [PMID: 39401430 PMCID: PMC11615746 DOI: 10.1002/advs.202405441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/25/2024] [Indexed: 12/06/2024]
Abstract
Aberrant regulation of unfolded protein response (UPR)/endoplasmic reticulum (ER) stress pathway is associated with cancer development, metastasis, and relapse, and the UPR signal transducer ATF6 has been proposed as a diagnostic and prognostic marker for many cancers. However, a causal molecular link between ATF6 activation and carcinogenesis is not established. Here, it is found that tumor protein D52 (TPD52) integrates ER stress and UPR signaling with the chaperone machinery by promoting S2P-mediated cleavage of ATF6. Although TPD52 has been generally considered as an oncogene, TPD52 is identified as a novel tumor suppressor in bladder cancer. Significantly, attenuation of the ER stress via depletion of TPD52 facilitated tumorigenesis in a subset of human carcinomas. Furthermore, the APCCdc20 E3 ligase is validated as the upstream regulator marking TPD52 for polyubiquitination-mediated proteolysis. In addition, inactivation of Cdc20 sensitized cancer cells to treatment with the ER stress inducer in a TPD52-dependent manner. Thus, the study suggests that TPD52 is a novel Cdc20 substrate that may modulate ER stress to prevent tumorigenesis.
Collapse
|
11
|
Kapanidou M, Curtis NL, Diaz-Minguez SS, Agudo-Alvarez S, Rus Sanchez A, Mayah A, Agena R, Brennan P, Morales P, Benito-Arenas R, Bastida A, Bolanos-Garcia VM. Targeting APC/C Ubiquitin E3-Ligase Activation with Pyrimidinethylcarbamate Apcin Analogues for the Treatment of Breast Cancer. Biomolecules 2024; 14:1439. [PMID: 39595615 PMCID: PMC11591962 DOI: 10.3390/biom14111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Activation of the ubiquitin ligase APC/C by the protein Cdc20 is an essential requirement for proper cell division in higher organisms, including humans. APC/C is the ultimate effector of the Spindle Assembly Checkpoint (SAC), the signalling system that monitors the proper attachment of chromosomes to microtubules during cell division. Defects in this process result in genome instability and cancer. Interfering with APC/C substrate ubiquitylation in cancer cells delays mitotic exit, which induces cell death. Therefore, impairing APC/C function represents an opportunity for the treatment of cancer and malignancies associated with SAC dysregulation. In this study, we report a new class of pyrimidinethylcarbamate apcin analogues that interfere with APC/C activity in 2D and 3D breast cancer cells. The new pyrimidinethylcarbamate apcin analogues exhibited higher cytotoxicity than apcin in all breast cancer cell subtypes investigated, with much lower cytotoxicity observed in fibroblasts and RPE-1 cells. Further molecular rationalisation of apcin and its derivatives was conducted using molecular docking studies. These structural modifications selected from the in silico studies provide a rational basis for the development of more potent chemotypes to treat highly aggressive breast cancer and possibly other aggressive tumour types of diverse tissue origins.
Collapse
Affiliation(s)
- Maria Kapanidou
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (M.K.); (R.A.)
| | - Natalie L. Curtis
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (M.K.); (R.A.)
| | - Sandra S. Diaz-Minguez
- Instituto de Química Orgánica, Consejo Superior de Investigaciones Científicas (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain (R.B.-A.)
| | - Sandra Agudo-Alvarez
- Instituto de Química Orgánica, Consejo Superior de Investigaciones Científicas (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain (R.B.-A.)
| | - Alfredo Rus Sanchez
- Instituto de Química Orgánica, Consejo Superior de Investigaciones Científicas (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain (R.B.-A.)
| | - Ammar Mayah
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (M.K.); (R.A.)
| | - Rosette Agena
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (M.K.); (R.A.)
- Department of Bioingeniería, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Paul Brennan
- Nuffield Department of Medicine (NDM), Old Road Campus, University of Oxford, Oxford OX3 7BN, UK;
| | - Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Raul Benito-Arenas
- Instituto de Química Orgánica, Consejo Superior de Investigaciones Científicas (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain (R.B.-A.)
| | - Agatha Bastida
- Instituto de Química Orgánica, Consejo Superior de Investigaciones Científicas (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain (R.B.-A.)
| | - Victor M. Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (M.K.); (R.A.)
| |
Collapse
|
12
|
Liang B, Chen J, Wang L, Zhang L, Huang S, Zhou Y, Ni M, Zhang L, Lv X, Li X. Mode of action exploration for prostate epithelial cell injury caused by bisphenol A. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117228. [PMID: 39442252 DOI: 10.1016/j.ecoenv.2024.117228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Bisphenol A (BPA) is a typical food chemical contaminant with various detrimental effects, especially on reproductive system. Male prostate damage is also one of its major adverse health effects, of which mode of action (MOA) remains unclear. This study aims to explore the MOA for prostate toxicity of BPA using human normal prostate epithelial cell RWPE-1 for 28-day human-relevant-level exposure. A physiological based pharmacokinetic model was used to determine the concentration of BPA based on the actual oral exposure in China. The possible key events were identified by high-throughput transcriptome sequencing and validated by qPCR, Western blot and cell cycle assay, and the benchmark concentration analysis were conducted. The enriched KEGG pathways include the endocytosis, cell cycle, cellular senescence, MAPK and TNF signaling pathways. With increasing BPA concentrations, the increased mRNA and/or protein expressions of MAPKAPK2, c-JUN and c-fos in the MAPK signaling pathway, the increased mRNA expressions of CCND1 and CDKN1A, the decreased mRNA expression of CDC25C, the increased proportion of G0/G1 phase and S phase, as well as the decreased proportion of G2/M phase, were observed. The lowest value of benchmark concentration lower confidence limit (BMCL) was retrieved from G2/M phase ratio, with 110.580 and 175.862 nM for BMCL5 and BMCL10, respectively, much higher than the male gonad maximum concentration of 0.019 nM of BPA at the current exposure level of adult Chinese males. In conclusion, the MOA of BPA induced male prostatic toxicity at human-relevant levels may include: key event (KE)1-MAPK signaling pathway activation, KE2-disorder of cell cycle regulatory gene expression (increased expression of CCND1 and CDKN1A, decreased expression of CDC25C), and KE3-disturbance of cell cycle (increased proportion of G0/G1 and S phases, decreased proportion of G2/M phases). However, more studies are needed to validate and complete the MOA.
Collapse
Affiliation(s)
- Baofang Liang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Liang Wang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Leyan Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Shuzhen Huang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongru Zhou
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Mengmei Ni
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaohua Lv
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
13
|
Yang X, Zheng L, Huo J, Hu W, Liu B, Fan Q, Zheng W, Wang Q. Combined Analysis of Second- and Third-Generation Transcriptome Sequencing for Gene Characteristics and Identification of Key Splicing Variants in Wound Healing of Ganxi Goat Skin. Animals (Basel) 2024; 14:3085. [PMID: 39518808 PMCID: PMC11544938 DOI: 10.3390/ani14213085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Ganxi goat is a local breed of goat unique to Jiangxi Province, China, named for its primary distribution in the Ganxi region. Ganxi goats are primarily raised through grazing, showing good adaptation to the local humid and hot climate, strong disease resistance, and occupying an important position in the local livestock industry. The skin, as the main barrier of the body, plays an indispensable role in resisting the invasion of external pathogenic factors and has received increasing attention in the medical and scientific fields. In this study, Ganxi goat skin was used as the research subject. Full-length transcriptome sequencing of Ganxi goat skin was performed using PacBio third-generation sequencing technology to supplement and improve the annotation information of the Ganxi goat genome. A combined analysis of second- and third-generation transcriptome sequencing was used to analyze the splicing variant events of hub genes (CDC20, MMP2, TIMP1, and EDN1) and the expression changes in each splicing variant in skin samples on day 0 and day 5 after surgical wounding. The regulatory role of related hub gene splicing variants in wound healing was analyzed. A total of 926,667 full-length non-chimeric sequences were obtained, optimizing the annotation information of 3794 genomic gene loci and identifying 2834 new genes, 256 new LncRNAs, 12,283 alternative splicing events, 549 genes with polyadenylation, and 112 fusion genes. Three splicing variant forms were identified in both the CDC20 and EDN1 genes, seven in MMP2, and two in TIMP1. The expression levels of most splicing variants showed significant changes in the skin samples on days 0 and 5 after wounding, potentially participating in the regulation of wound healing. This study provides fundamental data for the annotation of the goat genome and offers a reference for studying the regulatory mechanisms of wound healing.
Collapse
Affiliation(s)
- Xue Yang
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| | - Lucheng Zheng
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| | - Junhong Huo
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China;
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| | - Qingcan Fan
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| | - Wenya Zheng
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| | - Qianqian Wang
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China; (L.Z.); (W.H.); (B.L.); (Q.F.); (W.Z.); (Q.W.)
| |
Collapse
|
14
|
Coler-Reilly A, Pincus Z, Scheller EL, Civitelli R. Six drivers of aging identified among genes differentially expressed with age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606402. [PMID: 39149379 PMCID: PMC11326176 DOI: 10.1101/2024.08.02.606402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Many studies have compared gene expression in young and old samples to gain insights on aging, the primary risk factor for most major chronic diseases. However, these studies only describe associations, failing to distinguish drivers of aging from compensatory geroprotective responses and incidental downstream effects. Here, we introduce a workflow to characterize the causal effects of differentially expressed genes on lifespan. First, we performed a meta-analysis of 25 gene expression datasets comprising samples of various tissues from healthy, untreated adult mammals (humans, dogs, and rodents) at two distinct ages. We ranked each gene according to the number of distinct datasets in which the gene was differentially expressed with age in a consistent direction. The top age-upregulated genes were TMEM176A, EFEMP1, CP, and HLA-A; the top age-downregulated genes were CA4, SIAH, SPARC, and UQCR10. Second, the effects of the top ranked genes on lifespan were measured by applying post-developmental RNA interference of the corresponding ortholog in the nematode C. elegans (two trials, with roughly 100 animals per genotype per trial). Out of 10 age-upregulated and 9 age-downregulated genes that were tested, two age-upregulated genes (csp-3/CASP1 and spch-2/RSRC1) and four age-downregulated genes (C42C1.8/DIRC2, ost-1/SPARC, fzy-1/CDC20, and cah-3/CA4) produced significant and reproducible lifespan extension. Notably, the data do not suggest that the direction of differential expression with age is predictive of the effect on lifespan. Our study provides novel insight into the relationship between differential gene expression and aging phenotypes, pilots an unbiased workflow that can be easily repeated and expanded, and pinpoints six genes with evolutionarily conserved, causal roles in the aging process for further study.
Collapse
Affiliation(s)
- Ariella Coler-Reilly
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Zachary Pincus
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology; Washington University School of Medicine, St. Louis, MO, USA
| | - Roberto Civitelli
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology; Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Messeha SS, Zarmouh NO, Maku H, Gendy S, Yedjou CG, Elhag R, Latinwo L, Odewumi C, Soliman KFA. Prognostic and Therapeutic Implications of Cell Division Cycle 20 Homolog in Breast Cancer. Cancers (Basel) 2024; 16:2546. [PMID: 39061186 PMCID: PMC11274456 DOI: 10.3390/cancers16142546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Cell division cycle 20 homolog (CDC20) is a well-known regulator of cell cycle progression. Abnormal expression of CDC20 leads to mitotic defects, which play a significant role in cancer development. In breast cancer (BC), CDC20 has been identified as a biomarker that has been linked to poor patient outcomes. In this study, we investigated the association of CDC20 with BC prognosis and immune cell infiltration by using multiple online databases, including UALCAN, KM plotter, TIMER2.0, HPA, TNM-plot, bc-GenExMiner, LinkedOmics, STRING, and GEPIA. The results demonstrate that BC patients have an elevated CDC20 expression in tumor tissues compared with the adjacent normal tissue. In addition, BC patients with overexpressed CDC20 had a median survival of 63.6 months compared to 169.2 months in patients with low CDC20 expression. Prognostic analysis of the examined data indicated that elevated expression of CDC20 was associated with poor prognosis and a reduction of overall survival in BC patients. These findings were even more prevalent in chemoresistance triple-negative breast cancer (TNBC) patients. Furthermore, the Gene Set Enrichment Analysis tool indicated that CDC20 regulates BC cells' cell cycle and apoptosis. CDC20 also significantly correlates with increased infiltrating B cells, CD4+ T cells, neutrophils, and dendritic cells in BC. In conclusion, the findings of this study suggest that CDC20 may be involved in immunomodulating the tumor microenvironment and provide evidence that CDC20 inhibition may serve as a potential therapeutic approach for the treatment of BC patients. In addition, the data indicates that CDC20 can be a reliable prognostic biomarker for BC.
Collapse
Affiliation(s)
- Samia S. Messeha
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
- College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, New Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL 32307, USA
| | - Najla O. Zarmouh
- Faculty of Medical Technology-Misrata, Libyan Ministry of Technical & Vocational Education, Misrata LY72, Libya;
| | - Henrietta Maku
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Sherif Gendy
- School of Allied Health Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Clement G. Yedjou
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Rashid Elhag
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Lekan Latinwo
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Caroline Odewumi
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Karam F. A. Soliman
- College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, New Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL 32307, USA
| |
Collapse
|
16
|
Tian W, Zhao J, Zhang X, Li P, Li X, Hong Y, Li S. RUNX1 regulates MCM2/CDC20 to promote COAD progression modified by deubiquitination of USP31. Sci Rep 2024; 14:13906. [PMID: 38886545 PMCID: PMC11183096 DOI: 10.1038/s41598-024-64726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Colon adenocarcinoma (COAD) is the second leading cause of cancer death, and there is still a lack of diagnostic biomarkers and therapeutic targets. In this study, bioinformatics analysis of the TCGA database was used to obtain RUNX1, a gene with prognostic value in COAD. RUNX1 plays an important role in many malignancies, and its molecular regulatory mechanisms in COAD remain to be fully understood. To explore the physiological role of RUNX1, we performed functional analyses, such as CCK-8, colony formation and migration assays. In addition, we investigated the underlying mechanisms using transcriptome sequencing and chromatin immunoprecipitation assays. RUNX1 is highly expressed in COAD patients and significantly correlates with survival. Silencing of RUNX1 significantly slowed down the proliferation and migratory capacity of COAD cells. Furthermore, we demonstrate that CDC20 and MCM2 may be target genes of RUNX1, and that RUNX1 may be physically linked to the deubiquitinating enzyme USP31, which mediates the upregulation of RUNX1 protein to promote transcriptional function. Our results may provide new insights into the mechanism of action of RUNX1 in COAD and reveal potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Wei Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinyu Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Pengfei Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Xuening Li
- Dalian Medical University, Dalian, China
| | - Yuan Hong
- Clinical Laboratory Center, Dalian Municipal Central Hospital, Dalian, China.
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
17
|
Balaji S, Rao A, Saraswathi KK, Sethu Nagarajan R, Santhi R, Kim U, Muthukkaruppan V, Vanniarajan A. Focused cancer pathway analysis revealed unique therapeutic targets in retinoblastoma. Med Oncol 2024; 41:168. [PMID: 38834895 DOI: 10.1007/s12032-024-02391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/24/2024] [Indexed: 06/06/2024]
Abstract
Retinoblastoma (RB) is a pediatric cancer of the eye that occurs in 1/15000 live births worldwide. Albeit RB is initiated by the inactivation of RB1 gene, the disease progression relies largely on transcriptional alterations. Therefore, evaluating gene expression is vital to unveil the therapeutic targets in RB management. In this study, we employed an RT2 Profiler™ PCR array for a focused analysis of 84 cancer-specific genes in RB. An interaction network was built with gene expression data to identify the dysregulated pathways in RB. The key transcript alterations identified in 13 tumors by RT2 Profiler™ PCR array was further validated in 15 tumors by independent RT-qPCR. Out of 84 cancer-specific genes, 68 were dysregulated in RB tumors. Among the 68 genes, 23 were chosen for further analysis based on statistical significance and abundance across multiple tumors. Pathway analysis of altered genes showed the frequent perturbations of cell cycle, angiogenesis and apoptotic pathways in RB. Notably, upregulation of MCM2, MKI67, PGF, WEE1, CDC20 and downregulation of COX5A were found in all the tumors. Western blot confirmed the dysregulation of identified targets at protein levels as well. These alterations were more prominent in invasive RB, correlating with the disease pathogenesis. Our molecular analysis thus identified the potential therapeutic targets for improving retinoblastoma treatment. We also suggest that PCR array can be used as a tool for rapid and cost-effective gene expression analysis.
Collapse
Affiliation(s)
- Sekaran Balaji
- Department of Molecular Genetics, Aravind Medical Research Foundation, 1, Anna Nagar, Madurai, Tamil Nadu, 625 020, India
| | - Anindita Rao
- Department of Molecular Genetics, Aravind Medical Research Foundation, 1, Anna Nagar, Madurai, Tamil Nadu, 625 020, India
| | - Karuvel Kannan Saraswathi
- Department of Molecular Genetics, Aravind Medical Research Foundation, 1, Anna Nagar, Madurai, Tamil Nadu, 625 020, India
- Department of Molecular Biology, Aravind Medical Research Foundation - Affiliated to Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Rathinavel Sethu Nagarajan
- Department of Molecular Genetics, Aravind Medical Research Foundation, 1, Anna Nagar, Madurai, Tamil Nadu, 625 020, India
- Department of Molecular Biology, Aravind Medical Research Foundation - Affiliated to Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Radhakrishnan Santhi
- Department of Pathology, Aravind Eye Hospital, Madurai, Tamil Nadu, 625 020, India
| | - Usha Kim
- Department of Orbit, Oculoplasty and Ocular Oncology, Aravind Eye Hospital, Madurai, Tamil Nadu, 625 020, India
| | - Veerappan Muthukkaruppan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu, 625 020, India
| | - Ayyasamy Vanniarajan
- Department of Molecular Genetics, Aravind Medical Research Foundation, 1, Anna Nagar, Madurai, Tamil Nadu, 625 020, India.
- Department of Molecular Biology, Aravind Medical Research Foundation - Affiliated to Alagappa University, Karaikudi, Tamil Nadu, 630003, India.
| |
Collapse
|
18
|
Ni K, Li ZL, Hu ZY, Hong L. Antitumor Effect of Apcin on Endometrial Carcinoma via p21-Mediated Cell Cycle Arrest and Apoptosis. Curr Med Sci 2024; 44:623-632. [PMID: 38853192 DOI: 10.1007/s11596-024-2877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/27/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE Endometrial carcinoma (EC) is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates. This underscores the critical need for novel therapeutic targets. One such potential target is cell division cycle 20 (CDC20), which has been implicated in oncogenesis. This study investigated the effect of the CDC20 inhibitor Apcin on EC and elucidated the underlying mechanism involved. METHODS The effects of Apcin on EC cell proliferation, apoptosis, and the cell cycle were evaluated using CCK8 assays and flow cytometry. RNA sequencing (RNA-seq) was subsequently conducted to explore the underlying molecular mechanism, and Western blotting and coimmunoprecipitation were subsequently performed to validate the results. Animal studies were performed to evaluate the antitumor effects in vivo. Bioinformatics analysis was also conducted to identify CDC20 as a potential therapeutic target in EC. RESULTS Treatment with Apcin inhibited proliferation and induced apoptosis in EC cells, resulting in cell cycle arrest. Pathways associated with apoptosis and the cell cycle were activated following treatment with Apcin. Notably, Apcin treatment led to the upregulation of the cell cycle regulator p21, which was verified to interact with CDC20 and consequently decrease the expression of downstream cyclins in EC cells. In vivo experiments confirmed that Apcin treatment significantly impeded tumor growth. Higher CDC20 expression was observed in EC tissue than in nonmalignant tissue, and increased CDC20 expression in EC patients was associated with shorter overall survival and progress free interval. CONCLUSION CDC20 is a novel molecular target in EC, and Apcin could be developed as a candidate antitumor drug for EC treatment.
Collapse
Affiliation(s)
- Ke Ni
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Li Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhi-Yong Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
19
|
Yu L, Chen Z, Wu Y, Xu M, Zhong D, Xu H, Zhu W. Unraveling role of ubiquitination in drug resistance of gynecological cancer. Am J Cancer Res 2024; 14:2523-2537. [PMID: 38859858 PMCID: PMC11162667 DOI: 10.62347/wykz9784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
Chemotherapy is the principal treatment for advanced cancer patients. However, chemotherapeutic resistance, an important hallmark of cancer, is considered as a key impediment to effective therapy in cancer patients. Multiple signaling pathways and factors have been underscored to participate in governing drug resistance. Posttranslational modifications, including ubiquitination, glycosylation, acetylation and phosphorylation, have emerged as key players in modulating drug resistance in gynecological tumors, such as ovarian cancer, cervical cancer and endometrial cancer. In this review article, we summarize the role of ubiquitination in governing drug sensitivity in gynecological cancers. Moreover, we describe the numerous compounds that target ubiquitination in gynecological cancers to reverse chemotherapeutic resistance. In addition, we provide the future perspectives to fully elucidate the mechanisms by which ubiquitination controls drug resistance in gynecological tumors, contributing to restoring drug sensitivity. This review highlights the complex interplay between ubiquitination and drug resistance in gynecological tumors, providing novel insights into potential therapeutic targets and personalized treatment strategies to overcome the bottleneck of drug resistance.
Collapse
Affiliation(s)
- Li Yu
- Cancer Center, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical CollegeHangzhou, Zhejiang, China
| | - Zheling Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical CollegeHangzhou, Zhejiang, China
| | - Ying Wu
- Cancer Center, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical CollegeHangzhou, Zhejiang, China
| | - Meiliang Xu
- Cancer Center, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical CollegeHangzhou, Zhejiang, China
| | - Difei Zhong
- Cancer Center, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical CollegeHangzhou, Zhejiang, China
| | - Hongen Xu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical CollegeHangzhou, Zhejiang, China
| | - Wei Zhu
- Cancer Center, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical CollegeHangzhou, Zhejiang, China
| |
Collapse
|
20
|
Liu Y, Zou SH, Gao X. Bioinformatics analysis and experimental validation reveal that CDC20 overexpression promotes bladder cancer progression and potential underlying mechanisms. Genes Genomics 2024; 46:437-449. [PMID: 38438666 DOI: 10.1007/s13258-024-01505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/08/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Bladder cancer is a prevalent malignancy. CDC20, a pivotal cell cycle regulator gene, plays a significant role in tumour cell proliferation, but its role in bladder cancer remains unclear. OBJECTIVE This study aimed to analyse CDC20 expression in bladder cancer and explore its roles in tumour progression, treatment response, patient prognosis, and cellular proliferation mechanisms. METHODS We systematically analysed CDC20 expression in bladder cancer using bioinformatics. Our study investigated the impact of CDC20 on chemotherapy and radiotherapy sensitivity, patient prognosis, and changes in CDC20 methylation levels. We also explored the role and potential underlying mechanisms of CDC20 in bladder cancer cell growth. We used lentiviral transfection to downregulate CDC20 expression in 5637 and T24 cells, followed by CCK-8, colony formation, scratch, invasion, apoptosis, and cell cycle analyses. RESULTS CDC20 is highly expressed in bladder cancer and is significantly correlated with poor prognosis. Moreover, CDC20 demonstrated high diagnostic potential for bladder cancer (AUC > 0.9). The tumour methylation levels of CDC20 in tumour tissues markedly decreased compared with those in normal tissues, and lower methylation levels were associated with a worse prognosis. Elevated CDC20 expression is linked to increased mutation burden. Our findings suggested a potential association between high CDC20 expression and resistance to chemotherapy and radiotherapy, as CDC20 expression may impact immune cell infiltration levels. Mechanistic analysis revealed the influence of CDC20 on bladder cancer cell proliferation through cell cycle-related pathways. According to the cell experiments, CDC20 downregulation significantly impedes bladder cancer cell proliferation and invasion, leading to G1 phase arrest. CONCLUSION Aberrantly high CDC20 expression promotes tumour progression in bladder cancer, resulting in a poor prognosis, and may also constitute a promising therapeutic target.
Collapse
Affiliation(s)
- Yuan Liu
- Clinical Laboratory, Hunan University of Medicine General Hospital, Huaihua, Hunan, 418000, China
| | - Shao-Hui Zou
- Clinical Laboratory, Hunan University of Medicine General Hospital, Huaihua, Hunan, 418000, China
| | - Xin Gao
- Clinical Laboratory, Hunan University of Medicine General Hospital, Huaihua, Hunan, 418000, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100010, China.
| |
Collapse
|
21
|
Du Y, Deng T, Cheng Y, Zhao Q, Xia H, Ji Y, Zhang Y, He Q. Enhancing Bone Regeneration through CDC20-Loaded ZIF-8 Nanoparticles Wrapped in Erythrocyte Membranes with Targeting Aptamer. Adv Healthc Mater 2024; 13:e2302725. [PMID: 38030141 DOI: 10.1002/adhm.202302725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/15/2023] [Indexed: 12/01/2023]
Abstract
In the context of bone regeneration, nanoparticles harboring osteogenic factors have emerged as pivotal agents for modulating the differentiation fate of stem cells. However, persistent challenges surrounding biocompatibility, loading efficiency, and precise targeting ability warrant innovative solution. In this study, a novel nanoparticle platform founded upon the zeolitic imidazolate framework-8 (ZIF-8) is introduced. This new design, CDC20@ZIF-8@eM-Apt, involves the envelopment of ZIF-8 within an erythrocyte membrane (eM) cloak, and is coupled with a targeting aptamer. ZIF-8, distinguished by its porosity, biocompatibility, and robust cargo transport capabilities, constitutes the core framework. Cell division cycle protein 20 homolog (CDC20) is illuminated as a new target in bone regeneration. The eM plays a dual role in maintaining nanoparticle stability and facilitating fusion with target cell membranes, while the aptamer orchestrates the specific recruitment of bone marrow mesenchymal stem cells (BMSCs) within bone defect sites. Significantly, CDC20@ZIF-8@eM-Apt amplifies osteogenic differentiation of BMSCs via the inhibition of NF-κB p65, and concurrently catalyzes bone regeneration in two bone defect models. Consequently, CDC20@ZIF-8@eM-Apt introduces a pioneering strategy for tackling bone defects and associated maladies, opening novel avenues in therapeutic intervention.
Collapse
Affiliation(s)
- Yangge Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Tian Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yihong Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Qin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Qing He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
22
|
Yu H, Zhang J, Liu J, Pan R, Wang Y, Jin X, Ahmed RZ, Zheng Y. TBBPA rather than its main derivatives enhanced growth of endometrial cancer via p53 ubiquitination. J Environ Sci (China) 2024; 137:82-95. [PMID: 37980057 DOI: 10.1016/j.jes.2022.12.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 11/20/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and its derivatives widely exist in various environments and biota. Although the available data indicate that TBBPA exposure is highly associated with the increased incidence of endometrial cancer (EC), the effects of TBBPA and its main derivatives on EC proliferation and the involved crucial mechanism remain unclear. The present study aimed to investigate the effects of TBBPA and its derivatives under environmental concentrations on the proliferation of EC, and the crucial mechanism on the progression of EC caused by bromine flame retardants exposure. In this research, TBBPA and two of the most common TBBPA derivatives including TBBPA bis (2-hydroxyethyl ether) (TBBPA-BHEE) and TBBPA bis (dibromopropyl ether) (TBBPA-BDBPE) were screened for their capacities in induced EC proliferation and explored the related mechanism by in vitro cell culture model and in vivo mice model. Under environmental concentrations, TBBPA promoted the proliferation of EC, the main derivatives of TBBPA (TBBPA-BHEE and TBBPA-BDBPE) did not present the similar facilitation effects. The ubiquitination degradation of p53 was crucial in TBBPA induced EC proliferation, which resulted in the increase of downstream cell cycle and decrease of apoptosis. The further molecular docking result suggested the high affinity between TBBPA and ubiquitinated proteasome. This finding revealed the effects of TBBPA and its derivatives on EC proliferation, thus providing novel insights into the underlying mechanisms of TBBPA-caused EC.
Collapse
Affiliation(s)
- Hongyan Yu
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jingxu Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jing Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Ruonan Pan
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoting Jin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Rifat Zubair Ahmed
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Genetics, University of Karachi, Karachi 75270, Pakistan
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
23
|
Chen X, Ma J, Wang ZW, Wang Z. The E3 ubiquitin ligases regulate inflammation in cardiovascular diseases. Semin Cell Dev Biol 2024; 154:167-174. [PMID: 36872193 DOI: 10.1016/j.semcdb.2023.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Accumulating evidence has illustrated that the E3 ubiquitin ligases critically participate in the development and progression of cardiovascular diseases. Dysregulation of E3 ubiquitin ligases exacerbates cardiovascular diseases. Blockade or activation of E3 ubiquitin ligases mitigates cardiovascular performance. Therefore, in this review, we mainly introduced the critical role and underlying molecular mechanisms of E3 ubiquitin ligase NEDD4 family in governing the initiation and progression of cardiovascular diseases, including ITCH, WWP1, WWP2, Smurf1, Smurf2, Nedd4-1 and Nedd4-2. Moreover, the functions and molecular insights of other E3 ubiquitin ligases, such as F-box proteins, in cardiovascular disease development and malignant progression are described. Furthermore, we illustrate several compounds that alter the expression of E3 ubiquitin ligases to alleviate cardiovascular diseases. Therefore, modulation of E3 ubiquitin ligases could be a novel and promising strategy for improvement of therapeutic efficacy of deteriorative cardiovascular diseases.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Zhi-Wei Wang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Zhiting Wang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
24
|
Wang M, Yu F, Zhang Y, Li P. Programmed cell death in tumor immunity: mechanistic insights and clinical implications. Front Immunol 2024; 14:1309635. [PMID: 38283351 PMCID: PMC10811021 DOI: 10.3389/fimmu.2023.1309635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Programmed cell death (PCD) is an evolutionarily conserved mechanism of cell suicide that is controlled by various signaling pathways. PCD plays an important role in a multitude of biological processes, such as cell turnover, development, tissue homeostasis and immunity. Some forms of PCD, including apoptosis, autophagy-dependent cell death, pyroptosis, ferroptosis and necroptosis, contribute to carcinogenesis and cancer development, and thus have attracted increasing attention in the field of oncology. Recently, increasing research-based evidence has demonstrated that PCD acts as a critical modulator of tumor immunity. PCD can affect the function of innate and adaptive immune cells, which leads to distinct immunological consequences, such as the priming of tumor-specific T cells, immunosuppression and immune evasion. Targeting PCD alone or in combination with conventional immunotherapy may provide new options to enhance the clinical efficacy of anticancer therapeutics. In this review, we introduce the characteristics and mechanisms of ubiquitous PCD pathways (e.g., apoptosis, autophagy-dependent cell death, pyroptosis and ferroptosis) and explore the complex interaction between these cell death mechanisms and tumor immunity based on currently available evidence. We also discuss the therapeutic potential of PCD-based approaches by outlining clinical trials targeting PCD in cancer treatment. Elucidating the immune-related effects of PCD on cancer pathogenesis will likely contribute to an improved understanding of oncoimmunology and allow PCD to be exploited for cancer treatment.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | | | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Islam MR, Rauf A, Akash S, Trisha SI, Nasim AH, Akter M, Dhar PS, Ogaly HA, Hemeg HA, Wilairatana P, Thiruvengadam M. Targeted therapies of curcumin focus on its therapeutic benefits in cancers and human health: Molecular signaling pathway-based approaches and future perspectives. Biomed Pharmacother 2024; 170:116034. [PMID: 38141282 DOI: 10.1016/j.biopha.2023.116034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023] Open
Abstract
The curry powder spices turmeric (Curcuma longa L.), which contains curcumin (diferuloylmethane), an orange-yellow chemical. Polyphenols are the most commonly used sources of curcumin. It combats oxidative stress and inflammation in diseases, such as hyperlipidemia, metabolic syndrome, arthritis, and depression. Most of these benefits are due to their anti-inflammatory and antioxidant properties. Curcumin consumption leads to decreased bioavailability, resulting in limited absorption, quick metabolism, and quick excretion, which hinders health improvement. Numerous factors can increase its bioavailability. Piperine enhances bioavailability when combined with curcumin in a complex. When combined with other enhancing agents, curcumin has a wide spectrum of health benefits. This review evaluates the therapeutic potential of curcumin with a specific emphasis on its approach based on molecular signaling pathways. This study investigated its influence on the progression of cancer, inflammation, and many health-related mechanisms, such as cell proliferation, apoptosis, and metastasis. Curcumin has a significant potential for the prevention and treatment of various diseases. Curcumin modulates several biochemical pathways and targets involved in cancer growth. Despite its limited tissue accumulation and bioavailability when administered orally, curcumin has proven useful. This review provides an in-depth analysis of curcumin's therapeutic applications, its molecular signaling pathway-based approach, and its potential for precision medicine in cancer and human health.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Sadiya Islam Trisha
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Akram Hossain Nasim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 05029, Republic of Korea; Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| |
Collapse
|
26
|
Cui Y, Zhang J, Zhang G. The Potential Strategies for Overcoming Multidrug Resistance and Reducing Side Effects of Monomer Tubulin Inhibitors for Cancer Therapy. Curr Med Chem 2024; 31:1874-1895. [PMID: 37349994 DOI: 10.2174/0929867330666230622142505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/26/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Tubulin is an essential target in tumor therapy, and this is attributed to its ability to target MT dynamics and interfere with critical cellular functions, including mitosis, cell signaling, and intracellular trafficking. Several tubulin inhibitors have been approved for clinical application. However, the shortcomings, such as drug resistance and toxic side effects, limit its clinical application. Compared with single-target drugs, multi-target drugs can effectively improve efficacy to reduce side effects and overcome the development of drug resistance. Tubulin protein degraders do not require high concentrations and can be recycled. After degradation, the protein needs to be resynthesized to regain function, which significantly delays the development of drug resistance. METHODS Using SciFinder® as a tool, the publications about tubulin-based dual-target inhibitors and tubulin degraders were surveyed with an exclusion of those published as patents. RESULTS This study presents the research progress of tubulin-based dual-target inhibitors and tubulin degraders as antitumor agents to provide a reference for developing and applying more efficient drugs for cancer therapy. CONCLUSION The multi-target inhibitors and protein degraders have shown a development prospect to overcome multidrug resistance and reduce side effects in the treatment of tumors. Currently, the design of dual-target inhibitors for tubulin needs to be further optimized, and it is worth further clarifying the detailed mechanism of protein degradation.
Collapse
Affiliation(s)
- Yingjie Cui
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| | - Guifang Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
27
|
Cui A, Li X, Ma X, Song Z, Wang X, Wang C, Xia Y. Quantitative transcriptomic and proteomic analysis reveals corosolic acid inhibiting bladder cancer via suppressing cell cycle and inducing mitophagy in vitro and in vivo. Toxicol Appl Pharmacol 2023; 480:116749. [PMID: 37939859 DOI: 10.1016/j.taap.2023.116749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/03/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Corosolic acid (CA) is a plant-derived terpenoid compound with many health benefits. However, the anti-tumor effects of CA in bladder cancer remain unexplored. Here, we found that CA inhibited bladder tumor both in vitro and in vivo, and had no significant toxicity in mice. With the aid of transcriptomics and proteomics, we elucidated the regulatory network mechanism of CA inhibiting bladder cancer. Through cell viability detection, cell fluorescence staining and flow cytometry, we discovered that CA inhibited bladder cancer mainly through blocking cell cycle. Interestingly, CA played anticancer roles by distinct mechanisms at different concentrations: low concentrations (<7.0 μg/ml) of CA mainly inhibited DNA synthesis by downregulating TOP2A and LIG1, and diminished mitosis by downregulating CCNA2, CCNB1, CDC20, and RRM2; high concentrations (≥7.0 μg/ml) of CA induced cell death through triggering mitophagy via upregulating NBR1, TAXBP1, SQSTM1/P62, and UBB. CA, as a natural molecule of homology of medicine and food, is of great significance for the prevention and treatment of cancer patients following clarifying its anti-cancer mechanism. This study provides a comprehensive understanding of the pharmacological mechanism of CA inhibition in bladder cancer, which is helpful for the development of new anti-tumor drugs based on CA.
Collapse
Affiliation(s)
- Anfang Cui
- College of Basic Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Xiangling Li
- College of Basic Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Xiaolei Ma
- College of Basic Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Zhigang Song
- College of Basic Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Xiao Wang
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Chao Wang
- Department of Urology, Shandong First Medical University Affiliated Jining First People's Hospital, Jining 272106, China.
| | - Yong Xia
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China.
| |
Collapse
|
28
|
Yang Y, Zhang M, Zhao Y, Deng T, Zhou X, Qian H, Wang M, Zhang C, Huo Z, Mao Z, Shao Z, Liu M, Yang C, Lin C, Xu F, Tian G, Zhang Y. HOXD8 suppresses renal cell carcinoma growth by upregulating SHMT1 expression. Cancer Sci 2023; 114:4583-4595. [PMID: 37752684 PMCID: PMC10728000 DOI: 10.1111/cas.15982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Amplification of amino acids synthesis is reported to promote tumorigenesis. The serine/glycine biosynthesis pathway is a reversible conversion of serine and glycine catalyzed by cytoplasmic serine hydroxymethyltransferase (SHMT)1 and mitochondrial SHMT2; however, the role of SHTM1 in renal cell carcinoma (RCC) is still unclear. We found that low SHMT1 expression is correlated with poor survival of RCC patients. The in vitro study showed that overexpression of SHMT1 suppressed RCC proliferation and migration. In the mouse tumor model, SHMT1 significantly retarded RCC tumor growth. Furthermore, by gene network analysis, we found several SHMT1-related genes, among which homeobox D8 (HOXD8) was identified as the SHMT1 regulator. Knockdown of HOXD8 decreased SHMT1 expression, resulting in faster RCC growth, and rescued the SHMT1 overexpression-induced cell migration defects. Additionally, ChIP assay found the binding site of HOXD8 to SHMT1 promoter was at the -456~-254 bp region. Taken together, SHMT1 functions as a tumor suppressor in RCC. The transcription factor HOXD8 can promote SHMT1 expression and suppress RCC cell proliferation and migration, which provides new mechanisms of SHMT1 in RCC tumor growth and might be used as a potential therapeutic target candidate for clinical treatment.
Collapse
Affiliation(s)
- Yang Yang
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Minghui Zhang
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Yaxuan Zhao
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Tingzhi Deng
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Xiang Zhou
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Hanxu Qian
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Mengxuan Wang
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Chuanchuan Zhang
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Zhengjin Huo
- The First School of Clinical MedicineBinzhou Medical UniversityYantaiChina
| | - Zijun Mao
- The First School of Clinical MedicineBinzhou Medical UniversityYantaiChina
| | - Zhufeng Shao
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Mengxue Liu
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Chunhua Yang
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Chunhua Lin
- Department of UrologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Fuyi Xu
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Geng Tian
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| | - Yin Zhang
- School of PharmacyBinzhou Medical UniversityYantaiChina
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis, and TreatmentBinzhou Medical UniversityYantaiChina
| |
Collapse
|
29
|
Yang C, Ge Y, Zang Y, Xu M, Jin L, Wang Y, Xu X, Xue B, Wang Z, Wang L. CDC20 promotes radioresistance of prostate cancer by activating Twist1 expression. Apoptosis 2023; 28:1584-1595. [PMID: 37535214 DOI: 10.1007/s10495-023-01877-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
Currently, radiotherapy is one of the most attractive treatments for prostate cancer (PCa) patients. However, radioresistance remains a challenging issue and the underlying mechanism is unknown. Growing evidence has demonstrated that CDC20 (Cell division cycle protein 20) plays a pivotal role in a variety of tumors, including PCa. Here, GEPIA database mining and western blot analysis showed that higher expression of CDC20 was observed in PCa tissues and cells. We demonstrated that the expression of CDC20 was increased in PCa cells by irradiation, and knockdown of CDC20 resulted in inhibition of cell proliferation, migration, tumor formation, induced cell apoptosis and increased radiosensitivity in PCa in vitro and in vivo. Furthermore, we observed that CDC20 regulated Twist1 pathway, influencing cell proliferation and migration. These results suggest that targeting CDC20 and Twist1 may be an effective way to improve the radiosensitivity of PCa.
Collapse
Affiliation(s)
- Chuanlai Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Scientific Research Department, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yuegang Ge
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Institute of Radiotherapy and Oncology, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yachen Zang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Ming Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Lu Jin
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Yang Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xinyu Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Boxin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, 233003, Anhui, China.
| | - Lixia Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
30
|
Liu ZY, Li YH, Zhang QK, Li BW, Xin L. Development and validation of a ubiquitin-proteasome system gene signature for prognostic prediction and immune microenvironment evaluation in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:13363-13382. [PMID: 37490101 DOI: 10.1007/s00432-023-05189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND The ubiquitin proteasome has a major role in the development of many tumors. However, the prognostic importance of ubiquitin proteasome-system genes (UPSGs) in hepatocellular carcinoma (HCC) is not fully defined. METHODS The TCGA and ICGC datasets were utilized to obtain transcriptional profiling data as well as clinicopathological information about HCC. The 3-UPSGs signature for the TCGA cohort was developed via univariate and LASSO Cox regression analyses. Differential expression of genes was demonstrated by qRT-PCR and immunohistochemistry (IHC). Biological pathways were studied using GSVA and GSEA. Six algorithms were used to compare immune infiltration between the two risk groups. Furthermore, drug sensitivity was measured using the "pRRophetic" R package. The predictive capacity of the 3-UPSGs signature for sensitivity to immunotherapy was also explored. Moreover, we performed a pan-cancer analysis of the 3-UPSGs signature. RESULTS A risk model containing 3 UPSGs (DCAF13, CDC20 and PSMB5) was developed. IHC and qRT-PCR results showed that signature genes were significantly overexpressed in HCC tissues. The high-risk group had a worse prognosis, with a higher clinicopathological grade, higher levels of tumor mutation burden (TMB), elevated levels of immune checkpoint (IC) expression, as well as increased sensitivity to immunotherapy. The two risk groups also differ in their sensitivity to chemotherapeutic drugs. Furthermore, the three UPSGs may play crucial roles in the progression of multiple types of cancers. CONCLUSION We created a 3-UPSGs signature to estimate the prognosis of HCC and to assist in individualized treatment.
Collapse
Affiliation(s)
- Zhi-Yang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Yi-He Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing-Kun Zhang
- Department of Otorhinolaryngology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo-Wen Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
31
|
Pauletto M, Giantin M, Tolosi R, Bassan I, Bardhi A, Barbarossa A, Montanucci L, Zaghini A, Dacasto M. Discovering the Protective Effects of Quercetin on Aflatoxin B1-Induced Toxicity in Bovine Foetal Hepatocyte-Derived Cells (BFH12). Toxins (Basel) 2023; 15:555. [PMID: 37755981 PMCID: PMC10534839 DOI: 10.3390/toxins15090555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Aflatoxin B1 (AFB1) induces lipid peroxidation and mortality in bovine foetal hepatocyte-derived cells (BFH12), with underlying transcriptional perturbations associated mainly with cancer, cellular damage, inflammation, bioactivation, and detoxification pathways. In this cell line, curcumin and resveratrol have proven to be effective in mitigating AFB1-induced toxicity. In this paper, we preliminarily assessed the potential anti-AFB1 activity of a natural polyphenol, quercetin (QUE), in BFH12 cells. To this end, we primarily measured QUE cytotoxicity using a WST-1 reagent. Then, we pre-treated the cells with QUE and exposed them to AFB1. The protective role of QUE was evaluated by measuring cytotoxicity, transcriptional changes (RNA-sequencing), lipid peroxidation (malondialdehyde production), and targeted post-transcriptional modifications (NQO1 and CYP3A enzymatic activity). The results demonstrated that QUE, like curcumin and resveratrol, reduced AFB1-induced cytotoxicity and lipid peroxidation and caused larger transcriptional variations than AFB1 alone. Most of the differentially expressed genes were involved in lipid homeostasis, inflammatory and immune processes, and carcinogenesis. As for enzymatic activities, QUE significantly reverted CYP3A variations induced by AFB1, but not those of NQO1. This study provides new knowledge about key molecular mechanisms involved in QUE-mediated protection against AFB1 toxicity and encourages in vivo studies to assess QUE's bioavailability and beneficial effects on aflatoxicosis.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| | - Irene Bassan
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| | - Anisa Bardhi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, I-40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, I-40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Ludovica Montanucci
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA;
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, I-40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| |
Collapse
|
32
|
Abdullah S, Ganguly S. An overview of imidazole and its analogues as potent anticancer agents. Future Med Chem 2023; 15:1621-1646. [PMID: 37727960 DOI: 10.4155/fmc-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The quest for novel, physiologically active imidazoles remains an exciting topic of research among medicinal chemists. The imidazole ring is a five-membered aromatic heterocycle that is found in both natural and synthesized compounds. Multiple anticancer drug classes are currently available on the market, but concerns including toxicity, limited efficacy and solubility have lowered the overall therapeutic index. Therefore, the hunt for new potential chemotherapeutic agents persists. The development of imidazole as a reliable and safer alternative to anticancer treatment is generating much attention among experts. Tubulin or microtubule polymerization inhibition and changes in the structure and function of DNA, VEGF, topoisomerase, kinases, histone deacetylases and certain other proteins that affect gene expression are among the putative targets.
Collapse
Affiliation(s)
- Salik Abdullah
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| | - Swastika Ganguly
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| |
Collapse
|
33
|
Quarantani G, Sorgente A, Alfano M, Pipitone GB, Boeri L, Pozzi E, Belladelli F, Pederzoli F, Ferrara AM, Montorsi F, Moles A, Carrera P, Salonia A, Casari G. Whole exome data prioritization unveils the hidden weight of Mendelian causes of male infertility. A report from the first Italian cohort. PLoS One 2023; 18:e0288336. [PMID: 37540677 PMCID: PMC10403130 DOI: 10.1371/journal.pone.0288336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/24/2023] [Indexed: 08/06/2023] Open
Abstract
Almost 40% of infertile men cases are classified as idiopathic when tested negative to the current diagnostic routine based on the screening of karyotype, Y chromosome microdeletions and CFTR mutations in men with azoospermia or oligozoospermia. Rare monogenic forms of infertility are not routinely evaluated. In this study we aim to investigate the unknown potential genetic causes in couples with pure male idiopathic infertility by applying variant prioritization to whole exome sequencing (WES) in a cohort of 99 idiopathic Italian patients. The ad-hoc manually curated gene library prioritizes genes already known to be associated with more common and rare syndromic and non-syndromic male infertility forms. Twelve monogenic cases (12.1%) were identified in the whole cohort of patients. Of these, three patients had variants related to mild androgen insensitivity syndrome, two in genes related to hypogonadotropic hypogonadism, and six in genes related to spermatogenic failure, while one patient is mutant in PKD1. These results suggest that NGS combined with our manually curated pipeline for variant prioritization and classification can uncover a considerable number of Mendelian causes of infertility even in a small cohort of patients.
Collapse
Affiliation(s)
- Gioia Quarantani
- Genome-Phenome Relationship Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Anna Sorgente
- Genome-Phenome Relationship Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giovanni Battista Pipitone
- Genomics for Human Disease Diagnosis Unit and Lab of Clinical Genomics, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luca Boeri
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Urology, Foundation IRCCS Ca' Granda-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Edoardo Pozzi
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federico Belladelli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Filippo Pederzoli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Anna Maria Ferrara
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Anna Moles
- CNR Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Paola Carrera
- Genomics for Human Disease Diagnosis Unit and Lab of Clinical Genomics, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giorgio Casari
- Genome-Phenome Relationship Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
34
|
Zhao WS, Chen KF, Liu M, Jia XL, Huang YQ, Hao BB, Hu H, Shen XY, Yu Q, Tan MJ. Investigation of targets and anticancer mechanisms of covalently acting natural products by functional proteomics. Acta Pharmacol Sin 2023; 44:1701-1711. [PMID: 36932232 PMCID: PMC10374574 DOI: 10.1038/s41401-023-01072-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023]
Abstract
Eriocalyxin B (EB), 17-hydroxy-jolkinolide B (HJB), parthenolide (PN), xanthatin (XT) and andrographolide (AG) are terpenoid natural products with a variety of promising antitumor activities, which commonly bear electrophilic groups (α,β-unsaturated carbonyl groups and/or epoxides) capable of covalently modifying protein cysteine residues. However, their direct targets and underlying molecular mechanisms are still largely unclear, which limits the development of these compounds. In this study, we integrated activity-based protein profiling (ABPP) and quantitative proteomics approach to systematically characterize the covalent targets of these natural products and their involved cellular pathways. We first demonstrated the anti-proliferation activities of these five compounds in triple-negative breast cancer cell MDA-MB-231. Tandem mass tag (TMT)-based quantitative proteomics showed all five compounds commonly affected the ubiquitin mediated proteolysis pathways. ABPP platform identified the preferentially modified targets of EB and PN, two natural products with high anti-proliferation activity. Biochemical experiments showed that PN inhibited the cell proliferation through targeting ubiquitin carboxyl-terminal hydrolase 10 (USP10). Together, this study uncovered the covalently modified targets of these natural products and potential molecular mechanisms of their antitumor activities.
Collapse
Affiliation(s)
- Wen-Si Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Kai-Feng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Man Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xing-Long Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yu-Qi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Bing-Bing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Yan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qiang Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
35
|
Alebady ZAH, Azizyan M, Nakjang S, Lishman-Walker E, Al-Kharaif D, Walker S, Choo HX, Garnham R, Scott E, Johnson KL, Robson CN, Coffey K. CDC20 Is Regulated by the Histone Methyltransferase, KMT5A, in Castration-Resistant Prostate Cancer. Cancers (Basel) 2023; 15:3597. [PMID: 37509260 PMCID: PMC10377584 DOI: 10.3390/cancers15143597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The methyltransferase KMT5A has been proposed as an oncogene in prostate cancer and therefore represents a putative therapeutic target. To confirm this hypothesis, we have performed a microarray study on a prostate cancer cell line model of androgen independence following KMT5A knockdown in the presence of the transcriptionally active androgen receptor (AR) to understand which genes and cellular processes are regulated by KMT5A in the presence of an active AR. We observed that 301 genes were down-regulated whilst 408 were up-regulated when KMT5A expression was reduced. KEGG pathway and gene ontology analysis revealed that apoptosis and DNA damage signalling were up-regulated in response to KMT5A knockdown whilst protein folding and RNA splicing were down-regulated. Under these conditions, the top non-AR regulated gene was found to be CDC20, a key regulator of the spindle assembly checkpoint with an oncogenic role in several cancer types. Further investigation revealed that KMT5A regulates CDC20 in a methyltransferase-dependent manner to modulate histone H4K20 methylation within its promoter region and indirectly via the p53 signalling pathway. A positive correlation between KMT5A and CDC20 expression was also observed in clinical prostate cancer samples, further supporting this association. Therefore, we conclude that KMT5A is a valid therapeutic target for the treatment of prostate cancer and CDC20 could potentially be utilised as a biomarker for effective therapeutic targeting.
Collapse
Affiliation(s)
- Zainab A H Alebady
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Laboratory and Clinical Science, College of Pharmacy, University of AL-Qadisiyah, Al-Diwaniya 58002, Iraq
| | - Mahsa Azizyan
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Sirintra Nakjang
- Bioinformatics Support Unit, Newcastle University, Newcastle NE2 4HH, UK
| | - Emma Lishman-Walker
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dhuha Al-Kharaif
- Medical Laboratory Technology Department, College of Health Sciences, Public Authority of Applied Education and Training, Safat 13092, Kuwait
| | - Scott Walker
- School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hui Xian Choo
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Rebecca Garnham
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Emma Scott
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Katya L Johnson
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Craig N Robson
- Translational and Clinical Research Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kelly Coffey
- Biosciences Institute, Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
36
|
Rasti A, Abazari O, Dayati P, Kardan Z, Salari A, Khalili M, Motlagh FM, Modarressi MH. Identification of Potential Key Genes Linked to Gender Differences in Bladder Cancer Based on Gene Expression Omnibus (GEO) Database. Adv Biomed Res 2023; 12:157. [PMID: 37564439 PMCID: PMC10410418 DOI: 10.4103/abr.abr_280_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Growing evidence strongly indicates pivotal roles of gender differences in the occurrence and survival rate of patients with bladder cancer, with a higher incidence in males and poorer prognosis in females. Nevertheless, the molecular basis underlying gender-specific differences in bladder cancer remains unknown. The current study has tried to detect key genes contributing to gender differences in bladder cancer patients. MATERIALS AND METHODS The gene expression profile of GSE13507 was firstly obtained from the Gene Expression Omnibus (GEO) database. Further, differentially expressed genes (DEGs) were screened between males and females using R software. Protein-protein interactive (PPI) network analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Kaplan-Meier survival analyses were also performed. RESULTS We detected six hub genes contributing to gender differences in bladder cancer patients, containing IGF2, CCL5, ASPM, CDC20, BUB1B, and CCNB1. Our analyses demonstrated that CCNB1 and BUB1B were upregulated in tumor tissues of female subjects with bladder cancer. Other genes, such as IGF2 and CCL5, were associated with a poor outcome in male patients with bladder cancer. Additionally, three signaling pathways (focal adhesion, rheumatoid arthritis, and human T-cell leukemia virus infection) were identified to be differentially downregulated in bladder cancer versus normal samples in both genders. CONCLUSION Our findings suggested that gender differences may modulate the expression of key genes that contributed to bladder cancer occurrence and prognosis.
Collapse
Affiliation(s)
- Azam Rasti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Abazari
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Parisa Dayati
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Kardan
- Department of Cellular Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran
- Systems Biology Research Lab, Bioinformatics Group, Systems Biology of the Next Generation Company (SBNGC), Qom, Iran
| | - Ali Salari
- Systems Biology Research Lab, Bioinformatics Group, Systems Biology of the Next Generation Company (SBNGC), Qom, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran
| | - Masoud Khalili
- Department of Urology, Velayat Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fatemeh Movahedi Motlagh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
37
|
Wilkerson JR, Ifrim MF, Valdez-Sinon AN, Hahn P, Bowles JE, Molinaro G, Janusz-Kaminska A, Bassell GJ, Huber KM. FMRP phosphorylation and interactions with Cdh1 regulate association with dendritic RNA granules and MEF2-triggered synapse elimination. Neurobiol Dis 2023; 182:106136. [PMID: 37120096 PMCID: PMC10370323 DOI: 10.1016/j.nbd.2023.106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023] Open
Abstract
Fragile X Messenger Ribonucleoprotein (FMRP) is necessary for experience-dependent, developmental synapse elimination and the loss of this process may underlie the excess dendritic spines and hyperconnectivity of cortical neurons in Fragile X Syndrome, a common inherited form of intellectual disability and autism. Little is known of the signaling pathways that regulate synapse elimination and if or how FMRP is regulated during this process. We have characterized a model of synapse elimination in CA1 neurons of organotypic hippocampal slice cultures that is induced by expression of the active transcription factor Myocyte Enhancer Factor 2 (MEF2) and relies on postsynaptic FMRP. MEF2-induced synapse elimination is deficient in Fmr1 KO CA1 neurons, and is rescued by acute (24 h), postsynaptic and cell autonomous reexpression of FMRP in CA1 neurons. FMRP is an RNA binding protein that suppresses mRNA translation. Derepression is induced by posttranslational mechanisms downstream of metabotropic glutamate receptor signaling. Dephosphorylation of FMRP at S499 triggers ubiquitination and degradation of FMRP which then relieves translation suppression and promotes synthesis of proteins encoded by target mRNAs. Whether this mechanism functions in synapse elimination is not known. Here we demonstrate that phosphorylation and dephosphorylation of FMRP at S499 are both necessary for synapse elimination as well as interaction of FMRP with its E3 ligase for FMRP, APC/Cdh1. Using a bimolecular ubiquitin-mediated fluorescence complementation (UbFC) assay, we demonstrate that MEF2 promotes ubiquitination of FMRP in CA1 neurons that relies on activity and interaction with APC/Cdh1. Our results suggest a model where MEF2 regulates posttranslational modifications of FMRP via APC/Cdh1 to regulate translation of proteins necessary for synapse elimination.
Collapse
Affiliation(s)
- Julia R Wilkerson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Marius F Ifrim
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Patricia Hahn
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacob E Bowles
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gemma Molinaro
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
38
|
Yurttas AG, Okat Z, Elgun T, Cifci KU, Sevim AM, Gul A. Genetic deviation associated with photodynamic therapy in HeLa cell. Photodiagnosis Photodyn Ther 2023; 42:103346. [PMID: 36809810 DOI: 10.1016/j.pdpdt.2023.103346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Photodynamic therapy (PDT) is a method that is used in cancer treatment. The main therapeutic effect is the production of singlet oxygen (1O2). Phthalocyanines for PDT produce high singlet oxygen with absorbers of about 600-700 nm. AIM It is aimed to analyze cancer cell pathways by flow cytometry analysis and cancer-related genes with q-PCR device by applying phthalocyanine L1ZnPC, which we use as photosensitizer in photodynamic therapy, in HELA cell line. In this study, we investigate the molecular basis of L1ZnPC's anti-cancer activity. MATERIAL METHOD The cytotoxic effects of L1ZnPC, a phthalocyanine obtained from our previous study, in HELA cells were evaluated and it was determined that it led to a high rate of death as a result. The result of photodynamic therapy was analyzed using q-PCR. From the data received at the conclusion of this investigation, gene expression values were calculated, and expression levels were assessed using the 2-∆∆Ct method to examine the relative changes in these values. Cell death pathways were interpreted with the FLOW cytometer device. One-Way Analysis of Variance (ANOVA) and the Tukey-Kramer Multiple Comparison Test with Post-hoc Test were used for the statistical analysis. CONCLUSION In our study, it was observed that HELA cancer cells underwent apoptosis at a rate of 80% with drug application plus photodynamic therapy by flow cytometry method. According to q-PCR results, CT values of eight out of eighty-four genes were found to be significant and their association with cancer was evaluated. L1ZnPC is a new phthalocyanine used in this study and our findings should be supported by further studies. For this reason, different analyses are needed to be performed with this drug in different cancer cell lines. In conclusion, according to our results, this drug looks promising but still needs to be analyzed through new studies. It is necessary to examine in detail which signaling pathways they use and their mechanism of action. For this, additional experiments are required.
Collapse
Affiliation(s)
- Asiye Gok Yurttas
- Department of Biochemistry, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey.
| | - Zehra Okat
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Tugba Elgun
- Medical Biology, Faculty of Medicine, Istanbul Biruni University, Istanbul, Turkey
| | - Kezban Ucar Cifci
- Division of Basic Sciences and Health, Hemp Research Institute, Yozgat Bozok University, Yozgat, Turkey; Department of Molecular Medicine, Institute of Health Sciences, University of Health Sciences, Turkey
| | - Altug Mert Sevim
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Ahmet Gul
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
39
|
Ou YN, Ge YJ, Wu BS, Zhang Y, Jiang YC, Kuo K, Yang L, Tan L, Feng JF, Cheng W, Yu JT. The genetic architecture of fornix white matter microstructure and their involvement in neuropsychiatric disorders. Transl Psychiatry 2023; 13:180. [PMID: 37236919 DOI: 10.1038/s41398-023-02475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The fornix is a white matter bundle located in the center of the hippocampaldiencephalic limbic circuit that controls memory and executive functions, yet its genetic architectures and involvement in brain disorders remain largely unknown. We carried out a genome-wide association analysis of 30,832 UK Biobank individuals of the six fornix diffusion magnetic resonance imaging (dMRI) traits. The post-GWAS analysis allowed us to identify causal genetic variants in phenotypes at the single nucleotide polymorphisms (SNP), locus, and gene levels, as well as genetic overlap with brain health-related traits. We further generalized our GWAS in adolescent brain cognitive development (ABCD) cohort. The GWAS identified 63 independent significant variants within 20 genomic loci associated (P < 8.33 × 10-9) with the six fornix dMRI traits. Geminin coiled-coil domain containing (GMNC) and NUAK family SNF1-like kinase 1 (NUAK1) gene were highlighted, which were found in UKB and replicated in ABCD. The heritability of the six traits ranged from 10% to 27%. Gene mapping strategies identified 213 genes, where 11 were supported by all of four methods. Gene-based analyses revealed pathways relating to cell development and differentiation, with astrocytes found to be significantly enriched. Pleiotropy analyses with eight neurological and psychiatric disorders revealed shared variants, especially with schizophrenia under the conjFDR threshold of 0.05. These findings advance our understanding of the complex genetic architectures of fornix and their relevance in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yi-Jun Ge
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bang-Sheng Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Yi Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Yu-Chao Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Kevin Kuo
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wei Cheng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
40
|
Das A, Sharma HK, Lather V, Pandita D, Agarwal P. Structure-based virtual screening for identification of potential CDC20 inhibitors and their therapeutic evaluation in breast cancer. 3 Biotech 2023; 13:141. [PMID: 37124982 PMCID: PMC10133423 DOI: 10.1007/s13205-023-03554-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Cell division cycle 20 (CDC20), a critical partner of anaphase promoting complex (APC/C), is indispensably required for metaphase-to-anaphase transition. CDC20 overexpression in TNBC breast cancer patients has been found to be correlated with poor prognosis, hence, we aimed to target CDC20 for TNBC therapeutics. In silico molecular docking of large-scale chemical libraries (phytochemicals/synthetic drugs) against CDC20 protein structure identified five synthetic drugs and four phytochemicals as potential hits interacting with CDC20 active site. The molecular selection was done based on docking scores, binding interactions, binding energies and MM/GBSA scores. Further, we analysed ADME profiles for all the hits and identified lidocaine, an aminoamide anaesthetic group of synthetic drug, with high drug-likeness properties. We explored the anti-tumorigenic effects of lidocaine on MDA-MB-231 TNBC breast cancer cells, which resulted in increased growth inhibition in dose-dependent manner. The molecular mechanism behind the cell viability defect mediated by lidocaine was found to be induction of G2/M cell cycle arrest and cellular apoptosis. Notably, lidocaine treatment of TNBC cells also resulted in downregulation of CDC20 gene expression. Thus, this study identifies lidocaine as a potential anti-neoplastic agent for TNBC cells emphasizing CDC20 as a suitable therapeutic target for breast cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03554-7.
Collapse
Affiliation(s)
- Amiya Das
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Sector 125, Noida, 201313 India
| | - Hitesh Kumar Sharma
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector 125, Noida, 201313 India
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector 125, Noida, 201313 India
| | - Deepti Pandita
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences & Research (DIPSAR) Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Government of NCT of Delhi, New Delhi, 110017 India
- Centre for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Govt. of NCT of Delhi, New Delhi, 110017 India
| | - Pallavi Agarwal
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Sector 125, Noida, 201313 India
| |
Collapse
|
41
|
Mishra AP, Singh P, Yadav S, Nigam M, Seidel V, Rodrigues CF. Role of the Dietary Phytochemical Curcumin in Targeting Cancer Cell Signalling Pathways. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091782. [PMID: 37176840 PMCID: PMC10180989 DOI: 10.3390/plants12091782] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
The diarylheptanoid curcumin [(1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione] is one of the phenolic pigments responsible for the yellow colour of turmeric (Curcuma longa L.). This phytochemical has gained much attention in recent years due to its therapeutic potential in cancer. A range of drug delivery approaches have been developed to optimise the pharmacokinetic profile of curcumin and ensure that it reaches its target sites. Curcumin exhibits numerous biological effects, including anti-inflammatory, cardioprotective, antidiabetic, and anti-aging activities. It has also been extensively studied for its role as a cancer chemopreventive and anticancer agent. This review focusses on the role of curcumin in targeting the cell signalling pathways involved in cancer, particularly via modulation of growth factors, transcription factors, kinases and other enzymes, pro-inflammatory cytokines, and pro-apoptotic and anti-apoptotic proteins. It is hoped that this study will help future work on the potential of curcumin to fight cancer.
Collapse
Affiliation(s)
- Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, Bloemfontein 9300, South Africa
| | - Pratichi Singh
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida 203201, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, Uttar Pradesh, India
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Celia Fortuna Rodrigues
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- TOXRUN-Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, 4585-116 Gandra PRD, Portugal
| |
Collapse
|
42
|
Fadaei M, Kohansal M, Akbarpour O, Sami M, Ghanbariasad A. Network and functional analyses of differentially expressed genes in gastric cancer provide new biomarkers associated with disease pathogenesis. J Egypt Natl Canc Inst 2023; 35:8. [PMID: 37032412 DOI: 10.1186/s43046-023-00164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 02/13/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Gastric cancer is a dominant source of cancer-related death around the globe and a serious threat to human health. However, there are very few practical diagnostic approaches and biomarkers for the treatment of this complex disease. METHODS This study aimed to evaluate the association between differentially expressed genes (DEGs), which may function as potential biomarkers, and the diagnosis and treatment of gastric cancer (GC). We constructed a protein-protein interaction network from DEGs followed by network clustering. Members of the two most extensive modules went under the enrichment analysis. We introduced a number of hub genes and gene families playing essential roles in oncogenic pathways and the pathogenesis of gastric cancer. Enriched terms for Biological Process were obtained from the "GO" repository. RESULTS A total of 307 DEGs were identified between GC and their corresponding normal adjacent tissue samples in GSE63089 datasets, including 261 upregulated and 261 downregulated genes. The top five hub genes in the PPI network were CDK1, CCNB1, CCNA2, CDC20, and PBK. They are involved in focal adhesion formation, extracellular matrix remodeling, cell migration, survival signals, and cell proliferation. No significant survival result was found for these hub genes. CONCLUSIONS Using comprehensive analysis and bioinformatics methods, important key pathways and pivotal genes related to GC progression were identified, potentially informing further studies and new therapeutic targets for GC treatment.
Collapse
Affiliation(s)
- Mousa Fadaei
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Kohansal
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
- Department of Biology, Payame Noor University, Tehran, Iran
| | | | - Mahsa Sami
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Ghanbariasad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
43
|
CDC20 inhibition alleviates fibrotic response of renal tubular epithelial cells and fibroblasts by regulating nuclear translocation of β-catenin. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166663. [PMID: 36764621 DOI: 10.1016/j.bbadis.2023.166663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Fibrosis is a common pathological phenomenon in progressive kidney disease leading to eventual loss of kidney function. Previous studies demonstrated that CDC20 plays a role in cancers by regulating epithelial-mesenchymal transition (EMT) and the infiltration of fibroblasts, suggesting the potential of CDC20 in regulating fibrotic response. However, the role of CDC20 in renal fibrosis is yet unclear. Herein, we reported that renal CDC20 was remarkably upregulated in renal tubular epithelial cells and fibroblasts in chronic kidney disease (CKD) patients, which was in line with a positive correlation with the severity of kidney fibrosis. In mice with unilateral urinary obstruction, CDC20 was also strikingly enhanced, and treatment with Apcin, an inhibitor of CDC20, ameliorated kidney fibrosis. Consistently, the pharmacological inhibition of CDC20 in mouse proximal tubular epithelial cells and rat fibroblasts attenuated TGF-β1-induced fibrotic responses, while overexpression of CDC20 aggravated such responses. Additional studies revealed that CDC20 induces nuclear translocation of β-catenin, which in turn initiates and promotes the pathological process of fibrosis in CKD. Thus, enhanced CDC20 in renal tubular cells and fibroblasts promotes renal fibrosis by activating β-catenin, and CDC20 inhibition may serve as a promising strategy for the prevention and treatment of renal fibrosis.
Collapse
|
44
|
Fan J, Ding Y, Huang H, Xiong S, He L, Guo J. High expression of ABCF1 is an independent predictor of poor prognosis in bladder cancer. BMC Urol 2023; 23:37. [PMID: 36932399 PMCID: PMC10022215 DOI: 10.1186/s12894-023-01211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
ABCF1, a member of the ATP-binding cassette (ABC) transporter family, is involved in the malignant progression of tumors. However, the role of ABCF1 in bladder cancer is poorly understood. In our study, we explored the differential expression of ABCF1 in bladder cancer and normal bladder tissues based on bioinformatic analysis and immunohistochemical results. GSEA was performed to ascertain the potential related signaling pathways of ABCF1. The relationship between ABCF1 expression and bladder cancer progression was analyzed using the GSE13507 dataset. In addition, the differential expression of ABCF1 in the cell lines was verified by quantitative real-time polymerase chain reaction (qRT‒PCR) and Western blotting. ABCF1 was upregulated in bladder cancer, and the high expression of ABCF1 was closely related to sex (P = 0.00056), grade (P = 0.00049), T stage (P = 0.00007), and N stage (P = 0.0076). High expression of ABCF1 was correlated with poor overall survival in bladder cancer patients (P < 0.001). In addition, univariate and multivariate Cox regression analyses showed that high ABCF1 expression was an independent factor for poor prognosis in bladder cancer patients. Therefore, ABCF1 expression is closely related to the progression of bladder cancer and can be used as a potential indicator of poor prognosis and a therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- JiaWen Fan
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi Ding
- The Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - HaoXuan Huang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - ShiDa Xiong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Liang He
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ju Guo
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
45
|
Chen Y, Yang P, Wang J, Gao S, Xiao S, Zhang W, Zhu M, Wang Y, Ke X, Jing H. p53 directly downregulates the expression of CDC20 to exert anti-tumor activity in mantle cell lymphoma. Exp Hematol Oncol 2023; 12:28. [PMID: 36882855 PMCID: PMC9990225 DOI: 10.1186/s40164-023-00381-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Cell cycle dysregulation characterized by cyclin D1 overexpression is common in mantle cell lymphoma (MCL), while mitotic disorder was less studied. Cell division cycle 20 homologue (CDC20), an essential mitotic regulator, was highly expressed in various tumors. Another common abnormality in MCL is p53 inactivation. Little was known about the role of CDC20 in MCL tumorigenesis and the regulatory relationship between p53 and CDC20 in MCL. METHODS CDC20 expression was detected in MCL patients and MCL cell lines harboring mutant p53 (Jeko and Mino cells) and wild-type p53 (Z138 and JVM2 cells). Z138 and JVM2 cells were treated with CDC20 inhibitor apcin, p53 agonist nutlin-3a, or in combination, and then cell proliferation, cell apoptosis, cell cycle, cell migration and invasion were determined by CCK-8, flow cytometry and Transwell assays. The regulatory mechanism between p53 and CDC20 was revealed by dual-luciferase reporter gene assay and CUT&Tag technology. The anti-tumor effect, safety and tolerability of nutlin-3a and apcin were investigated in vivo in the Z138-driven xenograft tumor model. RESULTS CDC20 was overexpressed in MCL patients and cell lines compared with their respective controls. The typical immunohistochemical marker of MCL patients, cyclin D1, was positively correlated with CDC20 expression. CDC20 high expression indicated unfavorable clinicopathological features and poor prognosis in MCL patients. In Z138 and JVM2 cells, either apcin or nutlin-3a treatment could inhibit cell proliferation, migration and invasion, and induce cell apoptosis and cell cycle arrest. GEO analysis, RT-qPCR and WB results showed that p53 expression was negatively correlated with CDC20 expression in MCL patients, Z138 and JVM2 cells, while this relationship was not observed in p53-mutant cells. Dual-luciferase reporter gene assay and CUT&Tag assay revealed mechanistically that CDC20 was transcriptionally repressed by p53 through directly binding p53 to CDC20 promoter from - 492 to + 101 bp. Moreover, combined treatment of nutlin-3a and apcin showed better anti-tumor effect than single treatment in Z138 and JVM2 cells. Administration of nutlin-3a/apcin alone or in combination confirmed their efficacy and safety in tumor-bearing mice. CONCLUSIONS Our study validates the essential role of p53 and CDC20 in MCL tumorigenesis, and provides a new insight for MCL therapeutics through dual-targeting p53 and CDC20.
Collapse
Affiliation(s)
- Yingtong Chen
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Ping Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Shuang Gao
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Shiyu Xiao
- Department of Gastroenterology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China.,Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Mingxia Zhu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Yanfang Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Xiaoyan Ke
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
46
|
Jour G, Illa-Bochaca I, Ibrahim M, Donnelly D, Zhu K, Miera EVSD, Vasudevaraja V, Mezzano V, Ramswami S, Yeh YH, Winskill C, Betensky RA, Mehnert J, Osman I. Genomic and Transcriptomic Analyses of NF1-Mutant Melanoma Identify Potential Targeted Approach for Treatment. J Invest Dermatol 2023; 143:444-455.e8. [PMID: 35988589 DOI: 10.1016/j.jid.2022.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022]
Abstract
There is currently no targeted therapy to treat NF1-mutant melanomas. In this study, we compared the genomic and transcriptomic signatures of NF1-mutant and NF1 wild-type melanoma to reveal potential treatment targets for this subset of patients. Genomic alterations were verified using qPCR, and differentially expressed genes were independently validated using The Cancer Genome Atlas data and immunohistochemistry. Digital spatial profiling with multiplex immunohistochemistry and immunofluorescence were used to validate the signatures. The efficacy of combinational regimens driven by these signatures was tested through in vitro assays using low-passage cell lines. Pathogenic NF1 mutations were identified in 27% of cases. NF1-mutant melanoma expressed higher proliferative markers MK167 and CDC20 than NF1 wild-type (P = 0.008), which was independently validated both in The Cancer Genome Atlas dataset (P = 0.01, P = 0.03) and with immunohistochemistry (P = 0.013, P = 0.036), respectively. Digital spatial profiling analysis showed upregulation of LY6E within the tumor cells (false discovery rate < 0.01, log2 fold change > 1), confirmed with multiplex immunofluorescence showing colocalization of LY6E in melanoma cells. The combination of MAPK/extracellular signal‒regulated kinase kinase and CDC20 coinhibition induced both cytotoxic and cytostatic effects, decreasing CDC20 expression in multiple NF1-mutant cell lines. In conclusion, NF1-mutant melanoma is associated with a distinct genomic and transcriptomic profile. Our data support investigating CDC20 inhibition with MAPK pathway inhibitors as a targeted regimen in this melanoma subtype.
Collapse
Affiliation(s)
- George Jour
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA; Department of Pathology, Molecular Pathology and Diagnostics, NYU Langone Medical Center, New York, New York, USA.
| | - Irineu Illa-Bochaca
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Milad Ibrahim
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Douglas Donnelly
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Kelsey Zhu
- Department of Pathology, Molecular Pathology and Diagnostics, NYU Langone Medical Center, New York, New York, USA
| | - Eleazar Vega-Saenz de Miera
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Varshini Vasudevaraja
- Department of Pathology, Molecular Pathology and Diagnostics, NYU Langone Medical Center, New York, New York, USA
| | - Valeria Mezzano
- Department of Pathology, Molecular Pathology and Diagnostics, NYU Langone Medical Center, New York, New York, USA
| | - Sitharam Ramswami
- Department of Pathology, Molecular Pathology and Diagnostics, NYU Langone Medical Center, New York, New York, USA
| | - Yu-Hsin Yeh
- Department of Biostatistics, NYU School of Global Public Health, New York, New York, USA
| | - Carolyn Winskill
- Department of Biostatistics, NYU School of Global Public Health, New York, New York, USA
| | - Rebecca A Betensky
- Department of Biostatistics, NYU School of Global Public Health, New York, New York, USA
| | - Janice Mehnert
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Iman Osman
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
47
|
PRMT6-CDC20 facilitates glioblastoma progression via the degradation of CDKN1B. Oncogene 2023; 42:1088-1100. [PMID: 36792756 PMCID: PMC10063447 DOI: 10.1038/s41388-023-02624-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
PRMT6, a type I arginine methyltransferase, di-methylates the arginine residues of both histones and non-histones asymmetrically. Increasing evidence indicates that PRMT6 plays a tumor mediator involved in human malignancies. Here, we aim to uncover the essential role and underlying mechanisms of PRMT6 in promoting glioblastoma (GBM) proliferation. Investigation of PRMT6 expression in glioma tissues demonstrated that PRMT6 is overexpressed, and elevated expression of PRMT6 is negatively correlated with poor prognosis in glioma/GBM patients. Silencing PRMT6 inhibited GBM cell proliferation and induced cell cycle arrest at the G0/G1 phase, while overexpressing PRMT6 had opposite results. Further, we found that PRMT6 attenuates the protein stability of CDKN1B by promoting its degradation. Subsequent mechanistic investigations showed that PRMT6 maintains the transcription of CDC20 by activating histone methylation mark (H3R2me2a), and CDC20 interacts with and destabilizes CDKN1B. Rescue experimental results confirmed that PRMT6 promotes the ubiquitinated degradation of CDKN1B and cell proliferation via CDC20. We also verified that the PRMT6 inhibitor (EPZ020411) could attenuate the proliferative effect of GBM cells. Our findings illustrate that PRMT6, an epigenetic mediator, promotes CDC20 transcription via H3R2me2a to mediate the degradation of CDKN1B to facilitate GBM progression. Targeting PRMT6-CDC20-CDKN1B axis might be a promising therapeutic strategy for GBM.
Collapse
|
48
|
Shi J, Li G, Yuan X, Wang Y, Gong M, Li C, Ge X, Lu S. Exploration and verification of COVID-19-related hub genes in liver physiological and pathological regeneration. Front Bioeng Biotechnol 2023; 11:1135997. [PMID: 36911196 PMCID: PMC9997844 DOI: 10.3389/fbioe.2023.1135997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Objectives An acute injury is often accompanied by tissue regeneration. In this process, epithelial cells show a tendency of cell proliferation under the induction of injury stress, inflammatory factors, and other factors, accompanied by a temporary decline of cellular function. Regulating this regenerative process and avoiding chronic injury is a concern of regenerative medicine. The severe coronavirus disease 2019 (COVID-19) has posed a significant threat to people's health caused by the coronavirus. Acute liver failure (ALF) is a clinical syndrome resulting from rapid liver dysfunction with a fatal outcome. We hope to analyze the two diseases together to find a way for acute failure treatment. Methods COVID-19 dataset (GSE180226) and ALF dataset (GSE38941) were downloaded from the Gene Expression Omnibus (GEO) database, and the "Deseq2" package and "limma" package were used to identify differentially expressed genes (DEGs). Common DEGs were used for hub genes exploration, Protein-Protein Interaction (PPI) network construction, Gene Ontology (GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) was used to verify the role of hub genes in liver regeneration during in vitro expansion of liver cells and a CCl4-induced ALF mice model. Results: The common gene analysis of the COVID-19 and ALF databases revealed 15 hub genes from 418 common DEGs. These hub genes, including CDC20, were related to cell proliferation and mitosis regulation, reflecting the consistent tissue regeneration change after the injury. Furthermore, hub genes were verified in vitro expansion of liver cells and in vivo ALF model. On this basis, the potential therapeutic small molecule of ALF was found by targeting the hub gene CDC20. Conclusion We have identified hub genes for epithelial cell regeneration under acute injury conditions and explored a new small molecule Apcin for liver function maintenance and ALF treatment. These findings may provide new approaches and ideas for treating COVID-19 patients with ALF.
Collapse
Affiliation(s)
- Jihang Shi
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Guangya Li
- MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Peking University-Tsinghua University-National Institute of Biological Science Joint Graduate Program, College of Life Science, Peking University, Beijing, China
| | - Xiandun Yuan
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Yafei Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Ming Gong
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Chonghui Li
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Xinlan Ge
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Shichun Lu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| |
Collapse
|
49
|
Ni K, Hong L. Current Progress and Perspectives of CDC20 in Female Reproductive Cancers. Curr Mol Med 2023; 23:193-199. [PMID: 35319365 DOI: 10.2174/1573405618666220321130102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
Abstract
The cancers of the cervix, endometrium, ovary, and breast are great threats to women's health. Cancer is characterized by the uncontrolled proliferation of cells and deregulated cell cycle progression is one of the main causes of malignancy. Agents targeting cell cycle regulators may have potential anti-tumor effects. CDC20 (cell division cycle 20 homologue) is a co-activator of the anaphase-promoting complex/cyclosome (APC/C) and thus acts as a mitotic regulator. In addition, CDC20 serves as a subunit of the mitotic checkpoint complex (MCC) whose function is to inhibit APC/C. Recently, higher expression of CDC20 has been reported in these cancers and was closely associated with their clinicopathological parameters, indicating CDC20 a potential target for cancer treatment that is worth further study. In the present review, we summarized current progress and put forward perspectives of CDC20 in female reproductive cancers.
Collapse
Affiliation(s)
- Ke Ni
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
50
|
Gholami L, Ivari JR, Nasab NK, Oskuee RK, Sathyapalan T, Sahebkar A. Recent Advances in Lung Cancer Therapy Based on Nanomaterials: A Review. Curr Med Chem 2023; 30:335-355. [PMID: 34375182 DOI: 10.2174/0929867328666210810160901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022]
Abstract
Lung cancer is one of the commonest cancers with a significant mortality rate for both genders, particularly in men. Lung cancer is recognized as one of the leading causes of death worldwide, which threatens the lives of over 1.6 million people every day. Although cancer is the leading cause of death in industrialized countries, conventional anticancer medications are unlikely to increase patients' life expectancy and quality of life significantly. In recent years, there are significant advances in the development and applications of nanotechnology in cancer treatment. The superiority of nanostructured approaches is that they act more selectively than traditional agents. This progress led to the development of a novel field of cancer treatment known as nanomedicine. Various formulations based on nanocarriers, including lipids, polymers, liposomes, nanoparticles and dendrimers have opened new horizons in lung cancer therapy. The application and expansion of nano-agents lead to an exciting and challenging research era in pharmaceutical science, especially for the delivery of emerging anti-cancer agents. The objective of this review is to discuss the recent advances in three types of nanoparticle formulations for lung cancer treatments modalities, including liposomes, polymeric micelles, and dendrimers for efficient drug delivery. Afterward, we have summarized the promising clinical data on nanomaterials based therapeutic approaches in ongoing clinical studies.
Collapse
Affiliation(s)
- Leila Gholami
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Rouhani Ivari
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Khandan Nasab
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom of Great Britain and Northern Ireland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|