1
|
Tan Y, Li M, Li H, Guo Y, Zhang B, Wu G, Li J, Zhang Q, Sun Y, Gao F, Yi W, Zhang X. Cardiac Urea Cycle Activation by Time-Restricted Feeding Protects Against Pressure Overload-Induced Heart Failure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407677. [PMID: 39467073 DOI: 10.1002/advs.202407677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/14/2024] [Indexed: 10/30/2024]
Abstract
Heart failure is a leading cause of mortality worldwide, necessitating the development of novel therapeutic and lifestyle interventions. Recent studies highlight a potential role of time-restricted feeding (TRF) in the prevention and treatment of cardiac diseases. Here, it is found that TRF protected against heart failure at different stages in mice. Metabolomic profiling revealed that TRF upregulated most circulating amino acids, and amino acid supplementation protected against heart failure. In contrast, TRF showed a mild effect on cardiac amino acid profile, but increased cardiac amino acid utilization and activated the cardiac urea cycle through upregulating argininosuccinate lyase (ASL) expression. Cardiac-specific ASL knockout abolished the cardioprotective effects afforded by TRF. Circulating amino acids also protected against heart failure through activation of the urea cycle. Additionally, TRF upregulated cardiac ASL expression through transcription factor Yin Yang 1, and urea cycle-derived NO contributes to TRF-afforded cardioprotection. Furthermore, arteriovenous gradients of circulating metabolites across the human hearts were measured, and found that amino acid utilization and urea cycle activity were impaired in patients with decreased cardiac function. These results suggest that TRF is a promising intervention for heart failure, and highlight the importance of urea cycle in regulation of cardiac function.
Collapse
Affiliation(s)
- Yanzhen Tan
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Min Li
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Li
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital, Cardiovascular Disease Laboratory, Chongqing Medical University, Chongqing, 400016, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guiling Wu
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia Li
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Qian Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Rehabilitation, Air Force Medical Center, Beijing, 100142, China
| |
Collapse
|
2
|
Wang X, Rao J, Chen X, Wang Z, Zhang Y. Identification of Shared Signature Genes and Immune Microenvironment Subtypes for Heart Failure and Chronic Kidney Disease Based on Machine Learning. J Inflamm Res 2024; 17:1873-1895. [PMID: 38533476 PMCID: PMC10964169 DOI: 10.2147/jir.s450736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Background A complex interrelationship exists between Heart Failure (HF) and chronic kidney disease (CKD). This study aims to clarify the molecular mechanisms of the organ-to-organ interplay between heart failure and CKD, as well as to identify extremely sensitive and specific biomarkers. Methods Differentially expressed tandem genes were identified from HF and CKD microarray datasets and enrichment analyses of tandem perturbation genes were performed to determine their biological functions. Machine learning algorithms are utilized to identify diagnostic biomarkers and evaluate the model by ROC curves. RT-PCR was employed to validate the accuracy of diagnostic biomarkers. Molecular subtypes were identified based on tandem gene expression profiling, and immune cell infiltration of different subtypes was examined. Finally, the ssGSEA score was used to build the ImmuneScore model and to assess the differentiation between subtypes using ROC curves. Results Thirty-three crosstalk genes were associated with inflammatory, immune and metabolism-related signaling pathways. The machine-learning algorithm identified 5 hub genes (PHLDA1, ATP1A1, IFIT2, HLTF, and MPP3) as the optimal shared diagnostic biomarkers. The expression levels of tandem genes were negatively correlated with left ventricular ejection fraction and glomerular filtration rate. The CIBERSORT results indicated the presence of severe immune dysregulation in patients with HF and CKD, which was further validated at the single-cell level. Consensus clustering classified HF and CKD patients into immune and metabolic subtypes. Twelve immune genes associated with immune subtypes were screened based on WGCNA analysis, and an ImmuneScore model was constructed for high and low risk. The model accurately predicted different molecular subtypes of HF or CKD. Conclusion Five crosstalk genes may serve as potential biomarkers for diagnosing HF and CKD and are involved in disease progression. Metabolite disorders causing activation of a large number of immune cells explain the common pathogenesis of HF and CKD.
Collapse
Affiliation(s)
- Xuefu Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Jin Rao
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Xiangyu Chen
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Zhinong Wang
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Yufeng Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Akhter MS, Goodwin JE. Endothelial Dysfunction in Cardiorenal Conditions: Implications of Endothelial Glucocorticoid Receptor-Wnt Signaling. Int J Mol Sci 2023; 24:14261. [PMID: 37762564 PMCID: PMC10531724 DOI: 10.3390/ijms241814261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The endothelium constitutes the innermost lining of the blood vessels and controls blood fluidity, vessel permeability, platelet aggregation, and vascular tone. Endothelial dysfunction plays a key role in initiating a vascular inflammatory cascade and is the pivotal cause of various devastating diseases in multiple organs including the heart, lung, kidney, and brain. Glucocorticoids have traditionally been used to combat vascular inflammation. Endothelial cells express glucocorticoid receptors (GRs), and recent studies have demonstrated that endothelial GR negatively regulates vascular inflammation in different pathological conditions such as sepsis, diabetes, and atherosclerosis. Mechanistically, the anti-inflammatory effects of GR are mediated, in part, through the suppression of Wnt signaling. Moreover, GR modulates the fatty acid oxidation (FAO) pathway in endothelial cells and hence can influence FAO-mediated fibrosis in several organs including the kidneys. This review summarizes the relationship between GR and Wnt signaling in endothelial cells and the effects of the Wnt pathway in different cardiac and renal diseases. Available data suggest that GR plays a significant role in restoring endothelial integrity, and research on endothelial GR-Wnt interactions could facilitate the development of novel therapies for many cardiorenal conditions.
Collapse
Affiliation(s)
- Mohammad Shohel Akhter
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Julie Elizabeth Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
4
|
Sun LM, Yu B, Luo YH, Zheng P, Huang Z, Yu J, Mao X, Yan H, Luo J, He J. Effect of small peptide chelated iron on growth performance, immunity and intestinal health in weaned pigs. Porcine Health Manag 2023; 9:32. [PMID: 37420289 DOI: 10.1186/s40813-023-00327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Small peptide chelated iron (SPCI), a novel iron supplementation in pig diets, owns growth-enhancing characteristics. Although a number of researches have been performed, there is no clear-cut evidence to show the exact relationship between the dose and effects of small peptide chelated minerals. Therefore, we investigated the effect of dietary supplementation of SPCI at different doses in the growth performance, immunity, and intestinal health in weaned pigs. METHODS Thirty weaned pigs were randomly assigned into five groups and feed with basal diet or the basal diet containing 50, 75, 100, or 125 mg/kg Fe as SPCI diets. The experiment lasted for 21 d and on day 22, blood samples were collected 1 h later. The tissue and intestinal mucosa samples were collected following. RESULTS Our results showed that the feed to gain ratio (F:G) decreased with different levels of SPCI addition (P < 0.05). The average daily gain (ADG) (P < 0.05) and digestibility of crude protein (P < 0.01) decreased with 125 mg/kg SPCI addition. With dietary different levels of SPCI addition, the serum concentrations of ferritin (quadratic, P < 0.001), transferrin (quadratic, P < 0.001), iron content in liver (quadratic, P < 0.05), gallbladder (quadratic, P < 0.01) and fecal (quadratic, P < 0.01) increased quadraticly. While the iron content in tibia (P < 0.01) increased by 100 mg/kg SPCI supplementation. Dietary 75 mg/kg SPCI addition increased the serum insulin-like growth factor I (IGF-I) (P < 0.01) and SPCI (75 ~ 100 mg/kg) addition also increased the serum content of IgA (P < 0.01). The serum concentrations of IgG (quadratic, P < 0.05) and IgM (quadratic, P < 0.01) increased quadraticly by different levels of SPCI supplementation. Moreover, different levels of SPCI supplementation decreased the serum concentration of D-lactic acid (P < 0.01). The serum glutathione peroxidase (GSH-Px) (P < 0.01) elevated but the malondialdehyde (MDA) (P < 0.05) decreased by 100 mg/kg SPCI addition. Interestingly, SPCI supplementation at 75 ~ 100 mg/kg improved the intestinal morphology and barrier function, as suggested by enhanced villus height (P < 0.01) and villus height/crypt depth (V/C) (P < 0.01) in duodenum, as well as jejunum epithelium tight-junction protein ZO-1 (P < 0.01). Moreover, SPCI supplementation at 75 ~ 100 mg/kg increased the activity of duodenal lactase (P < 0.01), jejunal sucrase (P < 0.01) and ileal maltase (P < 0.01). Importantly, the expression levels of divalent metal transporter-1(DMT1) decreased with different levels of SPCI addition (P < 0.01). In addition, dietary SPCI supplementation at 75 mg/kg elevated the expression levels of critical functional genes such as peptide transporter-1(PePT1) (P = 0.06) and zinc transporter 1 (ZnT1) (P < 0.01) in ileum. The expression levels of sodium/glucose co-transporter-1 (SGLT1) in ileum (quadratic, P < 0.05) increased quadraticly by different levels of SPCI addition and amino acid transporter-1 (CAT1) in jejunum(P < 0.05) also increased by 100 mg/kg SPCI addition. CONCLUSIONS Dietary SPCI supplementation at 75 ~ 100 mg/kg improved growth performance by elevated immunity and intestinal health.
Collapse
Affiliation(s)
- Limei M Sun
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Yuheng H Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, P. R. China.
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, 611130, Sichuan Province, P. R. China.
| |
Collapse
|
5
|
Sun S, Xun G, Zhang J, Gao Y, Ge J, Liu F, Qian Q, Liu X, Tian Y, Sun Q, Wang Q, Wang X. An integrated approach for investigating pharmacodynamic material basis of Lingguizhugan Decoction in the treatment of heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115366. [PMID: 35551974 DOI: 10.1016/j.jep.2022.115366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classical formula of traditional Chinese medicine (TCM), Lingguizhugan Decoction (LGZGD) has been used for treating heart failure (HF) because it has an efficiency of yang-warming and fluid-dispersing. However, the pharmacodynamic material basis of LGZGD responsible for the therapeutic benefits is not well understood. AIM OF THE STUDY The aim of this study was to elucidate the pharmacodynamic material basis of LGZGD by an integrated approach. MATERIALS AND METHODS Following oral administration of LGZGD in mice, ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was used to identify prototype substances. A heart failure (HF) model was established, followed by an untargeted metabolomics study to determine potential targets of LGZGD. The network pharmacology method was performed to screen substances that interacted with potential targets of LGZGD treating HF. Molecular docking technology was applied to further screen substances based on binding energy. Cell viability assays were conducted to verify pharmacodynamic effects of selected substances. RESULTS In all, forty-two prototype substances were identified in the blood, urine, and fecal samples of mice. A total of fifty-five differential metabolites were identified using heart tissue untargeted metabolomics. Twenty-five substances of LGZGD were screened relating to thirty-three targets treating HF. Twenty-two substances were filtered according to their binding energy using molecular docking technology. Cell experiments revealed cinnamaldehyde, glycyrrhetinic acid, kaempferol, daidzein, caffeic acid, and catechin could significantly improve the survival rate of H9c2 cells, which might be the pharmacodynamic material basis of LGZGD. CONCLUSIONS A scientific approach that integrated in vivo substances identification, metabolomics, network pharmacology, molecular docking, and cell pharmacodynamic assay has been developed to study the pharmacodynamic material basis of LGZGD in the treatment of HF.
Collapse
Affiliation(s)
- Shuo Sun
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Ge Xun
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Jia Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Yanhua Gao
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Jiachen Ge
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Fangfang Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Qi Qian
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Xin Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Yuhuan Tian
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Qian Sun
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| | - Qiao Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China.
| | - Xu Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, PR China
| |
Collapse
|
6
|
Effect of β-Glucan Supplementation on Growth Performance and Intestinal Epithelium Functions in Weaned Pigs Challenged by Enterotoxigenic Escherichia coli. Antibiotics (Basel) 2022; 11:antibiotics11040519. [PMID: 35453270 PMCID: PMC9029716 DOI: 10.3390/antibiotics11040519] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background: To examine the effect of β-glucan (BGL) supplementation on growth performance and intestinal epithelium functions in weaned pigs upon Enterotoxigenic Escherichia coli (ETEC) challenge. Methods: Thirty-two weaned pigs (Duroc × Landrace × Yorkshire) were assigned into four groups. Pigs fed with a basal diet or basal diet containing 500 mg/kg BGL were orally infused with ETEC or culture medium. Results: Results showed BGL tended to increase the average daily gain (ADG) in ETEC-challenged pigs (0.05 < p < 0.1). Dietary BGL supplementation had no significant influence on nutrient digestibility (p > 0.05). However, BGL improved the serum concentrations of immunoglobulin (Ig) A and IgG, and was beneficial to relieve the increasement of the concentrations of inflammatory cytokines such as the TNF-α and IL-6 upon ETEC-challenge (p < 0.05). Interestingly, BGL significantly increased the duodenal, jejunal and ileal villus height, and increased the jejunal ratio of villus height to crypt depth (V/C) upon ETEC challenge (p < 0.05). BGL also increased the activities of mucosal, sucrase and maltase in the ETEC-challenged pigs (p < 0.05). Moreover, BGL elevated the abundance of Lactobacillus and the concentration of propanoic acid in colon in the ETEC-challenged pigs (p < 0.05). Importantly, BGL elevated the expression levels of zonula occludins-1 (ZO-1) and mucin-2 (MUC-2) in the small intestinal mucosa upon ETEC challenge (p < 0.05). BGL also upregulated the expressions of functional genes such as the claudin-1, cationic amino acid transporter-1 (CAT-1), LAT-1, L amino acid transporter-1 (LAT1), fatty acid transport proteins (FATP1), FATP4, and sodium/glucose cotransporter-1 (SGLT-1) in the duodenum, and the occludin-1 and CAT-1 in the jejunum upon ETEC challenge (p < 0.05). Conclusions: These results suggested that BGL can attenuate intestinal damage in weaned pigs upon ETEC challenge, which was connected with the suppressed secretion of inflammatory cytokines and enhanced serum immunoglobulins, as well as improved intestinal epithelium functions and microbiota.
Collapse
|
7
|
Urinary metabolomics analysis to reveal metabolic mechanism of guanxinning injection on heart failure with renal dysfunction. J Pharm Biomed Anal 2021; 209:114516. [PMID: 34894463 DOI: 10.1016/j.jpba.2021.114516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/21/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022]
Abstract
Consistently, the multiple heart-kidney interactions make pharmaceutical research for cardiorenal syndrome difficult and complex. Guanxinning Injection (GXN) has been reported to provide unique advantage for treating cardiac and renal diseases compared to typical monotherapies. However, the protection mechanism of GXN is largely unknown. This study explored the acting mechanism of GXN on heart failure with renal dysfunction from a metabolic perspective. Transverse aortic constriction (TAC) surgery was performed on C57/BL/6 mice to induce heart failure with renal dysfunction. Using telmisartan as a positive control, GXN treatment was applied during the 12th to 16th week after TAC. Cardiac function and structure were examined using M-mode echocardiography, and renal function was evaluated via representative biochemical parameters and hematoxylin-eosin staining. Moreover, untargeted metabolomic analyses of urine were conducted to screen for differential substances associated with the cardiorenal protection effect of GXN. As a result, GXN provided good cardioprotective effects on left ventricular ejection fraction elevation, fractional shortening, internal diastolic, and mass maintenance. GXN also reduced TAC-induced elevation of blood urea nitrogen, and serum Cystatin C and relieved kidney pathological damage. Metabolomic analyses identified 21 differential metabolites in the TAC model group. Ten metabolites involving the metabolic pathways of carnitine synthesis, valine, leucine and isoleucine degradation, and glutamate metabolism, taurine and hypotaurine metabolism, tryptophan metabolism, arginine and proline metabolism, and purine metabolism were restored by GXN. The main cardiorenal protection mechanism of GXN was found to be related to energy metabolism and oxidative stress. Taken together, this study provides the first evidence of the metabolic protection mechanism of GXN on heart failure with renal dysfunction for the first time and provides a research basis for the application of GXN in CRS-2 pharmaceuticals.
Collapse
|
8
|
Yovas A, Ponnian SMP. β-Caryophyllene inhibits Fas- receptor and caspase-mediated apoptosis signaling pathway and endothelial dysfunction in experimental myocardial infarction. J Biochem Mol Toxicol 2021; 35:e22907. [PMID: 34816538 DOI: 10.1002/jbt.22907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/31/2021] [Accepted: 08/20/2021] [Indexed: 11/05/2022]
Abstract
We planned to appraise the effects of β-caryophyllene on Fas- receptor and caspase-mediated apoptosis signaling pathway and endothelial dysfunction in rats infarcted with isoproterenol. Rats were induced myocardial infarction by using isoproterenol (100 mg/kg body weight [b.w]). Serum creatine kinase-MB, serum cardiac troponin-T, heart weight, heart rate, and heart lipid peroxidation were greatly (p < 0.05) augmented, while heart enzymatic antioxidants and plasma nonenzymatic antioxidants were greatly (p < 0.05) lessened in isoproterenol-treated rats. Reverse transcription-polymerase chain reaction study revealed augmented expressions of Fas-receptor and caspases 8, 9, and 3 genes in myocardial infarcted rats. Furthermore, iNOS protein expression was amplified and eNOS protein was lessened in the myocardial infarcted heart. Three weeks pre- and cotreatment with β-caryophyllene (20 mg/kg b.w) greatly (p < 0.05) protected isoproterenol-treated rats against these altered structural, biochemical, molecular, and immunohistochemical parameters, by its anti-cardiac hypertrophic, anti-tachycardial, antioxidant, anti-apoptotic, and anti-endothelial dysfunction effects. In conclusion, these findings projected the use of β-caryophyllene for the therapy of human myocardial infarction after clinical trials.
Collapse
Affiliation(s)
- Anita Yovas
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | | |
Collapse
|
9
|
Endothelial-specific overexpression of cationic amino acid transporter-1 prevents loss of kidney function in heart failure. Clin Sci (Lond) 2021; 134:2755-2769. [PMID: 33034619 DOI: 10.1042/cs20200087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/17/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022]
Abstract
Heart failure (HF) is associated with impaired L-arginine transport. In the present study, we tested the hypothesis that augmented L-arginine transport prevents the loss of kidney function in HF. Renal function was assessed in wildtype mice (WT), transgenic mice with HF (dilated cardiomyopathy, DCM) and double transgenic mice (double transgenic mice with DCM and CAT-1 overexpression, HFCAT-1) with HF and endothelial-specific overexpression of the predominant L-arginine transporter, cationic amino acid transporter-1 (CAT-1) (n=4-8/group). Cardiac function was assessed via echocardiography and left ventricular catheterisation. Renal function was assessed via quantification of albuminuria and creatinine clearance. Plasma nitrate and nitrite levels together with renal fibrosis and inflammatory markers were also quantified at study end. Albumin/creatinine ratio was two-fold greater in DCM mice than in WT mice (P=0.002), and tubulointerstitial and glomerular fibrosis were approximately eight- and three-fold greater, respectively, in DCM mice than in WT mice (P≤0.02). Critically, urinary albumin/creatinine ratio and tubulointerstitial and glomerular fibrosis were less in HFCAT-1 mice than in DCM mice (P<0.05). Renal CAT-1 expression and plasma nitrate and nitrite levels were less in DCM mice compared with WT (P≤0.03) but was greater in HFCAT-1 mice than in DCM mice (P≤0.009). Renal expression of IL-10 was less in DCM mice compared with WT (P<0.001) but was greater in HFCAT-1 mice compared with DCM mice (P=0.02). Our data provide direct evidence that augmented L-arginine transport prevents renal fibrosis, inflammation and loss of kidney function in HF.
Collapse
|
10
|
The CAT-1 is out of the bag: endothelial Cationic Amino Acid Transporter-1 is a critical player in cardiorenal syndrome type 2. Clin Sci (Lond) 2021; 135:105-108. [PMID: 33404050 DOI: 10.1042/cs20201319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022]
Abstract
Although the numbers of patients affected by cardiorenal syndrome keeps increasing, we lack a complete understanding of the molecular pathways involved in its development and progression. Nitric oxide synthase (NOS) may play a role in cardiorenal syndrome, particularly cardiorenal syndrome type 2 (CRS2). However, complexities and paradoxical clinical findings have limited translation. In the current Clinical Science, Giam et al. (Clinical Science (2020) 134, 2755-2769) highlight the role of a key NOS substrate transporter, the cationic amino acid transporter-1, in preserving renal function in CRS2. In this commentary, we introduce the cardiorenal syndrome and the putative role that nitric oxide (NO) may play in the development of this disease and discuss the exciting findings of Giam et al. (Clinical Science (2020) 134, 2755-2769) and their tantalizing translational implications.
Collapse
|
11
|
Wu Z, Tian T, Ma W, Gao W, Song N. Higher urinary nitrate was associated with lower prevalence of congestive heart failure: results from NHANES. BMC Cardiovasc Disord 2020; 20:498. [PMID: 33238887 PMCID: PMC7690024 DOI: 10.1186/s12872-020-01790-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/19/2020] [Indexed: 01/19/2023] Open
Abstract
Background Some studies have reported that nitrate intake from vegetables was inversely associated with many vascular diseases, but few studies have paid attention to the relationship between urinary nitrate and cardiovascular diseases (CVDs). This cross-sectional study aimed to explore the connections between urinary nitrate and prevalence of CVDs. Methods The data of this study was collected from National Health and Nutrition Examination Survey (NHANES). Finally, several years’ data of NHANES were merged into 14,894 observations. Logistic regression models were used to examine the associations between urinary nitrate and CVDs by using the “survey” package in R software (version 3.2.3). Results In the univariable logistic analysis, significant association was discovered between urinary nitrate and congestive heart failure, coronary heart disease, angina pectoris, myocardial infarction (all P < 0.001). By adjusting related covariates, the multivariable logistic analysis showed that the significant association only existed between urinary nitrate and congestive heart failure (OR = 0.651, 95% CI 0.507–0.838, P < 0.001). Compared to Q1 urinary nitrate level as reference, the risk for prevalent heart failure diminished along with increasing levels of urinary nitrates, (OR of Q2 level = 0.633, 95% CI 0.403–0.994), (OR of Q3 level = 0.425, 95% CI 0.230–0.783), (OR of Q4 level = 0.375, 95% CI 0.210–0.661), respectively. Moreover, urinary nitrate levels were associated with congestive heart failure in a dose-dependent manner in both 20–60 years group, 60+ years group and male, female group (P < 0.001, P = 0.011 and P = 0.009, P = 0.004). Conclusions Independent of related covariates, higher urinary nitrate was associated with lower prevalent congestive heart failure.
Collapse
Affiliation(s)
- Zhuo Wu
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China
| | - Ting Tian
- Institute of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Wang Ma
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China.
| | - Wen Gao
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China.
| | - Ninghong Song
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
12
|
Lim SL, Gandhi M, Woo KL, Chua HR, Lim YC, Sim DKL, Lee SSG, Teoh YL, Richards AM, Lam CSP. Nitrates in combination with hydralazine in cardiorenal syndrome: a randomized controlled proof-of-concept study. ESC Heart Fail 2020; 7:4267-4276. [PMID: 33150715 PMCID: PMC7754984 DOI: 10.1002/ehf2.13076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/09/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS Cardiorenal syndrome (CRS) is a common problem of great morbidity and mortality. Hydralazine-isosorbide dinitrate (H-ISDN) may be used in renal failure and may improve exercise capacity in heart failure (HF). Our proof-of-concept study aimed to evaluate early evidence of efficacy, safety, and feasibility of H-ISDN compared with standard of care in CRS. METHODS AND RESULTS This multi-centre, single-blind, randomized trial in Singapore enrolled CRS patients, defined as chronic HF with concomitant renal failure [estimated glomerular filtration rate (eGFR) < 60 ml/min/1.73 m2 ]. The primary outcome was 6 min walk test (6MWT) distance measured at 6 months. Secondary outcomes included study feasibility; efficacy outcomes which included renal, cardiac, and endothelial functions, health-related quality of life using Short Form-36, clinical outcomes; and adverse events. Forty-four patients [71 ± 10 years; 75% male; median (inter-quartile range) N-terminal prohormone brain natriuretic peptide 1346 (481-2272) pg/mL] with CRS (left ventricular ejection fraction 42 ± 12% and eGFR 46 ± 15 ml/min/1.73 m2 ) were randomized into two equal groups. Of these, 39 (89%) had hypertension, 27 (61%) had diabetes mellitus, and 17 (39%) had atrial fibrillation. Six (27%) discontinued H-ISDN owing to intolerance and poor compliance. There was a trend towards improved 6MWT distance with H-ISDN compared with standard of care at 6 months (mean difference 27 m; 95% CI, -12 to 66), with little differences in secondary efficacy outcomes. Giddiness and hypotension occurred more frequently with H-ISDN, but HF hospitalizations and mortality were less. CONCLUSIONS Our pilot study does not support the addition of H-ISDN on top of standard medical therapy to improve exercise capacity in patients with CRS.
Collapse
Affiliation(s)
- Shir Lynn Lim
- Department of Cardiology, National University Heart Center, 1E Kent Ridge Road, 119228, Singapore
| | - Mihir Gandhi
- Singapore Clinical Research Institute, Singapore.,Duke-NUS Medical School, Singapore.,Global Health Group, Center for Child Health Research, Tampere University, Tampere, Finland
| | - Kai Lee Woo
- Department of Cardiology, National University Heart Center, 1E Kent Ridge Road, 119228, Singapore
| | - Horng Ruey Chua
- Division of Nephrology, National University Hospital, Singapore
| | - Yoke Ching Lim
- Department of Cardiology, National University Heart Center, 1E Kent Ridge Road, 119228, Singapore
| | - David K L Sim
- Department of Cardiology, National Heart Center, Singapore
| | - Sheldon S G Lee
- Department of Cardiology, Changi General Hospital, Singapore
| | - Yee Leong Teoh
- Singapore Clinical Research Institute, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Arthur Mark Richards
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore.,Cardiovascular Research Institute, National University Heart Center, Singapore.,Christchurch Heart Institute, University of Otago, Dunedin, New Zealand
| | - Carolyn S P Lam
- Duke-NUS Medical School, Singapore.,Department of Cardiology, National Heart Center, Singapore
| |
Collapse
|
13
|
Gheibi S, Samsonov AP, Gheibi S, Vazquez AB, Kashfi K. Regulation of carbohydrate metabolism by nitric oxide and hydrogen sulfide: Implications in diabetes. Biochem Pharmacol 2020; 176:113819. [PMID: 31972170 DOI: 10.1016/j.bcp.2020.113819] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the human body and have a key role in many of the physiological activities of the various organ systems. Decreased NO bioavailability and deficiency of H2S are involved in the pathophysiology of type 2 diabetes and its complications. Restoration of NO levels have favorable metabolic effects in diabetes. The role of H2S in pathophysiology of diabetes is however controversial; H2S production is decreased during development of obesity, diabetes, and its complications, suggesting the potential therapeutic effects of H2S. On the other hand, increased H2S levels disturb the pancreatic β-cell function and decrease insulin secretion. In addition, there appear to be important interactions between NO and H2S at the levels of both biosynthesis and signaling pathways, yet clear an insight into this relationship is lacking. H2S potentiates the effects of NO in the cardiovascular system as well as NO release from its storage pools. Likewise, NO increases the activity and the expression of H2S-generating enzymes. Inhibition of NO production leads to elimination/attenuation of the cardioprotective effects of H2S. Regarding the increasing interest in the therapeutic applications of NO or H2S-releasing molecules in a variety of diseases, particularly in the cardiovascular disorders, much is to be learned about their function in glucose/insulin metabolism, especially in diabetes. The aim of this review is to provide a better understanding of the individual and the interactive roles of NO and H2S in carbohydrate metabolism.
Collapse
Affiliation(s)
- Sevda Gheibi
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden.
| | - Alan P Samsonov
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Shahsanam Gheibi
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Alexandra B Vazquez
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, USA.
| |
Collapse
|
14
|
MALAT1: a therapeutic candidate for a broad spectrum of vascular and cardiorenal complications. Hypertens Res 2019; 43:372-379. [PMID: 31853043 DOI: 10.1038/s41440-019-0378-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 01/26/2023]
Abstract
Cardiovascular and renal complications cover a wide array of diseases. The most commonly known overlapping complications include cardiac and renal fibrosis, cardiomyopathy, cardiac hypertrophy, hypertension, and cardiorenal failure. The known or reported causes for the abovementioned complications include injury, ischemia, infection, and metabolic stress. To date, various targets have been reported and investigated in detail that are considered to be the cause of these complications. In the past 5 years, the role of noncoding RNAs has emerged in the area of cardiovascular and renal research, especially in relation to metabolic stress. The long noncoding RNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) has shown immense promise among the long noncoding RNA targets for treating cardiorenal complications. In this review, we shed light on the role of MALAT1 as a primary and novel target in treating cardiovascular and renal diseases as a whole.
Collapse
|
15
|
Zhang W, Li J, Lu G, Guan H, Hao L. Enantiomer-selective sensing and the light response of chiral molecules coated with a persistent luminescent material. Chem Commun (Camb) 2019; 55:13390-13393. [PMID: 31637379 DOI: 10.1039/c9cc06014f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pr3+:CaTiO3, a robust persistent luminescent material, was coupled with chiral molecules and Ag nanoparticles (NPs) to construct a Pr3+:CaTiO3@Ag@l-cysteine ternary material that can realize rapid enantiomer selective sensing of l- and d-arginine by making use of the chiral induced spin selectivity (CISS) effect. In addition, long-lifetime photoelectrons excited in the Pr3+:CaTiO3 matrix were effectively transported through a Ag NP "bridge" into the l-cysteine chiral monolayer, due to cooperation between each component in the ternary material.
Collapse
Affiliation(s)
- Wenyan Zhang
- College of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China.
| | - Jing Li
- College of Science, Jinling Institute of Technology, Nanjing 211169, China
| | - Gongxuan Lu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, China
| | - Hangmin Guan
- College of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China.
| | - Lingyun Hao
- College of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China.
| |
Collapse
|
16
|
Ramchandra R, Xing DT, Matear M, Lambert G, Allen AM, May CN. Neurohumoral interactions contributing to renal vasoconstriction and decreased renal blood flow in heart failure. Am J Physiol Regul Integr Comp Physiol 2019; 317:R386-R396. [DOI: 10.1152/ajpregu.00026.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In heart failure (HF), increases in renal sympathetic nerve activity (RSNA), renal norepinephrine spillover, and renin release cause renal vasoconstriction, which may contribute to the cardiorenal syndrome. To increase our understanding of the mechanisms causing renal vasoconstriction in HF, we investigated the interactions between the increased activity of the renal nerves and the renal release of norepinephrine and renin in an ovine pacing-induced model of HF compared with healthy sheep. In addition, we determined the level of renal angiotensin type-1 receptors and the renal vascular responsiveness to stimulation of the renal nerves and α1-adrenoceptors. In conscious sheep with mild HF (ejection fraction 35%–40%), renal blood flow (276 ± 13 to 185 ± 18 mL/min) and renal vascular conductance (3.8 ± 0.2 to 3.1 ± 0.2 mL·min−1·mmHg−1) were decreased compared with healthy sheep. There were increases in the burst frequency of RSNA (27%), renal norepinephrine spillover (377%), and plasma renin activity (141%), whereas the density of renal medullary angiotensin type-1 receptors decreased. In anesthetized sheep with HF, the renal vasoconstrictor responses to electrical stimulation of the renal nerves or to phenylephrine were attenuated. Irbesartan improved the responses to nerve stimulation, but not to phenylephrine, in HF and reduced the responses in normal sheep. In summary, in HF, the increases in renal norepinephrine spillover and plasma renin activity are augmented compared with the increase in RSNA. The vasoconstrictor effect of the increased renal norepinephrine and angiotensin II is offset by reduced levels of renal angiotensin type-1 receptors and reduced renal vasoconstrictor responsiveness to α1-adrenoceptor stimulation.
Collapse
Affiliation(s)
- Rohit Ramchandra
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Daniel T. Xing
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Marcus Matear
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Gavin Lambert
- Iverson Health Innovation Research Institute and Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew M. Allen
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Clive N. May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Katulka EK, Hirt AE, Kirkman DL, Edwards DG, Witman MAH. Altered vascular function in chronic kidney disease: evidence from passive leg movement. Physiol Rep 2019; 7:e14075. [PMID: 31016878 PMCID: PMC6478620 DOI: 10.14814/phy2.14075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
Chronic kidney disease (CKD) is an independent risk factor for the development of cardiovascular disease and is characterized by reduced nitric oxide (NO) bioavailability and vascular dysfunction, typically assessed using brachial artery flow-mediated dilation (FMD). It has been previously reported that passive leg movement (PLM)-induced hyperemia, an assessment of lower extremity vascular function, is highly dependent on NO, but has not yet been utilized to assess vascular function in patients with CKD. The purpose of this study was to comprehensively assess vascular function in patients with CKD using PLM, in addition to the traditional FMD technique. Assessment of vascular function via PLM and FMD was performed on 12 patients (CKD, 66 ± 3 years) and 16 age-matched healthy controls (CON, 60 ± 2 years). Blood velocity and artery diameters during PLM and FMD were measured using duplex ultrasound of the femoral and brachial arteries, respectively. Habitual physical activity, assessed by accelerometry, was performed in a subset of each group. CKD patients had reduced peak leg blood flow (LBF) (384 ± 39 vs. 569 ± 77 mL/min, P < 0.05) and change in LBF from baseline to peak (∆peakLBF) (143 ± 22 vs. 249 ± 34 mL/min, P < 0.05) during PLM compared to CON. Additionally, PLM responses were significantly associated with kidney function and physical activity levels. As anticipated, FMD was significantly attenuated in CKD patients (5.2 ± 1.1 vs. 8.8 ± 1.2%, P < 0.05). In conclusion, both upper and lower extremity measures of vascular function indicate impairment in CKD patients when compared to controls. PLM appears to be a novel and feasible approach to assessing lower extremity vascular function in CKD.
Collapse
Affiliation(s)
- Elissa K. Katulka
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelaware
| | - Alexandra E. Hirt
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelaware
| | - Danielle L. Kirkman
- Department of Kinesiology and Heath SciencesVirginia Commonwealth UniversityRichmondVirginia
| | - David G. Edwards
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelaware
| | - Melissa A. H. Witman
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelaware
| |
Collapse
|
18
|
Giam B, Chu PY, Kuruppu S, Smith AI, Horlock D, Murali A, Kiriazis H, Du XJ, Kaye DM, Rajapakse NW. Serelaxin attenuates renal inflammation and fibrosis in a mouse model of dilated cardiomyopathy. Exp Physiol 2018; 103:1593-1602. [DOI: 10.1113/ep087189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/11/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Beverly Giam
- Baker Heart and Diabetes Institute; Melbourne Victoria Australia
- Central Clinical School; Monash University; Melbourne Victoria Australia
| | - Po-Yin Chu
- Baker Heart and Diabetes Institute; Melbourne Victoria Australia
| | - Sanjaya Kuruppu
- Biomedicine Discovery Institute; Department of Biochemistry & Molecular Biology; Monash University; Melbourne Victoria Australia
| | - A. Ian Smith
- Biomedicine Discovery Institute; Department of Biochemistry & Molecular Biology; Monash University; Melbourne Victoria Australia
| | - Duncan Horlock
- Baker Heart and Diabetes Institute; Melbourne Victoria Australia
| | - Aishwarya Murali
- Baker Heart and Diabetes Institute; Melbourne Victoria Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute; Melbourne Victoria Australia
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute; Melbourne Victoria Australia
| | - David M. Kaye
- Baker Heart and Diabetes Institute; Melbourne Victoria Australia
- Department of Medicine; Monash University; Melbourne Victoria Australia
| | - Niwanthi W. Rajapakse
- Baker Heart and Diabetes Institute; Melbourne Victoria Australia
- School of Biomedical Sciences; University of Queensland; Brisbane Queensland Australia
| |
Collapse
|
19
|
Virzì GM, Zhang J, Nalesso F, Ronco C, McCullough PA. The Role of Dendritic and Endothelial Cells in Cardiorenal Syndrome. Cardiorenal Med 2018; 8:92-104. [PMID: 29617002 DOI: 10.1159/000485937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUNDS Dendritic cells (DCs) are antigen-presenting cells that play a central role in innate and adaptive immune responses; however, the cross talk between cardiac and renal DCs in cardiorenal syndrome (CRS) has not yet been fully elucidated. In this setting, endothelial cells (ECs) also contribute to immune responses. SUMMARY DC and EC activation and dysfunction have a central role in the pathogenesis of CRS. Regarding immune responses in CRS, it is unknown whether ECs may serve as antigen-presenting cells or act synergistically with DCs to actively participate in innate and adaptive immune responses. This review first focuses on the burden of concomitant heart and renal DCs in the context of CRS; it examines what is known of DCs in animal models, and proposes a central role for DCs in all types of CRS. Second, this review briefly describes the role of ECs in the context of CRS. Key Messages: Understanding the role of DCs and ECs in immune response could lead to the development of novel therapies for the prevention and treatment of CRS.
Collapse
Affiliation(s)
- Grazia Maria Virzì
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Vicenza, Italy.,IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy
| | - Jun Zhang
- Baylor Heart and Vascular Institute, Dallas, Texas, USA
| | - Federico Nalesso
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Vicenza, Italy.,IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Vicenza, Italy.,IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy
| | - Peter A McCullough
- Baylor Heart and Vascular Institute, Dallas, Texas, USA.,Department of Internal Medicine, Baylor University Medical Center, Dallas, Texas, USA.,Baylor Jack and Jane Hamilton Heart and Vascular Hospital, Dallas, Texas, USA.,The Heart Hospital, Plano, Texas, USA
| |
Collapse
|
20
|
Greenfield RH. Heart Failure. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Mirmiran P, Moghadam SK, Bahadoran Z, Ghasemi A, Azizi F. Dietary L-Arginine Intakes and the Risk of Metabolic Syndrome: A 6-Year Follow-Up in Tehran Lipid and Glucose Study. Prev Nutr Food Sci 2017; 22:263-270. [PMID: 29333377 PMCID: PMC5758088 DOI: 10.3746/pnf.2017.22.4.263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/13/2017] [Indexed: 02/05/2023] Open
Abstract
This study was conducted to investigate whether regular dietary intake of L-arginine could affect the occurrence of metabolic syndrome (MetS). Eligible adult men and women (n=1,237), who participated in the Tehran Lipid and Glucose Study, were followed for a median of 6.3 years. Dietary intakes of L-arginine and serum nitrate and nitrite (NOx) concentration were assessed at baseline (2006~2008), and demographics, anthropometrics, and biochemical variables were evaluated at baseline and follow-up examinations. The occurrence of MetS was assessed in relation to total L-arginine, intakes of L-arginine from animal and plant sources, with adjustment of potential confounding variables. Participants who had higher intake of L-arginine also had higher serum NOx at baseline (35.0 vs. 30.5 μmol/L, P<0.05). After 6 years of follow-up, higher intakes of L-arginine from animal sources were accompanied with increased risk of MetS [odd ratios (OR)=1.49, 95% confidence interval (95% CI)=1.02~2.18]. Compared to the lowest, the highest intakes of L-arginine from plant sources were related to significantly reduced risk of MetS (OR=0.58, 95% CI=0.32~0.99). In conclusion, our findings suggest a potentially protective effect of plant derived L-arginine intakes against development of MetS and its phenotypes; moreover, higher intakes of L-arginine from animal sources could be a dietary risk factor for development of metabolic disorders.
Collapse
Affiliation(s)
- Parvin Mirmiran
- Nutrition and Endocrine Research, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Sajjad Khalili Moghadam
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Zahra Bahadoran
- Nutrition and Endocrine Research, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| |
Collapse
|
22
|
Banerjee S, Panas R. Diabetes and cardiorenal syndrome: Understanding the “Triple Threat”. Hellenic J Cardiol 2017; 58:342-347. [DOI: 10.1016/j.hjc.2017.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
|
23
|
Ghasemi A, Jeddi S. Anti-obesity and anti-diabetic effects of nitrate and nitrite. Nitric Oxide 2017; 70:9-24. [PMID: 28804022 DOI: 10.1016/j.niox.2017.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/02/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023]
Abstract
Prevalence of obesity is increasing worldwide and type 2 diabetes to date is the most devastating complication of obesity. Decreased nitric oxide bioavailability is a feature of obesity and diabetes that links these two pathologies. Nitric oxide is synthesized both by nitric oxide synthase enzymes from l-arginine and nitric oxide synthase-independent from nitrate/nitrite. Nitric oxide production from nitrate/nitrite could potentially be used for nutrition-based therapy in obesity and diabetes. Nitric oxide deficiency also contributes to pathogeneses of cardiovascular disease and hypertension, which are associated with obesity and diabetes. This review summarizes pathways for nitric oxide production and focuses on the anti-diabetic and anti-obesity effects of the nitrate-nitrite-nitric oxide pathway. In addition to increasing nitric oxide production, nitrate and nitrite reduce oxidative stress, increase adipose tissue browning, have favorable effects on nitric oxide synthase expression, and increase insulin secretion, all effects that are potentially promising for management of obesity and diabetes. Based on current data, it could be suggested that amplifying the nitrate-nitrite-nitric oxide pathway is a diet-based strategy for increasing nitric oxide bioavailability and the management of these two interlinked conditions. Adding nitrate/nitrite to drugs that are currently used for managing diabetes (e.g. metformin) and possibly anti-obesity drugs may also enhance their efficacy.
Collapse
Affiliation(s)
- Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Hu J, Zhang YX, Wang L, Ding L, Huang GY, Cai GW, Gao S. Protective effects of Xinji'erkang on myocardial infarction induced cardiac injury in mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:338. [PMID: 28651598 PMCID: PMC5485507 DOI: 10.1186/s12906-017-1846-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/20/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Myocardial infarction (MI) is a major risk factor responsible for morbidity and mortality. Xinji'erkang (XJEK) has been clinically used as an effective medication in the treatment of coronary heart disease and myocarditis. The purpose of this study was to investigate the cardioprotective effect of Xinji'erkang on MI mice. METHODS Forty male mice were randomly assigned into four groups as follows (n = 10): sham, model, MI with administration of XJEK and fosinopril for four weeks. At the end of studies, hemodynamic parameters and electrocardiography (ECG) were recorded. Heart and body mass were measured and heart weight/body weight (HW/BW) ratio was calculated as index of hypertrophy. The hypertrophy of heart and aorta was examined using the hematoxylin and eosin (HE) staining, and the collagen deposition was evaluated using Van Gieson (VG) staining. Serum nitric oxide level (NO), superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentration were assayed by colorimetric analysis. The expressions of endothelial NO synthetase (eNOS) expression in serum and cardiac tissues were determined using ELISA assay and immunohistochemistry. Angiotensin II (Ang II) in serum and cardiac tissues was measured using ELISA assay. Besides, tumor necrosis factor-α (TNF-α), interleukin1β (IL-1β) and interleukin10 (IL-10) were observed in cardiac tissues with ELISA assay as well. RESULTS The administration of XJEK significantly improved cardiac dysfunction and abnormal ECG with reduced HW/BW ratio and ameliorated cardiomyocyte hypertrophy and collagen deposition compared to MI, which was partly due to the decreased SOD and increased MDA in serum. Moreover, XJEK treatment also improved endothelial dysfunction (ED) with not only enhanced eNOS activities in serum and cardiac tissues and elevated NO levels in serum, but also decreased Ang II content in serum and cardiac tissues. Finally, protein expressions of pro-inflammation cytokines, TNF-α and IL-1β in the cardiac tissues with XJEK treatment were significantly decreased compared to model. On the contrary, IL-10, an anti-inflammatory cytokine concentrated in cardiac tissues was significantly enhanced compared to model. CONCLUSION Xinji'erkang exerts cardioprotective effect on myocardial infarction in mice, which may be due to the improvement of endothelial dysfunction and the reduction of oxidative stress and inflammation response.
Collapse
Affiliation(s)
- Juan Hu
- 0000 0000 9490 772Xgrid.186775.aDepartment of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032 China
| | - Yong-xue Zhang
- 0000 0000 9490 772Xgrid.186775.aDepartment of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032 China
| | - Li Wang
- 0000 0000 9490 772Xgrid.186775.aDepartment of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032 China
| | - Ling Ding
- 0000 0000 9490 772Xgrid.186775.aDepartment of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032 China
| | - Guang-yao Huang
- 0000 0000 9490 772Xgrid.186775.aDepartment of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032 China
| | - Guo-wei Cai
- 0000 0000 9490 772Xgrid.186775.aDepartment of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032 China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
25
|
Morphological and immunobiochemical analysis of the liver in L-arginine induced experimental chronic pancreatitis. Pancreatology 2017; 17:247-254. [PMID: 28131523 DOI: 10.1016/j.pan.2017.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 12/21/2016] [Accepted: 01/19/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Clinical evidence indicates that hepatic abnormalities in patients with chronic pancreatitis are not uncommon. Here we aimed to study the possible association between liver and pancreatic damage in a recently described experimental mouse model of CP. METHODS The severity of the damage to pancreas, liver and other organs was assessed by biochemical markers and histopathology. The methods applied included Hematoxylin Eosin staining, electron microscope examination, biochemical measurements, RT-PCR, ELISA, and the correlations among some of the parameters contributing to these changes were statistically analyzed. RESULTS The hepatic aberrations were mainly represented by mild infiltration of inflammatory cells in portal triad and congestion of central vein of liver, and the main features of drug-induced hepatotoxicity could not be observed. Severe fibrosis of pancreatic tissue was noticed in experimental group, and the existence of multiple organ injuries was also seen under the microscope. Hepatic pathologic scores were positively correlated with those from the corresponding pancreatic specimens (r = 0.72, P < 0.01). TGF-β1 protein levels significantly elevated both in the test pancreas and liver (P < 0.05) and these values were positively correlated (r = 0.86, P < 0.01). The level of interleukin-1β was increased in the serum and tissue of the liver. In addition, cardiac troponin (Tn-I) level not only significantly increased in myocardial homogenates (P < 0.05) but also was positively correlated with the corresponding pathologic score of the liver (r = 0.88, P < 0.01). CONCLUSION The liver aberrations might be associated with L-arginine induced chronic pancreatitis.
Collapse
|
26
|
Zhang J, Bottiglieri T, McCullough PA. The Central Role of Endothelial Dysfunction in Cardiorenal Syndrome. Cardiorenal Med 2016; 7:104-117. [PMID: 28611784 DOI: 10.1159/000452283] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Endothelial dysfunction (ED) has emerged as a critical process in cardiorenal syndrome (CRS). The concept that ED is closely linked with cardiac and renal dysfunction has become an important target for CRS-related research and clinical practice. SUMMARY The sequence of events leading to ED is initiated by type I endothelial activation (almost immediately) and type II endothelial activation (over hours, days, and even months), followed by endothelial apoptosis and endothelial necrosis. The fact that ED is a continual cellular event divides this process into reversible ED (endothelial activation) and irreversible ED (endothelial apoptosis and necrosis). This basic research-defined concept may have clinical implications. Although most antihypertensive drugs (ACE inhibitors, statins, etc.) are effective in patients with hypertension and diabetes, some of them have proved to be ineffective, which may partly be attributed to irreversible ED. Even though the etiology of ED consists mainly of asymmetric dimethylarginine, nitric oxide, oxidative stress, and anti-endothelial cell antibodies, many other inducers of ED have been identified. In addition, a distinct role of ED has been reported for each type of CRS in humans. KEY MESSAGES Further study is warranted to prove whether ED holds promise as a pharmacological target in CRS patients.
Collapse
Affiliation(s)
- Jun Zhang
- Baylor Heart and Vascular Institute, TX, USA
| | | | - Peter A McCullough
- Baylor Heart and Vascular Institute, TX, USA.,Department of Internal Medicine, Baylor University Medical Center, TX, USA.,Baylor Jack and Jane Hamilton Heart and Vascular Hospital, Dallas, TX, TX, USA.,The Heart Hospital Baylor Plano, Plano, TX, USA
| |
Collapse
|
27
|
Pinheiro da Silva AL, Vaz da Silva MJ. Type 4 cardiorenal syndrome. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2016. [DOI: 10.1016/j.repce.2016.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
28
|
Pinheiro da Silva AL, Vaz da Silva MJ. Type 4 cardiorenal syndrome. Rev Port Cardiol 2016; 35:601-616. [PMID: 27712930 DOI: 10.1016/j.repc.2016.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/04/2016] [Indexed: 12/25/2022] Open
Abstract
The Acute Dialysis Quality Initiative consensus conference proposed a classification of cardiorenal syndrome (CRS), aiming for a better delineation of each subtype. Although the exact pathophysiology of type 4 CRS is not completely understood, the mechanisms involved are probably multifactorial. There is growing evidence that oxidative stress is a major connector in the development and progression of type 4 CRS. Giving its complexity, poor prognosis and increasing incidence, type 4 CRS is becoming a significant public health problem. Patients with chronic kidney disease are particularly predisposed to cardiac dysfunction, due to the high prevalence of traditional cardiovascular risk factors in this population, but the contribution of risk factors specific to chronic kidney disease should also be taken into account. Much remains to be elucidated about type 4 CRS: despite progress over the last decade, there are still significant questions regarding its pathophysiology and there is as yet no specific therapy. A better understanding of the mechanisms involved may provide potential targets for intervention. The present review will provide a brief description of the definition, epidemiology, diagnosis, prognosis, biomarkers and management strategies of type 4 CRS, and the pathophysiological mechanisms and risk factors presumably involved in its development will be particularly highlighted.
Collapse
|
29
|
El-Sadek AE, Behery EG, Azab AA, Kamal NM, Salama MA, Abdulghany WE, Abdallah EA. Arginine dimethylation products in pediatric patients with chronic kidney disease. Ann Med Surg (Lond) 2016; 9:22-27. [PMID: 27358729 PMCID: PMC4915955 DOI: 10.1016/j.amsu.2016.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/29/2016] [Accepted: 05/30/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND arginine and its metabolites have been linked to pediatric chronic kidney disease (CKD). We aimed to estimate serum levels of argninine (Arg), asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) in pediatric CKD patients and its relation to altered kidney function. PATIENTS AND METHODS 132 pediatric patients with CKD and 120 healthy age and sex matched controls were compared regarding; serum Arg, ADMA and SDMA levels. RESULTS In comparison to their values in control subjects, serum Arg levels were significantly lower; serum ADMA levels were non-significantly higher, but serum SDMA levels were significantly higher in CKD patients (p values: < 0.000; = 0.054; <0.000, respectively). Calculated Arg/ADMA and Arg/SDMA ratios were significantly higher in patients compared to controls (p values: 0.001, and <0.000, respectively). However ADMA/SDMA ratio was significantly lower in patients compared to controls (p = 0.001. Serum Arg levels showed positive significant correlation, while serum ADMA and SDMA levels showed negative significant correlation with eGFR. Moreover, Arg/ADMA ratio showed negative significant correlation, while ADMA/SDMA ratio showed positive significant correlation with eGFR of patients. Regression analysis defined high serum SDMA level as persistently significant predictor for low eGFR. CONCLUSION Disturbed serum levels of arginine and its dimethyl derivatives may underlie development and/or progression of CKD. Elevated serum SDMA level is strongly correlated with impaired kidney functions and could be considered as a predictor for kidney functions deterioration and CKD progression.
Collapse
Affiliation(s)
- Akram E. El-Sadek
- Department of Pediatrics, Faculty of Medicine, Benha University, Egypt
| | - Eman G. Behery
- Department of Clinical Pathology, Faculty of Medicine, Benha University, Egypt
| | - Ahmed A. Azab
- Department of Pediatrics, Faculty of Medicine, Benha University, Egypt
| | - Naglaa M. Kamal
- Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | - Mostafa A. Salama
- Department of Pediatrics, Faculty of Medicine, Benha University, Egypt
| | | | | |
Collapse
|
30
|
Expression Profile of Cationic Amino Acid Transporters in Rats with Endotoxin-Induced Uveitis. Mediators Inflamm 2016; 2016:6586857. [PMID: 27413255 PMCID: PMC4927963 DOI: 10.1155/2016/6586857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/23/2016] [Indexed: 11/17/2022] Open
Abstract
Purpose. The transcellular arginine transportation via cationic amino acid transporter (CAT) is the rate-limiting step in nitric oxide (NO) synthesis, which is crucial in intraocular inflammation. In this study, CAT isoforms and inducible nitric oxide synthase (iNOS) expression was investigated in endotoxin-induced uveitis (EIU). Methods. EIU was induced in Lewis rats by lipopolysaccharide (LPS) injection. In the treatment group, the rats were injected intraperitoneally with the proteasome inhibitor bortezomib before EIU induction. After 24 hours, leukocyte quantification, NO measurement of the aqueous humor, and histopathological examination were evaluated. The expression of CAT isoforms and iNOS was determined by reverse transcription-polymerase chain reaction, western blotting, and immunofluorescence staining. Nuclear factor-kappa B (NF-κB) binding activity was evaluated by electrophoretic mobility shift assay. The mouse macrophage cell line RAW 264.7 was used to validate the in vivo findings. Results. LPS significantly stimulated iNOS, CAT-2A, and CAT-2B mRNA and protein expression but did not affect CAT-1 in EIU rats and RAW 264.7 cells. Bortezomib attenuated inflammation and inhibited iNOS, CAT-2A, and CAT-2B expression through NF-κB inhibition. Conclusions. CAT-2 and iNOS, but not CAT-1, are specifically involved in EIU. NF-κB is essential in the induction of CAT-2 and iNOS in EIU.
Collapse
|
31
|
DeFreitas MJ, Katsoufis CP, Abitbol CL. Cardio-renal consequences of low birth weight and preterm birth. PROGRESS IN PEDIATRIC CARDIOLOGY 2016. [DOI: 10.1016/j.ppedcard.2016.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
Mirmiran P, Bahadoran Z, Ghasemi A, Azizi F. The Association of Dietary l-Arginine Intake and Serum Nitric Oxide Metabolites in Adults: A Population-Based Study. Nutrients 2016; 8:nu8050311. [PMID: 27213443 PMCID: PMC4882723 DOI: 10.3390/nu8050311] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/20/2022] Open
Abstract
This study was conducted to investigate whether regular dietary intake of l-arginine is associated with serum nitrate + nitrite (NOx). In this cross-sectional study, 2771 men and women, who had participated in the third examination of the Tehran Lipid and Glucose Study (2006–2008), were recruited. Demographics, anthropometrics and biochemical variables were evaluated. Dietary data were collected using a validated 168-food item semi-quantitative food frequency questionnaire and dietary intake of l-arginine was calculated. To determine any association between dietary l-arginine and serum NOx, linear regression models with adjustment for potential confounders were used. Mean age of participants (39.2% men) was 45.9 ± 15.9 years. After adjustment for all potential confounding variables, a significant positive association was observed between l-arginine intake and serum NOx concentrations in the fourth quartile of l-arginine (β = 6.63, 95% CI = 4.14, 9.12, p for trend = 0.001), an association stronger in women. Further analysis, stratified by age, body mass index and hypertension status categories, showed a greater association in middle-aged and older adults (β = 9.12, 95% CI = 3.99, 13.6 and β = 12.1, 95% CI = 6.48, 17.7, respectively). l-arginine intakes were also strongly associated with serum NOx levels in overweight and obese subjects in the upper quartile (β = 10.7, 95% CI = 5.43, 16.0 and β = 11.0, 95% CI = 4.29, 17.5); a greater association was also observed between l-arginine intakes and serum NOx in non-hypertensive (HTN) compared to HTN subjects (β = 2.65, 95% CI = 2.1–3.2 vs. β = 1.25, 95% CI = −1.64–4.15). Dietary l-arginine intakes were associated to serum NOx and this association may be affected by sex, age, body mass index, and hypertension status.
Collapse
Affiliation(s)
- Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran.
| | - Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran.
| |
Collapse
|