1
|
Fu Y, He X, Ma L, Gao XD, Liu P, Shi H, Chai P, Ge S, Jia R, Liu DR, Fan X, Yang Z. In vivo prime editing rescues photoreceptor degeneration in nonsense mutant retinitis pigmentosa. Nat Commun 2025; 16:2394. [PMID: 40064881 PMCID: PMC11893901 DOI: 10.1038/s41467-025-57628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The next-generation gene editing tool, prime editing (PE), is adept at correcting point mutations precisely with high editing efficiency and rare off-target events and shows promising therapeutic value in treating hereditary diseases. Retinitis pigmentosa (RP) is the most common type of inherited retinal dystrophy and is characterized by progressive degeneration of retinal photoreceptors and, consequently, visual decline. To date, effective treatments for RP are lacking. Herein, a PE system is designed to target the PDE6B Y347X mutation in the rd1 mouse strain, a preclinical RP model. We screen and develop the PE system with epegRNA and RTΔRnH, which is delivered via dual-AAV in vivo with an editing efficiency of 26.47 ± 13.35%, with negligible off-target effects confirmed by AID-Seq and PE-tag. Treatment with the PE system in vivo greatly restores PDE6B protein expression and protects rod cells from degeneration. Mouse behavioural experiments also show that compared with no treatment, prime editing inhibits vision deterioration in littermate rd1 mice. This study provides a therapeutic opportunity for the use of PE to correct mutated RPs at the genomic level.
Collapse
Affiliation(s)
- Yidian Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Xiaoyu He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Liang Ma
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Xin D Gao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Pengpeng Liu
- Institute of Advanced Biotechnology, Institute of Homeostatic Medicine, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hanhan Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Zhi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| |
Collapse
|
2
|
Pei X, Li Z. Narrative review of comprehensive management strategies for diabetic retinopathy: interdisciplinary approaches and future perspectives. BMJ PUBLIC HEALTH 2025; 3:e001353. [PMID: 40017934 PMCID: PMC11812885 DOI: 10.1136/bmjph-2024-001353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 12/16/2024] [Indexed: 03/01/2025]
Abstract
This review examines the epidemiological trends, pathophysiologic mechanisms, and current and future therapeutic strategies for diabetic retinopathy (DR), focusing on innovative management countermeasures in the face of this global public health challenge. As the number of patients with diabetes continues to increase, DR, as one of its major complications, poses a significant threat to global visual health. This review not only summarises the latest advances in personalised treatment and emerging therapeutic modalities (such as anti-vascular endothelial growth factor therapy, laser treatment, surgical procedures and cutting-edge gene and stem cell therapies) but also emphasises the revolutionary potential of telemedicine technologies and digital health platforms to improve DR screening and adherence among people with diabetes. We show how these technological innovations, especially in resource-limited settings, can achieve early diagnosis and effective treatment, thereby significantly reducing the public health burden of DR. In addition, this article highlights the critical role of interdisciplinary teamwork in optimising the comprehensive management of DR, involving close collaboration among physicians, researchers, patient education specialists and policy-makers, as well as the importance of implementing these innovative solutions through societal engagement and policy support. By highlighting these innovative strategies and their specific impact on improving public health practices, this review offers new perspectives and strategies for the future management of DR, with the goal of promoting the prevention, diagnosis and treatment of DR worldwide, improving patient prognosis and enhancing quality of life.
Collapse
Affiliation(s)
- Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- People’s Hospital of Zhengzhou University, Zhengzhou, China
- People’s Hospital of Henan University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
- People’s Hospital of Zhengzhou University, Zhengzhou, China
- People’s Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
3
|
Pei X, Huang D, Li Z. Genetic insights and emerging therapeutics in diabetic retinopathy: from molecular pathways to personalized medicine. Front Genet 2024; 15:1416924. [PMID: 39246572 PMCID: PMC11378321 DOI: 10.3389/fgene.2024.1416924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Diabetic retinopathy (DR) is a major complication of diabetes worldwide, significantly causing vision loss and blindness in working-age adults, and imposing a substantial socioeconomic burden globally. This review examines the crucial role of genetic factors in the development of DR and highlights the shift toward personalized treatment approaches. Advances in genetic research have identified specific genes and variations involved in angiogenesis, inflammation, and oxidative stress that increase DR susceptibility. Understanding these genetic markers enables early identification of at-risk individuals and the creation of personalized treatment plans. Incorporating these genetic insights, healthcare providers can develop early intervention strategies and tailored treatment plans to improve patient outcomes and minimize side effects. This review emphasizes the transformative potential of integrating genetic information into clinical practice, marking a paradigm shift in DR management and advancing toward a more personalized and effective healthcare model.
Collapse
Affiliation(s)
- Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Duliurui Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Chen J, Liu C, Sun C, Zeng J, Chi J, Che K, Wang Y. Association between Serum Phosphorus Levels and Diabetic Retinopathy: A Cross-Sectional Study. Int J Endocrinol 2024; 2024:3830246. [PMID: 38904033 PMCID: PMC11187971 DOI: 10.1155/2024/3830246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024] Open
Abstract
Background and Aims The aim of this study was to investigate the association between serum phosphate levels and diabetic retinopathy (DR) in patients with type 2 diabetes mellitus (T2DM). Methods and Results The study sample consisted of 1657 T2DM patients hospitalized between 2017 and 2019. Patients were categorized into quartiles based on their serum phosphate levels (Q1-Q4). An increasing trend in the prevalence of DR was observed across these quartiles. Subsequently, logistic regression analysis was employed to adjust for potential confounders, such as gender, age, BMI, and duration of diabetes, and to evaluate the odds ratios (ORs) associated with these quartiles. The prevalence of DR showed an increasing trend with elevated serum phosphate levels. Logistic regression further confirmed that serum phosphate levels remain an independent risk factor for DR. Conclusion Elevated serum phosphate levels are closely associated with the prevalence of DR in hospitalized T2DM patients. Further studies are needed to establish causality. This trial is registered with chiCTR2000032374.
Collapse
Affiliation(s)
- Jintao Chen
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuanfeng Liu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cunwei Sun
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia Zeng
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingwei Chi
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kui Che
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Pandya M, Banait S, Daigavane S. Insights Into Visual Rehabilitation: Pan-Retinal Photocoagulation for Proliferative Diabetic Retinopathy. Cureus 2024; 16:e54273. [PMID: 38496130 PMCID: PMC10944551 DOI: 10.7759/cureus.54273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
This review comprehensively explores pan-retinal photocoagulation (PRP) as a pivotal intervention in visually rehabilitating individuals afflicted with proliferative diabetic retinopathy (PDR). The review begins by elucidating the significance of PDR within the spectrum of diabetic retinopathy (DR), emphasizing the progressive nature of the disease and the consequential impact on visual health. A detailed analysis of PRP follows, encompassing its definition, purpose, and historical development, shedding light on the procedural intricacies and mechanisms of action. The postoperative care and follow-up section underscores the necessity of vigilant monitoring for complications, visual recovery, and the importance of regular ophthalmic check-ups. The subsequent discussion delves into patient education and counseling, stressing the need to manage expectations, encourage lifestyle modifications, and highlight the significance of follow-up appointments. The review concludes with insights into future directions, including advancements in laser technology and emerging therapies, offering a glimpse into the evolving landscape of DR management. By addressing ongoing challenges and embracing innovative approaches, this review provides a comprehensive guide for clinicians, researchers, and healthcare practitioners who visually rehabilitate individuals struggling with PDR.
Collapse
Affiliation(s)
- Meghavi Pandya
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Shashank Banait
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sachin Daigavane
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
6
|
Castro BFM, Steel JC, Layton CJ. AAV-Based Strategies for Treatment of Retinal and Choroidal Vascular Diseases: Advances in Age-Related Macular Degeneration and Diabetic Retinopathy Therapies. BioDrugs 2024; 38:73-93. [PMID: 37878215 PMCID: PMC10789843 DOI: 10.1007/s40259-023-00629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are vascular diseases with high prevalence, ranking among the leading causes of blindness and vision loss worldwide. Despite being effective, current treatments for AMD and DR are burdensome for patients and clinicians, resulting in suboptimal compliance and real risk of vision loss. Thus, there is an unmet need for long-lasting alternatives with improved safety and efficacy. Adeno-associated virus (AAV) is the leading vector for ocular gene delivery, given its ability to enable long-term expression while eliciting relatively mild immune responses. Progress has been made in AAV-based gene therapies for not only inherited retinal diseases but also acquired conditions with preclinical and clinical studies of AMD and DR showing promising results. These studies have explored several pathways involved in the disease pathogenesis, as well as different strategies to optimise gene delivery. These include engineered capsids with enhanced tropism to particular cell types, and expression cassettes incorporating elements for a targeted and controlled expression. Multiple-acting constructs have also been investigated, in addition to gene silencing and editing. Here, we provide an overview of strategies employing AAV-mediated gene delivery to treat AMD and DR. We discuss preclinical efficacy studies and present the latest data from clinical trials for both diseases.
Collapse
Affiliation(s)
- Brenda F M Castro
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia.
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia.
| | - Jason C Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Christopher J Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia.
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia.
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia.
| |
Collapse
|
7
|
Exosomal miRNA Profiling in Vitreous Humor in Proliferative Diabetic Retinopathy. Cells 2022; 12:cells12010123. [PMID: 36611916 PMCID: PMC9818905 DOI: 10.3390/cells12010123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs which mediate some of the pathological mechanisms of diabetic retinopathy. The aim of this study was to identify differentially expressed miRNAs in the vitreal exosomes of proliferative diabetic retinopathy (PDR) patients and non-diabetic controls. Exosomes were extracted from the vitreous samples of 10 PDR patients and 10 controls. The expression of 372 miRNAs was determined using a quantitative polymerase chain reaction (qPCR) panel. We have demonstrated a significant dysregulation in 26 miRNAs. The most remarkable findings include a profound attenuation of the miR-125 family, as well as enhanced miR-21-5p expression in the diabetic samples. We also showed the downregulation of miR-204-5p and the upregulation of let-7g in PDR compared to the controls. This study identified miR-125 and miR-21 as potential targets for further functional analysis regarding their putative role in the pathogenesis of PDR.
Collapse
|
8
|
Toutounchian S, Ahmadbeigi N, Mansouri V. Retinal and Choroidal Neovascularization Antivascular Endothelial Growth Factor Treatments: The Role of Gene Therapy. J Ocul Pharmacol Ther 2022; 38:529-548. [PMID: 36125411 DOI: 10.1089/jop.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neovascularization in ocular vessels causes a major disease burden. The most common causes of choroidal neovascularization (CNV) are age-related macular degeneration and diabetic retinopathy, which are the leading causes of irreversible vision loss in the adult population. Vascular endothelial growth factor (VEGF) is critical for the formation of new vessels and is the main regulator in ocular angiogenesis and vascular permeability through its receptors. Laser therapy and antiangiogenic factors have been used for CNV treatment. Bevacizumab, ranibizumab, and aflibercept are commonly used anti-VEGF agents; however, high costs and the need for frequent intraocular injections are major drawbacks of anti-VEGF drugs. Gene therapy, given the potency of one-time treatment and no need for frequent injections offers the real possibility of such a lasting treatment, with fewer adverse effects and higher patient quality of life. Herein, we reviewed the role of gene therapy in the CNV treatment. In addition, we discuss the advantages and challenges of current treatments compared with gene therapy.
Collapse
Affiliation(s)
- Samaneh Toutounchian
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Song Z, He C, Wen J, Yang J, Chen P. Long Non-coding RNAs: Pivotal Epigenetic Regulators in Diabetic Retinopathy. Curr Genomics 2022; 23:246-261. [PMID: 36777876 PMCID: PMC9875540 DOI: 10.2174/1389202923666220531105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Diabetic retinopathy (DR) is a severe complication of diabetes; however, its mechanism is not fully understood. Evidence has recently revealed that long non-coding RNAs (lncRNAs) are abnormally expressed in DR, and lncRNAs may function as pivotal regulators. LncRNAs are able to modulate gene expression at the epigenetic level by acting as scaffolds of histone modification complexes and sponges of binding with microRNAs (miRNAs). LncRNAs are believed to be important epigenetic regulators, which may become beneficial in the diagnosis and therapy of DR. However, the mechanisms of lncRNAs in DR are still unclear. In this review, we summarize the possible functions and mechanisms of lncRNAs in epigenetic regulation to target genes in the progression of DR.
Collapse
Affiliation(s)
- Zhaoxia Song
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang He
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianli Yang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China;,Address correspondence to this author at the Department of Medical Genetics, College of Basic Medical Sciences, Jilin University. Address: Room 413, 126 Xinmin Street, Changchun, Jilin 130021, China; Tel/Fax: 0086-18584362191; E-mail:
| |
Collapse
|
10
|
Brambati M, Borrelli E, Capone L, Querques L, Sacconi R, Battista M, Bandello F, Querques G. Changes in Macular Perfusion After ILUVIEN® Intravitreal Implant for Diabetic Macular Edema: An OCTA Study. Ophthalmol Ther 2022; 11:653-660. [PMID: 35088300 PMCID: PMC8927530 DOI: 10.1007/s40123-022-00455-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/07/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION The aim of this study was to investigate changes in macular perfusion in patients affected by diabetic macular edema (DME) and treated with ILUVIEN® (fluocinolone acetonide intravitreal implant) 0.19 mg using optical coherence tomography angiography (OCTA). METHODS This was a retrospective cohort study that included patients aged > 18 years with type 2 non-proliferative diabetic retinopathy (DR) and DME at baseline. All patients were treated with the ILUVIEN® implant. A minimum of two 6 × 6-mm OCTA scans were required to ensure that all cases had a baseline OCTA and an OCTA performed at 4 months of follow-up. Qualitative and quantitative comparisons were performed. RESULTS Ten eyes from ten subjects were included in the analysis. Mean (± standard deviation) age of the study cohort was 57.1 ± 8.3 years. Mean parafoveal perfusion density (PD) at baseline was 64.1 ± 1.8% at baseline, increasing to 66.1 ± 2.9% (p = 0.013) at the 4-month follow-up visit. Mean parafoveal PD at baseline was 64.4 ± 2.1%, increasing to 65.2 ± 2.6% (p = 0.024) after 4 months. In the qualitative assessment, 60 regions (10 areas for each subject) were graded to assess changes in retinal perfusion between the baseline and follow-up visits. This assessment revealed that 24 regions (40.0%) were characterized by a qualitative increase in perfusion after treatment, while 22 (36.7%) and 14 (23.3%) regions were featured by a stability and reduction in retinal perfusion, respectively. CONCLUSION OCTA analysis detects improvements in macular perfusion after treatment with ILUVIEN®. This improvement in macular perfusion may be associated with corticosteroid-related beneficial effects on leukostasis.
Collapse
Affiliation(s)
- Maria Brambati
- Department of Ophthalmology, University Vita-Salute-IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Enrico Borrelli
- Department of Ophthalmology, University Vita-Salute-IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Luigi Capone
- Department of Ophthalmology, University Vita-Salute-IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Lea Querques
- Department of Ophthalmology, University Vita-Salute-IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Riccardo Sacconi
- Department of Ophthalmology, University Vita-Salute-IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Marco Battista
- Department of Ophthalmology, University Vita-Salute-IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, University Vita-Salute-IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Giuseppe Querques
- Department of Ophthalmology, University Vita-Salute-IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
11
|
Zibetti C. Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives. Cells 2022; 11:cells11050806. [PMID: 35269428 PMCID: PMC8908986 DOI: 10.3390/cells11050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Retinal neurogenesis is driven by concerted actions of transcription factors, some of which are expressed in a continuum and across several cell subtypes throughout development. While seemingly redundant, many factors diversify their regulatory outcome on gene expression, by coordinating variations in chromatin landscapes to drive divergent retinal specification programs. Recent studies have furthered the understanding of the epigenetic contribution to the progression of age-related macular degeneration, a leading cause of blindness in the elderly. The knowledge of the epigenomic mechanisms that control the acquisition and stabilization of retinal cell fates and are evoked upon damage, holds the potential for the treatment of retinal degeneration. Herein, this review presents the state-of-the-art approaches to investigate the retinal epigenome during development, disease, and reprogramming. A pipeline is then reviewed to functionally interrogate the epigenetic and transcriptional networks underlying cell fate specification, relying on a truly unbiased screening of open chromatin states. The related work proposes an inferential model to identify gene regulatory networks, features the first footprinting analysis and the first tentative, systematic query of candidate pioneer factors in the retina ever conducted in any model organism, leading to the identification of previously uncharacterized master regulators of retinal cell identity, such as the nuclear factor I, NFI. This pipeline is virtually applicable to the study of genetic programs and candidate pioneer factors in any developmental context. Finally, challenges and limitations intrinsic to the current next-generation sequencing techniques are discussed, as well as recent advances in super-resolution imaging, enabling spatio-temporal resolution of the genome.
Collapse
Affiliation(s)
- Cristina Zibetti
- Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, Building 36, 0455 Oslo, Norway
| |
Collapse
|
12
|
Tang K, Qin W, Wei R, Jiang Y, Fan L, Wang Z, Tan N. Ginsenoside Rd ameliorates high glucose-induced retinal endothelial injury through AMPK-STRT1 interdependence. Pharmacol Res 2022; 179:106123. [PMID: 35150861 DOI: 10.1016/j.phrs.2022.106123] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/22/2022] [Accepted: 02/04/2022] [Indexed: 12/01/2022]
Abstract
Diabetic retinopathy (DR) manifests as a complicated and blinding complication in diabetes mellitus. First-line treatments for advanced DR have shown ocular side-effects in some patients. Ginsenoside Rd (Rd), an active ingredient isolated from Panax notoginseng and P. ginseng, has demonstrated diverse and powerful activities on neuroprotection, anticancer and anti-inflammation, but its vascular protective effects have rarely been reported. Herein, this study aims to investigate the protective effects of Rd on retinal endothelial injury with emphasis on AMPK/SIRT1 interaction. The results indicated that Rd promoted AMPK activation and SIRT1 expression. Besides, Rd strengthened the interaction between AMPK and SIRT1 by increasing NAD+/NADH levels and LKB1 deacetylation in endothelial cells. Moreover, Rd reversed high glucose-induced activation of NOX2, oxidative stress, mitochondrial dysfunction, and endothelial apoptosis in an AMPK/SIRT1-interdependent manner. Hyperglycemia induced loss of endothelial cells and other retinal damage, which was restored by Rd via activating AMPK and SIRT1 in vivo. The enhancement of AMPK/SIRT1 interaction by Rd beneficially modulated oxidative stress and apoptosis, and ameliorated diabetes-driven vascular damage. These data also supported the evidence for Rd clinical development of pharmacological interventions and provided a novel potential vascular protective drug for early DR.
Collapse
Affiliation(s)
- Kai Tang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Weiwei Qin
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rongyun Wei
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yeying Jiang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lingling Fan
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhen Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
13
|
Zhang CL, Wang HL, Li PC, Hong CD, Chen AQ, Qiu YM, Zeng AP, Zhou YF, Hu B, Li YN. Mfsd2a overexpression alleviates vascular dysfunction in diabetic retinopathy. Pharmacol Res 2021; 171:105755. [PMID: 34229049 DOI: 10.1016/j.phrs.2021.105755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022]
Abstract
Diabetic retinopathy (DR) is one of the common complications in diabetic patients. Nowadays, VEGF pathway is subject to extensive research. However, about 27% of the patients have a poor visual outcome, with 50% still having edema after two years' treatment of diabetic macular edema (DME) with ranibizumab. Docosahexaenoic acid (DHA), the primary ω-3 long-chain polyunsaturated fatty acid (LC-PUFA), reduces abnormal neovascularization and alleviates neovascular eye diseases. A study reported that fish oil reduced the incidence of retinopathy of prematurity (ROP) by about 27.5% in preterm infants. Although ω-3 LC-PUFAs protects against pathological retinal neovascularization, the treatment effectiveness is low. It is interesting to investigate why DHA therapy fails in some patients. In human vitreous humor samples, we found that the ratio of DHA and DHA-derived metabolites to total fatty acids was higher in vitreous humor from DR patients than that from macular hole patients; however, the ratio of DHA metabolites to DHA and DHA-derived metabolites was lower in the diabetic vitreous humor. The expression of Mfsd2a, the LPC-DHA transporter, was reduced in the oxygen-induced retinopathy (OIR) model and streptozotocin (STZ) model. In vitro, Mfsd2a overexpression inhibited endothelial cell proliferation, migration and vesicular transcytosis. Moreover, Mfsd2a overexpression in combination with the DHA diet obviously reduced abnormal retinal neovascularization and vascular leakage, which is more effective than Mfsd2a overexpression alone. These results suggest that DHA therapy failure in some DR patients is linked to low expression of Mfsd2a, and the combination of Mfsd2a overexpression and DHA therapy may be an effective treatment.
Collapse
Affiliation(s)
- Chun-Lin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hai-Ling Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng-Cheng Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Can-Dong Hong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - An-Qi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan-Mei Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ai-Ping Zeng
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
14
|
Fu SH, Lai MC, Zheng YY, Sun YW, Qiu JJ, Gui F, Zhang Q, Liu F. MiR-195 inhibits the ubiquitination and degradation of YY1 by Smurf2, and induces EMT and cell permeability of retinal pigment epithelial cells. Cell Death Dis 2021; 12:708. [PMID: 34267179 PMCID: PMC8282777 DOI: 10.1038/s41419-021-03956-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022]
Abstract
The dysregulated microRNAs (miRNAs) are involved in diabetic retinopathy progression. Epithelial mesenchymal transition (EMT) and cell permeability are important events in diabetic retinopathy. However, the function and mechanism of miR-195 in EMT and cell permeability in diabetic retinopathy remain largely unclear. Diabetic retinopathy models were established using streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-stimulated ARPE-19 cells. Retina injury was investigated by hematoxylin-eosin (HE) staining. EMT and cell permeability were analyzed by western blotting, immunofluorescence, wound healing, and FITC-dextran assays. MiR-195 expression was detected via qRT-PCR. YY1, VEGFA, Snail1, and Smurf2 levels were detected via western blotting. The interaction relationship was analyzed via ChIP, Co-IP, or dual-luciferase reporter assay. The retina injury, EMT, and cell permeability were induced in STZ-induced diabetic mice. HG induced EMT and cell permeability in ARPE-19 cells. MiR-195, YY1, VEGFA, and Snail1 levels were enhanced, but Smurf2 abundance was reduced in STZ-induced diabetic mice and HG-stimulated ARPE-19 cells. VEGFA knockdown decreased Snail1 expression and attenuated HG-induced EMT and cell permeability. YY1 silence reduced VEGFA and Snail1 expression, and mitigated HG-induced EMT and cell permeability. YY1 could bind with VEGFA and Snail1, and it was degraded via Smurf2-mediated ubiquitination. MiR-195 knockdown upregulated Smurf2 to decrease YY1 expression and inhibited HG-induced EMT and cell permeability. MiR-195 targeted Smurf2, increased expression of YY1, VEGFA, and Snail1, and promoted HG-induced EMT and cell permeability. MiR-195 promotes EMT and cell permeability of HG-stimulated ARPE-19 cells by increasing VEGFA/Snail1 via inhibiting the Smurf2-mediated ubiquitination of YY1.
Collapse
Affiliation(s)
- Shu-Hua Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Mei-Chen Lai
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Yun-Yao Zheng
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Ya-Wen Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Jing-Jing Qiu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Fu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Qian Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China
| | - Fei Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, P. R. China.
| |
Collapse
|
15
|
Sun S, Wang Y, Ma W, Cheng B, Dong B, Zhao Y, Hu J, Zhou Y, Huang Y, Wei F, Wang Y. Normal parathyroid hormone and non-proliferative diabetic retinopathy in patients with type 2 diabetes. J Diabetes Investig 2021; 12:1220-1227. [PMID: 33135333 PMCID: PMC8264395 DOI: 10.1111/jdi.13456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/13/2020] [Accepted: 10/29/2020] [Indexed: 01/20/2023] Open
Abstract
AIMS/INTRODUCTION To investigate the associations between parathyroid hormone (PTH) and non-proliferative diabetic retinopathy (NPDR) in patients with type 2 diabetes mellitus. MATERIALS AND METHODS Data were collected from 2,322 patients with type 2 diabetes mellitus in hospital between 2017 and 2019. The odds ratio (OR) and the corresponding 95% confidence interval related to the quartiles of PTH were obtained by logistic regression analysis after adjusting the potential confounding variation. RESULTS The patients were stratified into quartiles (Q1-Q4) based on the PTH levels, with the cut-off limits of ≤23.74, 23.74-29.47, 29.47-37.30 and >37.30 pg/mL in men, and ≤24.47, 24.47-31.22, 31.22-39.49 and >39.49 pg/mL in women. The first quartile (Q1) represents the lowest quartile and the fourth quartile (Q4) is the highest. According to the quartiles (Q1-Q4), the prevalence rate of NPDR in patients showed a significantly decreasing trend (37.9%, 36.3%, 34.0% vs 24.0% in men; 43.2%, 40.5%, 31.1% vs 26.2% in women, both P < 0.05). Independent of age, diabetes duration and other metabolic factors, multivariate logistic regression showed that participants in Q4 had a lower OR of NPDR than those in Q1 (OR 0.443, 95% confidence interval 0.300-0.654, P < 0.001 for men; OR 0.428, 95% confidence interval 0.283-0.646, P < 0.001 for women). CONCLUSIONS Low serum PTH levels were significantly associated with complications of NPDR in inpatients. Its causality remains to be further studied.
Collapse
Affiliation(s)
- Shengnan Sun
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Yahao Wang
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Wenru Ma
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Bingfei Cheng
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Bingzi Dong
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Yuhang Zhao
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Jianxia Hu
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Yue Zhou
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Yajing Huang
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Fanxiang Wei
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| | - Yangang Wang
- Department of EndocrinologyAffiliated Hospital of Medical College Qingdao UniversityQingdaoChina
| |
Collapse
|
16
|
Araújo RS, Bitoque DB, Silva GA. Development of strategies to modulate gene expression of angiogenesis-related molecules in the retina. Gene 2021; 791:145724. [PMID: 34010703 DOI: 10.1016/j.gene.2021.145724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022]
Abstract
Intravitreal anti-vascular endothelial growth factor agents are the gold standard treatment of ocular neovascular diseases. However, their short-term efficacy implies frequent intravitreal injections. Gene therapy has the ability to provide longer duration of the therapeutic effect. We have previously described the effectiveness of the self-replicating episomal vector, pEPito, in long-term gene expression in mouse retina. In this study, we evaluated different constructs to overexpress pigment epithelium-derived factor (PEDF), an angiogenesis inhibitor, and simultaneously, to silence placental growth factor (PlGF), a key player in neovascularization. We employed the human cytomegalovirus promoter to drive the expression of PEDF and PlGF shRNA, in conjunction with cis-acting ribozymes, using pEPito as expressing vector. Our results demonstrated that the non-viral systems were able to efficiently promote a sustained increase of the PEDF: PlGF ratio in the mice retina, decreased in pathological conditions. This innovative approach could open avenues for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Rute S Araújo
- iNOVA4Health, CEDOC, NOVA Medical School, Universidade Nova de, Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; Bioengineering - Cell Therapies and Regenerative Medicine PhD Program, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Diogo B Bitoque
- iNOVA4Health, CEDOC, NOVA Medical School, Universidade Nova de, Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal
| | - Gabriela A Silva
- iNOVA4Health, CEDOC, NOVA Medical School, Universidade Nova de, Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal.
| |
Collapse
|
17
|
Xu Y, Zhang Y, Liang H, Liu X. Coumestrol mitigates retinal cell inflammation, apoptosis, and oxidative stress in a rat model of diabetic retinopathy via activation of SIRT1. Aging (Albany NY) 2021; 13:5342-5357. [PMID: 33536350 PMCID: PMC7950241 DOI: 10.18632/aging.202467] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Diabetes-induced oxidative stress is vital in initiating neuronal damage in the diabetic retina, leading to diabetic retinopathy (DR). This study investigates the possible effects of coumestrol (CMS) on streptozotocin (STZ)-induced DR. First, we established a rat model of DR by STZ injection and a cell model involving high-glucose (HG) exposure of human retinal microvascular endothelial cells (hRMECs). We characterized the expression patterns of oxidative stress indicators, pro-inflammatory cytokines, and pro-apoptotic proteins in hRMECs. Polymerase chain reaction showed sirtuin 1 (SIRT1) to be poorly expressed in the retinal tissues of STZ-treated rats and HG-exposed hRMECs, but its expression was upregulated upon treatment with CMS treatment. Furthermore, CMS treatment attenuated the STZ-induced pathologies such as oxidative stress, inflammation, and cell apoptosis. Consistent with the in vivo results, CMS activated the expression of SIRT1, thereby inhibiting oxidative stress, inflammation, and apoptosis of HG-treated hRMECs. From these findings, we concluded that CMS ameliorated DR by inhibiting inflammation, apoptosis and oxidative stress through activation of SIRT1.
Collapse
Affiliation(s)
- Yanchao Xu
- The Second Ward, Department of Endocrinology and Metabolism, Linyi People's Hospital of Shandong Province, Linyi 276000, P. R. China
| | - Yusong Zhang
- Imaging Center, Linyi People's Hospital of Shandong Province, Linyi 276000, P. R. China
| | - Hongwei Liang
- Department of Health Care, Linyi People's Hospital of Shandong Province, Linyi 276000, P. R. China
| | - Xiaomeng Liu
- The Second Ward, Department of Endocrinology and Metabolism, Linyi People's Hospital of Shandong Province, Linyi 276000, P. R. China
| |
Collapse
|
18
|
Dai Y, Peng L, Zhang X, Wu Q, Yao J, Xing Q, Zheng Y, Huang X, Chen S, Xie Q. Effects of coconut water on blood sugar and retina of rats with diabetes. PeerJ 2021; 9:e10667. [PMID: 33575128 PMCID: PMC7849505 DOI: 10.7717/peerj.10667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
Background This study aimed to evaluate the effects of coconut water on the general condition (fasting blood sugar and body weight) and retina of diabetic rats. Methods Forty-eight Sprague-Dawley male rats were divided into normal controls (NC), diabetes mellitus (DM), diabetes+coconut water (DM+CW), and diabetes+glibenclamide (DM+Gli) groups. After 4 weeks of normal feeding, coconut water was given to group III-DM+CW and 0.6 mg/kg glibenclamide to group IV-DM+Gli. The blood sugar, body weight, total retinal thickness, pathological changes, and VEGF expression in the retina were analyzed at different time points. Results The fasting blood sugar was 4-6 mmol/L in group I-NC and continuously increased in group II-DM, whereas gradually decreased after the 4th experiment week in the remaining two groups. The rats, except in group I-NC, have lost weight. In group II-DM, the total retinal thickness was significantly increased after the 8th and 12th experiment week, and the pathological changes in retina were observed. VEGF was almost fully expressed in the ganglion cell layer and inner granular layer and partially expressed in the outer granular layer in group II-DM, and mainly expressed in the ganglion cell layer and inner layer in group I-NC, with a lighter color. Group III-DM + CW and group IV-DM + Gli demonstrated similar VEGF expression as in group I-NC. Conclusions Coconut water has the potential to reduce blood sugar and diabetic retinal damage, serving as a candidate drug or nutrient for treating diabetes and its complications.
Collapse
Affiliation(s)
- Yanan Dai
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, P.R. China, Haikou, China
| | - Li Peng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, Changsha, China
| | - Xiaohua Zhang
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, P.R. China, Haikou, China
| | - Qingjing Wu
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, P.R. China, Haikou, China
| | - Jie Yao
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, P.R. China, Haikou, China
| | - Qiu Xing
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, P.R. China, Haikou, China
| | - Yunyan Zheng
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, P.R. China, Haikou, China
| | - Xiaobo Huang
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, P.R. China, Haikou, China
| | - Shaomei Chen
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, P.R. China, Haikou, China
| | - Qing Xie
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, P.R. China, Haikou, China
| |
Collapse
|
19
|
Araújo RS, Bitoque DB, Silva GA. Dual-Acting Antiangiogenic Gene Therapy Reduces Inflammation and Regresses Neovascularization in Diabetic Mouse Retina. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:329-339. [PMID: 33230438 PMCID: PMC7527613 DOI: 10.1016/j.omtn.2020.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022]
Abstract
Intravitreal injections of anti-vascular endothelial growth factor drugs have become the gold standard treatment for diabetic retinopathy (DR). However, several patients are classified as non-responders or poor responders to treatment. Therefore, it is essential to study alternative target molecules. We have previously shown that the progression of DR in the Ins2Akita mouse reflects the imbalance between pro- and anti-angiogenic molecules found in the human retina. We report, for the first time, the therapeutic potential of a dual-acting antiangiogenic non-viral gene therapy. We have used an expressing vector encoding both the pigment epithelium-derived factor gene and a short hairpin RNA (shRNA) targeted to the placental growth factor to restore the balance between these factors in the retina. Twenty-one days after a single subretinal injection, we observed a marked decrease in the inflammatory response in the neural retina and in the retinal pigment epithelium, together with reduced vascular retinal permeability in the treated diabetic mouse. These results were accompanied by the restoration of the retinal capillary network and regression of neovascularization, with significant improvement of DR hallmarks. Concomitant with the favorable therapeutic effects, this approach did not affect retinal ganglion cells. Hence our results provide evidence toward the use of this approach in DR treatment.
Collapse
Affiliation(s)
- Rute S Araújo
- CEDOC-Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal.,Bioengineering-Cell Therapies and Regenerative Medicine PhD Program, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Diogo B Bitoque
- CEDOC-Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal.,NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Gabriela A Silva
- CEDOC-Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal.,NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| |
Collapse
|
20
|
Zhang L, Chu W, Zheng L, Li J, Ren Y, Xue L, Duan W, Wang Q, Li H. Zinc oxide nanoparticles from
Cyperus rotundus
attenuates diabetic retinopathy by inhibiting NLRP3 inflammasome activation in STZ‐induced diabetic rats. J Biochem Mol Toxicol 2020; 34:e22583. [PMID: 32692483 DOI: 10.1002/jbt.22583] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Liwei Zhang
- Department of Ophthalmology The Second People's Hospital of Yunnan Province and The Fourth Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - Wen Chu
- Department of Preventive Dentistry The Second People's Hospital of Yunnan and The Fourth Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - Lei Zheng
- Shenzhen Eye Hospital Shenzhen University School of Medicine Shenzhen Guangdong China
| | - Juanjuan Li
- Department of Ophthalmology The Second People's Hospital of Yunnan Province and The Fourth Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - Yuling Ren
- Department of Ophthalmology The Second People's Hospital of Yunnan Province and The Fourth Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - Liping Xue
- Department of Ophthalmology The Second People's Hospital of Yunnan Province and The Fourth Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - Wenhua Duan
- Department of Ophthalmology The Second People's Hospital of Yunnan Province and The Fourth Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| | - Qing Wang
- Department of Oncology The First People's Hospital of Qujing Qujing Yunan China
| | - Hua Li
- Department of Ophthalmology The Second People's Hospital of Yunnan Province and The Fourth Affiliated Hospital of Kunming Medical University Kunming Yunnan China
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Diabetic retinopathy (DR), a leading cause of visual impairment in the developed country, is characterized by vascular lesions and neuronal damage of the retina. Treatment options for this condition are currently limited. The advent of therapy targeting vascular endothelial growth factor (VEGF) demonstrated significant benefits to patients with DR. However, this treatment is limited by its short half-life and requirement for frequent invasive intravitreal injections. In addition, many patients failed to achieve clinically significant improvement in visual function. Gene therapy has the potential to provide an alternative treatment for DR with distinct advantages, such as longer therapeutic effect, less injection frequency, ability to intervene at disease onset, and potentially fewer side effects. RECENT FINDINGS Strategies for gene therapy in DR, stemming from the current understanding of the disease pathogenesis, focus on the inhibition of neovascularization and protection of neurovascular degeneration in the retina. Studies with promising results have mainly focussed on animal models due to efficacy and safety concerns, despite a number of successful preclinical studies using adeno-associated virus-mediated transduction to treat both vascular dysfunction and neuronal degeneration. With the optimization of delivery vectors, transgene regulation, and outcome measure, gene therapy will potentially become available for patients with DR. This review provides an update on the current strategies utilized in DR gene therapy research. Several barriers to the clinical application of gene therapy for DR are highlighted, and future directions for this research are proposed.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Georgina Eloise Roberts
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia.
| |
Collapse
|
22
|
Mansour SE, Browning DJ, Wong K, Flynn HW, Bhavsar AR. The Evolving Treatment of Diabetic Retinopathy. Clin Ophthalmol 2020; 14:653-678. [PMID: 32184554 PMCID: PMC7061411 DOI: 10.2147/opth.s236637] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose To review the current therapeutic options for the management of diabetic retinopathy (DR) and diabetic macular edema (DME) and examine the evidence for integration of laser and pharmacotherapy. Methods A review of the PubMed database was performed using the search terms diabetic retinopathy, diabetic macular edema, neovascularization, laser photocoagulation, intravitreal injection, vascular endothelial growth factor (VEGF), vitrectomy, pars plana vitreous surgery, antiangiogenic therapy. With additional cross-referencing, this yielded 835 publications of which 301 were selected based on content and relevance. Results Many recent studies have evaluated the pharmacological, laser and surgical therapeutic strategies for the treatment and prevention of DR and DME. Several newer diagnostic systems such as optical coherence tomography (OCT), microperimetry, and multifocal electroretinography (mfERG) are also assisting in further refinements in the staging and classification of DR and DME. Pharmacological therapies for both DR and DME include both systemic and ocular agents. Systemic agents that promote intensive glycemic control, control of dyslipidemia and antagonists of the renin-angiotensin system demonstrate beneficial effects for both DR and DME. Ocular therapies include anti-VEGF agents, corticosteroids and nonsteroidal anti-inflammatory drugs. Laser therapy, both as panretinal and focal or grid applications continue to be employed in management of DR and DME. Refinements in laser devices have yielded more tissue-sparing (subthreshold) modes in which many of the benefits of conventional continuous wave (CW) lasers can be obtained without the adverse side effects. Recent attempts to lessen the burden of anti-VEGF injections by integrating laser therapy have met with mixed results. Increasingly, vitreoretinal surgical techniques are employed for less advanced stages of DR and DME. The development and use of smaller gauge instrumentation and advanced anesthesia agents have been associated with a trend toward earlier surgical intervention for diabetic retinopathy. Several novel drug delivery strategies are currently being examined with the goal of decreasing the therapeutic burden of monthly intravitreal injections. These fall into one of the five categories: non-biodegradable polymeric drug delivery systems, biodegradable polymeric drug delivery systems, nanoparticle-based drug delivery systems, ocular injection devices and with sustained release refillable devices. At present, there remains no one single strategy for the management of the particular stages of DR and DME as there are many options that have not been rigorously tested through large, randomized, controlled clinical trials. Conclusion Pharmacotherapy, both ocular and systemic, will be the primary mode of intervention in the management of DR and DME in many cases when cost and treatment burden are less constrained. Conventional laser therapy has become a secondary intervention in these instances, but remains a first-line option when cost and treatment burden are more constrained. Results with subthreshold laser appear promising but will require more rigorous study to establish its role as adjunctive therapy. Evidence to support an optimal integration of the various treatment options is lacking. Central to the widespread adoption of any therapeutic regimen for DR and DME is substantiation of safety, efficacy, and cost-effectiveness by a body of sound clinical trials.
Collapse
Affiliation(s)
- Sam E Mansour
- George Washington University, Washington, DC, USA.,Virginia Retina Center, Warrenton, VA, 20186, USA
| | - David J Browning
- Charlotte Eye Ear Nose & Throat Associates, Charlotte, NC 28210, USA
| | - Keye Wong
- Retina Associates of Sarasota, Sarasota, FL 34233, USA
| | - Harry W Flynn
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, USA
| | | |
Collapse
|
23
|
Ghaseminejad F, Kaplan L, Pfaller AM, Hauck SM, Grosche A. The role of Müller cell glucocorticoid signaling in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2019; 258:221-230. [PMID: 31734719 DOI: 10.1007/s00417-019-04521-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Diabetic retinopathy (DR) is a sight-threatening complication associated with the highly prevalent diabetes disorder. Both the microvascular damage and neurodegeneration detected in the retina caused by chronic hyperglycemia have brought special attention to Müller cells, the major macroglia of the retina that are responsible for retinal homeostasis. Given the role of glucocorticoid signaling in anti-inflammatory responses and the almost exclusive expression of glucocorticoid receptors (GRs) in retinal Müller cells, administration of corticosteroid agonists as a potential treatment option has been widely studied. Although these approaches have been moderately efficacious in treating or de-escalating DR pathomechanisms, there are various side effects and gaps of knowledge with regard to introducing exogenous glucocorticoids to the diseased retina. In this paper, we provide a review of the literature concerning the available evidence for the role of Müller cell glucocorticoid signaling in DR and we discuss previously investigated approaches in modulating this system as possible treatment options. Furthermore, we propose a novel alternative to the available choices of treatment by using gene therapy as a tool to regulate the expression of GR in retinal Müller cells. Upregulating GR expression allows for induced glucocorticoid signaling with more enduring effects compared to injection of agonists. Hence, repetitive injections would no longer be required. Lastly, side effects of glucocorticoid therapy such as glucocorticoid resistance of GR following chronic exposure to excess ligands or agonists can be avoided.
Collapse
Affiliation(s)
- Farhad Ghaseminejad
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, Martinsried, Germany
| | - Lew Kaplan
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, Martinsried, Germany
| | - Anna M Pfaller
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, Martinsried, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Heidemannstr. 1, Neuherberg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, Martinsried, Germany.
| |
Collapse
|
24
|
Yu L, Fu J, Yu N, Wu Y, Han N. Long noncoding RNA MALAT1 participates in the pathological angiogenesis of diabetic retinopathy in an oxygen-induced retinopathy mouse model by sponging miR-203a-3p. Can J Physiol Pharmacol 2019; 98:219-227. [PMID: 31689123 DOI: 10.1139/cjpp-2019-0489] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diabetic retinopathy (DR) is a devastating complication of diabetes. The aim of the present study is to investigate the exact role and mechanism of long noncoding RNA MALAT1 (MALAT1) in the progress of DR. An oxygen-induced retinopathy (OIR) mouse model and high glucose (HG) stimulated human retinal microvascular endothelial cells (HRMECs) were employed to mimic the pathological statues of DR. Quantitative real-time PCR (qRT-PCR) and Western blot results showed that MALAT1, VEGFA, and HIF-1α levels were increased in DR retinal tissues and HG-stimulated HRMECs, whereas the expression of miR-203a-3p was decreased. Knockdown of MALAT1 or upregulation of miR-203a-3p both suppressed HG-induced proliferation, migration, and tube formation of HRMECs. A dual-luciferase reporter assay showed that miR-203a-3p could bind to the predicted seed regions of MALAT1 as evidenced by the reduced luciferase activity. Furthermore, enforced downregulation of miR-203a-3p abolished the suppressive effect of MALAT1 silencing on HRMEC cell migration and tube formation. In conclusion, these data demonstrated that MALAT1 may affect angiogenesis by sponging miR-203a-3p in DR, suggesting that MALAT1 may act as a novel therapeutic target for the treatment of DR.
Collapse
Affiliation(s)
- Li Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Jinling Fu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Na Yu
- Department of Blood Transfusion, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Yazhen Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Ning Han
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
25
|
Ludwig PE, Freeman SC, Janot AC. Novel stem cell and gene therapy in diabetic retinopathy, age related macular degeneration, and retinitis pigmentosa. Int J Retina Vitreous 2019; 5:7. [PMID: 30805203 PMCID: PMC6373096 DOI: 10.1186/s40942-019-0158-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Degenerative retinal disease leads to significant visual morbidity worldwide. Diabetic retinopathy and macular degeneration are leading causes of blindness in the developed world. While current therapies for these diseases slow disease progression, stem cell and gene therapy may also reverse the effects of these, and other, degenerative retinal conditions. Novel therapies being investigated include the use of various types of stem cells in the regeneration of atrophic or damaged retinal tissue, the prolonged administration of neurotrophic factors and/or drug delivery, immunomodulation, as well as the replacement of mutant genes, and immunomodulation through viral vector delivery. This review will update the reader on aspects of stem cell and gene therapy in diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa and other less common inherited retinal dystrophies. These therapies include the use of adeno-associated viral vector-based therapies for treatment of various types of retinitis pigmentosa and dry age-related macular degeneration. Other potential therapies reviewed include the use of mesenchymal stem cells in local immunomodulation, and the use of stem cells in generating structures like three-dimensional retinal sheets for transplantation into degenerative retinas. Finally, aspects of stem cell and gene therapy in diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, and other less common inherited retinal dystrophies will be reviewed.
Collapse
Affiliation(s)
- Parker E Ludwig
- 1Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178 USA
| | - S Caleb Freeman
- 1Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178 USA
| | - Adam C Janot
- Vitreoretinal Institute, 7698 Goodwood Blvd, Baton Rouge, LA 70806 USA.,3Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA USA
| |
Collapse
|
26
|
Ramlogan-Steel CA, Murali A, Andrzejewski S, Dhungel B, Steel JC, Layton CJ. Gene therapy and the adeno-associated virus in the treatment of genetic and acquired ophthalmic diseases in humans: Trials, future directions and safety considerations. Clin Exp Ophthalmol 2019; 47:521-536. [PMID: 30345694 DOI: 10.1111/ceo.13416] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 12/27/2022]
Abstract
Voretigene neparvovec-rzyl was recently approved for the treatment of Leber congenital amaurosis, and the use of gene therapy for eye disease is attracting even greater interest. The eye has immune privileged status, is easily accessible, requires a reduced dosage of therapy due to its size and is highly compartmentalized, significantly reducing systemic spread. Adeno-associated virus (AAV), with its low pathogenicity, prolonged expression profile and ability to transduce multiple cell types, has become the leading gene therapy vector. Target diseases have moved beyond currently untreatable inherited dystrophies to common, partially treatable acquired conditions such as exudative age-related macular degeneration and glaucoma, but use of the technology in these conditions imposes added obligations for caution in vector design. This review discusses the current status of AAV gene therapy trials in genetic and acquired ocular diseases, and explores new scientific developments, which could help ensure effective and safe use of the therapy in the future.
Collapse
Affiliation(s)
- Charmaine A Ramlogan-Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia.,Greenslopes Clinical School, Faculty of Medicine, University of Queensland, Greenslopes Hospital, Brisbane, Australia.,Medical and Applied Science, Central Queensland University, School of Health, Rockhampton, Australia
| | - Aparna Murali
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia.,Greenslopes Clinical School, Faculty of Medicine, University of Queensland, Greenslopes Hospital, Brisbane, Australia
| | - Slawomir Andrzejewski
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia.,Greenslopes Clinical School, Faculty of Medicine, University of Queensland, Greenslopes Hospital, Brisbane, Australia
| | - Bijay Dhungel
- Greenslopes Clinical School, Faculty of Medicine, University of Queensland, Greenslopes Hospital, Brisbane, Australia
| | - Jason C Steel
- Medical and Applied Science, Central Queensland University, School of Health, Rockhampton, Australia
| | - Christopher J Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, Australia.,Greenslopes Clinical School, Faculty of Medicine, University of Queensland, Greenslopes Hospital, Brisbane, Australia
| |
Collapse
|
27
|
Whitehead M, Wickremasinghe S, Osborne A, Van Wijngaarden P, Martin KR. Diabetic retinopathy: a complex pathophysiology requiring novel therapeutic strategies. Expert Opin Biol Ther 2018; 18:1257-1270. [PMID: 30408422 PMCID: PMC6299358 DOI: 10.1080/14712598.2018.1545836] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Diabetic retinopathy (DR) is the leading cause of vision loss in the working age population of the developed world. DR encompasses a complex pathology, and one that is reflected in the variety of currently available treatments, which include laser photocoagulation, glucocorticoids, vitrectomy and agents which neutralize vascular endothelial growth factor (VEGF). Whilst these options demonstrate modest clinical benefits, none is yet to fully attenuate clinical progression or reverse damage to the retina. This has led to an interest in developing novel therapies for the condition, such as mediators of angiopoietin signaling axes, immunosuppressants, nonsteroidal anti-inflammatory drugs (NSAIDs), oxidative stress inhibitors and vitriol viscosity inhibitors. Further, preclinical research suggests that gene therapy treatment for DR could provide significant benefits over existing treatments options. AREAS COVERED Here we review the pathophysiology of DR and provide an overview of currently available treatments. We then outline recent advances made towards improved patient outcomes and highlight the potential of the gene therapy paradigm to revolutionize DR management. EXPERT OPINION Whilst significant progress has been made towards our understanding of DR, further research is required to enable the development of a detailed spatiotemporal model of the disease. In addition, we hope that improvements in our knowledge of the condition facilitate therapeutic innovations that continue to address unmet medical need and improve patient outcomes, with a focus on the development of targeted medicines.
Collapse
Affiliation(s)
- Michael Whitehead
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sanjeewa Wickremasinghe
- Centre for Eye Research Australia, University of Melbourne and Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Van Wijngaarden
- Centre for Eye Research Australia, University of Melbourne and Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Keith R. Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Eye Department, Addenbrooke’s Hospital, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge, UK
- Wellcome Trust – MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
28
|
Bousseau S, Vergori L, Soleti R, Lenaers G, Martinez MC, Andriantsitohaina R. Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis. Pharmacol Ther 2018; 191:92-122. [DOI: 10.1016/j.pharmthera.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
|
29
|
Igić R. Four decades of ocular renin-angiotensin and kallikrein-kinin systems (1977–2017). Exp Eye Res 2018; 166:74-83. [DOI: 10.1016/j.exer.2017.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/09/2017] [Accepted: 05/20/2017] [Indexed: 12/31/2022]
|
30
|
HuoXueJieDu Formula Alleviates Diabetic Retinopathy in Rats by Inhibiting SOCS3-STAT3 and TIMP1-A2M Pathways. Int J Genomics 2017; 2017:4832125. [PMID: 29318137 PMCID: PMC5727685 DOI: 10.1155/2017/4832125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/30/2017] [Accepted: 10/08/2017] [Indexed: 02/07/2023] Open
Abstract
HuoXueJieDu (HXJD) formula exerts protective effects against diabetic retinopathy (DR) in rats, but its underlying mechanism remains unknown. In the present study, the diabetic rats were established using streptozocin. The administration of HXJD was initiated at 20 weeks after diabetes induction and continued for 12 weeks. Whole genome expression profiles in rat retinas were examined using microarray technology. Differential gene expression and pathway enrichment analysis were conducted on the microarray data, with validation through real-time PCR and immunohistochemical staining. The results showed that 170 genes and several IPA canonical pathways related to inflammation, matrix metabolism, and phototransduction were regulated by HXJD. PCR validation of selected genes, including SOCS3, STAT3, TIMP1, and A2M, confirmed the gene expression changes influenced by HXJD. In addition, the immunohistochemical staining results suggested that critical members of the SOCS3-STAT3 pathway were also affected by HXJD. Taken together, these results indicated that SOCS3-STAT3 and TIMP1-A2M pathways might mediate the alleviation of HXJD activities in rats with diabetic retinopathy.
Collapse
|
31
|
Prieto-Bermejo R, Hernández-Hernández A. The Importance of NADPH Oxidases and Redox Signaling in Angiogenesis. Antioxidants (Basel) 2017; 6:antiox6020032. [PMID: 28505091 PMCID: PMC5488012 DOI: 10.3390/antiox6020032] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/28/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells have to cope with the constant generation of reactive oxygen species (ROS). Although the excessive production of ROS might be deleterious for cell biology, there is a plethora of evidence showing that moderate levels of ROS are important for the control of cell signaling and gene expression. The family of the nicotinamide adenine dinucleotide phosphate oxidases (NADPH oxidases or Nox) has evolved to produce ROS in response to different signals; therefore, they fulfil a central role in the control of redox signaling. The role of NADPH oxidases in vascular physiology has been a field of intense study over the last two decades. In this review we will briefly analyze how ROS can regulate signaling and gene expression. We will address the implication of NADPH oxidases and redox signaling in angiogenesis, and finally, the therapeutic possibilities derived from this knowledge will be discussed.
Collapse
Affiliation(s)
- Rodrigo Prieto-Bermejo
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain.
| | | |
Collapse
|