1
|
Liu Y, Wang FQ, Hua XH, Yang SH, Wang LN, Xu YS, Shao CY, Gou XB, Liu YM. Design, synthesis and biological evaluation of buthutin derivatives as cardioprotective agents. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:14. [PMID: 39907866 PMCID: PMC11799461 DOI: 10.1007/s13659-025-00497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
Natural products are the important sources in cardiovascular drug development. In this study, twenty-nine buthutin derivatives were designed, synthesized, and evaluated for their NHE-1 inhibition and protective effects on cardiomyocyte injury. The structure of the newly synthesized compounds had been confirmed by 1H-NMR, 13C-NMR, and HR-ESI-MS spectra. Among all target compounds at 1 μM, compounds 9d, 9f, 9k, 9m, and 9n, with a protection ratio exceeding 30%, exerted stronger protective effects on H9c2 cardiomyocyte than positive control dexrazoxane and buthutin A. Meanwhile, compounds 9k, 9m, and 9o showed the significant NHE-1 inhibitory activities on H9c2 cardiomyocyte, all with a dpHi/min value less than 0.23. What is more, compounds 9k, 9m, 9o and buthutin A all exhibited the specificity on NHE-1 inhibition. Molecular modelling studies suggested the ability of compounds 9m and 9o to establish interactions with three hydrogen bonds to Asp267 and Glu346 of NHE-1, but also the ability with much lower CDOCKER energies than positive control cariporide and buthutin A. The structure-activity relationship (SAR) studies suggested that the presences of amide group, four-carbon linker, and para hydroxyl benzene ring were advantageous pharmacophores for above two pharmacological actions. This research would open new avenues for developing amide-guanidine-based cardioprotective agents.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Pharmacy Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Fa-Qi Wang
- Department of Pharmacy Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Xin-Hao Hua
- Department of Pharmacy Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Shu-Han Yang
- Department of Pharmacy Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Li-Ning Wang
- College of Traditional Chinese Medicine, Tianjin Univerisity of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Yun-Sheng Xu
- Department of Pharmacy Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Chen-Yue Shao
- Department of Pharmacy Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Xiang-Bo Gou
- Department of Pharmacy Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| | - Yu-Ming Liu
- Department of Pharmacy Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
2
|
Wang R, Chen Y, Han J, Ye H, Yang H, Li Q, He Y, Ma B, Zhang J, Ge Y, Wang Z, Sun B, Liu H, Cheng L, Wang Z, Lin G. Selectively targeting the AdipoR2-CaM-CaMKII-NOS3 axis by SCM-198 as a rapid-acting therapy for advanced acute liver failure. Nat Commun 2024; 15:10690. [PMID: 39681560 DOI: 10.1038/s41467-024-55295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/08/2024] [Indexed: 12/18/2024] Open
Abstract
Acute liver failure (ALF) is a hepatology emergency with rapid hepatic destruction, multiple organ failures, and high mortality. Despite decades of research, established ALF has minimal therapeutic options. Here, we report that the small bioactive compound SCM-198 increases the survival of male ALF mice to 100%, even administered 24 hours after ALF establishment. We identify adiponectin receptor 2 (AdipoR2) as a selective target of SCM-198, with the AdipoR2 R335 residue being critical for the binding and signaling of SCM-198-AdipoR2 and AdipoR2 Y274 residue serving as a molecular switch for Ca2+ influx. SCM-198-AdipoR2 binding causes Ca2+ influx and elevates the phosphorylation levels of CaMKII and NOS3 in the AdipoR2-CaM-CaMKII-NOS3 complex identified in this study, rapidly inducing nitric oxide production for liver protection in murine ALF. SCM-198 also protects human ESC-derived liver organoids from APAP/TAA injuries. Thus, selectively targeting the AdipoR2-CaM-CaMKII-NOS3 axis by SCM-198 is a rapid-acting therapeutic strategy for advanced ALF.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Youwei Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Jiazhen Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Huikang Ye
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Huiran Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qianyan Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yizhen He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Boyu Ma
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Junjie Zhang
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Yanli Ge
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Wang
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Bo Sun
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Huahua Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China.
| | - Zhirong Wang
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China.
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Yang R, Yan L, Xu T, Zhang K, Lu X, Xie C, Fu W. Injectable bioadhesive hydrogel as a local nanomedicine depot for targeted regulation of inflammation and ferroptosis in rheumatoid arthritis. Biomaterials 2024; 311:122706. [PMID: 39032219 DOI: 10.1016/j.biomaterials.2024.122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/23/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Medicine intervention is the major clinical treatment used to relieve the symptoms and delay the progression of rheumatoid arthritis (RA), but is limited by its poor targeted delivery and short therapeutic duration. Herein, we developed an injectable and bioadhesive gelatin-based (Gel) hydrogel as a local depot of leonurine (Leon)-loaded and folate-functionalized polydopamine (FA-PDA@Leon) nanoparticles for anti-inflammation and chondroprotection in RA. The nanoparticles could protect Leon and facilitate its entry into the M1 phenotype macrophage for intracellular delivery of Leon, while the hydrogel tightly adhered to the tissues in the joint cavity and prolonged the retention of FA-PDA@Leon nanoparticles, thus achieving higher availability and therapeutic efficiency of Leon. In vitro and in vivo experiments demonstrated that the Gel/FA-PDA@Leon hydrogel could strongly suppress the inflammatory response by down-regulating the JAK2/STAT3 signaling pathway in macrophages and protect the chondrocytes from ferritinophagy/ferroptosis. This contributed to maintaining the structural integrity of articular cartilage and accelerating the joint functional recovery. This work provides an effective and convenient strategy to achieve higher bioavailability and long-lasting therapeutic duration of medicine intervention in arthritis diseases.
Collapse
Affiliation(s)
- Runze Yang
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China
| | - Liwei Yan
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China
| | - Tianhao Xu
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China
| | - Kaibo Zhang
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Weili Fu
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
4
|
Yu X, Zhang Y, Wang J, Wang X, Chen X, Yin K, Zhu X. Leonurine improves atherosclerosis by activating foam cell autophagy and metabolic remodeling via METTL3-mediated AKT1S1 mRNA stability modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155939. [PMID: 39214016 DOI: 10.1016/j.phymed.2024.155939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/07/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Atherosclerosis (AS) is the most prevalent cardiovascular disease and remains the major contributor to death and mortality globally. Leonurine (LEO) is a unique alkaloid compound with protective effects on the cardiovascular system. However, the exact mechanisms underlying its cardiovascular-protecting action are still not fully elucidated. The methyltransferase 3 (METTL3), the catalytic core of the N6-methyladenosine modification (m6A) methyltransferase complex, has been shown to inhibit autophagy and exacerbate the process of AS via regulation of m6A modification of mRNA. PURPOSE We aimed to determine whether the inhibited effect of LEO on AS is related to METTL3-mediated AKT1S1 stability. METHODS The apolipoprotein E (ApoE) knockout mice was subjected to a high-fat diet (HFD), and THP-1 derived macrophages was exposed to oxidized low-density lipoprotein (ox-LDL), to establish the animal and cellular models of AS, respectively. RESULTS We found that LEO effectively improved AS and reduced the plaque area and inflammation via diminishing macrophage lipid accumulation and remodeling the lipid metabolism profile. LEO activated ox-LDL-induced macrophage autophagy, enhancing lipid metabolism decrease, according to the lipidomic and molecular biology analyses. Additionally, LEO caused a marked increase in autophagy marker levels in mouse models with advanced AS. Furthermore, we found that LEO reactivated autophagy and reversed lipid accumulation by suppressing METTL3 expression. The m6A-seq from ox-LDL-induced macrophages showed that a total of five autophagy-related mRNA transcripts (AKT1S1, AKT1, RB1CC1, CFLAR, and MTMR4) were altered, and AKT1S1 was significantly upregulated by LEO. Mechanistically, LEO-mediated regulation of METTL3 decreased AKT1S1 expression by attenuating its mRNA stability. Silencing AKT1S1 inhibited LEO-METTL3 axis-mediated autophagy and enhanced lipid accumulation in ox-LDL-induced macrophages. CONCLUSION The study first revealed that LEO exerts anti-atherosclerotic effect by activating METTL3-mediated macrophage autophagy in vivo and in vitro. The mechanism of LEO was further found to be the enhancement of METTL3-mediated AKT1S1 stability to activate autophagy thereby reducing lipid accumulation. This study provides a new perspective of natural medicines on the treatment of AS via an epigenetic manner.
Collapse
Affiliation(s)
- Xinyuan Yu
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, PR China
| | - Yaoyuan Zhang
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China
| | - Juan Wang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, PR China
| | - Xiaodan Wang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, PR China
| | - Xu Chen
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, PR China
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, PR China.
| | - Xiao Zhu
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, PR China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, PR China.
| |
Collapse
|
5
|
Ma W, Zhao X, Wang Q, Wu X, Yang T, Chen Y, Zhu Y, Wang X. SCM-198 ameliorates the quality of postovulatory and maternally aged oocytes by reducing oxidative stress. J Ovarian Res 2024; 17:178. [PMID: 39217393 PMCID: PMC11365136 DOI: 10.1186/s13048-024-01504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Oocyte aging is a key constraint on oocyte quality, leading to fertilization failure and abnormal embryonic development. In addition, it is likely to generate unfavorable assisted reproductive technology (ART) outcomes. SCM-198, a synthetic form of leonurine, was found to rescue the rate of oocyte fragmentation caused by postovulatory aging. Therefore, the aim of this study was to conduct a more in-depth investigation of SCM-198 by exploring its relationship with aged oocytes after ovulation or maternal aging and clarifying whether it affects cell quality. The results indicate that, compared to the postovulatory aged group, the 50 µM SCM-198 group significantly improved sperm-egg binding and increased fertilization of aged oocytes, restoring the spindle apparatus/chromosome structure, cortical granule distribution, and ovastacin and Juno protein distribution. The 50 µM SCM-198 group showed significantly normal mitochondrial distribution, low levels of reactive oxygen species (ROS), and a small quantity of early oocyte apoptosis compared to the postovulatory aged group. Above all, in vivo supplementation with SCM-198 effectively eliminated excess ROS and reduced the spindle/chromosome structural defects in aged mouse oocytes. In summary, these findings indicate that SCM-198 inhibits excessive oxidative stress in oocytes and alters oocyte quality both in vitro and in vivo.
Collapse
Affiliation(s)
- Wei Ma
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Xi Zhao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Qingxin Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Xue Wu
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Tingting Yang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Yuqi Chen
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, SAR, China.
| | - Xia Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
| |
Collapse
|
6
|
Dong X, Zhuang HW, Wen RJ, Huang YS, Liang BX, Li H, Xian SX, Li C, Wang LJ, Wang JY. Xinyang tablet alleviated cardiac dysfunction in a cardiac pressure overload model by regulating the receptor-interacting serum/three-protein kinase 3/FUN14 domain containing 1-mediated mitochondrial unfolded protein response and mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118152. [PMID: 38614260 DOI: 10.1016/j.jep.2024.118152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xinyang tablet (XYT) has been used for heart failure (HF) for over twenty years in clinical practice, but the underlying molecular mechanism remains poorly understood. AIMS OF THE STUDY In the present study, we aimed to explore the protective effects of XYT in HF in vivo and in vitro. MATERIALS AND METHODS Transverse aortic constriction was performed in vivo to establish a mouse model of cardiac pressure overload. Echocardiography, tissue staining, and real-time quantitative PCR (qPCR) were examined to evaluate the protective effects of XYT on cardiac function and structure. Adenosine 5'-triphosphate production, reactive oxygen species staining, and measurement of malondialdehyde and superoxide dismutase was used to detect mitochondrial damage. Mitochondrial ultrastructure was observed by transmission electron microscope. Immunofluorescence staining, qPCR, and Western blotting were performed to evaluate the effect of XYT on the mitochondrial unfolded protein response and mitophagy, and to identify its potential pharmacological mechanism. In vitro, HL-1 cells and neonatal mouse cardiomyocytes were stimulated with Angiotensin II to establish the cell model. Western blotting, qPCR, immunofluorescence staining, and flow cytometry were utilized to determine the effects of XYT on cardiomyocytes. HL-1 cells overexpressing receptor-interacting serum/three-protein kinase 3 (RIPK3) were generated by transfection of RIPK3-overexpressing lentiviral vectors. Cells were then co-treated with XYT to determine the molecular mechanisms. RESULTS In the present study, XYT was found to exerta protective effect on cardiac function and structure in the pressure overload mice. And it was also found XYT reduced mitochondrial damage by enhancing mitochondrial unfolded protein response and restoring mitophagy. Further studies showed that XYT achieved its cardioprotective role through regulating the RIPK3/FUN14 domain containing 1 (FUNDC1) signaling. Moreover, the overexpression of RIPK3 successfully reversed the XYT-induced protective effects and significantly attenuated the positive effects on the mitochondrial unfolded protein response and mitophagy. CONCLUSIONS Our findings indicated that XYT prevented pressure overload-induced HF through regulating the RIPK3/FUNDC1-mediated mitochondrial unfolded protein response and mitophagy. The information gained from this study provides a potential strategy for attenuating mitochondrial damage in the context of pressure overload-induced heart failure using XYT.
Collapse
Affiliation(s)
- Xin Dong
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hao-Wen Zhuang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rui-Jia Wen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu-Sheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bing-Xue Liang
- Chongqing College of Traditional Chinese Medicine, Chongqing, 400000, China
| | - Huan Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shao-Xiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chun Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ling-Jun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jun-Yan Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Yang J, Yu B, Zheng J. Natural herbal extract roles and mechanisms in treating cerebral ischemia: A systematic review. Front Pharmacol 2024; 15:1424146. [PMID: 39156109 PMCID: PMC11327066 DOI: 10.3389/fphar.2024.1424146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024] Open
Abstract
Background Stroke has been the focus of medical research due to its serious consequences and sequelae. Among the tens of millions of new stroke patients every year, cerebral ischemia patients account for the vast majority. While cerebral ischemia drug research and development is still ongoing, most drugs are terminated at preclinical stages due to their unacceptable toxic side effects. In recent years, natural herbs have received considerable attention in the pharmaceutical research and development field due to their low toxicity levels. Numerous studies have shown that natural herbs exert actions that cannot be ignored when treating cerebral ischemia. Methods We reviewed and summarized the therapeutic effects and mechanisms of different natural herbal extracts on cerebral ischemia to promote their application in this field. We used keywords such as "natural herbal extract," "herbal medicine," "Chinese herbal medicine" and "cerebral ischemia" to comprehensively search PubMed, ScienceDirect, ScienceNet, CNKI, and Wanfang databases, after which we conducted a detailed screening and review strategy. Results We included 120 high-quality studies up to 10 January 2024. Natural herbal extracts had significant roles in cerebral ischemia treatments via several molecular mechanisms, such as improving regional blood flow disorders, protecting the blood-brain barrier, and inhibiting neuronal apoptosis, oxidative stress and inflammatory responses. Conclusion Natural herbal extracts are represented by low toxicity and high curative effects, and will become indispensable therapeutic options in the cerebral ischemia treatment field.
Collapse
Affiliation(s)
| | | | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Liu S, Sun C, Tang H, Peng C, Peng F. Leonurine: a comprehensive review of pharmacokinetics, pharmacodynamics, and toxicology. Front Pharmacol 2024; 15:1428406. [PMID: 39101131 PMCID: PMC11294146 DOI: 10.3389/fphar.2024.1428406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
Leonurine is an alkaloid unique to the Leonurus genus, which has many biological activities, such as uterine contraction, anti-inflammation, anti-oxidation, regulation of cell apoptosis, anti-tumor, angiogenesis, anti-platelet aggregation, and inhibition of vasoconstriction. This paper summarizes the extraction methods, synthetic pathways, biosynthetic mechanisms, pharmacokinetic properties, pharmacological effects in various diseases, toxicology, and clinical trials of leonurine. To facilitate a successful transition into clinical application, intensified efforts are required in several key areas: structural modifications of leonurine to optimize its properties, comprehensive pharmacokinetic assessments to understand its behavior within the body, thorough mechanistic studies to elucidate how it works at the molecular level, rigorous safety evaluations and toxicological investigations to ensure patient wellbeing, and meticulously conducted clinical trials to validate its efficacy and safety profile.
Collapse
Affiliation(s)
- Siyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Cheng R, Wang X, Huang L, Lu Z, Wu A, Guo S, Li C, Mao W, Xie Y, Xu P, Tian R. Novel insights into the protective effects of leonurine against acute kidney injury: Inhibition of ER stress-associated ferroptosis via regulating ATF4/CHOP/ACSL4 pathway. Chem Biol Interact 2024; 395:111016. [PMID: 38670420 DOI: 10.1016/j.cbi.2024.111016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Acute kidney injury (AKI) is a common and serious global health problem with high risks of mortality and the development of chronic kidney diseases. Leonurine is a unique bioactive component from Leonurus japonicus Houtt. and exerts antioxidant, antiapoptotic or anti-inflammatory properties. This study aimed to explore the benefits of leonurine on AKI and the possible mechanisms involved, with a particular foc on the regulation of ferroptosis and endoplasmic reticulum (ER) stress. Our results showed that leonurine exhibited prominent protective effects against AKI, as evidenced by the amelioration of histopathological alterations and reduction of renal dysfunction. In addition, leonurine significantly suppressed ferroptosis in AKI both in vivo and in vitro by effectively restoring ultrastructural abnormalities in mitochondria, decreasing ASCL4 and 4-HNE levels, scavenging reactive oxygen species (ROS), as well as increasing GPX4 and GSH levels. In parallel, leonurine also markedly mitigated ER stress via down-regulating PERK, eIF-2α, ATF4, CHOP and CHAC1. Further studies suggested that ER stress was closely involved in erastin-induced ferroptosis, and leonurine protected tubular epithelial cells in vitro by inhibiting ER stress-associated ferroptosis via regulating ATF4/CHOP/ASCL4 signalling pathway. Mechanistically, ATF4 silencing in vitro regulated CHOP and ACSL4 expressions, ultimately weakening both ER stress and ferroptosis. Notably, analyses of single-cell RNA sequencing data revealed that ATF4, CHOP and ASCL4 in renal tubular cells were all abnormally upregulated in patients with AKI compared to healthy controls, suggesting their contributions to the pathogenesis of AKI. Altogether, these findings suggest that leonurine alleviates AKI by inhibiting ER stress-associated ferroptosis via regulating ATF4/CHOP/ASCL4 signalling pathway, thus providing novel mechanisms for AKI treatment.
Collapse
Affiliation(s)
- Ran Cheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaowan Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Lihua Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhisheng Lu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Aijun Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shan Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuang Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510120, China
| | - Wei Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Ying Xie
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Peng Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510120, China.
| | - Ruimin Tian
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510120, China; State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
10
|
Tang Z, Meng S, Yang X, Xiao Y, Wang W, Liu Y, Wu K, Zhang X, Guo H, Zhu YZ, Wang X. Neutrophil-Mimetic, ROS Responsive, and Oxygen Generating Nanovesicles for Targeted Interventions of Refractory Rheumatoid Arthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307379. [PMID: 38084463 DOI: 10.1002/smll.202307379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/28/2023] [Indexed: 05/18/2024]
Abstract
Rheumatoid arthritis (RA) is the most prevalent inflammatory joint disease worldwide, leading to irreversible disability and even mortality. Unfortunately, current treatment regimens fail to cure RA due to low therapeutic responses and off-target side effects. Herein, a neutrophil membrane-cloaked, natural anti-arthritic agent leonurine (Leo), and catalase (CAT) co-loaded nanoliposomal system (Leo@CAT@NM-Lipo) is constructed to remodel the hostile microenvironment for RA remission. Due to the inflammation tropism inherited from neutrophils, Leo@CAT@NM-Lipo can target and accumulate in the inflamed joint cavity where high-level ROS can be catalyzed into oxygen by CAT to simultaneously accelerate the drug release and alleviate hypoxia at the lesion site. Besides, the neutrophil membrane camouflaging also enhances the anti-inflammatory potentials of Leo@CAT@NM-Lipo by robustly absorbing pro-arthritogenic cytokines and chemokines. Consequently, Leo@CAT@NM-Lipo successfully alleviated paw swelling, reduced arthritis score, mitigated bone and cartilage damage, and reversed multiple organ dysfunctions in adjuvant-induced arthritis rats (AIA) rats by synergistic effects of macrophage polarization, inflammation resolution, ROS scavenging, and hypoxia relief. Furthermore, Leo@CAT@NM-Lipo manifested excellent biocompatibility both at the cellular and animal levels. Taken together, the study provided a neutrophil-mimetic and ROS responsive nanoplatform for targeted RA therapy and represented a promising paradigm for the treatment of a variety of inflammation-dominated diseases.
Collapse
Affiliation(s)
- Zhuang Tang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Shiyu Meng
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Xiaoxue Yang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Yi Xiao
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Wentao Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Yonghang Liu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Kefan Wu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Xican Zhang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Hui Guo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Xiaolin Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| |
Collapse
|
11
|
Yin X, Gao Q, Li C, Yang Q, HongliangDong, Li Z. Leonurine alleviates vancomycin nephrotoxicity via activating PPARγ and inhibiting the TLR4/NF-κB/TNF-α pathway. Int Immunopharmacol 2024; 131:111898. [PMID: 38513573 DOI: 10.1016/j.intimp.2024.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/10/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Vancomycin (VCM) is the first-line antibiotic for severe infections, but nephrotoxicity limits its use. Leonurine (Leo) has shown protective effects against kidney damage. However, the effect and mechanism of Leo on VCM nephrotoxicity remain unclear. In this study, mice and HK-2 cells exposed to VCM were treated with Leo. Biochemical and pathological analysis and fluorescence probe methods were performed to examine the role of Leo in VCM nephrotoxicity. Immunohistochemistry, q-PCR, western blot, FACS, and Autodock software were used to verify the mechanism. The present results indicate that Leo significantly alleviates VCM-induced renal injury, morphological damage, and oxidative stress. Increased intracellular and mitochondrial ROS in HK-2 cells and decreased mitochondrial numbers in mouse renal tubular epithelial cells were reversed in Leo-administrated groups. In addition, molecular docking analysis using Autodock software revealed that Leo binds to the PPARγ protein with high affinity. Mechanistic exploration indicated that Leo inhibited VCM nephrotoxicity via activating PPARγ and inhibiting the TLR4/NF-κB/TNF-α inflammation pathway. Taken together, our results indicate that the PPARγ inhibition and inflammation reactions were implicated in the VCM nephrotoxicity and provide a promising therapeutic strategy for renal injury.
Collapse
Affiliation(s)
- Xuedong Yin
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; School of Medicine, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Qian Gao
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; School of Medicine, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Chensuizi Li
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; School of Medicine, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Qiaoling Yang
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - HongliangDong
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200120, China.
| | - Zhiling Li
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
12
|
Wang M, Yang L, Sun G, Shao Y, Liu Y, Yang H, Wang Y, Zhang M, Shang Y, Gu X. Assessment of the Effect of Leonurine Hydrochloride in a Mouse Model of PCOS by Gene Expression Profiling. Genes (Basel) 2024; 15:507. [PMID: 38674441 PMCID: PMC11050333 DOI: 10.3390/genes15040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disease commonly associated with metabolic disorders in females. Leonurine hydrochloride (Leo) plays an important role in regulating immunity, tumours, uterine smooth muscle, and ovarian function. However, the effect of Leo on PCOS has not been reported. Here, we used dehydroepiandrosterone to establish a mouse model of PCOS, and some mice were then treated with Leo by gavage. We found that Leo could improve the irregular oestros cycle of PCOS mice, reverse the significantly greater serum testosterone (T) and luteinising hormone (LH) levels, significantly reduce the follicle-stimulating hormone (FSH) level, and significantly increase the LH/FSH ratio of PCOS mice. Leo could also change the phenomenon of ovaries in PCOS mice presented with cystic follicular multiplication and a lacking corpus luteum. Transcriptome analysis identified 177 differentially expressed genes related to follicular development between the model and Leo groups. Notably, the cAMP signalling pathway, neuroactive ligand-receptor interactions, the calcium signalling pathway, the ovarian steroidogenesis pathway, and the Lhcgr, Star, Cyp11a, Hsd17b7, Camk2b, Calml4, and Phkg1 genes may be most related to improvements in hormone levels and the numbers of ovarian cystic follicles and corpora lutea in PCOS mice treated by Leo, which provides a reference for further study of the mechanism of Leo.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Li Yang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Guojie Sun
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Yongbin Shao
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Yuran Liu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Huiying Yang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Yan Wang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Mengyuan Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Yunxia Shang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| | - Xinli Gu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (M.W.); (G.S.); (Y.S.); (Y.L.); (H.Y.); (Y.W.); (M.Z.); (Y.S.)
| |
Collapse
|
13
|
Li Y, Zhu Q, He R, Du J, Qin X, Li Y, Liang X, Wang J. The NFκB Signaling Pathway Is Involved in the Pathophysiological Process of Preeclampsia. Geburtshilfe Frauenheilkd 2024; 84:334-345. [PMID: 38618576 PMCID: PMC11006561 DOI: 10.1055/a-2273-6318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/20/2024] [Indexed: 04/16/2024] Open
Abstract
The high prevalence of preeclampsia (PE) is a major cause of maternal and fetal mortality and affects the long-term prognosis of both mother and baby. Termination of pregnancy is currently the only effective treatment for PE, so there is an urgent need for research into its pathogenesis and the development of new therapeutic approaches. The NFκB family of transcription factors has an essential role in inflammation and innate immunity. In this review, we summarize the role of NFκB in normal and preeclampsia pregnancies, the role of NFκB in existing treatment strategies, and potential NFκB treatment strategies.
Collapse
Affiliation(s)
- Yaxi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Qinying Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xue Qin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Meng Y, Xi T, Fan J, Yang Q, Ouyang J, Yang J. The inhibition of FTO attenuates the antifibrotic effect of leonurine in rat cardiac fibroblasts. Biochem Biophys Res Commun 2024; 693:149375. [PMID: 38128243 DOI: 10.1016/j.bbrc.2023.149375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Myocardial fibrosis (MF) is a common pathological condition in cardiovascular diseases that often causes severe cardiac dysfunction. MF is characterized by changes in cardiomyocytes, cardiac fibroblasts (CFs), levels of collagen (Col) -1, -3, and overdeposition of the extracellular matrix. Our previous research showed that leonurine (LE) effectively inhibits collagen synthesis and differentiation of CFs, but the mechanism is not fully elucidated. Recent evidence indicates that fat mass and obesity-associated proteins (FTO) regulates the occurrence and development of MF. This study aimed to explore the role of FTO in the antifibrotic effects of LE. METHODS Neonatal rat CFs were isolated, and induced using angiotensin II (Ang II) to establish a cell model of MF. Cell viability, wound healing and transwell assays were used to detect cell activity and migration ability. The protein and mRNA levels of MF-related factors were measured following stimulation with Ang II and LE under normal conditions or after FTO knockdown. The RNA methylation level was measured by dot blot assay. RESULTS The results showed that LE (20, 40 μM) was not toxic to normal CFs. LE reduced the proliferation, migration and collagen synthesis of Ang II-induced CFs. Further investigation showed that FTO was downregulated by Ang II stimulation, whereas LE reversed this effect. FTO knockdown facilitated the migration of CFs, upregulated the protein levels of Col-3, α-SMA and Col-1 in Ang II and LE-stimulated CFs, and enhanced the fluorescence intensity of α-SMA. Furthermore, LE reduced N6-methyladenosine (m6A) RNA methylation, which was partially blocked by FTO knockdown. FTO knockdown also reduced the expression levels of p53 protein in Ang II and LE-stimulated CFs. CONCLUSIONS Our findings suggest that the inhibition of FTO may attenuate the antifibrotic effect of LE in CFs, suggesting that FTO may serve as a key protein for anti-MF of LE.
Collapse
Affiliation(s)
- Yuwei Meng
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Tianlan Xi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Science, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Fan
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Qiyu Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Li J, Cao H, Zhou X, Guo J, Zheng C. Advances in the study of traditional Chinese medicine affecting bone metabolism through modulation of oxidative stress. Front Pharmacol 2023; 14:1235854. [PMID: 38027015 PMCID: PMC10646494 DOI: 10.3389/fphar.2023.1235854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Bone metabolic homeostasis is dependent on coupled bone formation dominated by osteoblasts and bone resorption dominated by osteoclasts, which is a process of dynamic balance between bone formation and bone resorption. Notably, the formation of bone relies on the development of bone vasculature. Previous studies have shown that oxidative stress caused by disturbances in the antioxidant system of the whole organism is an important factor affecting bone metabolism. The increase in intracellular reactive oxygen species can lead to disturbances in bone metabolism, which can initiate multiple bone diseases, such as osteoporosis and osteoarthritis. Traditional Chinese medicine is considered to be an effective antioxidant. Cumulative evidence shows that the traditional Chinese medicine can alleviate oxidative stress-mediated bone metabolic disorders by modulating multiple signaling pathways, such as Nrf2/HO-1 signaling, PI3K/Akt signaling, Wnt/β-catenin signaling, NF-κB signaling, and MAPK signaling. In this paper, the potential mechanisms of traditional Chinese medicine to regulate bone me-tabolism through oxidative stress is summarized to provide direction and theoretical basis for future research related to the treatment of bone diseases with traditional Chinese medicine.
Collapse
Affiliation(s)
- Jiaying Li
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Cao
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xuchang Zhou
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Chengqiang Zheng
- School of Sports and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Meng S, Song Z, Tang Z, Yang X, Xiao Y, Guo H, Zhou K, Du M, Zhu YZ, Wang X. Surface-decorated nanoliposomal leonurine targets activated fibroblast-like synoviocytes for efficient rheumatoid arthritis therapy. Biomater Sci 2023; 11:7099-7113. [PMID: 37668226 DOI: 10.1039/d3bm00911d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes progressive joint destruction, leading to impaired life quality, disability, and even premature mortality. However, current medications suffer from limited clinical outcomes and severe side effects due to low bioavailability and non-specific distribution after administration. Herein, a targeting nanosystem (HAP-Lipo@Leo) was constructed for efficient RA treatment, which can precisely deliver a natural anti-arthritic drug leonurine (Leo) to the inflamed joint by HAP-1 peptide-mediated recognition of activated fibroblast-like synoviocytes (FLS). More specifically, HAP-Lipo@Leo was prepared by a combination of thin film hydration and high-pressure microfluidization and surface-decorated with HAP-1 peptide and PEG before encapsulating Leo by the ammonium sulfate gradient method. The as-obtained HAP-Lipo@Leo can be selectively internalized by activated FLS and impairs the lamellipodia formation and overexpression of inflammatory cytokines, both of which play detrimental roles in joint damage. Furthermore, HAP-Lipo@Leo demonstrated arthritic joint-specific distribution, significant inhibition of synovial inflammation, and reversal of cartilage and bone destruction in adjuvant-induced arthritis rats as evidenced by comprehensive investigations including ELISA tests, histopathology examinations, and micro-CT analysis. In addition, HAP-Lipo@Leo exhibited good biocompatibility and safety both in vitro and in vivo. Taken together, HAP-Lipo@Leo holds great potential for clinical RA management by integrating activated FLS targeting, long circulation, multifaceted therapeutic effects, and excellent biocompatibility.
Collapse
Affiliation(s)
- Shiyu Meng
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China.
| | - Zhiling Song
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China.
| | - Zhuang Tang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China.
| | - Xiaoxue Yang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China.
| | - Yi Xiao
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China.
| | - Hui Guo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Kaixiang Zhou
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, P.R. China
| | - Meirong Du
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China.
- Lab of Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China.
| | - Xiaolin Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China.
| |
Collapse
|
17
|
Cao Q, Wang Q, Wu X, Zhang Q, Huang J, Chen Y, You Y, Qiang Y, Huang X, Qin R, Cao G. A literature review: mechanisms of antitumor pharmacological action of leonurine alkaloid. Front Pharmacol 2023; 14:1272546. [PMID: 37818195 PMCID: PMC10560730 DOI: 10.3389/fphar.2023.1272546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 10/12/2023] Open
Abstract
Leonurine refers to the desiccated aerial portion of a plant in the Labiatae family. The primary bioactive constituent of Leonurine is an alkaloid, Leonurine alkaloid (Leo), renowned for its substantial therapeutic efficacy in the treatment of gynecological disorders, in addition to its broad-spectrum antineoplastic capabilities. Over recent years, the pharmacodynamic mechanisms of Leo have garnered escalating scholarly interest. Leo exhibits its anticancer potential by means of an array of mechanisms, encompassing the inhibition of neoplastic cell proliferation, induction of both apoptosis and autophagy, and the containment of oncogenic cell invasion and migration. The key signal transduction pathways implicated in these processes include the Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL), the Phosphoinositide3-Kinase/Serine/Threonine Protein Kinase (PI3K/AKT), the Signal Transducer and Activator of Transcription 3 (STAT3), and the Mitogen-Activated Protein/Extracellular Signal-Regulated Kinase (MAP/ERK). This paper commences with an exploration of the principal oncogenic cellular behaviors influenced by Leo and the associated signal transduction pathways, thereby scrutinizing the mechanisms of Leo in the antineoplastic sequence of events. The intention is to offer theoretical reinforcement for the elucidation of more profound mechanisms underpinning Leo's anticancer potential and correlating pharmaceutical development.
Collapse
Affiliation(s)
- Qiang Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
- School of Medicine, Macau University of Science and Technology, Taipa, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xinyan Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qi Zhang
- Undergraduate Department, Taishan University, Taian, China
| | - Jinghan Huang
- Undergraduate Department, Sichuan Conservatory of Music, Chengdu, China
| | - Yuquan Chen
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanwei You
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Yi Qiang
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Ronggao Qin
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Guangzhu Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
18
|
Lu H, Gong J, Zhang T, Jiang Z, Dong W, Dai J, Ma F. Leonurine pretreatment protects the heart from myocardial ischemia-reperfusion injury. Exp Biol Med (Maywood) 2023; 248:1566-1578. [PMID: 37873701 PMCID: PMC10676124 DOI: 10.1177/15353702231198066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/14/2023] [Indexed: 10/25/2023] Open
Abstract
Myocardial ischemia-reperfusion (I/R), an important complication of reperfusion therapy for myocardial infarction, is characterized by hyperactive oxidative stress and inflammatory response. Leonurine (4-guanidino-n-butyl syringate, SCM-198), an alkaloid extracted from Herbaleonuri, was previously found to be highly cardioprotective both in vitro and in vivo. Our current study aimed to investigate the effect of SCM-198 preconditioning on myocardial I/R injury in vitro and in vivo, respectively, as well as to decipher the mechanism involved. Rats were pretreated with SCM-198 before subjected to 45 min of myocardial ischemia, which was followed by 24 h of reperfusion. Primary neonatal rat cardiac ventricular myocytes (NRCMs) were exposed to hypoxia (95% N2 + 5% CO2) for 12 h, and then to 12 h reoxygenation so as to mimic I/R. The enzymatic measurements demonstrated that SCM-198 reduced the release of infarction-related enzymes, and the hemodynamic and echocardiography measurements showed that SCM-198 restored cardiac functions, which suggested that SCM-198 could significantly reduce infarct size, maintaining cardiomyocyte morphology, and that SCM-198 pretreatment could significantly reduce cardiomyocytes apoptosis. Moreover, we demonstrated that SCM-198 could exert a cardioprotective effect by reducing reactive oxygen species (ROS) level and Akt phosphorylation while reducing the phosphorylation of p38 and JNK. In addition, the upregulation of p-Akt, Bcl-2/Bax induced by SCM-198 treatment were blocked by PI3K inhibitor LY294002, and the total protein level of Akt was not affected by SCM-198 pretreatment. Our experimental results indicated that SCM-198 could have a cardioprotective effect on I/R injury, which confirmed the utility of SCM-198 preconditioning as a strategy to prevent I/R injury.
Collapse
Affiliation(s)
- Huiping Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jingru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tongtong Zhang
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhe Jiang
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenmin Dong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jing Dai
- Department of Clinical Diagnostics, Hebei Medical University, Shijiazhuang 050017, China
| | - Fenfen Ma
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
19
|
Tang Z, Meng S, Song Z, Yang X, Li X, Guo H, Du M, Chen J, Zhu YZ, Wang X. Neutrophil membrane fusogenic nanoliposomal leonurine for targeted ischemic stroke therapy via remodeling cerebral niche and restoring blood-brain barrier integrity. Mater Today Bio 2023; 20:100674. [PMID: 37273794 PMCID: PMC10238753 DOI: 10.1016/j.mtbio.2023.100674] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/19/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Ischemic stroke (IS) constitutes the leading cause of global morbidity and mortality. Neuroprotectants are essential to ameliorate the clinical prognosis, but their therapeutic outcomes are tremendously compromised by insufficient delivery to the ischemic lesion and intricate pathogenesis associated with neuronal damage, oxidative stress, inflammation responses, blood-brain barrier (BBB) dysfunction, etc. Herein, a biomimetic nanosystem (Leo@NM-Lipo) composed of neutrophil membrane-fused nanoliposomal leonurine (Leo) is constructed, which can not only efficiently penetrate and repair the disrupted BBB but also robustly remodel the harsh cerebral microenvironment to reverse ischemia-reperfusion (I/R) injury. More specifically, the neutrophil membrane inherits the BBB penetrating, infarct core targeting, inflammation neutralization, and immune evasion properties of neutrophils, while Leo, a naturally occurring neuroprotectant, exerts pleiotropic effects to attenuate brain damage. Remarkably, comprehensive investigations disclose the critical factors influencing the targetability and therapeutic performances of biomimetic nanosystems. Leo@NM-Lipo with a low membrane protein-to-lipid ratio of 1:10 efficiently targets the ischemic lesion and rescues the injured brain by alleviating neuronal apoptosis, oxidative stress, neuroinflammation, and restoring BBB integrity in transient middle cerebral artery occlusion (tMCAO) rats. Taken together, our study provides a neutrophil-mimetic nanoplatform for targeted IS therapy and sheds light on the rational design of biomimetic nanosystems favoring wide medical applications.
Collapse
Affiliation(s)
- Zhuang Tang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Shiyu Meng
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Zhiling Song
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Xiaoxue Yang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Xinzhi Li
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Hui Guo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Meirong Du
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Jun Chen
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Xiaolin Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| |
Collapse
|
20
|
Feng W, Zhong XQ, Zheng XX, Liu QP, Liu MY, Liu XB, Lin CS, Xu Q. The Underlying Mechanism of Duanteng Yimu Decoction in Inhibiting Synovial Hyperplasia in Rheumatoid Arthritis. J Immunol Res 2023; 2023:2340538. [PMID: 37252680 PMCID: PMC10225272 DOI: 10.1155/2023/2340538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 04/19/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
Dysregulation of microRNAs (miRNAs) is associated with the pathogenesis of rheumatoid arthritis (RA). Our previous studies confirmed that Duanteng Yimu decoction (DTYMT) effectively inhibits RA fibroblast-like synoviocyte (FLS) proliferation. In this study, we investigated the influence of DTYMT on miR-221 in RA individuals. Hematoxylin-eosin (HE) staining was performed to assess histopathological alterations in collagen-induced arthritis (CIA) mice. The expression of miR-221-3p and TLR4 in PBMC, FLS, and cartilage was measured by RT-qPCR. In the in vitro experiments, DTYMT-containing serum was incubated with FLS-transfected miR-221 mimic or inhibitor. CCK-8 was performed to determine FLS proliferation, and the secretion of IL-1β, IL-6, IL-18, and TNF-α was quantified by ELISA assay. In addition, the regulation of miR-221 expression on FLS apoptosis was assessed using flow cytometry. Finally, western blot was employed to reflect TLR4/MyD88 protein levels. HE results showed that DTYMT effectively reduced synovial hyperplasia in the joints of CIA mice. RT-qPCR assay of FLS and cartilage of the model group showed that miR-221-3p and TLR4 significantly increased compared with those in the normal group. All outcomes were improved by DTYMT. The miR-221 mimic reversed the inhibitory effect of DTYMT-containing serum on FLS proliferation, the release of IL-1β, IL-18, IL-6, and TNF-α, and FLS apoptosis, as well as TLR4/MyD88 protein levels. The results showed that miR-221 promotes the activity of RA-FLS by activating TLR4/MyD88 signaling, and DTYMT treats RA by reducing miR-221 in CIA mice.
Collapse
Affiliation(s)
- Wei Feng
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiao-Qin Zhong
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xue-Xia Zheng
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qing-Ping Liu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Min-Ying Liu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiao-Bao Liu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Chang-Song Lin
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiang Xu
- The First Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
21
|
Ajzashokouhi AH, Rezaee R, Omidkhoda N, Karimi G. Natural compounds regulate the PI3K/Akt/GSK3β pathway in myocardial ischemia-reperfusion injury. Cell Cycle 2023; 22:741-757. [PMID: 36593695 PMCID: PMC10026916 DOI: 10.1080/15384101.2022.2161959] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The PI3K/Akt/GSK3β pathway is crucial in regulating cardiomyocyte growth and survival. It has been shown that activation of this pathway alleviates the negative impact of ischemia-reperfusion. Glycogen synthase kinase-3 (GSK3β) induces apoptosis through stimulation of transcription factors, and its phosphorylation has been suggested as a new therapeutic target for myocardial ischemia-reperfusion injury (MIRI). GSK3β regulatory role is mediated by the reperfusion injury salvage kinase (RISK) pathway, and its inhibition by Akt activation blocks mitochondrial permeability transition pore (mPTP) opening and enhances myocardial survival. The present article discusses the involvement of the PI3K/Akt/GSK3β pathway in cardioprotective effects of natural products against MIRI.Abbreviations: Akt: protein kinase B; AMPK: AMP-activated protein kinase; ATP: adenosine triphosphate; Bad: bcl2-associated agonist of cell death; Bax: bcl2-associated x protein; Bcl-2: B-cell lymphoma 2; CK-MB: Creatine kinase-MB; CRP: C-reactive-protein; cTnI: cardiac troponin I; EGCG: Epigallocatechin-3-gallate; Enos: endothelial nitric oxide synthase; ER: endoplasmic reticulum; ERK ½: extracellular signal‑regulated protein kinase ½; GSK3β: glycogen synthase kinase-3; GSRd: Ginsenoside Rd; GSH: glutathione; GSSG: glutathione disulfide; HO-1: heme oxygenase-1; HR: hypoxia/reoxygenation; HSYA: Hydroxysafflor Yellow A; ICAM-1: Intercellular Adhesion Molecule 1; IKK-b: IκB kinase; IL: interleukin; IPoC: Ischemic postconditioning; IRI: ischemia-reperfusion injury; JNK: c-Jun N-terminal kinase; Keap1: kelch-like ECH-associated protein- 1; LDH: lactate dehydrogenase; LVEDP: left ventricular end diastolic pressure; LVP: left ventricle pressure; LVSP: left ventricular systolic pressure; MAPK: mitogen-activated protein kinase; MDA: malondialdehyde; MIRI: myocardial ischemia-reperfusion injury; MnSOD: manganese superoxide dismutase; mPTP: mitochondrial permeability transition pore; mtHKII: mitochondria-bound hexokinase II; Nrf-1: nuclear respiratory factor 1; Nrf2: nuclear factor erythroid 2-related factor; NO: nitric oxide; PGC-1α: peroxisome proliferator‑activated receptor γ coactivator‑1α; PI3K: phosphoinositide 3-kinases; RISK: reperfusion injury salvage kinase; ROS: reactive oxygen species; RSV: Resveratrol; SOD: superoxide dismutase; TFAM: transcription factor A mitochondrial; TNF-α: tumor necrosis factor-alpha; VEGF-B: vascular endothelial growth factor B.
Collapse
Affiliation(s)
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Leonurine Regulates Hippocampal Nerve Regeneration in Rats with Chronic and Unpredictable Mild Stress by Activating SHH/GLI Signaling Pathway and Restoring Gut Microbiota and Microbial Metabolic Homeostasis. Neural Plast 2023; 2023:1455634. [PMID: 36647544 PMCID: PMC9840550 DOI: 10.1155/2023/1455634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/17/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Depression is a highly prevalent and heterogeneous disorder that requires new strategies to overcome depression. In this study, we aimed to investigate whether leonurine modulated hippocampal nerve regeneration in chronic and unpredictable mild stress (CUMS) rats through the SHH/GLI signaling pathway and restoring gut microbiota and microbial metabolic homeostasis. The CUMS rat model was constructed and treated with leonurine. The body weight of rats was recorded, and a series of tests were performed. Western blot was utilized to measure the expression of BDNF and 5-HT in the hippocampus. Then the expression of SHH, GLI, PTCH, and SMO were measured by qRT-PCR and western blot. The colocalization of BrdU+DCX and BrdU+NeuN was evaluated by IF. 16S rDNA high-throughput sequencing was applied to detect the composition and distribution of gut microbiota. The differential metabolites were analyzed by untargeted metabolomics. The correlation between gut microbiota and microbial metabolites was analyzed by Pearson correlation coefficient. After CUMS modeling, the body weight of rats was decreased, and the expression of BDNF and 5-HT were decreased, while the body weight was recovered, and the expression of BDNF and 5-HT were increased after leonurine treatment. Leonurine reversed the reduction in the colocalization of BrdU+DCX and BrdU+NeuN and the reduction in the levels of SHH, GLI, PTCH, and SMO induced by CUMS modeling. Leonurine also restored gut microbiota and microbial metabolites homeostasis in CUMS rats. Furthermore, Prevotellaceae_Ga6A1_group was negatively correlated with 3-Oxocholic acid, nutriacholic acid, and cholic acid. Collectively, leonurine regulated hippocampal nerve regeneration in CUMS rats by activating the SHH/GLI signaling pathway and restoring gut microbiota and microbial metabolic homeostasis.
Collapse
|
23
|
Wu M, Liu H, Zhang J, Dai F, Gong Y, Cheng Y. The mechanism of Leonuri Herba in improving polycystic ovary syndrome was analyzed based on network pharmacology and molecular docking. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2023; 26:11234. [PMID: 36942296 PMCID: PMC9990637 DOI: 10.3389/jpps.2023.11234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Background: Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder affecting women. Chinese herbs have been considered as an alternative treatment for PCOS, and Yi-mu-cao (Leonuri Herba) is one of the most commonly used herbs to treat PCOS, which can relieve symptoms of PCOS patients. But the mechanism of its treatment remains unclear. Method: The main active ingredients and potential targets of Leonuri Herba were obtained by TCMSP and Swiss Target Forecast, and the related targets of PCOS were obtained by searching DrugBank, GeneCard and DisGeNet databases. The Protein-Protein Interaction (PPI) network was constructed using STRING database. GO and KEGG were used to detect the enrichment pathways of key targets. Cytoscape software was used to construct the component-target-pathway network, analyze the PPI network core, and verify the reliability of target binding by molecular docking technology. Result: 8 components and 116 targets of Leonuri Herba on PCOS were screened. Common targets mainly involve the Lipid and atherosclerosis, Endocrine resistance, AGE-RAGE signaling in diabetic complications and other signaling pathways. It is suggested that it can form multi-target and multi-pathway regulatory network through quercetin, kaempferol and other active substances to regulate endocrine disorders and reduce inflammatory response, so as to systematically improve PCOS. Molecular docking experiments showed that the active constituents of Leonurus had good binding activity with potential targets of PCOS. Conclusion: In summary, this study elucidates the potential effect of Leonuri Herba on PCOS, which is helpful to provide reference for clinical practice. This is also conducive to the secondary development of motherwort and its monomer components, and precision medicine for PCOS.
Collapse
Affiliation(s)
- Mali Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiping Gong
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yiping Gong, ; Yanxiang Cheng,
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yiping Gong, ; Yanxiang Cheng,
| |
Collapse
|
24
|
Su Z, Su H, Xu J, Wei G, Qu L, Ni T, Yang D, Zhu Y. Histone methyltransferase Smyd2 drives vascular aging by its enhancer-dependent activity. Aging (Albany NY) 2022; 15:70-91. [PMID: 36585926 PMCID: PMC9876634 DOI: 10.18632/aging.204449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Vascular aging is one of the important factors contributing to the pathogenesis of cardiovascular diseases. However, the systematic epigenetic regulatory mechanisms during vascular aging are still unclear. Histone methyltransferase SET and MYND domain-containing protein 2 (Smyd2) is associated with multiple diseases including cancer and inflammatory diseases, but whether it is involved in endothelial cell senescence and aging-related cardiovascular diseases has not been directly proved. Thus, we aim to address the effects of Smyd2 on regulating angiotensin II (Ang II)-induced vascular endothelial cells (VECs) senescence and its epigenetic mechanism. METHODS AND RESULTS The regulatory role of Smyd2 in Ang II-induced VECs senescence was confirmed by performing loss and gain function assays. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis was used to systematically screen the potential enhancer during VECs senescence. Here, we found that Smyd2 was significantly upregulated in Ang II-triggered VECs, and deficiency of Smyd2 attenuated senescence-associated phenotypes both in vitro and in vivo. Mechanically, Ang II-induced upregulation of Smyd2 could increase the mono-methylation level of histone 3 lysine 4 (H3K4me1), resulting in a hyper-methylated chromatin state, then further activating enhancers adjacent to key aging-related genes, such as Cdkn1a and Cdkn2a, finally driving the development of vascular aging. CONCLUSIONS Collectively, our study uncovered that Smyd2 drives a hyper-methylated chromatin state via H3K4me1 and actives the enhancer elements adjacent to key senescence genes such as Cdkn1a and Cdkn2a, and further induces the senescence-related phenotypes. Targeting Smyd2 possibly unveiled a novel therapeutic candidate for vascular aging-related diseases.
Collapse
Affiliation(s)
- Zhenghua Su
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, P.R. China
| | - Haibi Su
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, P.R. China
| | - Jie Xu
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, P.R. China
| | - Gang Wei
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, P.R. China
| | - Lefeng Qu
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Ting Ni
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, P.R. China
| | - Di Yang
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, P.R. China
| | - Yizhun Zhu
- School of Pharmacy, Pharmacophenomics Laboratory, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, State Key Laboratory of Genetic Engineering, School of Life Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, P.R. China,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau 999078, P.R. China
| |
Collapse
|
25
|
Li Z, Chen K, Rose P, Zhu YZ. Natural products in drug discovery and development: Synthesis and medicinal perspective of leonurine. Front Chem 2022; 10:1036329. [PMID: 36324522 PMCID: PMC9618625 DOI: 10.3389/fchem.2022.1036329] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
Natural products, those molecules derived from nature, have been used by humans for thousands of years to treat ailments and diseases. More recently, these compounds have inspired chemists to use natural products as structural templates in the development of new drug molecules. One such compound is leonurine, a molecule isolated and characterized in the tissues of Herb leonuri. This molecule has received attention from scientists in recent years due to its potent anti-oxidant, anti-apoptotic, and anti-inflammatory properties. More recently researchers have shown leonurine to be useful in the treatment of cardiovascular and nervous system diseases. Like other natural products such as paclitaxel and artemisinin, the historical development of leonurine as a therapeutic is very interesting. Therefore, this review provided an overview of natural product discovery, through to the development of a potential new drug. Content will summarize known plant sources, the pathway used in the synthesis of leonurine, and descriptions of leonurine’s pharmacological properties in mammalian systems.
Collapse
Affiliation(s)
- Zhaoyi Li
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
| | - Keyuan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
| | - Peter Rose
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- *Correspondence: Yi Zhun Zhu,
| |
Collapse
|
26
|
Kopalli SR, Annamneedi VP, Koppula S. Potential Natural Biomolecules Targeting JAK/STAT/SOCS Signaling in the Management of Atopic Dermatitis. Molecules 2022; 27:molecules27144660. [PMID: 35889539 PMCID: PMC9319717 DOI: 10.3390/molecules27144660] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by the dysregulation of cytokines and other immune mediators. JAK/STAT is a classical signal transduction pathway involved in various biological processes, and its dysregulation contributes to the key aspects of AD pathogenesis. Suppressor of cytokine signaling (SOCS) proteins negatively regulate the immune-related inflammatory responses mediated by the JAK/STAT pathway. JAK/STAT-mediated production of cytokines including IL-4, IL-13, IL-31, and TSLP inhibits the expression of important skin barrier proteins and triggers pruritus in AD. The expression of SOCS proteins regulates the JAK-mediated cytokines and facilitates maintaining the skin barrier disruptions seen in AD. STATs are crucial in dendritic-cell-activated Th2 cell differentiation in the skin, releasing inflammatory cytokines, indicating that AD is a Th2-mediated skin disorder. SOCS proteins aid in balancing Th1/Th2 cells and, moreover, regulate the onset and maintenance of Th2-mediated allergic responses by reducing the Th2 cell activation and differentiation. SOCS proteins play a pivotal role in inflammatory cytokine-signaling events that act via the JAK/STAT pathway. Therapies relying on natural products and derived biomolecules have proven beneficial in AD when compared with the synthetic regimen. In this review, we focused on the available literature on the potential natural-product-derived biomolecules targeting JAK/STAT/SOCS signaling, mainly emphasizing the SOCS family of proteins (SOCS1, SOCS3, and SOCS5) acting as negative regulators in modulating JAK/STAT-mediated responses in AD pathogenesis and other inflammatory disorders.
Collapse
Affiliation(s)
| | - Venkata Prakash Annamneedi
- Convergence Science Research Center, College of Pharmacy and Institute of Chronic Diseases, Sahmyook University, Seoul 01795, Korea;
| | - Sushruta Koppula
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27381, Korea
- Correspondence:
| |
Collapse
|
27
|
Shi XD, Zhang JX, Hu XD, Zhuang T, Lu N, Ruan CC. Leonurine Attenuates Obesity-Related Vascular Dysfunction and Inflammation. Antioxidants (Basel) 2022; 11:antiox11071338. [PMID: 35883829 PMCID: PMC9311755 DOI: 10.3390/antiox11071338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress in adipose tissue is a crucial pathogenic mechanism of obesity-associated cardiovascular diseases. Chronic low-grade inflammation caused by obesity increases ROS production and dysregulation of adipocytokines. Leonurine (LEO) is an active alkaloid extracted from Herba Leonuri and plays a protective role in the cardiovascular system. The present study tested whether LEO alleviates inflammation and oxidative stress, and improves vascular function in an obese mouse model. Here, we found that obesity leads to inflammation and oxidative stress in epididymal white adipose tissue (EWAT), as well as vascular dysfunction. LEO significantly improved inflammation and oxidative stress both in vivo and in vitro. Obesity-induced vascular dysfunction was also improved by LEO as evidenced by the ameliorated vascular tone and decreased mesenteric artery fibrosis. Using mass spectrometry, we identified YTHDF1 as the direct target of LEO. Taken together, we demonstrated that LEO improves oxidative stress and vascular remodeling induced by obesity and targets YTHDF1, raising the possibility of LEO treating other obesity-related metabolic syndromes.
Collapse
Affiliation(s)
- Xiao-Dong Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.-D.S.); (X.-D.H.); (T.Z.)
| | - Jia-Xin Zhang
- Department of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Xi-De Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.-D.S.); (X.-D.H.); (T.Z.)
| | - Tao Zhuang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.-D.S.); (X.-D.H.); (T.Z.)
| | - Ning Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.-D.S.); (X.-D.H.); (T.Z.)
- Correspondence: (N.L.); (C.-C.R.)
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (X.-D.S.); (X.-D.H.); (T.Z.)
- Correspondence: (N.L.); (C.-C.R.)
| |
Collapse
|
28
|
Leonurine Protects Bone Mesenchymal Stem Cells from Oxidative Stress by Activating Mitophagy through PI3K/Akt/mTOR Pathway. Cells 2022; 11:cells11111724. [PMID: 35681421 PMCID: PMC9179429 DOI: 10.3390/cells11111724] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/08/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis bears an imbalance between bone formation and resorption, which is strongly related to oxidative stress. The function of leonurine on bone marrow-derived mesenchymal stem cells (BMSCs) under oxidative stress is still unclear. Therefore, this study was aimed at identifying the protective effect of leonurine on H2O2 stimulated rat BMSCs. We found that leonurine can alleviate cell apoptosis and promote the differentiation ability of rat BMSCs induced by oxidative stress at an appropriate concentration at 10 μM. Meanwhile, the intracellular ROS level and the level of the COX2 and NOX4 mRNA decreased after leonurine treatment in vitro. The ATP level and mitochondrial membrane potential were upregulated after leonurine treatment. The protein level of PINK1 and Parkin showed the same trend. The mitophage in rat BMSCs blocked by 3-MA was partially rescued by leonurine. Bioinformatics analysis and leonurine-protein coupling provides a strong direct combination between leonurine and the PI3K protein at the position of Asp841, Glu880, Val882. In conclusion, leonurine protects the proliferation and differentiation of BMSCs from oxidative stress by activating mitophagy, which depends on the PI3K/Akt/mTOR pathway. The results showed that leonurine may have potential usage in osteoporosis and bone defect repair in osteoporosis patients.
Collapse
|
29
|
Lam KY, Wang Y, Lam T, Ku C, Yeung W, Zhao Z. Correlation between quality and geographical origins of Leonuri Herba revealed by the qualitative fingerprint profiling and quantitative determination of chemical components. Chin Med 2022; 17:46. [PMID: 35413864 PMCID: PMC9003958 DOI: 10.1186/s13020-022-00592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leonuri Herba (Yimucao) is a very common Chinese herbs for treating menstrual and maternal diseases for thousands of years in China. However, the herb collected in different origins was easily found in the markets which induce the unstable quality for clinic use. In this study, a comprehensive strategy of using multiple chromatographic analysis and chemometric analysis was firstly investigated for chemical discrimination of Leonuri Herba from different geographical origins. METHODS UHPLC-QTOF-MS/MS was applied to identify the peaks of Leonuri Herba and chemical fingerprints were established in 30 batches from different geographical origins. Meanwhile, dissimilarities of chemical compositions among different origins were further investigated by principal component analysis and cluster analysis. And a quantitative UHPLC-QTOF-MS/MS approach were established to investigate the potential marker for quality control of Leonuri Herba. RESULTS A total of 49 chromatographic peaks of Leonuri Herba were identified by UHPLC-QTOF-MS/MS. Leonuri Herba were classified into four categories, and eight major compounds detected could be used as chemical markers for discrimination. Also, the eight components, including leonurine, 4',5-dihydroxy-7-methoxyflavone, rutin, hyperoside, apigenin, quercetin, kaempferol and salicylic acid, were simultaneously quantified using the extracting ion mode of UHPLC-QTOF-MS/MS. CONCLUSION The current strategy not only clearly expounded the correlation between quality and geographical origins of Leonuri Herba, but also provided a fast, accurate and comprehensive qualitative and quantitative method for assessing the quality of Leonuri Herba.
Collapse
Affiliation(s)
- Kelly Yinching Lam
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yinghao Wang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Department of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tszking Lam
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chuenfai Ku
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Wingping Yeung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhongzhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
30
|
Li Y, Jia Q, Zhang M, Kang L, Li Z, Liu Y, Zhang H, Hu P. Isolation of three glucaric acids from Leonurus japonicus Houtt. by using high-speed countercurrent chromatography combined with semi-preparative high-performance liquid chromatography. J Sep Sci 2022; 45:2140-2147. [PMID: 35396803 DOI: 10.1002/jssc.202100876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 11/11/2022]
Abstract
The isomerism of glucaric acids and the complexity of composition of Leonurus. japonicus Houtt. increased the difficulty of the separation of glucaric acids from the herb. In the present study, three glucaric acids were isolated from Leonurus japonicus Houtt. by using high-speed countercurrent chromatography combined with semi-preparative high-performance liquid chromatography. Cation exchange resin chromatography was applied to remove the alkaloids and enrich the glucaric acid fractions. Preliminary separation of glucaric acids extract by high-speed countercurrent chromatography was carried out at 45℃ by using an optimized solvent system of ethyl acetate/n-butanol/formic acid/water (1:1:0.01:2, v/v/v/v) with satisfied stationary phase retention and separation factor. The semi-preparative high-performance liquid chromatography was used for further separation and purification of the target fractions, and three monomeric compounds were obtained with the purities of 90.0%, 91.0%, and 95.3%. Ultraviolet Spectroscopy, Nuclear Magnetic Resonance Spectroscopy and MS were employed to identify their structures, which were assigned as 2-syringyl glucaric acid, 2,4-disyringyl glucaric acid, and 3,4-disyringyl glucaric acid, respectively, and 2,4-disyringyl glucaric acid was reported for the first time. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yujie Li
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Qiangqiang Jia
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, P. R. China
| | - Min Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Lu Kang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Zihan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yu Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
31
|
Yan K, Hu J, Hou T, Ci X, Peng L. Leonurine inhibits the TXNIP/NLRP3 and NF-κB pathways via Nrf2 activation to alleviate carrageenan-induced pleurisy in mice. Phytother Res 2022; 36:2161-2172. [PMID: 35285100 DOI: 10.1002/ptr.7437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 11/10/2022]
Abstract
Oxidative stress and inflammation play important roles in pleurisy. Leonurine (Leo) has been confirmed to exert antioxidative and antiinflammatory effects in many preclinical experiments, but these effects have not been studied in pleurisy. The aim of this study was to explore the therapeutic effect and mechanism of Leo in a carrageenan (CAR)-induced pleurisy model. In this study, we found that the increase of reactive oxygen species (ROS), myeloperoxidase (MPO), and malondialdehyde (MDA) and decrease of glutathione (GSH) induced by CAR could be reversed by the treatment of Leo. Leo effectively reduced the levels of proinflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and the percentages of mature macrophages and increased the levels of antiinflammatory cytokines (IL-10). Furthermore, Western blotting revealed that Leo significantly activated the Nrf2 pathway to restrain the thioredoxin-interacting protein/NOD-like receptor protein 3 (TXNIP/NLRP3) and nuclear factor kappa-B (NF-κB) pathways. However, the protective effect of Leo was significantly weakened in Nrf2-deficient mice. These results indicate that Leo confers potent protection against CAR-induced pleurisy by inhibiting the TXNIP/NLRP3 and NF-κB pathways dependent on Nrf2, which may serve as a promising agent for attenuating pleurisy.
Collapse
Affiliation(s)
- Kun Yan
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jianqiang Hu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Tianhua Hou
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Wang J, Wei J, Zhou Y, Chen G, Ren L. Leonurine hydrochloride-a new drug for the treatment of menopausal syndrome: Synthesis, estrogen-like effects and pharmacokinetics. Fitoterapia 2022; 157:105108. [PMID: 34954263 DOI: 10.1016/j.fitote.2021.105108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 11/18/2022]
Abstract
This research aimed to investigate the estrogen-like effects of Leonurine hydrochloride (Leo). First, we developed a total synthesis of Leo from 3,4,5-trimethoxy-benzoic acid and the structure was confirmed through 1H NMR and mass spectrometry (MS). Then the estrogenic activity of Leo in vitro and in vivo was studied. The proliferation and proliferation inhibitory effects of Leo on MCF-7 cells and MDA-MB-231 cells indicate that Leo exerts estrogen-like effects through estrogen receptor α (ERα) and estrogen receptor β((ERβ) in vitro. Uterotrophic assay in juvenile mice showed that Leo has an estrogen-like effect in vivo, as it can promote the development of the uterus of juvenile mice, increase its uterine coefficient and the size of the uterine cavity, as well as the increased number of uterine glands and the thickened uterine wall. For further research, cyclophosphamide (CTX) was used to establish a mouse model of ovarian function decline. Through this model, we found that Leo can restore the estrous cycle of mice, increase the number of primordial and primary follicles in the ovaries of mice, and regulate the disordered hypothalamic-pituitary-ovarian (HPOA) axis of mice. Finally, the pharmacokinetics of Leo was studied and oral bioavailability of Leo was calculated to be 2.21%. Leo was synthesized and the estrogen-like effect in vitro and in vivo was confirmed as well as its pharmacokinetics.
Collapse
Affiliation(s)
- Jin Wang
- School of Pharmacy, Nanjing Tech University, 5th Mofan Road, Nanjing 21009, China
| | - Jie Wei
- School of Pharmacy, Nanjing Tech University, 5th Mofan Road, Nanjing 21009, China
| | - Yaxin Zhou
- School of Pharmacy, Nanjing Tech University, 5th Mofan Road, Nanjing 21009, China
| | - Guoguang Chen
- School of Pharmacy, Nanjing Tech University, 5th Mofan Road, Nanjing 21009, China.
| | - Lili Ren
- School of Pharmacy, Nanjing Tech University, 5th Mofan Road, Nanjing 21009, China; Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
33
|
BushenHuoxue Recipe for the Treatment of Prethrombotic State of ACA-Positive Recurrent Miscarriage via the Regulation of the PI3K-AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2385534. [PMID: 35198031 PMCID: PMC8860511 DOI: 10.1155/2022/2385534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
Background Although the Bushen Huoxue (BSHX) recipe is commonly used for the effective treatment of the prethrombotic state of recurrent abortions, its mechanism of action is unclear. In this article, we investigated the therapeutic effects of BSHX on anti-cardiolipin antibody (ACA) positive recurrent miscarriage mice and the molecular mechanism involved in the treatment of the prethrombotic state of ACA-positive recurrent miscarriages based on the PI3K-Akt signaling pathway, to provide a scientific basis for clinical practice. Methods An ACA-positive recurrent miscarriage mouse model and normal pregnancy mouse model were adopted in this experiment. Seventy CBA/J female mice were induced to establish the ACA-positive recurrent model; the mice were mated with DBA/2 male mice. Of these mice, 50 became pregnant, which were randomly divided into a BSHX high-dose group (BH, 2.52 g/kg), BSHX medium-dose group (BM, 1.26 g/kg), BSHX low-dose group (BL, 0.63 g/kg), model group (M, distilled water), and an aspirin enteric-coated tablet group; each group had 10 mice. In addition, 16 CBA/J female mice were induced to establish the normal pregnant mouse model; the mice were mated with BALB/C male mice. Of these mice, 10 became pregnant, which were used as the blank control group (C) and received distilled water by gavage. Stillbirth and abortion rates were recorded for each group, and the uterine tissue, urine, and serum were collected. The serum expression levels of ACA, interleukin-6 (IL-6), progesterone ,estradiol, and endometrial histological changes were compared between the groups. Metabolomics was performed on the urine and uterine tissues of both groups using UHPLC-QTOF/MS, and the expression levels of PI3K, p-PI3K, AKT, and p-AKT proteins in the uterine tissues were detected using Western blot. Results Compared with the model pregnancy group, the BSHX high-dose group, BSHX medium-dose group, and BSHX low-dose group all had a lower absorption rate of mouse embryos, improved uterine histopathological morphology, significantly reduced serum levels of ACA and IL-6, increased serum levels of progesterone and estradiol, and significantly upregulated uterine levels of p-AKT, PI3K, and p-PI3K proteins. The metabolomic results showed that the metabolic levels in the urine and uterine tissues were significantly altered in the mouse model of ACA-positive recurrent abortion. The results also suggested that the pathogenesis of ACA-positive recurrent abortion may be associated with metabolic pathways, such as pentose, glucuronide, lysine degradation, and steroid hormone biosynthesis. Conclusion The BSHX recipe improved the uterine histopathological morphology of pregnant mice and promoted vascular formation in uterine tissues. The mechanisms involved the reduction in serum ACA and IL-6 levels, the increment in serumprogesterone and estradiol levels, the upregulation of the levels of p-AKT, PI3K, and p-PI3K proteins, and the activation of the PI3K-Akt signaling pathway. These data will be useful for effective drug research and development.
Collapse
|
34
|
Ji H, Li K, Xu W, Li R, Xie S, Zhu X. Prediction of the Mechanisms by Which Quercetin Enhances Cisplatin Action in Cervical Cancer: A Network Pharmacology Study and Experimental Validation. Front Oncol 2022; 11:780387. [PMID: 35070983 PMCID: PMC8770278 DOI: 10.3389/fonc.2021.780387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022] Open
Abstract
Yimucao has been used as an herbal medicine to treat gynecological diseases. Common genes of Yimucao active compounds were investigated using network pharmacology. The components and targets of Yimucao were retrieved from the TCMSP database. Cervical cancer targets were collected from GeneCards, TTD, DisGeNET, and KEGG. Cisplatin-related genes were downloaded from GeneWeaver. The protein-protein interaction (PPI) network was created using the STRING database. A drug-bioactive compound-disease-target network was constructed using Cytoscape. GO and KEGG analyses were performed to investigate common targets of quercetin and cisplatin in cervical cancer. We found that quercetin was the highly bioactive compound in Yimucao. The drug-bioactive compound-disease-target network contained 93 nodes and 261 edges. Drug-related key targets were identified, including EGFR, IL6, CASP3, VEGFA, MYC, CCND1, ERBB2, FOS, PPARG, and CASP8. Core targets were primarily related to the response to metal ions, cellular response to xenobiotic stimulus, and transcription factor complex. The KEGG pathway analysis revealed that quercetin and cisplatin may affect cervical cancer through platinum drug resistance and the p53 and HIF-1 pathways. Furthermore, quercetin combined with cisplatin downregulated the expression of EGFR, MYC, CCND1, and ERBB2 proteins and upregulated CASP8 expression in HeLa and SiHa cells. Functionally, quercetin enhanced cisplatin-induced anticancer activity in cervical cancer cells. Our results indicate that quercetin can be used to overcome cisplatin resistance in cervical cancer cells.
Collapse
Affiliation(s)
- Huihui Ji
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kehan Li
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenbin Xu
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruyi Li
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shangdan Xie
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Center of Uterine Cancer Diagnosis and Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
Lin Z, Ding Q, Li X, Feng Y, He H, Huang C, Zhu Y. Targeting Epigenetic Mechanisms in Vascular Aging. Front Cardiovasc Med 2022; 8:806988. [PMID: 35059451 PMCID: PMC8764463 DOI: 10.3389/fcvm.2021.806988] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
Environment, diseases, lack of exercise, and aged tendency of population have becoming crucial factors that induce vascular aging. Vascular aging is unmodifiable risk factor for diseases like diabetes, hypertension, atherosclerosis, and hyperlipidemia. Effective interventions to combat this vascular function decline is becoming increasingly urgent as the rising hospitalization rate caused by vascular aging-related diseases. Fortunately, recent transformative omics approaches have enabled us to examine vascular aging mechanisms at unprecedented levels and precision, which make our understanding of slowing down or reversing vascular aging become possible. Epigenetic viz. DNA methylation, histone modifications, and non-coding RNA-based mechanisms, is a hallmark of vascular aging, its deregulation leads to aberrant transcription changes in tissues. Epigenetics mechanisms by mediating covalent modifications to DNA and histone proteins, consequently, influence the sensitivity and activities of signaling pathways in cells and tissues. A growing body of evidence supports correlations between epigenetic changes and vascular aging. In this article, we will provide a comprehensive overview of epigenetic changes associated with vascular aging based on the recent findings with a focus on molecular mechanisms of action, strategies to reverse epigenetic changes, and future perspectives.
Collapse
Affiliation(s)
- Zhongxiao Lin
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
- Key Laboratory of Molecular Target and Clinical Pharmacology and National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Xinzhi Li
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Hao He
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Chuoji Huang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - YiZhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Lin YK, Li YY, Li Y, Li DJ, Wang XL, Wang L, Yu M, Zhu YZ, Cheng JJ, Du MR. SCM-198 Prevents Endometriosis by Reversing Low Autophagy of Endometrial Stromal Cell via Balancing ERα and PR Signals. Front Endocrinol (Lausanne) 2022; 13:858176. [PMID: 35784569 PMCID: PMC9245568 DOI: 10.3389/fendo.2022.858176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/09/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Endometriosis (EMS), an endocrine-related inflammatory disease, is characterized by estrogen and progesterone imbalance in ectopic lesions. However, its pathogenic mechanism has not been fully elucidated. While SCM-198 is the synthetic form of leonurine and has multiple pharmacological activities such as antioxidation and anti-inflammation, it remains unknown whether it could inhibit the progress of EMS by regulating estrogen signaling and inflammation. METHODS The therapeutic effects of SCM-198 on EMS and its potential mechanism were analyzed by establishing EMS mouse models and performing an RNA sequencing (RNA-seq) assay. ELISA was performed to detect estrogen and tumor necrosis factor (TNF) -α concentrations in normal endometrial stromal cells (nESCs) and ectopic endometrial stromal cells (eESCs) with or without SCM-198 treatment. Western blotting, RNA silencing, and plasmid overexpression were used to analyze the relationship between inflammation, endocrine factors, and autophagy and the regulatory activity of SCM-198 on the inflammation-endocrine-autophagy axis. RESULTS Increased estrogen-estrogen receptor (ER) α signaling and decreased progesterone receptor isoform B (PRB) expression synergistically led to a hypo-autophagy state in eESCs, which further inhibited the apoptosis of eESCs. The high expression of TNF-α in eESCs enhanced the antiapoptotic effect mediated by low autophagy through the activation of the aromatase-estrogen-ERα signaling pathway. SCM-198 inhibited the growth of ectopic lesions in EMS mice and promoted the apoptosis of eESCs both in vivo and in vitro. The apoptotic effect of SCM-198 on eESCs was attained by upregulating the autophagy level via the inhibition of the TNF-α-activated aromatase-estrogen-ERα signal and the increase in PRB expression. CONCLUSION Inflammation facilitated the progress of EMS by disrupting the estrogen regulatory axis. SCM-198 inhibited EMS progression by regulating the inflammation-endocrine-autophagy axis.
Collapse
Affiliation(s)
- Yi-Kong Lin
- NHC (National Health Commission) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
| | - Yun-Yun Li
- NHC (National Health Commission) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
| | - Yue Li
- NHC (National Health Commission) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Da-Jin Li
- NHC (National Health Commission) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
| | - Xiao-Lin Wang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Li Wang
- NHC (National Health Commission) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
| | - Min Yu
- NHC (National Health Commission) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
- *Correspondence: Mei-Rong Du, ; Jia-Jing Cheng, ; Yi-Zhun Zhu,
| | - Jia-Jing Cheng
- Department of Obstetrics and Gynecology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Mei-Rong Du, ; Jia-Jing Cheng, ; Yi-Zhun Zhu,
| | - Mei-Rong Du
- NHC (National Health Commission) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai, China
- Department of Obstetrics and Gynecology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
- Department of Obstetrics and Gynecology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Mei-Rong Du, ; Jia-Jing Cheng, ; Yi-Zhun Zhu,
| |
Collapse
|
37
|
Targeting Mitochondria by Plant Secondary Metabolites: A Promising Strategy in Combating Parkinson's Disease. Int J Mol Sci 2021; 22:ijms222212570. [PMID: 34830453 PMCID: PMC8619002 DOI: 10.3390/ijms222212570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is one of the most prevalent and debilitating neurodegenerative conditions, and is currently on the rise. Several dysregulated pathways are behind the pathogenesis of PD; however, the critical targets remain unclear. Accordingly, there is an urgent need to reveal the key dysregulated pathways in PD. Prevailing reports have highlighted the importance of mitochondrial and cross-talked mediators in neurological disorders, genetic changes, and related complications of PD. Multiple pathophysiological mechanisms of PD, as well as the low efficacy and side effects of conventional neuroprotective therapies, drive the need for finding novel alternative agents. Recently, much attention has been paid to using plant secondary metabolites (e.g., flavonoids/phenolic compounds, alkaloids, and terpenoids) in the modulation of PD-associated manifestations by targeting mitochondria. In this line, plant secondary metabolites have shown promising potential for the simultaneous modulation of mitochondrial apoptosis and reactive oxygen species. This review aimed to address mitochondria and multiple dysregulated pathways in PD by plant-derived secondary metabolites.
Collapse
|
38
|
Lin Z, Xiong Y, Hu Y, Chen L, Panayi AC, Xue H, Zhou W, Yan C, Hu L, Xie X, Sun Y, Mi B, Liu G. Polydatin Ameliorates Osteoporosis via Suppression of the Mitogen-Activated Protein Kinase Signaling Pathway. Front Cell Dev Biol 2021; 9:730362. [PMID: 34660587 PMCID: PMC8511501 DOI: 10.3389/fcell.2021.730362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose: Polydatin (POL) is a natural active compound found in Polygonum multiflorum with reported anti-oxidant and antiviral effects. With the aging population there has been a stark increase in the prevalence of osteoporosis (OP), rendering it an imposing public health issue. The potential effect of POL as a therapy for OP remains unclear. Therefore, we sought to investigate the therapeutic effect of POL in OP and to elucidate the underlying signaling mechanisms in its regulatory process. Methods: The POL-targeted genes interaction network was constructed using the Search Tool for Interacting Chemicals (STITCH) database, and the shared Kyoto Encyclopedia of Genes and Genomes (KEGG). Pathways involved in OP and POL-targeted genes were identified. Quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the osteogenic genes and the phosphorylation level in pre-osteoblastic cells. In addition, ALP and alizarin red staining was used to test the effect of POL on extracellular matrix mineralization. Results: Twenty-seven KEGG pathways shared between POL-related genes and OP were identified. MAPK signaling was identified as a potential key mechanism. In vitro results highlighted a definitive anti-OP effect of POL. The phosphorylation levels of MAPK signaling, including p38α, ERK1/2, and JNK, were significantly decreased in this regulatory process. Conclusion: Our results suggest that POL has a promising therapeutic effect in OP. MAPK signaling may be the underlying mechanism in this effect, providing a novel sight in discovering new drugs for OP.
Collapse
Affiliation(s)
- Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Chenchen Yan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Liangcong Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xudong Xie
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yun Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
39
|
Liao J, Suguro R, Zhao X, Yu Y, Cui Y, Zhu YZ. Leonurine affected homocysteine-methionine metabolism based on metabolomics and gut microbiota studies of clinical trial samples. Clin Transl Med 2021; 11:e535. [PMID: 34709742 PMCID: PMC8506629 DOI: 10.1002/ctm2.535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Affiliation(s)
- Junyi Liao
- State Key Laboratory of Quality Research in Chinese Medicine & School of PharmacyMacau University of Science and TechnologyMacauSARChina
| | - Rinkiko Suguro
- State Key Laboratory of Quality Research in Chinese Medicine & School of PharmacyMacau University of Science and TechnologyMacauSARChina
| | - Xia Zhao
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine & School of PharmacyMacau University of Science and TechnologyMacauSARChina
| | - Yimin Cui
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & School of PharmacyMacau University of Science and TechnologyMacauSARChina
- Shanghai Key Laboratory of Bioactive Small MoleculesDepartment of PharmacologySchool of PharmacyFudan UniversityShanghaiChina
- Zhongzhu Pharmaceutics Co. Ltd.ZhuhaiChina
| |
Collapse
|
40
|
Lin Y, Li Y, Li X, Liu X, Wang X, Yu M, Zhu Y, Du M. SCM-198 ameliorates endometrial inflammation via suppressing the LPS-JNK-cJUN/cFOS-TLR4-NF-κB pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1207-1215. [PMID: 34259317 DOI: 10.1093/abbs/gmab095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Endometritis is an inflammatory disease of the endometrium, which is responsible for endometrial dysfunction, decidualization failure, and increased incidence of early pregnancy loss. SCM-198, a synthetic form of leonurine, is well known to possess anti-inflammatory effects. SCM-198 has been reported to display beneficial effects on endometritis. However, the specific mechanisms of SCM-198 in preventing endometritis remain unknown. In this study, we focused on the molecular mechanism of SCM-198 in inhibiting endometritis. The anti-inflammatory effects and the related signaling pathways of SCM-198 were studied in vitro using human endometrial stromal cells (hESCs). Reverse transcriptase-polymerase chain reaction and western blot analysis results demonstrated that SCM-198 markedly inhibited lipopolysaccharide (LPS)-induced endometrial inflammatory response by suppressing the LPS-JNK-cJUN/cFOS-TLR4-NF-κB pathway. The preventive and therapeutic effects of SCM-198 on endometrial inflammation were explored by using a mouse model of LPS-induced endometritis. SCM-198 produced essentially the same effects when administered either post-treatment (after LPS) or pre-treatment (before LPS) via vaginal or intraperitoneal administration. In vivo results indicated that SCM-198 is a potential effective drug for the treatment of endometritis.
Collapse
Affiliation(s)
- Yikong Lin
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | - Yunyun Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | - Xinyi Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | - Xinhua Liu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau 518063, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiaolin Wang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau 518063, China
| | - Min Yu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
- Shanghai JIAI Genetics and IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau 518063, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Meirong Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau 518063, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
41
|
Leonurine Ameliorates Oxidative Stress and Insufficient Angiogenesis by Regulating the PI3K/Akt-eNOS Signaling Pathway in H 2O 2-Induced HUVECs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9919466. [PMID: 34394836 PMCID: PMC8357476 DOI: 10.1155/2021/9919466] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/18/2021] [Indexed: 11/21/2022]
Abstract
Thrombus is considered to be the pathological source of morbidity and mortality of cardiovascular disease and thrombotic complications, while oxidative stress is regarded as an important factor in vascular endothelial injury and thrombus formation. Therefore, antioxidative stress and maintaining the normal function of vascular endothelial cells are greatly significant in regulating vascular tension and maintaining a nonthrombotic environment. Leonurine (LEO) is a unique alkaloid isolated from Leonurus japonicus Houtt (a traditional Chinese medicine (TCM)), which has shown a good effect on promoting blood circulation and removing blood stasis. In this study, we explored the protective effect and action mechanism of LEO on human umbilical vein endothelial cells (HUVECs) after damage by hydrogen peroxide (H2O2). The protective effects of LEO on H2O2-induced HUVECs were determined by measuring the cell viability, cell migration, tube formation, and oxidative biomarkers. The underlying mechanism of antioxidation of LEO was investigated by RT-qPCR and western blotting. Our results showed that LEO treatment promoted cell viability; remarkably downregulated the intracellular generation of reactive oxygen species (ROS), malondialdehyde (MDA) production, and lactate dehydrogenase (LDH); and upregulated the nitric oxide (NO) and superoxide dismutase (SOD) activity in H2O2-induced HUVECs. At the same time, LEO treatment significantly promoted the phosphorylation level of angiogenic protein PI3K, Akt, and eNOS and the expression level of survival factor Bcl2 and decreased the expression level of death factor Bax and caspase3. In conclusion, our findings suggested that LEO can ameliorate the oxidative stress damage and insufficient angiogenesis of HUVECs induced by H2O2 through activating the PI3K/Akt-eNOS signaling pathway.
Collapse
|
42
|
Suwatronnakorn M, Issaravanich S, Palanuvej C, Ruangrungsi N. Standardization of Leonurus sibiricus L. aerial part and capillary electrophoresis quantitative analysis of its leonurine content. J Adv Pharm Technol Res 2021; 12:291-297. [PMID: 34345610 PMCID: PMC8300328 DOI: 10.4103/japtr.japtr_243_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 06/18/2021] [Indexed: 11/04/2022] Open
Abstract
The quality parameters of Leonurus sibiricus L. aerial part crude drugs were evaluated. Fifteen crude drugs were collected from various locations throughout Thailand. The transverse section of the stem of L. sibiricus showed quadrangular character highlighted the ribs with angular collenchyma. The epidermis was uniseriate with abundant glandular trichomes distribution. Prismatic calcium oxalate prisms were found in the stem medullary parenchyma.The histological character of crude drug powder showed bordered pitted vessel, fragment of fiber, glandular trichome, prism crystal, spiral vessel, starch granule, and stomata. The loss on drying, total ash, acid-insoluble ash, and moisture contents should be not more than 8.18, 15.28, 4.04, and 8.91 g/100 g dry weight, whereas ethanol and water-soluble extractive values should be not less than 7.67, and 17.21 g/100 g of dry weight, respectively. Leonurine in the crude drugs were analyzed by capillary electrophoresis (CE) with photodiode array detector. The ethanolic extraction performed by Soxhlet apparatus yielded 18.86 ± 4.09 g/100 g dry weight. The electropherogram detected at 277 nm showed the migration time of leonurine at 6.2 min. The developed CE was found to be valid for leonurine quantification in L. sibiricus ethanolic extract. The contents of leonurine in 15 crude drugs ranged from 0.79 to 4.23 mg/g with the average of 2.38 ± 1.10 mg/g dry weight. This study established the pharmacognostic specification of L. sibiricus crude drug in Thailand with special reference to a bioactive compound, leonurine. CE was beneficial technique for the analysis of leonurine in L. sibiricus aerial parts.
Collapse
Affiliation(s)
- Maneewan Suwatronnakorn
- Department of Public Health Sciences Program, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Issaravanich
- Department of Public Health Sciences Program, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chanida Palanuvej
- Department of Public Health Sciences Program, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Nijsiri Ruangrungsi
- Department of Public Health Sciences Program, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacognosy, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| |
Collapse
|
43
|
Liu HM, Guo CL, Zhang YF, Chen JF, Liang ZP, Yang LH, Ma YP. Leonurine-Repressed miR-18a-5p/SOCS5/JAK2/STAT3 Axis Activity Disrupts CML malignancy. Front Pharmacol 2021; 12:657724. [PMID: 33935775 PMCID: PMC8087248 DOI: 10.3389/fphar.2021.657724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
Leonurine, an active natural alkaloid compound isolated from Herba leonuri, has been reported to exhibit promising anticancer activity in solid tumors. The aim of this study was to explore whether leonurine is able to inhibit chronic myeloid leukemia (CML) malignancy. Here, we found that leonurine dose dependently inhibited the proliferation, migration, colony formation and promoted apoptosis of CML cells. Furthermore, leonurine markedly reduced CML xenograft growth in vivo. Mechanically, leonurine upregulated SOCS5 expression, thus leading JAK2/STAT3 signaling suppression. Silencing of SOCS5 by its siRNA abrogated the effect of leonurine on CML cells, demonstrating that SOCS5 mediates the anti-leukemia effect of leonurine. Notably, we observed that miR-18a-5p was remarkably increased in CML cells. Treating CML cells with leonurine significantly decreased miR-18a-5p expression. Moreover, we found miR-18a-5p repressed SOCS5 by directly targeting its 3′-UTR. miR-18a-5p downregulation induced by leonurine reduced the biological activity of CML cells by relieving miR-18a-5p repression of SOCS5 expression. Taken together, leonurine exerts significant anti-leukemia efficacy in CML by regulating miR-18a-5p/SOCS5/JAK2/STAT3 axis.
Collapse
Affiliation(s)
- Hui-Min Liu
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chun-Ling Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yao-Fang Zhang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Fang Chen
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhi-Peng Liang
- Basic Laboratory of Internal Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lin-Hua Yang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan-Ping Ma
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
44
|
Mi Y, Jiao K, Xu JK, Wei K, Liu JY, Meng QQ, Guo TT, Zhang XN, Zhou D, Qing DG, Sun Y, Li N, Hou Y. Kellerin from Ferula sinkiangensis exerts neuroprotective effects after focal cerebral ischemia in rats by inhibiting microglia-mediated inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113718. [PMID: 33352239 DOI: 10.1016/j.jep.2020.113718] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ferula sinkiangensis K. M. Shen is a traditional Chinese medicine that has a variety of pharmacological properties relevant to neurological disorders and inflammations. Kellerin, a novel compound extracted from Ferula sinkiangensis, exerts a strong anti-neuroinflammatory effect by inhibiting microglial activation. Microglial activation plays a vital role in ischemia-induced brain injury. However, the potential therapeutic effect of kellerin on focal cerebral ischemia is still unknown. AIM OF THE STUDY To explore the effect of kellerin on cerebral ischemia and clarify its possible mechanisms, we applied the middle cerebral artery occlusion (MCAO) model and the LPS-activated microglia model in our study. MATERIALS AND METHODS Neurological outcome was examined according to a 4-tiered grading system. Brain infarct size was measured using TTC staining. Brain edema was calculated using the wet weight minus dry weight method. Neuron damage and microglial activation were observed by immunofluorescence in MCAO model in rats. In in vitro studies, microglial activation was examined by flow cytometry and the viability of neuronal cells cultured in microglia-conditioned medium was measured using MTT assay. The levels of pro-inflammatory cytokines were measured by qRT-PCR and ELISA. The proteins involved in NF-κB signaling pathway were determined by western blot. Intracellular ROS was examined using DCFH-DA method and NADPH oxidase activity was measured using the NBT assay. RESULTS We found that kellerin improved neurological outcome, reduced brain infarct size and decreased brain edema in MCAO model in rats. Under the pathologic conditions of focal cerebral ischemia, kellerin alleviated neuron damage and inhibited microglial activation. Moreover, in in vitro studies of LPS-stimulated BV2 cells kellerin protected neuronal cells from being damaged by inhibiting microglial activation. Kellerin also reduced the levels of pro-inflammatory cytokines, suppressed the NF-κB signaling pathway, and decreased ROS generation and NADPH oxidase activity. CONCLUSIONS Our discoveries reveal that the neuroprotective effects of kellerin may largely depend on its inhibitory effect on microglial activation. This suggests that kellerin could serve as a novel anti-inflammatory agent which may have therapeutic effects in ischemic stroke.
Collapse
Affiliation(s)
- Yan Mi
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Kun Jiao
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Ji-Kai Xu
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China
| | - Kun Wei
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Jing-Yu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qing-Qi Meng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ting-Ting Guo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xue-Ni Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - De-Gang Qing
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Yu Sun
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang, China; Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang, China.
| |
Collapse
|
45
|
Huang L, Xu DQ, Chen YY, Yue SJ, Tang YP. Leonurine, a potential drug for the treatment of cardiovascular system and central nervous system diseases. Brain Behav 2021; 11:e01995. [PMID: 33300684 PMCID: PMC7882174 DOI: 10.1002/brb3.1995] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Leonurus japonicus Houtt., a traditional Chinese herbal medicine, is often used as a gynecological medicine with the effect of promoting blood circulation, regulating menstruation, clearing heat, and detoxificating. As the most important alkaloid in L. japonicus, leonurine has a wide range of biological activities, such as antioxidation, anti-inflammation, and anti-apoptosis. Cardiovascular system and central nervous system diseases are arrogant killers that threaten human lives and health around the world, but many drugs for treating them have certain side effects. This paper reviews the potential therapeutic effects of leonurine on cardiovascular system and central nervous system diseases, summarizes the previous research progress, and focuses on its therapeutic effect in various diseases. Although leonurine plays a prominent role in the treatment of cardiovascular system and central nervous system diseases, there are still some shortages, such as low bioavailability, weak transmembrane ability, and poor fat solubility. Therefore, the structure modification of leonurine may solve these problems and provide reference value for the development of new drugs. At present, leonurine is in clinical trial, and it is hoped that our summary will help to provide guidance for its future research on the basic science and clinical application.
Collapse
Affiliation(s)
- Lu Huang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
46
|
Li X, Xie Y, Qu W, Ou X, Ou X, Wang C, Qi X, Wang Y, Liu Z, Zhu L. Breast Cancer Resistance Protein and Multidrug Resistance Protein 2 Mediate the Disposition of Leonurine-10-O-β-glucuronide. Curr Drug Metab 2020; 21:1060-1067. [DOI: 10.2174/1389200221999201116142742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 11/22/2022]
Abstract
Background:
Leonurine (Leo), a promising antilipemic agent that has been approved for clinical
trials, is extensively metabolized into bioactive Leonurine-10-O-β-glucuronide (L-10-G) vivo.
Objective:
To explore the effects of breast cancer resistance protein (Bcrp) and multidrug resistance protein 2
(Mrp2) on the disposition of L-10-G.
Methods:
The pharmacokinetics, tissue distribution and intestinal perfusion of Leo were studied by using efflux
transporter gene knockout mouse models. The enzyme kinetics via liver and intestinal microsomes were also examined.
Results:
After intravenous injection with Leo, the AUC0-∞ values of L-10-G in Bcrp1-/- and Mrp2-/- mice were
1.55-fold and 16.80-fold higher, respectively, than those in wild-type FVB mice (P < 0.05). After oral administration,
the AUC0-∞ value of L-10-G showed a 2.82-fold increase in Mrp2-/- mice compared with wild-type FVB
mice (P < 0.05). After gavage with Leo for 10 and 25 min, the bile accumulation of L-10-G in Mrp2-/- mice was
3-fold and 22-fold lower, respectively, than that in wild-type FVB mice (P < 0.05). Besides, the intestinal excreted
amount of L-10-G showed 2.22-fold and 2.68-fold decrease in Bcrp1-/- and Mrp2-/- mice, respectively,
compared with that in wild-type FVB mice (P < 0.05). The clearance of L-10-G decreased in liver microsomes
and increased in intestinal microsomes of Bcrp1-/- and Mrp2-/- mice compared to the wild-type FVB mice (P <
0.05).
Conclusion:
Both Bcrp and Mrp2 are involved in the disposition of L-10-G, and Mrp2 exhibits a superior influence.
Collapse
Affiliation(s)
- Xiaocui Li
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Yushan Xie
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Wei Qu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Xiaojun Ou
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Xiaowen Ou
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Chuang Wang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Xiaoxiao Qi
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, China
| |
Collapse
|
47
|
Du YY, Chen ZX, Liu MY, Liu QP, Lin CS, Chu CQ, Xu Q. Leonurine Regulates Treg/Th17 Balance to Attenuate Rheumatoid Arthritis Through Inhibition of TAZ Expression. Front Immunol 2020; 11:556526. [PMID: 33117342 PMCID: PMC7575723 DOI: 10.3389/fimmu.2020.556526] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Leonurine, an active alkaloid extracted from Herba leonuri, is reported to have potent anti-inflammatory activity against rheumatoid arthritis (RA). However, the molecular mechanism of action of leonurine in RA remains poorly understood. In this study, we detected 3,425 mRNAs differentially expressed between CD4+ T cells of RA patients and those of healthy individuals using microarray raw data mining. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that transcriptional coactivator with PDZ-binding motif (TAZ) regulates a variety of biological processes including T-helper (Th)-17 cell development, and was thus selected for functional verification. In a naïve CD4+ T cell differentiation assay, we found that TAZ overexpression was associated with impaired balance between T regulatory (Treg) and Th17 cells in vitro. TAZ overexpression increased the levels of the pro-inflammatory cytokines interleukin (IL)-17, IL-1β, and tumor necrosis factor (TNF)-α and decreased that of the anti-inflammatory cytokine IL-10. Leonurine treatment had a direct recovery effect on the impaired balance and reduced the expression of TAZ and led to normalization of IL-17, IL-1β, and TNF-α and IL-10. Furthermore, IL-6 was found to promote the expression of TAZ and receptor activator of nuclear factor kappa-B ligand (RANKL), and RANK. Leonurine significantly inhibited TAZ-mediated expression of RANKL, and RANK and IL-6 in synovial fibroblasts. We conclude that the therapeutic effect of leonurine was through suppression of TAZ led to restoration of Treg/Th17 balance and suppression of synovial fibroblast action.
Collapse
Affiliation(s)
- Yan-Yi Du
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-Xin Chen
- Chinese Medicine Department, South China Agricultural University Hospital, Guangzhou, China
| | - Min-Ying Liu
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Ping Liu
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang-Song Lin
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cong-Qiu Chu
- Oregon Health & Science University, Portland, OR, United States
| | - Qiang Xu
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
48
|
Wen SH, Chang WC, Shen HS, Wu HC. Prescription patterns and factors influencing the use of Chinese herbal medicine among pregnant women in Taiwan: a population-based retrospective study. BMC Complement Med Ther 2020; 20:240. [PMID: 32731888 PMCID: PMC7391530 DOI: 10.1186/s12906-020-03032-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The use of Chinese herbal medicine (CHM) has been widely promoted as a natural and safe way to treat illness during pregnancy. However, prescription patterns and factors influencing its use are largely unknown. Therefore, we conducted a population-based study to address these questions. METHODS Pregnant women aged 18-50 years were selected from Taiwan's National Health Insurance Research Database between 2001 to 2011. CHM prescriptions and diagnostic records were collected. Demographic data and pre-existing diseases were compared between CHM users and non-users. A multivariate logistic regression analysis was performed to identify possible factors influencing the use of CHM during pregnancy. RESULTS A total of 81,873 eligible prescription records were identified, and 16,553 pregnant women were prescribed CHM during pregnancy, yielding a CHM prescription rate of 20.2%. The three most frequently used herbs were Scutellariae Radix (Huang Qin) (4.4%), Eucommiae cortex (Du Zhong) (2.5%), and Atractylodes Rhizome (Bai Zhu) (2.4%). The most frequently used herbal formulae were Dang-Guei-Shao-Yao-San (4.1%), Jia-Wei-Xiao-Yao-San (3.5%), and Xiang-Sha-Liu-Jun-Zi-Tang (2.6%). Multivariate logistic regression revealed that subjects with an older age, a university education, a pre-pregnancy history of CHM use, asthma, chronic renal disease, and cardiac valvular disease and living in a residential area other than northern Taiwan had an increase in adjusted odds ratio for CHM use during pregnancy. CONCLUSIONS In this population-based study, we found that demographic factors and pre-existing diseases were associated with the use of CHM among pregnant women. It is worth noting that Leonuri Herba (Yi Mu Cao) and Shao-Fu-Zhu-Yu-Tang should be used with caution in the first trimester. Further research is needed to explore the safety and effectiveness of the use of CHM in pregnant women.
Collapse
Affiliation(s)
- Shu-Hui Wen
- Department of Public Health, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Chuan Chang
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Hsuan-Shu Shen
- Department of Chinese Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.,School of Post-baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsien-Chang Wu
- School of Post-baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan. .,Department of Chinese Medicine, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, No. 289, Jianguo Rd., Xindian Dist, New Taipei City, 23142, Taiwan.
| |
Collapse
|
49
|
Ning K, Wang MJ, Lin G, Zhang YL, Li MY, Yang BF, Chen Y, Huang Y, Li ZM, Huang YJ, Zhu L, Liang K, Yu B, Zhu YZ, Zhu YC. eNOS-Nitric Oxide System Contributes to a Novel Antiatherogenic Effect of Leonurine via Inflammation Inhibition and Plaque Stabilization. J Pharmacol Exp Ther 2020; 373:463-475. [PMID: 32238453 DOI: 10.1124/jpet.119.264887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
Leonurine (LEO) is a bioactive small molecular compound that has protective effects on the cardiovascular system and prevents the early progression of atherosclerosis; however, it is not clear whether LEO is effective for plaque stability. A novel mouse atherosclerosis model involving tandem stenosis (TS) of the right carotid artery combined with western diet (WD) feeding was used. Apolipoprotein E gene-deficient mice were fed with a WD and received LEO administration daily for 13 weeks. TS was introduced 6 weeks after the onset of experiments. We found that LEO enhanced plaque stability by increasing fibrous cap thickness and collagen content while decreasing the population of CD68-positive cells. Enhanced plaque stability by LEO was associated with the nitric oxide synthase (NOS)-nitric oxide (NO) system. LEO restored the balance between endothelial NOS(E)- and inducible NOS(iNOS)-derived NO production; suppressed the NF-κB signaling pathway; reduced the level of the inflammatory infiltration in plaque, including cytokine interleukin 6; and downregulated the expression of adhesion molecules. These findings support the distinct role of LEO in plaque stabilization. In vitro studies with oxidized low-density lipoprotein-challenged human umbilical vein endothelial cells revealed that LEO balanced NO production and inhibited NF-κB/P65 nuclear translocation, thus mitigating inflammation. In conclusion, the restored balance of the NOS-NO system and mitigated inflammation contribute to the plaque-stabilizing effect of LEO. SIGNIFICANCE STATEMENT: LEO restored the balance between endothelial NOS and inducible NOS in NO production and inhibited excessive inflammation in atherosclerotic "unstable" and rupture-prone plaques in apolipoprotein E gene-deficient mice. The protective effect of LEO for stabilizing atherosclerotic plaques was due to improved collagen content, increased fibrous cap thickness, and decreased accumulation of macrophages/foam cells. So far, LEO has passed the safety and feasibility test of phase I clinical trial.
Collapse
Affiliation(s)
- Ke Ning
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Ming-Jie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Ge Lin
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yi-Lin Zhang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Meng-Yao Li
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Bao-Feng Yang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Ying Chen
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yong Huang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Zhi-Ming Li
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yi-Jun Huang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Lei Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Kun Liang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Bo Yu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yi-Zhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| |
Collapse
|
50
|
Luo S, Xu S, Liu J, Ma F, Zhu YZ. Design and synthesis of novel SCM-198 analogs as cardioprotective agents: Structure-activity relationship studies and biological evaluations. Eur J Med Chem 2020; 200:112469. [PMID: 32485530 DOI: 10.1016/j.ejmech.2020.112469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/07/2023]
Abstract
SCM-198 (Leonurine) has attracted great attention due to its cardioprotective effects in myocardial infarction (MI). However, no systematic modifications and structure-activity relationship (SAR) studies could be traced so far. In this study, 35 analogs of SCM-198 were designed, synthesized and their cardioprotective effects were evaluated. The cell viability assay on cardiomyocyte cell line H9c2 challenged with H2O2 showed that several analogs exhibited more potent cytoprotective effects than SCM-198 at 1 μM and 10 μM concentrations. LDH release level in cells treated with 1 μM 14o was comparable with cells treated with 10 μM SCM-198. Results of Bcl-2 expression and caspase-3 activation accordingly indicated higher protective activity of 14o than SCM-198. Moreover, in a mouse model of MI, the mice pretreated with 14o had much lower infarct size compared with that of SCM-198. The mechanism study suggested that 14o improved cardiac morphology and reduced apoptosis of cardiomyocytes in the border zone of infarction, as proved by H&E and TUNEL staining.
Collapse
Affiliation(s)
- Shanshan Luo
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, PR China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 200032, PR China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Junkai Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Fenfen Ma
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, PR China
| | - Yi Zhun Zhu
- Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, PR China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|