1
|
Oh HJ, Imam-Aliagan AB, Kim YB, Kim HJ, Izaguirre IA, Sung CK, Yim H. Clinical applications of circulating biomarkers in non-small cell lung cancer. Front Cell Dev Biol 2024; 12:1449232. [PMID: 39239557 PMCID: PMC11375801 DOI: 10.3389/fcell.2024.1449232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Despite recent advances in cancer diagnostics and treatment, the mortality associated with lung cancer is still the highest in the world. Late-stage diagnosis, often accompanied by metastasis, is a major contributor to the high mortality rates, emphasizing the urgent need for reliable and readily accessible diagnostic tools that can detect biomarkers unique to lung cancer. Circulating factors, such as circulating tumor DNA and extracellular vesicles, from liquid biopsy have been recognized as diagnostic or prognostic markers in lung cancer. Numerous clinical studies are currently underway to investigate the potential of circulating tumor DNA, circulating tumor RNA, exosomes, and exosomal microRNA within the context of lung cancer. Those clinical studies aim to address the poor diagnostics and limited treatment options for lung cancer, with the ultimate goal of developing clinical markers and personalized therapies. In this review, we discuss the roles of each circulating factor, its current research status, and ongoing clinical studies of circulating factors in non-small cell lung cancer. Additionally, we discuss the circulating factors specifically found in lung cancer stem cells and examine approved diagnostic assays designed to detect circulating biomarkers in lung cancer patients.
Collapse
Affiliation(s)
- Hyun-Ji Oh
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Abdulhamid B Imam-Aliagan
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Hyun-Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Issac A Izaguirre
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Chang K Sung
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Gholami A. Cancer stem cell-derived exosomes in CD8 + T cell exhaustion. Int Immunopharmacol 2024; 137:112509. [PMID: 38889509 DOI: 10.1016/j.intimp.2024.112509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/15/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Tumor-derived extracellular vesicles (EVs) are one of the most important ways of intercellular communication and signaling. Cancer stem cells (CSCs) secrete EVs to modulate immune checkpoint molecules and evade immune surveillance. Activated CD8+ T cells known as cytotoxic T lymphocytes (CTLs) are the most powerful anti-cancer adaptive cells. Their activity is compromised upon encountering cells and signaling within the tumor microenvironment (TME), resulting in hyporesponsiveness called exhaustion. CSC-derived exosomes express programmed death ligand-1 (PD-L1) and upregulate programmed death-1 (PD-1) on CD8+ T cells to promote their exhaustion. PD-L1 expression on tumor-derived exosomes appears to be induced by CSC-derived exosomes containing transforming growth factor (TGF)-β. Tenascin-C is another constituent of CSC exosomes that acts on mammalian target of rapamycin (mTOR) signaling in T cells. Glycolysis is a metabolic event promoted by the inducing effect of CSC-derived exosomes on hypoxia-inducible factor-1α (HIF-1α). CSC interaction with CD8+ T cells is even more complex as the CSC-derived exosomes contain Notch1 to stimulate stemness in non-tumor cells, and the inducible effect of Notch1 on PD-1 promotes CD8+ T cell exhaustion. CSC exosome targeting has not been extensively studied yet. Advances in the field will open up new therapeutic windows and shape the future of cancer immunotherapy.
Collapse
Affiliation(s)
- Amir Gholami
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
3
|
Bai J, Chen Y, Sun Y, Wang X, Wang Y, Guo S, Shang Z, Shao Z. EphA2 promotes the transcription of KLF4 to facilitate stemness in oral squamous cell carcinoma. Cell Mol Life Sci 2024; 81:278. [PMID: 38916835 PMCID: PMC11335203 DOI: 10.1007/s00018-024-05325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024]
Abstract
Ephrin receptor A2 (EphA2), a member of the Ephrin receptor family, is closely related to the progression of oral squamous cell carcinoma (OSCC). Cancer stem cells (CSCs) play essential roles in OSCC development and occurrence. The underlying mechanisms between EphA2 and CSCs, however, are not yet fully understood. Here, we found that EphA2 was overexpressed in OSCC tissues and was associated with poor prognosis. Knockdown of EphA2 dampened the CSC phenotype and the tumour-initiating frequency of OSCC cells. Crucially, the effects of EphA2 on the CSC phenotype relied on KLF4, a key transcription factor for CSCs. Mechanistically, EphA2 activated the ERK signalling pathway, promoting the nuclear translocation of YAP. Subsequently, YAP was bound to TEAD3, leading to the transcription of KLF4. Overall, our findings revealed that EphA2 can enhance the stemness of OSCC cells, and this study identified the EphA2/KLF4 axis as a potential target for treating OSCC.
Collapse
Affiliation(s)
- Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yunqing Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinmiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yifan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shutian Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Day Surgery Center, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Gao Q, Zhan Y, Sun L, Zhu W. Cancer Stem Cells and the Tumor Microenvironment in Tumor Drug Resistance. Stem Cell Rev Rep 2023; 19:2141-2154. [PMID: 37477773 DOI: 10.1007/s12015-023-10593-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Although there has been some progress in the efficacy of anti-cancer drugs, drug resistance remains challenging. Cancer stem cells (CSCs) are self-renewing and differentiate into cancer tissues with tumor heterogeneity. CSCs are associated with the progression of breast, colon, and lung cancers. Hence, recent studies have focused on the role of CSCs in resistance to anti-cancer drugs. Increasing evidence suggests that CSCs interact with components of the tumor microenvironment (TME), such as vascular and immune cells, as well as various cytokines, and are regulated by multiple signaling pathways, thereby promoting drug resistance in various cancers. Therefore, it is important to clarify the mechanisms underlying the crosstalk between CSCs and the TME for the development of targeted anti-cancer therapies.
Collapse
Affiliation(s)
- Qiuzhi Gao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Yixiang Zhan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
5
|
Wang L, Yang G, Guo P, Lv Y, Fu B, Bai Y, Xiong F, Zhao D, Li C, Zhang J, Bai S, Zeng F, Xu W. LncRNA PVT1 promotes strong stemness and endothelial progenitor cell characteristics in renal carcinoma stem cells. FASEB J 2023; 37:e23118. [PMID: 37531296 DOI: 10.1096/fj.202201880r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
Renal cancer stem cells (RCSCs) derived from clear cell renal cell carcinoma (ccRCC) tissues with higher microvessel density (MVD) have strong stemness and endothelial progenitor cells-like (EPCs-like) characteristics. A high level of lncRNA PVT1 expression is essential for simultaneously retaining strong RCSC stemness and EPCs-like characteristics. PVT1 binds with TAZ protein and prevents its phosphorylation, which promotes RCSC stemness. Moreover, RCSCs support endothelial differentiation and angiogenesis, which are mediated via the PVT1/miR-15b/KDR axis. This report provides insight into the determinants of RCSC impact on stemness and highlights the critical role of RCSC in angiogenesis. The presented findings suggest that targeting RCSC through PVT1 expression may be a new treatment strategy for ccRCC.
Collapse
Affiliation(s)
- Lu Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengyu Guo
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Yulin Lv
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Bo Fu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Yang Bai
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Feng Xiong
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Danfeng Zhao
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Cong Li
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Jianji Zhang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Shiyu Bai
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Fanshu Zeng
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Wanhai Xu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Wu B, Shi X, Jiang M, Liu H. Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment. Mol Cancer 2023; 22:38. [PMID: 36810098 PMCID: PMC9942413 DOI: 10.1186/s12943-023-01748-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Ongoing research has revealed that the existence of cancer stem cells (CSCs) is one of the biggest obstacles in the current cancer therapy. CSCs make an influential function in tumor progression, recurrence and chemoresistance due to their typical stemness characteristics. CSCs are preferentially distributed in niches, and those niche sites exhibit characteristics typical of the tumor microenvironment (TME). The complex interactions between CSCs and TME illustrate these synergistic effects. The phenotypic heterogeneity within CSCs and the spatial interactions with the surrounding tumor microenvironment led to increased therapeutic challenges. CSCs interact with immune cells to protect themselves against immune clearance by exploiting the immunosuppressive function of multiple immune checkpoint molecules. CSCs also can protect themselves against immune surveillance by excreting extracellular vesicles (EVs), growth factors, metabolites and cytokines into the TME, thereby modulating the composition of the TME. Therefore, these interactions are also being considered for the therapeutic development of anti-tumor agents. We discuss here the immune molecular mechanisms of CSCs and comprehensively review the interplay between CSCs and the immune system. Thus, studies on this topic seem to provide novel ideas for reinvigorating therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Bo Wu
- grid.459742.90000 0004 1798 5889Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Xiang Shi
- grid.459742.90000 0004 1798 5889Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Meixi Jiang
- grid.412644.10000 0004 5909 0696Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032 China
| | - Hongxu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| |
Collapse
|
7
|
Zhou G, Lv X, Zhong X, Ying W, Li W, Feng Y, Xia Q, Li J, Jian S, Leng Z. Suspension culture strategies to enrich colon cancer stem cells. Oncol Lett 2023; 25:116. [PMID: 36844615 PMCID: PMC9950343 DOI: 10.3892/ol.2023.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 11/16/2021] [Indexed: 02/09/2023] Open
Abstract
How to efficiently obtain high-purity cancer stem cells (CSCs) has been the basis of CSC research, but the optimal conditions for serum-free suspension culture of CSCs are still unclear. The present study aimed to define the optimal culture medium composition and culture time for the enrichment of colon CSCs via suspension culture. Suspension cell cultures of colon cancer DLD-1 cells were prepared using serum-free medium (SFM) containing variable concentrations of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) to produce spheroids. Culture times were set at 10, 20 and 30 days. A total of nine different concentrations of EGF and bFGF were added to SFM to generate nine experimental groups. The proportions of CD44+, CD133+, and CD44+CD133+ double-positive spheroid cells were detected via flow cytometry. mRNA expression of stemness-, epithelial-mesenchymal transition- and Wnt/β-catenin pathway-associated genes was determined via reverse transcription-quantitative PCR. Self-renewal ability was evaluated by a sphere-forming assay. Tumorigenesis was studied in vitro using a colony formation assay and in vivo via subcutaneous cell injection in nude mice. It was found that the highest expression proportions of CD133+ and CD44+ spheroid cells were observed in group (G)9 (20 ng/ml EGF + 20 ng/ml bFGF) at 30 days (F=123.554 and 99.528, respectively, P<0.001), CD133+CD44+ cells were also observed in G9 at 30 days (and at 10 days in G3 and 20 days in G6; F=57.897, P<0.001). G9 at 30 days also displayed the highest expression of Krüppel-like factor 4, leucine-rich repeat-containing G protein-coupled receptor 5, CD44, CD133, Vimentin and Wnt-3a (F=22.682, 25.401, 3.272, 7.852, 13.331 and 17.445, respectively, P<0.001) and the lowest expression of E-cadherin (F=10.851, P<0.001). G9 at 30 days produced the highest yield of cell spheroids, as determined by a sphere forming assay (F=19.147, P<0.001); colony formation assays also exhibited the greatest number of colonies derived from G9 spheroids at 30 days (F=60.767, P<0.01), which also generated the largest mean tumor volume in the subcutaneous tumorigenesis xenograft model (F=12.539, P<0.01). In conclusion, 20 ng/ml EGF + 20 ng/ml bFGF effectively enriched colon CSCs when added to suspension culture for 30 days, and conferred the highest efficiency compared with other combinations.
Collapse
Affiliation(s)
- Guojun Zhou
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaojiang Lv
- Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaorong Zhong
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Wei Ying
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Wenbo Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yanchao Feng
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qinghua Xia
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Jianshui Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Shunhai Jian
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Professor Shunhai Jian, Department of Pathology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, Sichuan 637000, P.R. China, E-mail:
| | - Zhengwei Leng
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Cancer Stem Cells Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China,Correspondence to: Professor Zhengwei Leng, Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, 234, Fujiang Road, Nanchong, Sichuan 637000, P.R. China, E-mail:
| |
Collapse
|
8
|
Yun H, Han GH, Kim J, Chung J, Kim J, Cho H. NANOG
regulates epithelial–mesenchymal transition via
AMPK
/
mTOR
signalling pathway in ovarian cancer
SKOV
‐3 and
A2780
cells. J Cell Mol Med 2022; 26:5277-5291. [PMID: 36114703 PMCID: PMC9575063 DOI: 10.1111/jcmm.17557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
NANOG engages with tumour initiation and metastasis by regulating the epithelial–mesenchymal transition (EMT) in epithelial ovarian cancer (EOC). However, its role in association with pAMPKα, and its clinical significance in EOC have not been elucidated even though AMPK is known to degrade NANOG in various human cancers. Hence, we investigated the role of pAMPKα and its association with NANOG as potential prognostic biomarkers in EOC. Both NANOG and pAMPKα expression were significantly overexpressed in EOCs comparing nonadjacent normal epithelial tissues, benign tissues, and borderline tumours. NANOG overexpression was significantly associated with poor disease‐free survival (DFS) and overall survival (OS), whereas pAMPKα overexpression was associated with good DFS and OS. Importantly, multivariate analysis revealed that the combination of high NANOG and low pAMPKα expression was a poor independent prognostic factor for DFS and was associated with platinum resistance. In ovarian cancer cell lines, siRNA‐mediated NANOG knockdown diminished migration and invasion properties by regulating the EMT process via the AMPK/mTOR signalling pathway. Furthermore, treatment with AMPK activator suppressed expression of stemness factors such as NANOG, Oct4 and Sox2. Collectively, these findings established that the combination of high NANOG and low pAMPKα expression was associated with EOC progression and platinum resistance, suggesting a potential prognostic biomarker for clinical management in EOC patients.
Collapse
Affiliation(s)
- Hee Yun
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital Yonsei University College of Medicine Seoul Korea
| | - Gwan Hee Han
- Department of Obstetrics and Gynecology Kyung Hee University Hospital at Gangdong Seoul Korea
| | - Julie Kim
- Weill Cornell Medical College New York New York USA
| | - Joon‐Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute National Institutes of Health Bethesda Maryland USA
| | - Jae‐Hoon Kim
- Department of Obstetrics and Gynecology Yonsei University College of Medicine Seoul Korea
- Institute of Women's Life Medical Science Yonsei University College of Medicine Seoul Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology Yonsei University College of Medicine Seoul Korea
- Institute of Women's Life Medical Science Yonsei University College of Medicine Seoul Korea
| |
Collapse
|
9
|
Kapoor-Narula U, Lenka N. Cancer stem cells and tumor heterogeneity: Deciphering the role in tumor progression and metastasis. Cytokine 2022; 157:155968. [PMID: 35872504 DOI: 10.1016/j.cyto.2022.155968] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
Tumor heterogeneity, in principle, reflects the variation among different cancer cell populations. It can be termed inter- or intra-tumoral heterogeneity, respectively, based on its occurrence in various tissues from diverse patients or within a single tumor. The intra-tumoral heterogeneity is one of the leading causes of cancer progression and treatment failure, with the cancer stem cells (CSCs) contributing immensely to the same. These niche cells, similar to normal stem cells, possess the characteristics of self-renewal and differentiation into multiple cell types. Moreover, CSCs contribute to tumor growth and surveillance by promoting recurrence, metastasis, and therapeutic resistance. Diverse factors, including intracellular signalling pathways and tumor microenvironment (TME), play a vital role in regulating these CSCs. Although a panel of markers is considered to identify the CSC pool in various cancers, further research is needed to discriminate cancer-specific CSC markers in those. CSCs have also been found to be promising therapeutic targets for cancer therapy. Several small molecules, natural compounds, antibodies, chimeric antigen receptor T (CAR-T) cells, and CAR-natural killer (CAR-NK) cells have emerged as therapeutic tools for specific targeting of CSCs. Interestingly, many of these are in clinical trials too. Despite being a much-explored avenue of research for years, and we have come to understand its nitty-gritty, there is still a tremendous gap in our knowledge concerning its precise genesis and regulation. Hence, a concrete understanding is needed to assess the CSC-TME link and how to target different cancer-specific CSCs by designing newer tools. In this review, we have summarized CSC, its causative, different pathways and factors regulating its growth, association with tumor heterogeneity, and last but not least, discussed many of the promising CSC-targeted therapies for combating cancer metastasis.
Collapse
|
10
|
Li X, Li X, Zhang B, He B. The Role of Cancer Stem Cell-Derived Exosomes in Cancer Progression. Stem Cells Int 2022; 2022:9133658. [PMID: 35571530 PMCID: PMC9095362 DOI: 10.1155/2022/9133658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) represent a small portion of tumor cells with self-renewal ability in tumor tissues and are a key factor in tumor resistance, recurrence, and metastasis. CSCs produce a large number of exosomes through various mechanisms, such as paracrine and autocrine signaling. Studies have shown that CSC-derived exosomes (CSC-Exos) carry a variety of gene mutations and specific epigenetic modifications indicative of unique cell phenotypes and metabolic pathways, enabling exchange of information in the tumor microenvironment (TME) to promote tumor invasion and metastasis. In addition, CSC-Exos carry a variety of metabolites, especially proteins and miRNAs, which can activate signaling pathways to further promote tumor development. CSC-Exos have dual effects on cancer development. Due to advances in liquid biopsy technology for early cancer detection, CSCs-Exos may become an important tool for early cancer diagnosis and therapeutic drug delivery. In this article, we will review how CSC-Exos exert the above effects based on the above two aspects and explore their mechanism of action.
Collapse
Affiliation(s)
- Xueting Li
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xinjian Li
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Baoyu He
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
11
|
DiNatale A, Kaur R, Qian C, Zhang J, Marchioli M, Ipe D, Castelli M, McNair CM, Kumar G, Meucci O, Fatatis A. Subsets of cancer cells expressing CX3CR1 are endowed with metastasis-initiating properties and resistance to chemotherapy. Oncogene 2022; 41:1337-1351. [PMID: 34999735 PMCID: PMC8941631 DOI: 10.1038/s41388-021-02174-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/02/2021] [Accepted: 12/30/2021] [Indexed: 12/23/2022]
Abstract
Metastasis-initiating cells (MICs) display stem cell-like features, cause metastatic recurrences and defy chemotherapy, which leads to patients' demise. Here we show that prostate and breast cancer patients harbor contingents of tumor cells with high expression of CX3CR1, OCT4a (POU5F1), and NANOG. Impairing CX3CR1 expression or signaling hampered the formation of tumor spheroids by cell lines from which we isolated small subsets co-expressing CX3CR1 and stemness-related markers, similarly to patients' tumors. These rare CX3CR1High cells show transcriptomic profiles enriched in pathways that regulate pluripotency and endowed with metastasis-initiating behavior in murine models. Cancer cells lacking these features (CX3CR1Low) were capable of re-acquiring CX3CR1-associated features over time, implying that MICs can continuously emerge from non-stem cancer cells. CX3CR1 expression also conferred resistance to docetaxel, and prolonged treatment with docetaxel selected CX3CR1High phenotypes with de-enriched transcriptomic profiles for apoptotic pathways. These findings nominate CX3CR1 as a novel marker of stem-like tumor cells and provide conceptual ground for future development of approaches targeting CX3CR1 signaling and (re)expression as therapeutic means to prevent or contain metastasis initiation.
Collapse
Affiliation(s)
- Anthony DiNatale
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Ramanpreet Kaur
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Champions Oncology, 1330 Piccard Drive, Rockville, MD, 20850, USA
| | - Chen Qian
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Samuel Oschin Cancer Center, Cedars-Sinai, Los Angeles, CA, 90048, USA
| | - Jieyi Zhang
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Michael Marchioli
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Darin Ipe
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Maria Castelli
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chris M McNair
- Department of Cancer Biology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Cancer Informatics, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gaurav Kumar
- Department of Cancer Biology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Program in Immune Cell Regulation & Targeting, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
- Program in Translational and Cellular Oncology at Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
12
|
Xu C, Yang HL, Yang YK, Pan L, Chen HY. Zinc-finger protein 750 mitigates malignant biological behavior of oral CSC-like cells enriched from parental CAL-27 cells. Oncol Lett 2022; 23:28. [PMID: 34868365 PMCID: PMC8630818 DOI: 10.3892/ol.2021.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 11/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most commonly occurring oral malignancy. Cancer stem cells (CSCs) are known to be responsible for cancer recurrence and metastasis. Zinc-finger protein 750 (ZNF750) has been reported to inhibit OSCC cell proliferation and invasion. The present study aimed to elucidate the role of ZNF750 in the inhibition of the renewal ability of CSCs derived from the OSCC cell line, CAL-27. The effects of ZNF750 on CSC-like properties were examined using aldehyde dehydrogenase (ALDH), tumor sphere formation and colony formation assays. Reverse transcription-quantitative PCR and western blotting were performed to detect the expression levels of octamer-binding transcription factor 4, sex-determining region Y-box 2, the enhancer of zeste homolog 2 (Ezh2), embryonic ectoderm development (EED) and SUZ12 polycomb repressive complex 2 subunit (SUZ12), and for the identification of genes associated with metastasis. ZNF750 effectively attenuated CSC-like cell self-renewal abilities; ZNF750 decreased the ALDH-positive cell population, tumor sphere and colony formation abilities, cell viability and stemness factors. Furthermore, the expression levels of Ezh2, EED and SUZ12 were decreased by ZNF750. ZNF750 inhibited MMP1, 3, 9 and 13 expression levels, and decreased the cell invasion and migratory abilities. Moreover, the expression of tissue inhibitors of matrix metalloproteinases-1 was increased by ZNF750. However, opposite effects were observed following the knockdown of the ZNF750 gene. Overall, the present study demonstrated that ZNF750 has the potential to inhibit the renewal of CSC-like cells enriched from parental CAL-27 cells.
Collapse
Affiliation(s)
- Cong Xu
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Hong-Li Yang
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Yi-Kun Yang
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Li Pan
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Hai-Ying Chen
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
13
|
Gallardo-Pérez JC, de Guevara AAL, García-Amezcua MA, Robledo-Cadena DX, Pacheco-Velázquez SC, Belmont-Díaz JA, Vargas-Navarro JL, Moreno-Sánchez R, Rodríguez-Enríquez S. Celecoxib and dimethylcelecoxib block oxidative phosphorylation, epithelial-mesenchymal transition and invasiveness in breast cancer stem cells. Curr Med Chem 2021; 29:2719-2735. [PMID: 34636290 DOI: 10.2174/0929867328666211005124015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drug resistance and invasiveness developed by breast cancer stem cells (BCSC) are considered the major hurdles for successful cancer treatment. <P> Objective: As these two processes are highly energy-dependent, the identification of the main ATP supplier required for stem cell viability may result advantageous in the design of new therapeutic strategies to deter malignant carcinomas. <P> Methods: The energy metabolism (glycolysis and oxidative phosphorylation, OxPhos) was systematically analyzed by assessing relevant protein contents, enzyme activities and pathway fluxes in BCSC. Once identified the main ATP supplier, selective energy inhibitors and canonical breast cancer drugs were used to block stem cell viability and their metastatic properties. <P> Results: OxPhos and glycolytic protein contents, as well as HK and LDH activities were several times higher in BCSC than in their parental line, MCF-7 cells. However, CS, GDH, COX activities and both energy metabolism pathway fluxes were significantly lower (38-86%) in BCSC than in MCF-7 cells. OxPhos was the main ATP provider (>85%) in BCSC. Accordingly, oligomycin (a specific and potent canonical OxPhos inhibitor) and other non-canonical drugs with inhibitory effect on OxPhos (celecoxib, dimethylcelecoxib) significantly decreased BCSC viability, levels of epithelial-mesenchymal transition proteins, invasiveness, and induced ROS over-production, with IC50 values ranging from 1 to 20 µM in 24 h treatment. In contrast, glycolytic inhibitors (gossypol, iodoacetic acid, 3-bromopyruvate, 2-deoxyglucose) and canonical chemotherapeutic drugs (paclitaxel, doxorubicin, cisplatin) were much less effective against BCSC viability (IC50> 100 µM). <P> Conclusion: These results indicated that the use of some NSAIDs may be a promising alternative therapeutic strategy to target BCSC.
Collapse
|
14
|
Oliveira BSAD, de Assis ACC, Souza NM, Ferreira LFR, Soriano RN, Bilal M, Iqbal HMN. Nanotherapeutic approach to tackle chemotherapeutic resistance of cancer stem cells. Life Sci 2021; 279:119667. [PMID: 34087280 DOI: 10.1016/j.lfs.2021.119667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
Estimates indicate that cancer will become the leading cause of mortality worldwide in the future. Tumorigenesis is a complex process that involves self-sufficiency in signs of growth, insensitivity to anti-growth signals, prevention of apoptosis, unlimited replication, sustained angiogenesis, tissue invasion, and metastasis. Cancer stem cells (CSCs) have an important role in tumor development and resistance. Here we will approach phenotypic plasticity capacity, highly efficient DNA repair systems, anti-apoptotic machinery, sustained stemness features, interaction with the tumor microenvironment, and Notch, Wnt, and Hedgehog signaling pathways. The researches about CSCs as a target in cancer treatment has been growing. Many different options have pointed beneficial results, such as pathways and CSC-surface markers targeting. Besides its limitations, nanotherapeutics have emerged as a potential strategy in this context since they aim to improve pharmacokinetics, biodistribution, and reduce the side effects observed in traditional treatments. Nanoparticles have been studied in this field, mostly for drug delivery and a multitherapy approach. Another widely researched approaches in this area are related to heat therapy, such as photothermal therapy, photodynamic therapy and magnetic hyperthermia, besides molecular targeting. This review will contemplate the most relevant studies that have shown the effects of nanotherapeutics. In conclusion, although the studies analyzed are mostly preclinical, we believe that there is strong evidence that nanoparticles can increase the chances of a better prognosis to cancer in the future. It is also essential to transpose these findings to the clinic to confirm and better understand the role of nanotherapeutics in this context.
Collapse
Affiliation(s)
- Bruna Stefane Alves de Oliveira
- Undergradute student, Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | - Ana Carolina Correa de Assis
- Undergradute student, Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | - Natália Melo Souza
- Undergradute student, Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil; Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, MG 35010-177, Brazil
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
15
|
Hayford CE, Tyson DR, Robbins CJ, Frick PL, Quaranta V, Harris LA. An in vitro model of tumor heterogeneity resolves genetic, epigenetic, and stochastic sources of cell state variability. PLoS Biol 2021; 19:e3000797. [PMID: 34061819 PMCID: PMC8195356 DOI: 10.1371/journal.pbio.3000797] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2021] [Accepted: 03/16/2021] [Indexed: 12/30/2022] Open
Abstract
Tumor heterogeneity is a primary cause of treatment failure and acquired resistance in cancer patients. Even in cancers driven by a single mutated oncogene, variability in response to targeted therapies is well known. The existence of additional genomic alterations among tumor cells can only partially explain this variability. As such, nongenetic factors are increasingly seen as critical contributors to tumor relapse and acquired resistance in cancer. Here, we show that both genetic and nongenetic factors contribute to targeted drug response variability in an experimental model of tumor heterogeneity. We observe significant variability to epidermal growth factor receptor (EGFR) inhibition among and within multiple versions and clonal sublines of PC9, a commonly used EGFR mutant nonsmall cell lung cancer (NSCLC) cell line. We resolve genetic, epigenetic, and stochastic components of this variability using a theoretical framework in which distinct genetic states give rise to multiple epigenetic "basins of attraction," across which cells can transition driven by stochastic noise. Using mutational impact analysis, single-cell differential gene expression, and correlations among Gene Ontology (GO) terms to connect genomics to transcriptomics, we establish a baseline for genetic differences driving drug response variability among PC9 cell line versions. Applying the same approach to clonal sublines, we conclude that drug response variability in all but one of the sublines is due to epigenetic differences; in the other, it is due to genetic alterations. Finally, using a clonal drug response assay together with stochastic simulations, we attribute subclonal drug response variability within sublines to stochastic cell fate decisions and confirm that one subline likely contains genetic resistance mutations that emerged in the absence of drug treatment.
Collapse
Affiliation(s)
- Corey E. Hayford
- Chemical and Physical Biology Graduate Program, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Darren R. Tyson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - C. Jack Robbins
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Peter L. Frick
- Chemical and Physical Biology Graduate Program, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Leonard A. Harris
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, United States of America
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas, United States of America
- Cancer Biology Program, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| |
Collapse
|
16
|
de Miranda FS, Guimarães JPT, Menikdiwela KR, Mabry B, Dhakal R, Rahman RL, Moussa H, Moustaid-Moussa N. Breast cancer and the renin-angiotensin system (RAS): Therapeutic approaches and related metabolic diseases. Mol Cell Endocrinol 2021; 528:111245. [PMID: 33753205 DOI: 10.1016/j.mce.2021.111245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
The Renin-Angiotensin System (RAS) is classically recognized for regulating blood pressure and fluid balance. Recently, this role has extended to other areas including inflammation, obesity, diabetes, as well as breast cancer. RAS components are expressed in normal and cancerous breast tissues, and downregulation of RAS inhibits metastasis, proliferation, angiogenesis, and desmoplasia in the tumor microenvironment. Therefore, RAS inhibitors (Angiotensin receptor blockers, ARBs, or angiotensin converting enzyme inhibitors, ACE-I) may be beneficial as preventive adjuvant therapies to thwart breast cancer development and improve outcomes, respectively. Given the beneficial effects of RAS inhibitors in metabolic diseases, which often co-exist in breast cancer patients, combining RAS inhibitors with other breast cancer therapies may enhance the effectiveness of current treatments. This review scrutinizes above associations, to advance our understanding of the role of RAS in breast cancer and its potential for repurposing of RAS inhibitors to improve the therapeutic approach for breast cancer patients.
Collapse
Affiliation(s)
- Flávia Sardela de Miranda
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - João Pedro Tôrres Guimarães
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA; Laboratory of Immunopharmacology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo (ICB/USP), São Paulo, SP, Brazil; Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo (FCF/USP), São Paulo, SP, Brazil
| | - Kalhara R Menikdiwela
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Brennan Mabry
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA
| | - Rabin Dhakal
- Department of Mechanical Engineering, Texas Tech University (TTU), Lubbock, TX, USA
| | - Rakhshanda Layeequr Rahman
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Hanna Moussa
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA; Department of Mechanical Engineering, Texas Tech University (TTU), Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
17
|
Lee H, Kwon OB, Lee JE, Jeon YH, Lee DS, Min SH, Kim JW. Repositioning Trimebutine Maleate as a Cancer Treatment Targeting Ovarian Cancer Stem Cells. Cells 2021; 10:cells10040918. [PMID: 33923707 PMCID: PMC8072797 DOI: 10.3390/cells10040918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022] Open
Abstract
The overall five-year survival rate for late-stage patients of ovarian cancer is below 29% due to disease recurrence and drug resistance. Cancer stem cells (CSCs) are known as a major contributor to drug resistance and recurrence. Accordingly, therapies targeting ovarian CSCs are needed to overcome the limitations of present treatments. This study evaluated the effect of trimebutine maleate (TM) targeting ovarian CSCs, using A2780-SP cells acquired by a sphere culture of A2780 epithelial ovarian cancer cells. TM is indicated as a gastrointestinal motility modulator and is known to as a peripheral opioid receptor agonist and a blocker for various channels. The GI50 of TM was approximately 0.4 µM in A2780-SP cells but over 100 µM in A2780 cells, demonstrating CSCs specific growth inhibition. TM induced G0/G1 arrest and increased the AV+/PI+ dead cell population in the A2780-SP samples. Furthermore, TM treatment significantly reduced tumor growth in A2780-SP xenograft mice. Voltage gated calcium channels (VGCC) and calcium-activated potassium channels (BKCa) were overexpressed on ovarian CSCs and targeted by TM; inhibition of both channels reduced A2780-SP cells viability. TM reduced stemness-related protein expression; this tendency was reproduced by the simultaneous inhibition of VGCC and BKCa compared to single channel inhibition. In addition, TM suppressed the Wnt/β-catenin, Notch, and Hedgehog pathways which contribute to many CSCs characteristics. Specifically, further suppression of the Wnt/β-catenin pathway by simultaneous inhibition of BKCa and VGCC is necessary for the effective and selective action of TM. Taken together, TM is a potential therapeutic drug for preventing ovarian cancer recurrence and drug resistance.
Collapse
Affiliation(s)
- Heejin Lee
- New Drug Development Center, DGMIF, 80 Chumbok-ro, Dong-gu, Daegu 41061, Korea; (H.L.); (O.-B.K.)
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Oh-Bin Kwon
- New Drug Development Center, DGMIF, 80 Chumbok-ro, Dong-gu, Daegu 41061, Korea; (H.L.); (O.-B.K.)
| | - Jae-Eon Lee
- Laboratory Animal Center, DGMIF, 80 Chumbok-ro, Dong-gu, Daegu 41061, Korea; (J.-E.L.); (Y.-H.J.)
| | - Yong-Hyun Jeon
- Laboratory Animal Center, DGMIF, 80 Chumbok-ro, Dong-gu, Daegu 41061, Korea; (J.-E.L.); (Y.-H.J.)
| | - Dong-Seok Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (D.-S.L.); (S.-H.M.); (J.-W.K.); Tel.: +82-53-950-7366 (D.-S.L.); +82-53-790-5228 (S.-H.M.); +82-53-790-5251 (J.W.K.)
| | - Sang-Hyun Min
- New Drug Development Center, DGMIF, 80 Chumbok-ro, Dong-gu, Daegu 41061, Korea; (H.L.); (O.-B.K.)
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (D.-S.L.); (S.-H.M.); (J.-W.K.); Tel.: +82-53-950-7366 (D.-S.L.); +82-53-790-5228 (S.-H.M.); +82-53-790-5251 (J.W.K.)
| | - Jun-Woo Kim
- New Drug Development Center, DGMIF, 80 Chumbok-ro, Dong-gu, Daegu 41061, Korea; (H.L.); (O.-B.K.)
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (D.-S.L.); (S.-H.M.); (J.-W.K.); Tel.: +82-53-950-7366 (D.-S.L.); +82-53-790-5228 (S.-H.M.); +82-53-790-5251 (J.W.K.)
| |
Collapse
|
18
|
Kim J, Choi KW, Lee J, Lee J, Lee S, Sun R, Kim J. Wnt/β-catenin Signaling Inhibitors suppress the Tumor-initiating properties of a CD44 +CD133 + subpopulation of Caco-2 cells. Int J Biol Sci 2021; 17:1644-1659. [PMID: 33994850 PMCID: PMC8120464 DOI: 10.7150/ijbs.58612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/26/2021] [Indexed: 01/15/2023] Open
Abstract
Tumor-initiating cells or cancer stem cells are a subset of cancer cells that have tumorigenic potential in human cancer. Although several markers have been proposed to distinguish tumor-initiating cells from colorectal cancer cells, little is known about how this subpopulation contributes to tumorigenesis. Here, we characterized a tumor-initiating cell subpopulation from Caco-2 colorectal cancer cells. Based on the findings that Caco-2 cell subpopulations express different cell surface markers, we were able to discriminate three main fractions, CD44-CD133-, CD44-CD133+, and CD44+CD133+ subsets, and characterized their biochemical and tumorigenic properties. Our results show that CD44+CD133+ cells possessed an unusual capacity to proliferate and could form tumors when transplanted into NSG mice. Additionally, primary tumors grown from CD44+CD133+ Caco-2 cells contained mixed populations of CD44+CD133+ and non-CD44+CD133+ Caco-2 cells, indicating that the full phenotypic heterogeneity of the parental Caco-2 cells was re-created. Notably, only the CD44+CD133+ subset of Caco-2-derived primary tumors had tumorigenic potential in NSG mice, and the tumor growth of CD44+CD133+ cells was faster in secondary xenografts than in primary transplants. Gene expression analysis revealed that the Wnt/β-catenin pathway was over-activated in CD44+CD133+ cells, and the growth and tumorigenic potential of this subpopulation were significantly suppressed by small-molecule Wnt/β-catenin signaling inhibitors. Our findings suggest that the CD44+CD133+ subpopulation from Caco-2 cells was highly enriched in tumorigenic cells and will be useful for investigating the mechanisms leading to human colorectal cancer development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jungho Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul 04107, Korea
| |
Collapse
|
19
|
Sharma A, Kaur H, De R, Srinivasan R, Pal A, Bhattacharyya S. Knockdown of E-cadherin induces cancer stem-cell-like phenotype and drug resistance in cervical cancer cells. Biochem Cell Biol 2021; 99:587-595. [PMID: 33677985 DOI: 10.1139/bcb-2020-0592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cervical cancer is one of the leading causes of mortality amongst women in developing countries, and resistance to therapy is the main reason for treatment failure. Recent advances suggest that cancer stem cells (CSCs) are critically involved in regulating the chemo-resistant behavior of cervical cancer cells. In our study, cells with the CSC phenotype were isolated, and we examined the expression levels of stem cell markers and genes associated with epithelial-mesenchymal transition (EMT) using different assays. However, the cells with the CSC phenotype could not be cultured for further cytotoxicity studies, so we established a model of CSC in cervical cancer cells. We performed siRNA-mediated knockdown of E-cadherin in these cells, and studied them for EMT-associated stem-cell-like properties. We also performed dose-dependent cell viability assays using clinically relevant drugs such as cisplatin, cyclopamine, and GANT58 to analyze the drug resistant behavior of these cancer cells. We found that knockdown of E-cadherin induces EMT in cervical cancer cells, imparting stem-cell like characteristics along with enhanced tumorsphere formation, cell migration, invasiveness, and drug resistance. This is the first study to establish a CSC model in cervical cancer cells by knockdown of E-cadherin, which can be used to develop anti-cancer therapies.
Collapse
Affiliation(s)
- Anuka Sharma
- Department of Biophysics, PGIMER, Chandigarh, India
| | | | - Renaissa De
- Department of Biophysics, PGIMER, Chandigarh, India
| | - Radhika Srinivasan
- Department of Cytology and Gynecologic Pathology, PGIMER, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, PGIMER, Chandigarh, India
| | | |
Collapse
|
20
|
Su C, Zhang J, Yarden Y, Fu L. The key roles of cancer stem cell-derived extracellular vesicles. Signal Transduct Target Ther 2021; 6:109. [PMID: 33678805 PMCID: PMC7937675 DOI: 10.1038/s41392-021-00499-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs), the subpopulation of cancer cells, have the capability of proliferation, self-renewal, and differentiation. The presence of CSCs is a key factor leading to tumor progression and metastasis. Extracellular vesicles (EVs) are nano-sized particles released by different kinds of cells and have the capacity to deliver certain cargoes, such as nucleic acids, proteins, and lipids, which have been recognized as a vital mediator in cell-to-cell communication. Recently, more and more studies have reported that EVs shed by CSCs make a significant contribution to tumor progression. CSCs-derived EVs are involved in tumor resistance, metastasis, angiogenesis, as well as the maintenance of stemness phenotype and tumor immunosuppression microenvironment. Here, we summarized the molecular mechanism by which CSCs-derived EVs in tumor progression. We believed that the fully understanding of the roles of CSCs-derived EVs in tumor development will definitely provide new ideas for CSCs-based therapeutic strategies.
Collapse
Affiliation(s)
- Chaoyue Su
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China ,grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jianye Zhang
- grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yosef Yarden
- grid.13992.300000 0004 0604 7563Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Liwu Fu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| |
Collapse
|
21
|
Fawal MA, Jungas T, Davy A. Inhibition of DHFR targets the self-renewing potential of brain tumor initiating cells. Cancer Lett 2021; 503:129-137. [PMID: 33545223 DOI: 10.1016/j.canlet.2021.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
Brain tumors are a heterogeneous group of benign and malignant tumors arising from the brain parenchyma and its surrounding structures, with in general a poor clinical outcome due to high recurrence. One of the underlying causes for this somber prognostic is the presence of brain tumor initiating cells (BTIC) endowed with self-renewal potential, multi-lineage differentiation and resistance to treatment. One promising therapeutic avenue for brain tumors is targeting BTIC self-renewal potential and forcing their differentiation. A compelling candidate is one-carbon metabolism shown to play a key role in maintaining stem cell self-renewal in several lineages. Here, we focus on dihydrofolate reductase (DHFR), a key enzyme in one-carbon metabolism, and demonstrate this enzyme's overexpression in several human brain tumors and its expression in human BTIC. We show that DHFR inhibition, either by Methotrexate (MTX) or EphB activation with synthetic ligands, reduces the tumorigenic potential of 4 human BTIC lines, by reducing their self-renewal capacities both in vitro and in a cerebral organoid glioma (GLICO) model. Our data indicate that driving BTIC differentiation by inhibiting DHFR may provide a new therapeutic approach to treating highly refractory aggressive tumors.
Collapse
Affiliation(s)
- Mohamad-Ali Fawal
- Molecular, Cellular and Developmental Biology (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Thomas Jungas
- Molecular, Cellular and Developmental Biology (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Alice Davy
- Molecular, Cellular and Developmental Biology (MCD), Center for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France.
| |
Collapse
|
22
|
Li G, Zhang X, Guo X, Li Y, Li C. Propofol Inhibits the Proliferation, Migration, and Stem-like Properties of Bladder Cancer Mainly by Suppressing the Hedgehog Pathway. Cell Transplant 2021; 30:963689720985113. [PMID: 33522306 PMCID: PMC7863560 DOI: 10.1177/0963689720985113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bladder cancer is one of the most common malignancies. The existence of bladder cancer stem cells (BCSCs) has been suggested to underlie bladder tumor initiation and recurrence. Propofol is a commonly used intravenous anesthetic. Here, we find that propofol can dramatically block the activation of Hedgehog pathway in BCSCs. The propofol strongly repressed the growth of cancer cells. Attenuated proliferation and enhanced apoptosis of tumor cells were observed upon propofol stimulation. Furthermore, propofol reduced the self-renewal ability of BCSCs as well as the tumor formation. In conclusion, propofol is potentially used as a novel therapeutic agent for bladder cancer by targeting self-renewal through inhibiting Hedgehog pathway.
Collapse
Affiliation(s)
- Gang Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xu Zhang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yi Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Beijing Jianlan Institute of Medicine, Beijing, China.,Beijing Zhongke Jianlan Biotechnology Co., Ltd, Beijing, China
| |
Collapse
|
23
|
Jao TM, Fang WH, Ciou SC, Yu SL, Hung YL, Weng WT, Lin TY, Tsai MH, Yang YC. PCDH10 exerts tumor-suppressor functions through modulation of EGFR/AKT axis in colorectal cancer. Cancer Lett 2020; 499:290-300. [PMID: 33271263 DOI: 10.1016/j.canlet.2020.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Protocadherin 10 (PCDH10) is identified as a tumor suppressor in multiple cancers. The molecular mechanisms that mediate the functions of PCDH10 have yet to be fully elucidated. Here, we demonstrated that ectopic expression of PCDH10 in colorectal cancer (CRC) cells induced cell cycle retardation and increased apoptosis through regulation of the p53/p21/Rb axis and Bcl-2 expression. Overexpression of PCDH10 reversed the epithelial-mesenchymal transition (EMT) process with morphological changes and EMT marker alterations. Mechanistic study revealed that PCDH10 inhibited AKT/GSK3β signaling pathway which in turn reduced β-catenin activity and thus attenuated Snail and Twist1 expression. Furthermore, PCDH10 inhibited the stemness of CRC cells, including spheroid formation and stem cell markers. A proteomics approach revealed that PCDH10 could interact with EGFR, which was further verified by co-immunoprecipitation. Moreover, restoration of PCDH10 expression reduced EGFR phosphorylation. Accordingly, our work proposes a novel pathway by which PCDH10 directly engages in the negative regulation of EGFR/AKT/β-catenin signaling pathway, resulting in tumor suppression.
Collapse
Affiliation(s)
- Tzu-Ming Jao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, 100, Taiwan; Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung City, 813, Taiwan
| | - Woei-Horng Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, 100, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Shih-Ci Ciou
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, 100, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Yu-Lin Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Wei-Ting Weng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Tsai-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Ming-Hong Tsai
- Department of Surgery, Cardinal Tien Hospital, New Taipei City, 231, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, 242, Taiwan.
| | - Ya-Chien Yang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, 100, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan.
| |
Collapse
|
24
|
Anti-tumour effect of the fourth-generation chimeric antigen receptor T cells targeting CD133 against cholangiocarcinoma cells. Int Immunopharmacol 2020; 89:107069. [PMID: 33242709 DOI: 10.1016/j.intimp.2020.107069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022]
Abstract
Current treatment of cholangiocarcinoma (CCA) - a lethal bile duct cancer - is ineffective because the disease is usually diagnosed at late and advanced stage. Thus, a novel therapeutic modality is urgently required. Fourth-generation chimeric antigen receptor (CAR4) T cells was created to target CD133, a well-known cancer stem cell marker, that is highly expressed and associates with cancer progression. The anti-CD133-CAR4 T cells showed high efficacy against CD133-expressing CCA cells. Tumour cell lysis occurred in a dose- and CD133 antigen-dependent manner, and significantly higher, up to 57.59% ± 9.62 at effector to target ratio of 5:1 in a CCA cell line - KKU-213A cells, compared to mock control (p = 0.008). Similarly, significant IFN-γ (p = 0.011) and TNF-α (p = 0.002) upregulation was observed upon tumour treatment. The effectiveness of our anti-CD133-CAR4 T cells will be beneficial not only for CD133-expressing CCA, but also for other CD133-expressing tumours. This study may guide future in vivo study and clinical trials.
Collapse
|
25
|
Oswald JT, Patel H, Khan D, Jeorje NN, Golzar H, Oswald EL, Tang S. Drug Delivery Systems Using Surface Markers for Targeting Cancer Stem Cells. Curr Pharm Des 2020; 26:2057-2071. [PMID: 32250211 DOI: 10.2174/1381612826666200406084900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
The innate abilities of cancer stem cells (CSCs), such as multi-drug resistance, drug efflux, quiescence and ionizing radiation tolerance, protect them from most traditional chemotherapeutics. As a result, this small subpopulation of persistent cells leads to more aggressive and chemoresistant cancers, causing tumour relapse and metastasis. This subpopulation is differentiated from the bulk tumour population through a wide variety of surface markers expressed on the cell surface. Recent developments in nanomedicine and targeting delivery methods have given rise to new possibilities for specifically targeting these markers and preferentially eliminating CSCs. Herein, we first summarize the range of surface markers identifying CSC populations in a variety of cancers; then, we discuss recent attempts to actively target CSCs and their niches using liposomal, nanoparticle, carbon nanotube and viral formulations.
Collapse
Affiliation(s)
- James T Oswald
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Haritosh Patel
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Daid Khan
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ninweh N Jeorje
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Hossein Golzar
- Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Erin L Oswald
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Shirley Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
26
|
Wang L, Lv Y, Li C, Yang G, Fu B, Peng Q, Jian L, Hou D, Wang J, Zhao C, Yang P, Zhang K, Wang L, Wang Z, Wang H, Xu W. Transformable Dual-Inhibition System Effectively Suppresses Renal Cancer Metastasis through Blocking Endothelial Cells and Cancer Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004548. [PMID: 32881381 DOI: 10.1002/smll.202004548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Tumor vasculature and cancer stem cells (CSCs) accelerate the development of metastatic renal cancer. Dual inhibition of vascular endothelium and CSCs is still a challenge due to their different pathological features. Herein, a transformable dual-inhibition system (TDS) based on a self-assembly peptide is proposed to construct nanofibrous barriers on the cell membrane in situ, which contributes to 1) reducing endothelial permeability and angiogenesis; and 2) inhibiting stemness and metastasis of CSCs in renal cancer. TDS specifically targets overexpressed receptor CD105 that provides the possibility to modulate both endothelial cells and CSCs for cancer therapy. Subsequently, owing to ligand-receptor interaction-induced transformation, the nanofibers form a barrier on the cell membrane. For vascular endothelium, TDS reduces the vascular permeability to 67.0% ± 4.7% and decreases angiogenesis to 62.0% ± 4.0%, thereby preventing the renal cancer metastasis. For human-derived CSCs, TDS inhibits stemness by reducing endogenic miR-19b and its transportation via CSCs-derived exosomes, which increases PTEN expression and consequently suppresses CSCs-mediated metastasis. In patient-derived xenograft mice, TDS significantly inhibits the tumorigenesis and angiogenesis. It also reduces the metastatic nodules in lung 5.0-fold compared with the control group. TDS opens up a promising avenue for suppressing the metastasis of cancer.
Collapse
Affiliation(s)
- Lu Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Yulin Lv
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Cong Li
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Bo Fu
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Qiang Peng
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Lingrui Jian
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Dayong Hou
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Jiaqi Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Changhao Zhao
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Peipei Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Kuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ziqi Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Hao Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wanhai Xu
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
27
|
Razi S, Sadeghi A, Asadi-Lari Z, Tam KJ, Kalantari E, Madjd Z. DCLK1, a promising colorectal cancer stem cell marker, regulates tumor progression and invasion through miR-137 and miR-15a dependent manner. Clin Exp Med 2020; 21:139-147. [PMID: 32965580 DOI: 10.1007/s10238-020-00665-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSCs) are thought to be a major player in tumor initiation, progression, and metastasis. Targeting CSCs for elimination presents a promising therapeutic strategy; however, this approach will require a stronger understanding of CSC biology and identification of CSC-specific markers. The present study was conducted to examine the correlation between DCLK1 and miR-137 and miR-15a levels in colorectal cancer. A total of 222 samples, including 181 colorectal cancer specimens, 24 adenomatosis, and 17 non-adenomatosis colonic polyps, were stained for DCLK1 expression using immunohistochemistry. Also, expression of miR-137 and miR-15a was assessed in colorectal cancer with high and low DCLK1 expression levels. Most colorectal cancer specimens (76%) showed strong expression of DCLK1, whereas only 21% of adenomatous and none of non-adenomatous colonic polyps showed strong DCLK1 expression. A significant difference in DCLK1 expression was found between colorectal cancer, adenomatous, and non-adenomatous colonic polyps (P < 0.001). Higher expression of DCLK1 was more frequently detected in colorectal cases with larger tumor size (P = 0.03), poor differentiation (P = 0.03), and lymph node involvement (P = 0.04). Comparison of miR-137 and miR-15a in colorectal cancer cases revealed a significant inverse correlation with DCLK1 expression (P = 0.03 and P = 0.04, respectively). DCLK1 may act as a candidate marker for colorectal cancer stem cells. The critical role of DCLK1 in colorectal cancer suggests that it may represent an early diagnostic marker and therapeutic target; however, further investigation is warranted.
Collapse
Affiliation(s)
- Sepideh Razi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asieh Sadeghi
- Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Kevin J Tam
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Pathology, Iran University of Medical Sciences, Tehran, Iran. .,Department of Molecular Medicine, Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Aramini B, Masciale V, Haider KH. Defining lung cancer stem cells exosomal payload of miRNAs in clinical perspective. World J Stem Cells 2020; 12:406-421. [PMID: 32742559 PMCID: PMC7360993 DOI: 10.4252/wjsc.v12.i6.406] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/29/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since the first publication regarding the existence of stem cells in cancer [cancer stem cells (CSCs)] in 1994, many studies have been published providing in-depth information about their biology and function. This research has paved the way in terms of appreciating the role of CSCs in tumour aggressiveness, progression, recurrence and resistance to cancer therapy. Targeting CSCs for cancer therapy has still not progressed to a sufficient degree, particularly in terms of exploring the mechanism of dynamic interconversion between CSCs and non-CSCs. Besides the CSC scenario, the problem of cancer dissemination has been analyzed in-depth with the identification and isolation of microRNAs (miRs), which are now considered to be compelling molecular markers in the diagnosis and prognosis of tumours in general and specifically in patients with non-small cell lung cancer. Paracrine release of miRs via “exosomes” (small membrane vesicles (30-100 nm), the derivation of which lies in the luminal membranes of multi-vesicular bodies) released by fusion with the cell membrane is gaining popularity. Whether exosomes play a significant role in maintaining a dynamic equilibrium state between CSCs and non-CSCs and their mechanism of activity is as yet unknown. Future studies on CSC-related exosomes will provide new perspectives for precision-targeted treatment strategies.
Collapse
Affiliation(s)
- Beatrice Aramini
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena 41124, Italy
| | - Valentina Masciale
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena 41124, Italy
| | | |
Collapse
|
29
|
Moore G, Annett S, McClements L, Robson T. Top Notch Targeting Strategies in Cancer: A Detailed Overview of Recent Insights and Current Perspectives. Cells 2020; 9:cells9061503. [PMID: 32575680 PMCID: PMC7349363 DOI: 10.3390/cells9061503] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Evolutionarily conserved Notch plays a critical role in embryonic development and cellular self-renewal. It has both tumour suppressor and oncogenic activity, the latter of which is widely described. Notch-activating mutations are associated with haematological malignancies and several solid tumours including breast, lung and adenoid cystic carcinoma. Moreover, upregulation of Notch receptors and ligands and aberrant Notch signalling is frequently observed in cancer. It is involved in cancer hallmarks including proliferation, survival, migration, angiogenesis, cancer stem cell renewal, metastasis and drug resistance. It is a key component of cell-to-cell interactions between cancer cells and cells of the tumour microenvironment, such as endothelial cells, immune cells and fibroblasts. Notch displays diverse crosstalk with many other oncogenic signalling pathways, and may drive acquired resistance to targeted therapies as well as resistance to standard chemo/radiation therapy. The past 10 years have seen the emergence of different classes of drugs therapeutically targeting Notch including receptor/ligand antibodies, gamma secretase inhibitors (GSI) and most recently, the development of Notch transcription complex inhibitors. It is an exciting time for Notch research with over 70 cancer clinical trials registered and the first-ever Phase III trial of a Notch GSI, nirogacestat, currently at the recruitment stage.
Collapse
Affiliation(s)
- Gillian Moore
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons, D02 YN77 Dublin, Ireland; (G.M.); (S.A.)
| | - Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons, D02 YN77 Dublin, Ireland; (G.M.); (S.A.)
| | - Lana McClements
- The School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons, D02 YN77 Dublin, Ireland; (G.M.); (S.A.)
- Correspondence:
| |
Collapse
|
30
|
War AR, Dang K, Jiang S, Xiao Z, Miao Z, Yang T, Li Y, Qian A. Role of cancer stem cells in the development of giant cell tumor of bone. Cancer Cell Int 2020; 20:135. [PMID: 32351329 PMCID: PMC7183664 DOI: 10.1186/s12935-020-01218-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
The primary bone tumor is usually observed in adolescence age group which has been shown to be part of nearly 20% of the sarcomas known today. Giant cell tumor of bone (GCTB) can be benign as well as malignant tumor which exhibits localized dynamism and is usually associated with the end point of a long bone. Giant cell tumor (GCT) involves mononuclear stromal cells which proliferate at a high rate, multinucleated giant cells and stromal cells are equally present in this type of tumor. Cancer stem cells (CSCs) have been confirmed to play a potential role in the development of GCT. Cancer stem cell-based microRNAs have been shown to contribute to a greater extent in giant cell tumor of bone. CSCs and microRNAs present in the tumors specifically are a great concern today which need in-depth knowledge as well as advanced techniques to treat the bone cancer effectively. In this review, we attempted to summarize the role played by cancer stem cells involving certain important molecules/factors such as; Mesenchymal Stem Cells (MSCs), miRNAs and signaling mechanism such as; mTOR/PI3K-AKT, towards the formation of giant cell tumor of bone, in order to get an insight regarding various effective strategies and research advancements to obtain adequate knowledge related to CSCs which may help to focus on highly effective treatment procedures for bone tumors.
Collapse
Affiliation(s)
- Abdul Rouf War
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Kai Dang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Shanfen Jiang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Zhongwei Xiao
- Department of Neurology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399 People’s Republic of China
| | - Zhiping Miao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Tuanmin Yang
- Honghui Hospital, Xi’an, Jiaotong University College of Medicine, Xi’an, Shaanxi China
| | - Yu Li
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| |
Collapse
|
31
|
Caras IW. Two cancer stem cell-targeted therapies in clinical trials as viewed from the standpoint of the cancer stem cell model. Stem Cells Transl Med 2020; 9:821-826. [PMID: 32281289 PMCID: PMC7381803 DOI: 10.1002/sctm.19-0424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/07/2020] [Accepted: 03/21/2020] [Indexed: 12/26/2022] Open
Abstract
A key implication of the cancer stem cell model is that for a cancer therapy to be curative, it is imperative to eliminate the cancer stem cells (CSCs) that drive tumor progression. The California Institute for Regenerative Medicine is supporting two novel approaches that target CSCs, one an antibody‐mediated immunotherapy targeting CD47 and the other an antibody targeting ROR1. This article summarizes the evidence that CSCs are targeted and discusses the results of early clinical trials within the context of the CSC model.
Collapse
Affiliation(s)
- Ingrid W Caras
- California Institute for Regenerative Medicine, Oakland, California, USA
| |
Collapse
|
32
|
Frequent Activation of Notch Signaling Pathway in Colorectal Cancers and Its Implication in Patient Survival Outcome. JOURNAL OF ONCOLOGY 2020; 2020:6768942. [PMID: 32211044 PMCID: PMC7085396 DOI: 10.1155/2020/6768942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/30/2019] [Accepted: 02/08/2020] [Indexed: 02/08/2023]
Abstract
Colorectal cancer is a major health concern as it ranks third in incidence and second major cause of cancer-related deaths worldwide. A leading cause of treatment failure has been attributed to cancer stem cells that can invariably resist existing chemotherapeutic regimens. Notch signaling pathway has been involved in the maintenance of stem cells besides being crucial in cell fate decision and embryonic development. This pathway has also been implicated in several human malignancies including colorectal cancer. We investigated mRNA expression of four Notch receptors (Notch1–4), five ligands (Jag1, Jag2, Dll1, Dll3, and Dll4), and four target genes (Hes1, Hes5, Hey1, and Hey2) using highly specific TaqMan gene expression assays in colorectal adenomas and cancers. Upregulated expression of Notch receptors ranged between 29 and 73% in colorectal cancers and between 11 and 56% in adenomas. Expression of Notch3 and Notch4 receptors was significantly higher in colorectal cancers compared to normal and adenoma tissues. The Jagged and Delta-like ligands were overexpressed between 25 and 52% in colorectal cancers, while in adenomas, it ranged between 0 and 33%. Combining the data for upregulation of receptors and ligands suggests that 86% colorectal cancers and 56% adenomas exhibited overexpression of Notch pathway genes in our cohort. Notch target genes were upregulated between 24 and 33% in colorectal cancers and between 11 and 22% in adenomas. Collating upregulation of Notch receptors and ligands with the target genes showed concordance in 58% colorectal tumors. Additionally, we evaluated expression of Notch receptors, ligands, and target genes with prognosis using the TCGA mRNA expression dataset. Patients overexpressing Notch3, Notch4, and Hey1 had significantly poorer overall survival relative to those having lower levels of these genes. Taken together, Notch signaling components are aberrantly overexpressed in colorectal tumors, and development of therapeutics targeting the Notch pathway may prove to be beneficial in the management of colorectal cancers.
Collapse
|
33
|
Grubelnik G, Boštjančič E, Pavlič A, Kos M, Zidar N. NANOG expression in human development and cancerogenesis. Exp Biol Med (Maywood) 2020; 245:456-464. [PMID: 32041418 PMCID: PMC7082888 DOI: 10.1177/1535370220905560] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NANOG is an important stem cell transcription factor involved in human development and cancerogenesis. Its expression is complex and regulated on different levels. Moreover, NANOG protein might regulate hundreds of target genes at the same time. NANOG is crucial for preimplantation development phase and progressively decreases during embryonic stem cells differentiation, thus regulating embryonic and fetal development. Postnatally, NANOG is undetectable or expressed in very low amounts in the majority of human tissues. NANOG re-expression can be detected during cancerogenesis, already in precancerous lesions, with increasing levels of NANOG in high grade dysplasia. NANOG is believed to enable cancer cells to obtain stem-cell like properties, which are believed to be the source of expanding growth, tumor maintenance, metastasis formation, and tumor relapse. High NANOG expression in cancer is frequently associated with advanced stage, poor differentiation, worse overall survival, and resistance to treatment, and is therefore a promising prognostic and predictive marker. We summarize the current knowledge on the role of NANOG in cancerogenesis and development, including our own experience. We provide a critical overview of NANOG as a prognostic and diagnostic factor, including problems regarding its regulation and detection.
Collapse
Affiliation(s)
- Gašper Grubelnik
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Ana Pavlič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Marina Kos
- Clinical Hospital Center Sestre Milosrdnice and University of Zagreb Medical School, Zagreb 10 000, Croatia
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
34
|
Intracellular Delivery of Anti-SMC2 Antibodies against Cancer Stem Cells. Pharmaceutics 2020; 12:pharmaceutics12020185. [PMID: 32098204 PMCID: PMC7076674 DOI: 10.3390/pharmaceutics12020185] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/17/2022] Open
Abstract
Structural maintenance of chromosomes protein 2 (SMC2) is a central component of the condensin complex involved in DNA supercoiling, an essential process for embryonic stem cell survival. SMC2 over-expression has been related with tumorigenesis and cancer malignancy and its inhibition is regarded as a potential therapeutic strategy even though no drugs are currently available. Here, we propose to inhibit SMC2 by intracellular delivery of specific antibodies against the SMC2 protein. This strategy aims to reduce cancer malignancy by targeting cancer stem cells (CSC), the tumoral subpopulation responsible of tumor recurrence and metastasis. In order to prevent degradation and improve cellular internalization, anti-SMC2 antibodies (Ab-SMC2) were delivered by polymeric micelles (PM) based on Pluronic® F127 amphiphilic polymers. Importantly, scaffolding the Ab-SMC2 onto nanoparticles allowed its cellular internalization and highly increased its efficacy in terms of cytotoxicity and inhibition of tumorsphere formation in MDA-MB-231 and HCT116 breast and colon cancer cell lines, respectively. Moreover, in the case of the HCT116 cell line G1, cell-cycle arrest was also observed. In contrast, no effects from free Ab-SMC2 were detected in any case. Further, combination therapy of anti-SMC2 micelles with paclitaxel (PTX) and 5-Fluorouracil (5-FU) was also explored. For this, PTX and 5-FU were respectively loaded into an anti-SMC2 decorated PM. The efficacy of both encapsulated drugs was higher than their free forms in both the HCT116 and MDA-MB-231 cell lines. Remarkably, micelles loaded with Ab-SMC2 and PTX showed the highest efficacy in terms of inhibition of tumorsphere formation in HCT116 cells. Accordingly, our data clearly suggest an effective intracellular release of antibodies targeting SMC2 in these cell models and, further, strong cytotoxicity against CSC, alone and in combined treatments with Standard-of-Care drugs.
Collapse
|
35
|
Kasten BB, Ferrone S, Zinn KR, Buchsbaum DJ. B7-H3-targeted Radioimmunotherapy of Human Cancer. Curr Med Chem 2020; 27:4016-4038. [PMID: 30836909 PMCID: PMC8668195 DOI: 10.2174/0929867326666190228120908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Targeted Radioimmunotherapy (RIT) is an attractive approach to selectively localize therapeutic radionuclides to malignant cells within primary and metastatic tumors while sparing normal tissues from the effects of radiation. Many human malignancies express B7-H3 on the tumor cell surface, while expression on the majority of normal tissues is limited, presenting B7-H3 as a candidate target for RIT. This review provides an overview of the general principles of targeted RIT and discusses publications that have used radiolabeled B7-H3-targeted antibodies for RIT of cancer in preclinical or clinical studies. METHODS Databases including PubMed, Scopus, and Google Scholar were searched for publications through June 2018 using a combination of terms including "B7-H3", "radioimmunotherapy", "targeted", "radiotherapy", and "cancer". After screening search results for relevancy, ten publications were included for discussion. RESULTS B7-H3-targeted RIT studies to date range from antibody development and assessment of novel Radioimmunoconjugates (RICs) in animal models of human cancer to phase II/III trials in humans. The majority of clinical studies have used B7-H3-targeted RICs for intra- compartment RIT of central nervous system malignancies. The results of these studies have indicated high tolerability and favorable efficacy outcomes, supporting further assessment of B7-H3-targeted RIT in larger trials. Preclinical B7-H3-targeted RIT studies have also shown encouraging therapeutic outcomes in a variety of solid malignancies. CONCLUSION B7-H3-targeted RIT studies over the last 15 years have demonstrated feasibility for clinical development and support future assessment in a broader array of human malignancies. Future directions worthy of exploration include strategies that combine B7-H3- targeted RIT with chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Benjamin B. Kasten
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Kurt R. Zinn
- Institute for Quantitative Health Science and Engineering, Department of Radiology, Michigan State University, East Lansing, Michigan, U.S.A
| | - Donald J. Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| |
Collapse
|
36
|
Tanabe S, Quader S, Cabral H, Ono R. Interplay of EMT and CSC in Cancer and the Potential Therapeutic Strategies. Front Pharmacol 2020; 11:904. [PMID: 32625096 PMCID: PMC7311659 DOI: 10.3389/fphar.2020.00904] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
The mechanism of epithelial-mesenchymal transition (EMT) consists of the cellular phenotypic transition from epithelial to mesenchymal status. The cells exhibiting EMT exist in cancer stem cell (CSC) population, which is involved in drug resistance. CSCs demonstrating EMT feature remain after cancer treatment, which leads to drug resistance, recurrence, metastasis and malignancy of cancer. In this context, the recent advance of nanotechnology in the medical application has ascended the possibility to target CSCs using nanomedicines. In this review article, we focused on the mechanism of CSCs and EMT, especially into the signaling pathways in EMT, regulation of EMT and CSCs by microRNAs and nanomedicine-based approaches to target CSCs.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research (CBSR), National Institute of Health Science (NIHS), Kawasaki, Japan
- *Correspondence: Shihori Tanabe,
| | - Sabina Quader
- Innovation Centre of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ryuichi Ono
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research (CBSR), National Institute of Health Science (NIHS), Kawasaki, Japan
| |
Collapse
|
37
|
FKBPL-based peptide, ALM201, targets angiogenesis and cancer stem cells in ovarian cancer. Br J Cancer 2019; 122:361-371. [PMID: 31772325 PMCID: PMC7000737 DOI: 10.1038/s41416-019-0649-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Background ALM201 is a therapeutic peptide derived from FKBPL that has previously undergone preclinical and clinical development for oncology indications and has completed a Phase 1a clinical trial in ovarian cancer patients and other advanced solid tumours. Methods In vitro, cancer stem cell (CSC) assays in a range of HGSOC cell lines and patient samples, and in vivo tumour initiation, growth delay and limiting dilution assays, were utilised. Mechanisms were determined by using immunohistochemistry, ELISA, qRT-PCR, RNAseq and western blotting. Endogenous FKBPL protein levels were evaluated using tissue microarrays (TMA). Results ALM201 reduced CSCs in cell lines and primary samples by inducing differentiation. ALM201 treatment of highly vascularised Kuramochi xenografts resulted in tumour growth delay by disruption of angiogenesis and a ten-fold decrease in the CSC population. In contrast, ALM201 failed to elicit a strong antitumour response in non-vascularised OVCAR3 xenografts, due to high levels of IL-6 and vasculogenic mimicry. High endogenous tumour expression of FKBPL was associated with an increased progression-free interval, supporting the protective role of FKBPL in HGSOC. Conclusion FKBPL-based therapy can (i) dually target angiogenesis and CSCs, (ii) target the CD44/STAT3 pathway in tumours and (iii) is effective in highly vascularised HGSOC tumours with low levels of IL-6.
Collapse
|
38
|
Kim DM, Kim M, Park HB, Kim KS, Kim DE. Anti-MUC1/CD44 Dual-Aptamer-Conjugated Liposomes for Cotargeting Breast Cancer Cells and Cancer Stem Cells. ACS APPLIED BIO MATERIALS 2019; 2:4622-4633. [DOI: 10.1021/acsabm.9b00705] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Dong-Min Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minhee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee-Bin Park
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
| | - Keun-Sik Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
39
|
Roth IM, Wickremesekera AC, Wickremesekera SK, Davis PF, Tan ST. Therapeutic Targeting of Cancer Stem Cells via Modulation of the Renin-Angiotensin System. Front Oncol 2019; 9:745. [PMID: 31440473 PMCID: PMC6694711 DOI: 10.3389/fonc.2019.00745] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) are proposed to be the cells that initiate tumorigenesis and maintain tumor development due to their self-renewal and multipotency properties. CSCs have been identified in many cancer types and are thought to be responsible for treatment resistance, metastasis, and recurrence. As such, targeting CSCs specifically should result in durable cancer treatment. One potential option for targeting CSCs is by manipulation of the renin-angiotensin system (RAS) and pathways that converge on the RAS with numerous inexpensive medications currently in common clinical use. In addition to its crucial role in cardiovascular and body fluid homeostasis, the RAS is vital for stem cell maintenance and differentiation and plays a role in tumorigenesis and cancer prevention, suggesting that these roles may converge and result in modulation of CSC function by the RAS. In support of this, components of the RAS have been shown to be expressed in many cancer types and have been more recently localized to the CSCs in some tumors. Given these roles of the RAS in tumor development, clinical trials using RAS inhibitors either singly or in combination with other therapies are underway in different cancer types. This review outlines the roles of the RAS, with respect to CSCs, and suggests that the presence of components of the RAS in CSCs could offer an avenue for therapeutic targeting using RAS modulators. Due to the nature of the RAS and its crosstalk with numerous other signaling pathways, a systems approach using traditional RAS inhibitors in combination with inhibitors of bypass loops of the RAS and other signaling pathways that converge on the RAS may offer a novel therapeutic approach to cancer treatment.
Collapse
Affiliation(s)
- Imogen M Roth
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Agadha C Wickremesekera
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Department of Neurosurgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Susrutha K Wickremesekera
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Upper Gastrointestinal, Hepatobiliary and Pancreatic Section, Department of General Surgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| |
Collapse
|
40
|
Phenethyl isothiocyanate hampers growth and progression of HER2-positive breast and ovarian carcinoma by targeting their stem cell compartment. Cell Oncol (Dordr) 2019; 42:815-828. [DOI: 10.1007/s13402-019-00464-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/19/2022] Open
|
41
|
Hyaluronic acid hydrogels with defined crosslink density for the efficient enrichment of breast cancer stem cells. Acta Biomater 2019; 94:320-329. [PMID: 31125725 DOI: 10.1016/j.actbio.2019.05.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/29/2019] [Accepted: 05/17/2019] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) have been much proposed as potential tumor eradication targets since they possess highly tumorigenic qualities. However, efficient and fast enrichment of CSCs for cancer biology study and drug screening has been challenging. CD44 is a cell surface receptor for hyaluronic acid (HA) and has been reported as an important CSC marker. Here, we show a simple and label-free method for the enrichment of CSCs highly expressing CD44 using enzymatically crosslinked HA hydrogels. HA hydrogels were formed with different crosslink densities to modulate the interaction between the CD44 and HA chains. We show that HA hydrogels with defined crosslink densities isolated cancer cells expressing high CD44 from breast cancer cell lines in a facile, efficient manner. The enriched cells exhibited CSC-like characteristics such as high expression of CSC markers (octamer-binding transcription factor 4 (OCT4) and aldehyde dehydrogenase 1 (ALDH1)), enhanced tumorsphere formation and chemoresistance. The enriched cells also displayed strong tumorigenicity, metastatic potential and poor survival in vivo. The HA hydrogel provides a simple, fast and efficient platform for CSC enrichment and promotes new anticancer strategies that target breast CSCs. STATEMENT OF SIGNIFICANCE: There is strong interest in developing isolation methods for cancer stem cells (CSCs), due in growing desire for CSC eradication for promising cancer therapy. Tumor sphere formation and fluorescence-activated cell sorting have been widely used for CSC isolation, while these methods require cultivation for several days and labelling of cell surface proteins, respectively. A simple and label-free method for breast CSC isolation is developed using HA-based hydrogels with tunable crosslink density. The efficient enrichment of breast CSCs is achieved by HA-CD44 specific interaction, which is controlled by hydrogel crosslink density. We believe that the simple approach that isolates cells with CSC-like characteristics would facilitate the anticancer drug development and cancer research.
Collapse
|
42
|
Capelôa T, Benyahia Z, Zampieri LX, Blackman MCNM, Sonveaux P. Metabolic and non-metabolic pathways that control cancer resistance to anthracyclines. Semin Cell Dev Biol 2019; 98:181-191. [PMID: 31112797 DOI: 10.1016/j.semcdb.2019.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Anthracyclines Doxorubicin, Epirubicin, Daunorubicin and Idarubicin are used to treat a variety of tumor types in the clinics, either alone or, most often, in combination therapies. While their cardiotoxicity is well known, the emergence of chemoresistance is also a major issue accounting for treatment discontinuation. Resistance to anthracyclines is associated to the acquisition of multidrug resistance conferred by overexpression of permeability glycoprotein-1 or other efflux pumps, by altered DNA repair, changes in topoisomerase II activity, cancer stemness and metabolic adaptations. This review further details the metabolic aspects of resistance to anthracyclines, emphasizing the contributions of glycolysis, the pentose phosphate pathway and nucleotide biosynthesis, glutathione, lipid metabolism and autophagy to the chemoresistant phenotype.
Collapse
Affiliation(s)
- Tânia Capelôa
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Zohra Benyahia
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Luca X Zampieri
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Marine C N M Blackman
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
43
|
Lv LN, Wang XC, Tao LJ, Li HW, Li SY, Zheng FM. β-Asarone increases doxorubicin sensitivity by suppressing NF-κB signaling and abolishes doxorubicin-induced enrichment of stem-like population by destabilizing Bmi1. Cancer Cell Int 2019; 19:153. [PMID: 31171917 PMCID: PMC6547485 DOI: 10.1186/s12935-019-0873-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/27/2019] [Indexed: 11/10/2022] Open
Abstract
Background Lymphoma is one of the most common hematologic malignancy. Drug resistance is the main obstacle faced in lymphoma treatment. Cancer stem cells are considered as the source of tumor recurrence, metastasis and drug resistance. The β-Asarone, a low-toxicity compound from the traditional medical herb Acorus calamus, has been shown to act as an anti-cancer reagent in various cancer types. However, the anti-cancer activities of β-Asarone in lymphoma have not been shown. Methods Cell counting assay was used to evaluate Raji cell proliferation. CCK8 assay was used to evaluate the cell viability. Annexin-V/PI staining and flow cytometry analysis were used to evaluate apoptosis. ALDEFLUOR assay was used to evaluate the stem-like population. Luciferase reporter assay was used to examine the activation of NF-κB signaling. Western blot and polymerase chain reaction (PCR) were used to determine the expression of interested genes. Results We showed that β-Asarone inhibited proliferation and induced apoptosis in Raji lymphoma cells in a dose-dependent manner. Additionally, β-Asarone functioned as a sensitizer of doxorubicin and resulted in synergistic effects on inhibition of proliferation and induction of apoptosis when combined with doxorubicin treatment. Interestingly, we found that β-Asarone also reduced the stem-like population of Raji lymphoma cells in a dose-dependent manner, and suppressed the expression of c-Myc and Bmi1. Importantly, β-Asarone abolished doxorubicin-induced enrichment of the stem-like population. In the mechanism study, we revealed that β-Asarone suppressed not only basal NF-κB activity but also Tumor necrosis factor α (TNF-α) induced NF-κB activity. Moreover, blocking NF-κB signaling inactivation was critical for β-Asarone induced apoptosis and inhibition of proliferation, but not for the effect on β-Asarone reduced stem-like population. In fact, β-Asarone suppressed stem-like population by destabilizing Bmi1 via a proteasome-mediated mechanism. Conclusions Our data suggested the application of β-Asarone to lower the toxic effect of doxorubicin and increase the sensitivity of doxorubicin in clinical treatment. More importantly, our data revealed a novel role of β-Asarone which could be used to eliminate stem-like population in lymphoma, implying that β-Asarone might reduce relapse and drug resistance. Electronic supplementary material The online version of this article (10.1186/s12935-019-0873-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Na Lv
- 2Department of Hematology, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-Chao Wang
- 3Department of Hematology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Li-Ju Tao
- 3Department of Hematology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Hong-Wen Li
- 3Department of Hematology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shu-You Li
- 5Department of Medical Oncology, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Fei-Meng Zheng
- 1Department of Medical Oncology of The Eastern Hospital, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhong Shan Er Lu, Guangzhou, 510080 China.,4Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Kuciak M, Mas C, Borges I, Sánchez-Gómez P, Ruiz i Altaba A. Chimeric NANOG repressors inhibit glioblastoma growth in vivo in a context-dependent manner. Sci Rep 2019; 9:3891. [PMID: 30846719 PMCID: PMC6405761 DOI: 10.1038/s41598-019-39473-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/25/2019] [Indexed: 01/02/2023] Open
Abstract
Targeting stemness promises new therapeutic strategies against highly invasive tumors. While a number of approaches are being tested, inhibiting the core transcription regulatory network of cancer stem cells is an attractive yet challenging possibility. Here we have aimed to provide the proof of principle for a strategy, previously used in developmental studies, to directly repress the targets of a salient stemness and pluripotency factor: NANOG. In doing so we expected to inhibit the expression of so far unknown mediators of pro-tumorigenic NANOG function. We chose NANOG since previous work showed the essential requirement for NANOG activity for human glioblastoma (GBM) growth in orthotopic xenografts, and it is apparently absent from many adult human tissues thus likely minimizing unwanted effects on normal cells. NANOG repressor chimeras, which we name NANEPs, bear the DNA-binding specificity of NANOG through its homeodomain (HD), and this is linked to transposable human repressor domains. We show that in vitro and in vivo, NANEP5, our most active NANEP with a HES1 repressor domain, mimics knock-down (kd) of NANOG function in GBM cells. Competition orthotopic xenografts also reveal the effectiveness of NANEP5 in a brain tumor context, as well as the specificity of NANEP activity through the abrogation of its function via the introduction of specific mutations in the HD. The transcriptomes of cells expressing NANEP5 reveal multiple potential mediators of pro-tumorigenic NANEP/NANOG action including intercellular signaling components. The present results encourage further studies on the regulation of context-dependent NANEP abundance and function, and the development of NANEP-based anti-cancer therapies.
Collapse
Affiliation(s)
- Monika Kuciak
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel Servet 1, CH-1211, Geneva, Switzerland
| | - Christophe Mas
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel Servet 1, CH-1211, Geneva, Switzerland
- Oncotheis Sàrl. 18 chemin des Aulx, CH-1228 Plan-Les-Ouates, Geneva, Switzerland
| | - Isabel Borges
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel Servet 1, CH-1211, Geneva, Switzerland
| | | | - Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel Servet 1, CH-1211, Geneva, Switzerland.
| |
Collapse
|
45
|
Sonbol MB, Ahn DH, Goldstein D, Okusaka T, Tabernero J, Macarulla T, Reni M, Li CP, O'Neil B, Van Cutsem E, Bekaii-Saab T. CanStem111P trial: a Phase III study of napabucasin plus nab-paclitaxel with gemcitabine. Future Oncol 2019; 15:1295-1302. [PMID: 30768369 DOI: 10.2217/fon-2018-0903] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Napabucasin (also known as BBI-608 or BBI608) is an investigational, oral agent hypothesized to inhibit multiple oncogenic pathways. In this article, we describe the design and rationale for the CanStem111P clinical trial, a multicenter, randomized, open-label, Phase III study designed to determine the efficacy and safety of combining napabucasin with nab-paclitaxel and gemcitabine for first-line treatment of patients with metastatic pancreatic adenocarcinoma (NCT02993731). Patients were randomized in a 1:1 fashion to receive weekly gemcitabine and nab-paclitaxel with or without napabucasin. The results of this study will help define the role of this novel agent in the management of advanced pancreatic cancer.
Collapse
Affiliation(s)
| | - Daniel H Ahn
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ 85054, USA
| | - David Goldstein
- Department of Medical Oncology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Takuji Okusaka
- Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Josep Tabernero
- Vall d'Hebron University Hospital & Institute of Oncology (VHIO), CIBERONC, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Teresa Macarulla
- Vall d'Hebron University Hospital & Institute of Oncology (VHIO), Barcelona, Spain
| | - Michele Reni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chung-Pin Li
- Division of Gastroenterology & Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Bert O'Neil
- Department of Medicine, IU Health University Hospital, Indianapolis, IN, 46202, USA
| | - Eric Van Cutsem
- University Hospital Gasthuisberg, Leuven & KU Leuven, Leuven, Belgium
| | | |
Collapse
|
46
|
Peng K, Bai Y, Zhu Q, Hu B, Xu Y. Targeting VEGF–neuropilin interactions: a promising antitumor strategy. Drug Discov Today 2019; 24:656-664. [PMID: 30315890 DOI: 10.1016/j.drudis.2018.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Kewen Peng
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Bai
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Qihua Zhu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Hu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yungen Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
47
|
WNT signaling modulates PD-L1 expression in the stem cell compartment of triple-negative breast cancer. Oncogene 2019; 38:4047-4060. [PMID: 30705400 PMCID: PMC6755989 DOI: 10.1038/s41388-019-0700-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancers (TNBCs) are characterized by a poor prognosis and lack of targeted treatments, and thus, new therapeutic strategies are urgently needed. Inhibitors against programmed death-1 (PD-1)/PD-1 ligand (PD-L1) have shown significant efficacy in various solid cancers, but their activity against TNBCs remains limited. Here, we report that human TNBCs molecularly stratified for high levels of PD-L1 (PD-L1High) showed significantly enriched expression of immune and cancer stemness pathways compared with those with low PD-L1 expression (PD-L1Low). In addition, the PD-L1High cases were significantly associated with a high stemness score (SSHigh) signature. TNBC cell lines gated for aldehyde dehydrogenase (ALDH) and CD44 stemness markers exhibited increased levels of PD-L1 versus their ALDH-negative and CD44Low counterparts, and PD-L1High cells generated significantly more mammospheres than PD-L1Low cells. Murine mammary SCA-1-positive tumor cells with PD-L1High expression generated tumors in vivo with higher efficacy than PD-L1Low cells. Furthermore, treatment of TNBC cells with selective WNT inhibitors or activators downregulated or upregulated PD-L1 expression, respectively, implying a functional cross-talk between WNT activity and PD-L1 expression. Remarkably, human TNBC samples contained tumor elements co-expressing PD-L1 with ALDH1A1 and/or CD44v6. Additionally, both PD-L1-/SCA1-positive and ALDH1A1-positive tumor elements were found in close contact with CD3-, and PD-1-positive T cells in murine and human tumor samples. Overall, our study suggests that PD-L1-positive tumor elements with a stemness phenotype may participate in the complex dynamics of TNBC-related immune evasion, which might be targeted through WNT signaling inhibition.
Collapse
|
48
|
Chen Z, Xue C. G-Protein-Coupled Receptor 5 (LGR5) Overexpression Activates β-Catenin Signaling in Breast Cancer Cells via Protein Kinase A. Med Sci Monit Basic Res 2019; 25:15-25. [PMID: 30662060 PMCID: PMC6354635 DOI: 10.12659/msmbr.912411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Targeting cancer stem cells (CSCs) in breast cancer (BrCa) may improve treatment outcome and patient prognosis. Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) is a well-recognized adult stem cell and CRC marker, and previous reports have suggested the cancer-promoting role of LGR5 in breast cancer, but the mechanism remains unclear. Material/Methods Potential LGR5-associating genes were explored using STRING database, and LGR5 overexpression and knockdown was constructed in MCF-7 and MDA-MB-453 human BrCa cells, respectively. PKA catalytic subunit activation and PKA kinase activity in human BrCa cells was examined by Western blot and PKA kinase activity assay, respectively. Protein expression level or activation of β-catenin and GSK-3β in human BrCa cells was investigated by Western blot. Cell proliferation, colony formation, Transwell migration, cisplatin sensitivity, and in vivo tumor formation of human BrCa cells were examined. Results LGR5 overexpression increased PKA activation and its kinase activity in human BrCa cells, which was decreased by LGR5 knockdown. LGR5 expression level or PKA kinase activity were correlated with β-catenin Ser 552 phosphorylation but inversely correlated with GSK-3β Ser9 phosphorylation in human BrCa cells in vitro. LGR5/PKA increased cell proliferation, colony formation, Transwell migration, and cisplatin resistance in vitro, as well as tumor formation in vivo, of human BrCa cells. Conclusions LGR5 activates the Wnt/β-catenin signaling pathway in human BrCa cells in vitro via PKA.
Collapse
Affiliation(s)
- Zhishui Chen
- Department of Pathology, Ninety-First Central Hospital of the People's Liberation Army (PLA), Jiaozuo, Henan, China (mainland)
| | - Chengjun Xue
- Department of Pathology, Ninety-First Central Hospital of the People's Liberation Army (PLA), Jiaozuo, Henan, China (mainland)
| |
Collapse
|
49
|
Desai A, Yan Y, Gerson SL. Concise Reviews: Cancer Stem Cell Targeted Therapies: Toward Clinical Success. Stem Cells Transl Med 2019; 8:75-81. [PMID: 30328686 PMCID: PMC6312440 DOI: 10.1002/sctm.18-0123] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cells within tumors that possess the stem cell characteristics of self-renewal, quiescence, differentiation, and the ability to recapitulate the parental tumor when transplanted into a host. CSCs are correlated with poor clinical outcome due to their contribution to chemotherapy resistance and metastasis. Multiple cell surface and enzymatic markers have been characterized to identify CSCs within a heterogeneous tumor, and here we summarize ongoing preclinical and clinical efforts to therapeutically target these cells and improve patient outcomes. Stem Cells Translational Medicine 2019;8:75-81.
Collapse
Affiliation(s)
- Amar Desai
- Department of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterCase Western Reserve UniversityClevelandOhioUSA
| | - Yan Yan
- Department of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterCase Western Reserve UniversityClevelandOhioUSA
| | - Stanton L. Gerson
- Department of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
50
|
Yu LY, Shen YA, Chen MH, Wen YH, Hsieh PI, Lo CL. The feasibility of ROS- and GSH-responsive micelles for treating tumor-initiating and metastatic cancer stem cells. J Mater Chem B 2019. [DOI: 10.1039/c8tb02958j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, stimuli-responsive micelles were prepared to evaluate the effect of micellar composition on cancer stem cells.
Collapse
Affiliation(s)
- Lu-Yi Yu
- Department of Biomedical Engineering
- National Yang-Ming University
- Taipei 112
- Republic of China
| | - Yao-An Shen
- Department of Pathology and Sidney Kimmel Comprehensive Cancer Center
- Johns Hopkins Medical Institutions
- Baltimore
- USA
| | - Ming-Hung Chen
- Department of Biomedical Engineering
- National Yang-Ming University
- Taipei 112
- Republic of China
| | - Yu-Han Wen
- Department of Biomedical Engineering
- National Yang-Ming University
- Taipei 112
- Republic of China
| | - Po-I Hsieh
- Department of Biomedical Engineering
- National Yang-Ming University
- Taipei 112
- Republic of China
| | - Chun-Liang Lo
- Department of Biomedical Engineering
- National Yang-Ming University
- Taipei 112
- Republic of China
- Center for Advanced Pharmaceutics and Drug Delivery Research
| |
Collapse
|