1
|
Lymperopoulos A, Borges JI, Stoicovy RA. Cyclic Adenosine Monophosphate in Cardiac and Sympathoadrenal GLP-1 Receptor Signaling: Focus on Anti-Inflammatory Effects. Pharmaceutics 2024; 16:693. [PMID: 38931817 PMCID: PMC11206770 DOI: 10.3390/pharmaceutics16060693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a multifunctional incretin hormone with various physiological effects beyond its well-characterized effect of stimulating glucose-dependent insulin secretion in the pancreas. An emerging role for GLP-1 and its receptor, GLP-1R, in brain neuroprotection and in the suppression of inflammation, has been documented in recent years. GLP-1R is a G protein-coupled receptor (GPCR) that couples to Gs proteins that stimulate the production of the second messenger cyclic 3',5'-adenosine monophosphate (cAMP). cAMP, acting through its two main effectors, protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), exerts several anti-inflammatory (and some pro-inflammatory) effects in cells, depending on the cell type. The present review discusses the cAMP-dependent molecular signaling pathways elicited by the GLP-1R in cardiomyocytes, cardiac fibroblasts, central neurons, and even in adrenal chromaffin cells, with a particular focus on those that lead to anti-inflammatory effects by the GLP-1R. Fully elucidating the role cAMP plays in GLP-1R's anti-inflammatory properties can lead to new and more precise targets for drug development and/or provide the foundation for novel therapeutic combinations of the GLP-1R agonist medications currently on the market with other classes of drugs for additive anti-inflammatory effect.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA; (J.I.B.); (R.A.S.)
| | | | | |
Collapse
|
2
|
Chung YK, Chan HY, Lee TY, Wong YH. Inhibition of adenylyl cyclase by GTPase-deficient Gα i is mechanistically different from that mediated by receptor-activated Gα i. Cell Commun Signal 2024; 22:218. [PMID: 38581012 PMCID: PMC10996109 DOI: 10.1186/s12964-024-01572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/16/2024] [Indexed: 04/07/2024] Open
Abstract
Signal transduction through G protein-coupled receptors (GPCRs) has been a major focus in cell biology for decades. Numerous disorders are associated with GPCRs that utilize Gi proteins to inhibit adenylyl cyclase (AC) as well as regulate other effectors. Several early studies have successfully defined the AC-interacting domains of several members of Gαi by measuring the loss of activity upon homologous replacements of putative regions of constitutive active Gαi mutants. However, whether such findings can indeed be translated into the context of a receptor-activated Gαi have not been rigorously verified. To address this issue, an array of known and new chimeric mutations was introduced into GTPase-deficient Q204L (QL) and R178C (RC) mutants of Gαi1, followed by examinations on their ability to inhibit AC. Surprisingly, most chimeras failed to abolish the constitutive activity brought on by the QL mutation, while some were able to eliminate the inhibitory activity of RC mutants. Receptor-mediated inhibition of AC was similarly observed in the same chimeric constructs harbouring the pertussis toxin (PTX)-resistant C351I mutation. Moreover, RC-bearing loss-of-function chimeras appeared to be hyper-deactivated by endogenous RGS protein. Molecular docking revealed a potential interaction between AC and the α3/β5 loop of Gαi1. Subsequent cAMP assays support a cooperative action of the α3/β5 loop, the α4 helix, and the α4/β6 loop in mediating AC inhibition by Gαi1-i3. Our results unveiled a notable functional divergence between constitutively active mutants and receptor-activated Gαi1 to inhibit AC, and identified a previously unknown AC-interacting domain of Gαi subunits. These results collectively provide valuable insights on the mechanism of AC inhibition in the cellular environment.
Collapse
Affiliation(s)
- Yin Kwan Chung
- Division of Life Science and Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Ho Yung Chan
- Division of Life Science and Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Tung Yeung Lee
- Division of Life Science and Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yung Hou Wong
- Division of Life Science and Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China.
- State Key Laboratory of Molecular Neuroscience, and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
Sahay S, Henkel ND, Vargas CFA, McCullumsmith RE, O’Donovan SM. Activity of Protein Kinase A in the Frontal Cortex in Schizophrenia. Brain Sci 2023; 14:13. [PMID: 38248228 PMCID: PMC10813263 DOI: 10.3390/brainsci14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 01/23/2024] Open
Abstract
Schizophrenia is a serious cognitive disorder characterized by disruptions in neurotransmission, a process requiring the coordination of multiple kinase-mediated signaling events. Evidence suggests that the observed deficits in schizophrenia may be due to imbalances in kinase activity that propagate through an intracellular signaling network. Specifically, 3'-5'-cyclic adenosine monophosphate (cAMP)-associated signaling pathways are coupled to the activation of neurotransmitter receptors and modulate cellular functions through the activation of protein kinase A (PKA), an enzyme whose function is altered in the frontal cortex in schizophrenia. In this study, we measured the activity of PKA in human postmortem anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) tissue from schizophrenia and age- and sex-matched control subjects. No significant differences in PKA activity were observed in male and female individuals in either brain region; however, correlation analyses indicated that PKA activity in the ACC may be influenced by tissue pH in all subjects and by age and tissue pH in females. Our data provide novel insights into the function of PKA in the ACC and DLPFC in schizophrenia.
Collapse
Affiliation(s)
- Smita Sahay
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (N.D.H.); (C.F.-A.V.); (R.E.M.)
| | - Nicholas Daniel Henkel
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (N.D.H.); (C.F.-A.V.); (R.E.M.)
| | - Christina Flora-Anabelle Vargas
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (N.D.H.); (C.F.-A.V.); (R.E.M.)
| | - Robert Erne McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (N.D.H.); (C.F.-A.V.); (R.E.M.)
- Neuroscience Institute, Promedica, Toledo, OH 43606, USA
| | - Sinead Marie O’Donovan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (N.D.H.); (C.F.-A.V.); (R.E.M.)
| |
Collapse
|
4
|
Enriquez-Traba J, Yarur-Castillo HE, Flores RJ, Weil T, Roy S, Usdin TB, LaGamma CT, Arenivar M, Wang H, Tsai VS, Moritz AE, Sibley DR, Moratalla R, Freyberg ZZ, Tejeda HA. Dissociable control of motivation and reinforcement by distinct ventral striatal dopamine receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546539. [PMID: 37425766 PMCID: PMC10327105 DOI: 10.1101/2023.06.27.546539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Dopamine release in striatal circuits, including the nucleus accumbens (NAc), tracks separable features of reward such as motivation and reinforcement. However, the cellular and circuit mechanisms by which dopamine receptors transform dopamine release into distinct constructs of reward remain unclear. Here, we show that dopamine D3 receptor (D3R) signaling in the NAc drives motivated behavior by regulating local NAc microcircuits. Furthermore, D3Rs co-express with dopamine D1 receptors (D1Rs), which regulate reinforcement, but not motivation. Paralleling dissociable roles in reward function, we report non-overlapping physiological actions of D3R and D1R signaling in NAc neurons. Our results establish a novel cellular framework wherein dopamine signaling within the same NAc cell type is physiologically compartmentalized via actions on distinct dopamine receptors. This structural and functional organization provides neurons in a limbic circuit with the unique ability to orchestrate dissociable aspects of reward-related behaviors that are relevant to the etiology of neuropsychiatric disorders.
Collapse
|
5
|
Yim YY, Nestler EJ. Cell-Type-Specific Neuroproteomics of Synapses. Biomolecules 2023; 13:998. [PMID: 37371578 PMCID: PMC10296650 DOI: 10.3390/biom13060998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In the last two decades, our knowledge of synaptic proteomes and their relationship to normal brain function and neuropsychiatric disorders has been expanding rapidly through the use of more powerful neuroproteomic approaches. However, mass spectrometry (MS)-based neuroproteomic studies of synapses still require cell-type, spatial, and temporal proteome information. With the advancement of sample preparation and MS techniques, we have just begun to identify and understand proteomes within a given cell type, subcellular compartment, and cell-type-specific synapse. Here, we review the progress and limitations of MS-based neuroproteomics of synapses in the mammalian CNS and highlight the recent applications of these approaches in studying neuropsychiatric disorders such as major depressive disorder and substance use disorders. Combining neuroproteomic findings with other omics studies can generate an in-depth, comprehensive map of synaptic proteomes and possibly identify new therapeutic targets and biomarkers for several central nervous system disorders.
Collapse
Affiliation(s)
- Yun Young Yim
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | | |
Collapse
|
6
|
Tsentsevitsky AN, Gafurova CR, Mukhutdinova KA, Giniatullin AR, Fedorov NS, Malomouzh AI, Petrov AM. Sphingomyelinase modulates synaptic vesicle mobilization at the mice neuromuscular junctions. Life Sci 2023; 318:121507. [PMID: 36801470 DOI: 10.1016/j.lfs.2023.121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
AIMS Sphingomyelin is an abundant component of the presynaptic membrane and an organizer of lipid rafts. In several pathological conditions, sphingomyelin is hydrolyzed due to an upregulation and release of secretory sphingomyelinases (SMases). Herein, the effects of SMase on exocytotic neurotransmitter release were studied in the diaphragm neuromuscular junctions of mice. MAIN METHODS Microelectrode recordings of postsynaptic potentials and styryl (FM) dyes were used to estimate neuromuscular transmission. Membrane properties were assessed with fluorescent techniques. KEY FINDINGS Application of SMase at a low concentration (0.01 U ml-1) led to a disruption of lipid-packing in the synaptic membranes. Neither spontaneous exocytosis nor evoked neurotransmitter release (in response to single stimuli) were affected by SMase treatment. However, SMase significantly increased neurotransmitter release and the rate of fluorescent FM-dye loss from the synaptic vesicles at 10, 20 and 70 Hz stimulation of the motor nerve. In addition, SMase treatment prevented a shift of the exocytotic mode from "full-collapse" fusion to "kiss-and-run" during high-frequency (70 Hz) activity. The potentiating effects of SMase on neurotransmitter release and FM-dye unloading were suppressed when synaptic vesicle membranes were also exposed to this enzyme (i.e., stimulation occurred during SMase treatment). SIGNIFICANCE Thus, hydrolysis of the plasma membrane sphingomyelin can enhance mobilization of synaptic vesicles and facilitate full fusion mode of exocytosis, but SMase acting on vesicular membrane had a depressant effect on the neurotransmission. Partially, the effects of SMase can be related with the changes in synaptic membrane properties and intracellular signaling.
Collapse
Affiliation(s)
- Andrei N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Chulpan R Gafurova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Kamilla A Mukhutdinova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Arthur R Giniatullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia; Kazan State Medial University, 49 Butlerova St., Kazan, RT 420012, Russia
| | - Nikita S Fedorov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Artem I Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia; Kazan State Medial University, 49 Butlerova St., Kazan, RT 420012, Russia.
| |
Collapse
|
7
|
Xu X, Wu G. Non-canonical Golgi-compartmentalized Gβγ signaling: mechanisms, functions, and therapeutic targets. Trends Pharmacol Sci 2023; 44:98-111. [PMID: 36494204 PMCID: PMC9901158 DOI: 10.1016/j.tips.2022.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
G protein Gβγ subunits are key mediators of G protein-coupled receptor (GPCR) signaling under physiological and pathological conditions; their inhibitors have been tested for the treatment of human disease. Conventional wisdom is that the Gβγ complex is activated and subsequently exerts its functions at the plasma membrane (PM). Recent studies have revealed non-canonical activation of Gβγ at intracellular organelles, where the Golgi apparatus is a major locale, via translocation or local activation. Golgi-localized Gβγ activates specific signaling cascades and regulates fundamental cell processes such as membrane trafficking, proliferation, and migration. More recent studies have shown that inhibiting Golgi-compartmentalized Gβγ signaling attenuates cardiomyocyte hypertrophy and prostate tumorigenesis, indicating new therapeutic targets. We review novel activation mechanisms and non-canonical functions of Gβγ at the Golgi, and discuss potential therapeutic interventions by targeting Golgi-biased Gβγ-directed signaling.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
8
|
Uefune F, Aonishi T, Kitaguchi T, Takahashi H, Seino S, Sakano D, Kume S. Dopamine Negatively Regulates Insulin Secretion Through Activation of D1-D2 Receptor Heteromer. Diabetes 2022; 71:1946-1961. [PMID: 35728809 DOI: 10.2337/db21-0644] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022]
Abstract
There is increasing evidence that dopamine (DA) functions as a negative regulator of glucose-stimulated insulin secretion; however, the underlying molecular mechanism remains unknown. Using total internal reflection fluorescence microscopy, we monitored insulin granule exocytosis in primary islet cells to dissect the effect of DA. We found that D1 receptor antagonists rescued the DA-mediated inhibition of glucose-stimulated calcium (Ca2+) flux, thereby suggesting a role of D1 in the DA-mediated inhibition of insulin secretion. Overexpression of D2, but not D1, alone exerted an inhibitory and toxic effect that abolished the glucose-stimulated Ca2+ influx and insulin secretion in β-cells. Proximity ligation and Western blot assays revealed that D1 and D2 form heteromers in β-cells. Treatment with a D1-D2 heteromer agonist, SKF83959, transiently inhibited glucose-induced Ca2+ influx and insulin granule exocytosis. Coexpression of D1 and D2 enabled β-cells to bypass the toxic effect of D2 overexpression. DA transiently inhibited glucose-stimulated Ca2+ flux and insulin exocytosis by activating the D1-D2 heteromer. We conclude that D1 protects β-cells from the harmful effects of DA by modulating D2 signaling. The finding will contribute to our understanding of the DA signaling in regulating insulin secretion and improve methods for preventing and treating diabetes.
Collapse
Affiliation(s)
- Fumiya Uefune
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Toru Aonishi
- School of Computing, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Tetsuya Kitaguchi
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Harumi Takahashi
- Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Susumu Seino
- Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Daisuke Sakano
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
9
|
Lovinger DM, Mateo Y, Johnson KA, Engi SA, Antonazzo M, Cheer JF. Local modulation by presynaptic receptors controls neuronal communication and behaviour. Nat Rev Neurosci 2022; 23:191-203. [PMID: 35228740 PMCID: PMC10709822 DOI: 10.1038/s41583-022-00561-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
Central nervous system neurons communicate via fast synaptic transmission mediated by ligand-gated ion channel (LGIC) receptors and slower neuromodulation mediated by G protein-coupled receptors (GPCRs). These receptors influence many neuronal functions, including presynaptic neurotransmitter release. Presynaptic LGIC and GPCR activation by locally released neurotransmitters influences neuronal communication in ways that modify effects of somatic action potentials. Although much is known about presynaptic receptors and their mechanisms of action, less is known about when and where these receptor actions alter release, especially in vivo. This Review focuses on emerging evidence for important local presynaptic receptor actions and ideas for future studies in this area.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Yolanda Mateo
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sheila A Engi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mario Antonazzo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph F Cheer
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
White DN, Stowell MHB. Room for Two: The Synaptophysin/Synaptobrevin Complex. Front Synaptic Neurosci 2021; 13:740318. [PMID: 34616284 PMCID: PMC8488437 DOI: 10.3389/fnsyn.2021.740318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 12/01/2022] Open
Abstract
Synaptic vesicle release is regulated by upwards of 30 proteins at the fusion complex alone, but disruptions in any one of these components can have devastating consequences for neuronal communication. Aberrant molecular responses to calcium signaling at the pre-synaptic terminal dramatically affect vesicle trafficking, docking, fusion, and release. At the organismal level, this is reflected in disorders such as epilepsy, depression, and neurodegeneration. Among the myriad pre-synaptic proteins, perhaps the most functionally mysterious is synaptophysin (SYP). On its own, this vesicular transmembrane protein has been proposed to function as a calcium sensor, a cholesterol-binding protein, and to form ion channels across the phospholipid bilayer. The downstream effects of these functions are largely unknown. The physiological relevance of SYP is readily apparent in its interaction with synaptobrevin (VAMP2), an integral element of the neuronal SNARE complex. SNAREs, soluble NSF attachment protein receptors, comprise a family of proteins essential for vesicle fusion. The complex formed by SYP and VAMP2 is thought to be involved in both trafficking to the pre-synaptic membrane as well as regulation of SNARE complex formation. Recent structural observations specifically implicate the SYP/VAMP2 complex in anchoring the SNARE assembly at the pre-synaptic membrane prior to vesicle fusion. Thus, the SYP/VAMP2 complex appears vital to the form and function of neuronal exocytotic machinery.
Collapse
Affiliation(s)
- Dustin N. White
- MCD Biology, University of Colorado Boulder, Boulder, CO, United States
| | | |
Collapse
|
11
|
Glucagon-like peptide-1 receptor controls exocytosis in chromaffin cells by increasing full-fusion events. Cell Rep 2021; 36:109609. [PMID: 34433018 DOI: 10.1016/j.celrep.2021.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/02/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Agonists for glucagon-like-peptide-1 receptor (GLP-1R) are currently used for the treatment of type 2 diabetes and obesity. Their benefits have been centered on pancreas and hypothalamus, but their roles in other organ systems are not well understood. We studied the action of GLP-1R on secretions of adrenal medulla. Exendin-4, a synthetic analog of GLP-1, increases the synthesis and the release of catecholamines (CAs) by increasing cyclic AMP (cAMP) production, without apparent participation of cAMP-regulated guanine nucleotide exchange factor (Epac). Exendin-4, when incubated for 24 h, increases CA synthesis by promoting the activation of tyrosine hydroxylase. Short incubation (20 min) increases the quantum size of exocytotic events by switching exocytosis from partial to full fusion. Our results give a strong support to the role of GLP-1 in the fine control of exocytosis.
Collapse
|
12
|
Gonçalves-Monteiro S, Ribeiro-Oliveira R, Vieira-Rocha MS, Vojtek M, Sousa JB, Diniz C. Insights into Nuclear G-Protein-Coupled Receptors as Therapeutic Targets in Non-Communicable Diseases. Pharmaceuticals (Basel) 2021; 14:439. [PMID: 34066915 PMCID: PMC8148550 DOI: 10.3390/ph14050439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) comprise a large protein superfamily divided into six classes, rhodopsin-like (A), secretin receptor family (B), metabotropic glutamate (C), fungal mating pheromone receptors (D), cyclic AMP receptors (E) and frizzled (F). Until recently, GPCRs signaling was thought to emanate exclusively from the plasma membrane as a response to extracellular stimuli but several studies have challenged this view demonstrating that GPCRs can be present in intracellular localizations, including in the nuclei. A renewed interest in GPCR receptors' superfamily emerged and intensive research occurred over recent decades, particularly regarding class A GPCRs, but some class B and C have also been explored. Nuclear GPCRs proved to be functional and capable of triggering identical and/or distinct signaling pathways associated with their counterparts on the cell surface bringing new insights into the relevance of nuclear GPCRs and highlighting the nucleus as an autonomous signaling organelle (triggered by GPCRs). Nuclear GPCRs are involved in physiological (namely cell proliferation, transcription, angiogenesis and survival) and disease processes (cancer, cardiovascular diseases, etc.). In this review we summarize emerging evidence on nuclear GPCRs expression/function (with some nuclear GPCRs evidencing atypical/disruptive signaling pathways) in non-communicable disease, thus, bringing nuclear GPCRs as targets to the forefront of debate.
Collapse
Affiliation(s)
- Salomé Gonçalves-Monteiro
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rita Ribeiro-Oliveira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Sofia Vieira-Rocha
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Martin Vojtek
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana B. Sousa
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Carmen Diniz
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
13
|
Kesner AJ, Lovinger DM. Cannabinoids, Endocannabinoids and Sleep. Front Mol Neurosci 2020; 13:125. [PMID: 32774241 PMCID: PMC7388834 DOI: 10.3389/fnmol.2020.00125] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Sleep is a vital function of the nervous system that contributes to brain and bodily homeostasis, energy levels, cognitive ability, and other key functions of a variety of organisms. Dysfunctional sleep induces neural problems and is a key part of almost all human psychiatric disorders including substance abuse disorders. The hypnotic effects of cannabis have long been known and there is increasing use of phytocannabinoids and other formulations as sleep aids. Thus, it is crucial to gain a better understanding of the neurobiological basis of cannabis drug effects on sleep, as well as the role of the endogenous cannabinoid system in sleep physiology. In this review article, we summarize the current state of knowledge concerning sleep-related endogenous cannabinoid function derived from research on humans and rodent models. We also review information on acute and chronic cannabinoid drug effects on sleep in these organisms, and molecular mechanisms that may contribute to these effects. We point out the potential benefits of acute cannabinoids for sleep improvement, but also the potential sleep-disruptive effects of withdrawal following chronic cannabinoid drug use. Prescriptions for future research in this burgeoning field are also provided.
Collapse
Affiliation(s)
- Andrew J Kesner
- Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institute of Health (NIH), Bethesda, MD, United States
- Center on Compulsive Behaviors, Intramural Research Program, National Institute of Health (NIH), Bethesda, MD, United States
| | - David M Lovinger
- Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institute of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
14
|
Thompson Gray AD, Simonetti J, Adegboye F, Jones CK, Zurawski Z, Hamm HE. Sexual Dimorphism in Stress-induced Hyperthermia in SNAP25Δ3 mice, a mouse model with disabled Gβγ regulation of the exocytotic fusion apparatus. Eur J Neurosci 2020; 52:2815-2826. [PMID: 32449556 DOI: 10.1111/ejn.14836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/28/2022]
Abstract
Behavioral assays in the mouse can show marked differences between male and female animals of a given genotype. These differences identified in such preclinical studies may have important clinical implications. We recently made a mouse model with impaired presynaptic inhibition through Gβγ-SNARE signaling. Here, we examine the role of sexual dimorphism in the severity of the phenotypes of this model, the SNAP25Δ3 mouse. In males, we already reported that SNAP25Δ3 homozygotes demonstrated phenotypes in motor coordination, nociception, spatial memory and stress processing. We now report that while minimal sexually dimorphic effects were observed for the nociceptive, motor or memory phenotypes, large differences were observed in the stress-induced hyperthermia paradigm, with male SNAP25Δ3 homozygotes exhibiting an increase in body temperature subsequent to handling relative to wild-type littermates, while no such genotype-dependent effect was observed in females. This suggests sexually dimorphic mechanisms of Gβγ-SNARE signaling for stress processing or thermoregulation within the mouse. Second, we examined the effects of heterozygosity with respect to the SNAP25Δ3 mutation. Heterozygote SNAP25Δ3 animals were tested alongside homozygote and wild-type littermates in all of the aforementioned paradigms and displayed phenotypes similar to wild-type animals or an intermediate state. From this, we conclude that the SNAP25Δ3 mutation does not behave in an autosomal dominant manner, but rather displays incomplete dominance for many phenotypes.
Collapse
Affiliation(s)
| | - Justice Simonetti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Feyisayo Adegboye
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
15
|
Disabling Gβγ-SNAP-25 interaction in gene-targeted mice results in enhancement of long-term potentiation at Schaffer collateral-CA1 synapses in the hippocampus. Neuroreport 2020; 30:695-699. [PMID: 31095110 DOI: 10.1097/wnr.0000000000001258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Three SNARE proteins, SNAP-25, syntaxin 1A, and VAMP2 or synaptobrevin 2, constitute the minimal functional machinery needed for the regulated secretion of neurotransmitters. Dynamic changes in the regulated release of neurotransmitters are associated with the induction of long-term plasticity at central synapses. In-vitro studies have validated the C-terminus of SNAP-25 as a target for inhibitory Gi/o-coupled G-protein coupled receptors at a number of synapses. The physiological consequences of the interaction between Gi/o proteins and SNAP-25 in the context of activity-dependent long-term synaptic plasticity are not well understood. Here, we report direct ex-vivo evidence of the involvement of the C-terminus of SNAP-25 in inducing long-term potentiation of synaptic strength at Schaffer collateral-CA1 synapses using a gene-targeted mouse model with truncated C-terminus (carboxyl terminus) of SNAP-25. It has been shown previously that truncation of the three extreme C-terminal residues in SNAP-25[INCREMENT]3 homozygote mice reduces its interaction with the inhibitory Gβγ subunits two-fold. In in-vitro hippocampal slices, we show that these SNAP-25[INCREMENT]3 mice express significantly larger magnitude of long-term potentiation at hippocampal Schaffer collateral-CA1 synapses.
Collapse
|
16
|
Abstract
Heterotrimeric G proteins are the core upstream elements that transduce and amplify the cellular signals from G protein-coupled receptors (GPCRs) to intracellular effectors. GPCRs are the largest family of membrane proteins encoded in the human genome and are the targets of about one-third of prescription medicines. However, to date, no single therapeutic agent exerts its effects via perturbing heterotrimeric G protein function, despite a plethora of evidence linking G protein malfunction to human disease. Several recent studies have brought to light that the Gq family-specific inhibitor FR900359 (FR) is unexpectedly efficacious in silencing the signaling of Gq oncoproteins, mutant Gq variants that mostly exist in the active state. These data not only raise the hope that researchers working in drug discovery may be able to potentially strike Gq oncoproteins from the list of undruggable targets, but also raise questions as to how FR achieves its therapeutic effect. Here, we place emphasis on these recent studies and explain why they expand our pharmacological armamentarium for targeting Gq protein oncogenes as well as broaden our mechanistic understanding of Gq protein oncogene function. We also highlight how this novel insight impacts the significance and utility of using G(q) proteins as targets in drug discovery efforts.
Collapse
Affiliation(s)
- Evi Kostenis
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany.
| | - Eva Marie Pfeil
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| | - Suvi Annala
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
17
|
Abstract
Glucose-induced (physiological) insulin secretion from the islet β-cell involves interplay between cationic (i.e., changes in intracellular calcium) and metabolic (i.e., generation of hydrophobic and hydrophilic second messengers) events. A large body of evidence affirms support for novel regulation, by G proteins, of specific intracellular signaling events, including actin cytoskeletal remodeling, transport of insulin-containing granules to the plasma membrane for fusion, and secretion of insulin into the circulation. This article highlights the following aspects of GPCR-G protein biology of the islet. First, it overviews our current understanding of the identity of a wide variety of G protein regulators and their modulatory roles in GPCR-G protein-effector coupling, which is requisite for optimal β-cell function under physiological conditions. Second, it describes evidence in support of novel, noncanonical, GPCR-independent mechanisms of activation of G proteins in the islet. Third, it highlights the evidence indicating that abnormalities in G protein function lead to islet β-cell dysregulation and demise under the duress of metabolic stress and diabetes. Fourth, it summarizes observations of potential beneficial effects of GPCR agonists in preventing/halting metabolic defects in the islet β-cell under various pathological conditions (e.g., metabolic stress and inflammation). Lastly, it identifies knowledge gaps and potential avenues for future research in this evolving field of translational islet biology. Published 2020. Compr Physiol 10:453-490, 2020.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Center for Translational Research in Diabetes, Biomedical Research Service, John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
18
|
Gad AA, Balenga N. The Emerging Role of Adhesion GPCRs in Cancer. ACS Pharmacol Transl Sci 2020; 3:29-42. [PMID: 32259086 DOI: 10.1021/acsptsci.9b00093] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 02/08/2023]
Abstract
Aberrant expression, function, and mutation of G protein-coupled receptors (GPCRs) and their signaling partners, G proteins, have been well documented in many forms of cancer. These cell surface receptors and their endogenous ligands are implicated in all aspects of cancer including proliferation, angiogenesis, invasion, and metastasis. Adhesion GPCRs (aGPCRs) form the second largest family of GPCRs, most of which are orphan receptors with unknown physiological functions. This is mainly due to our limited insight into their structure, natural ligands, signaling pathways, and tissue expression profiles. Nevertheless, recent studies show that aGPCRs play important roles in cell adhesion to the extracellular matrix and cell-cell communication, processes that are dysregulated in cancer. Emerging evidence suggests that aGPCRs are implicated in migration, proliferation, and survival of tumor cells. We here review the role of aGPCRs in the five most common types of cancer (lung, breast, colorectal, prostate, and gastric) and emphasize the importance of further translational studies in this field.
Collapse
Affiliation(s)
- Abanoub A Gad
- Graduate Program in Life Sciences, University of Maryland, Baltimore, Maryland 20201, United States.,Division of General & Oncologic Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 20201, United States
| | - Nariman Balenga
- Division of General & Oncologic Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 20201, United States.,Molecular and Structural Biology program at University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland 20201, United States
| |
Collapse
|