1
|
Li H, Liu K, Yang Z, Sun Q, Shang W, Li Y, Wang M, Yang Y, Liu H, Yin D, Shen W. Oncolytic polymer-mediated combretastatin A4 phosphate delivery for enhancing vascular disrupting therapy. Int J Pharm 2025; 674:125438. [PMID: 40058738 DOI: 10.1016/j.ijpharm.2025.125438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/23/2025] [Accepted: 03/06/2025] [Indexed: 04/19/2025]
Abstract
Although vascular disrupting agents (VDAs) can induce shutdown of blood flow and necrosis in the tumor core, eradicating tumor rim cells remains a significant challenge. Recently, researchers have developed various combination treatment strategies to improve the efficacy of VDAs. However, the aggravated hypoxic tumor microenvironment following vascular disruption limits the effectiveness of conventional therapeutic approaches. Here, we developed an ε-polylysine-derived oncolytic polymer (named OPAA) with membrane lytic activity. Its cytotoxic effect on tumor cells is largely unaffected by hypoxic conditions, as evidenced by the ratio of its IC50 value for 4 T1 cells under normoxic conditions to that under hypoxic conditions, which is 0.98. Subsequently, a pH-responsive combretastatin A4 phosphate disodium salt (CA4P)-loaded nanoparticle (OPAA@CA4P NPs) has been designed to efficiently deliver OPAA and CA4P to solid tumors. OPAA@CA4P NPs exhibited a prolonged serum half-life (t1/2 = 3.15 h) compared to CA4P (t1/2 = 0.31 h) and an enhanced tumor accumulation. In addition, CA4P can be responsively released within the tumor microenvironment, leading to necrosis in the tumor center. Concurrently, OPAA released from the nanoparticles eradicated the surviving cancer cells at the tumor periphery, thereby improving the overall therapeutic effect. Notably, compared to the CA4P + doxorubicin group (tumor suppression rates, TSR = 36.17 %), the OPAA@CA4P NPs group demonstrated superior therapeutic outcomes (TSR = 60.30 %). Overall, the introduction of oncolytic polymers provides new insights into the potential future applications of VDAs.
Collapse
Affiliation(s)
- Huihui Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Kang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zexin Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wencui Shang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yunlong Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mingjing Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230031, China
| | - Hanmeng Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230031, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China; Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei 230021, China.
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230031, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Hefei 230012, China.
| |
Collapse
|
2
|
Endo R, Ueda T, Nagaoki T, Sato Y, Maishi N, Hida K, Harashima H, Nakamura T. Selective vascular disrupting therapy by lipid nanoparticle-mediated Fas ligand silencing and stimulation of STING. Biomaterials 2025; 321:123297. [PMID: 40158445 DOI: 10.1016/j.biomaterials.2025.123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Although recent therapeutic developments have greatly improved the outcomes of patients with cancer, it remains on ongoing problem, particularly in relation to acquired drug resistance. Vascular disrupting agents (VDAs) directly damage tumor blood vessels, thus promoting drug efficacy and reducing the development of drug resistance; however, their low molecular weight and resulting lack of selectivity for tumor endothelial cells (TECs) lead to side effects that can hinder their practical use. Here, we report a novel tumor vascular disrupting therapy using nucleic acid-loaded lipid nanoparticles (LNPs). We prepared two LNPs: a small interfering RNA (siRNA) against Fas ligand (FasL)-loaded cyclic RGD modified LNP (cRGD-LNP) to knock down FasL in TECs and a stimulator of interferon genes (STING) agonist-loaded LNP to induce systemic type I interferon (IFN) production. The combination therapy disrupted the tumor vasculature and induced broad tumor cell apoptosis within 48 h, leading to rapid and strong therapeutic effects in various tumor models. T cells were not involved in these antitumor effects. Furthermore, the combination therapy demonstrated a significantly superior therapeutic efficacy compared with conventional anti-angiogenic agents and VDAs. RNA sequencing analysis suggested that reduced collagen levels may have been responsible for TEC apoptosis. These findings demonstrated a potential therapeutic method for targeting the tumor vasculature, which may contribute to the development of a new class of anti-cancer drugs.
Collapse
Affiliation(s)
- Rikito Endo
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Tomoki Ueda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Takumi Nagaoki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, 060-8586, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, 060-8586, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan; Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
3
|
Zhou H, Yang Z, Jin G, Wang L, Su Y, Liu H, Sun H, Xue L, Mi L, Veselova IA, Li M, Lv S, Chen X. Prodrug-designed nanocarrier co-delivering chemotherapeutic and vascular disrupting agents with exceptionally high drug loading capacity. J Control Release 2025; 382:113628. [PMID: 40088979 DOI: 10.1016/j.jconrel.2025.113628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Chemotherapy remains a vital component of cancer treatment, with combination therapy widely used in clinical practice to overcome the limitations of single-drug administration. However, challenges persist including pharmacokinetic discrepancies among different pharmaceutical agents, and insufficient synergistic efficiency in small-molecule drug combinations. There is an urgent need to develop more efficient combination therapy strategies. Nanocarriers have been extensively used to address issues associated with free drugs, but achieving high delivery efficiency of small-molecular pharmaceuticals through traditional drug delivery methods remains difficult. Herein, we report an exceptionally efficient drug delivery strategy mediated by prodrug design. A prodrug composed of paclitaxel (PTX) and combretastatin A-4 (CA4) was developed to achieve synchronous and efficient delivery of both drugs. When the prodrug was encapsulated by a nanocarrier, the drug loading capacity (DLC) could reach as high as 99 %, almost achieving quantitative drug loading. The good biocompatibility and potent anti-tumor efficacy of the prodrug-loaded nanoparticles were confirmed through both in vitro and in vivo experiments. Our work provides valuable insights into the safe and efficient combination cancer therapy.
Collapse
Affiliation(s)
- Huicong Zhou
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Zhaofan Yang
- School of Materials Science and Engineering, The Central Laboratory, Peking University School and Hospital of Stomatology, Peking University, Beijing 100871, China
| | - Guanyu Jin
- School of Materials Science and Engineering, The Central Laboratory, Peking University School and Hospital of Stomatology, Peking University, Beijing 100871, China
| | - Lanqing Wang
- School of Materials Science and Engineering, The Central Laboratory, Peking University School and Hospital of Stomatology, Peking University, Beijing 100871, China
| | - Yuanzhen Su
- School of Materials Science and Engineering, The Central Laboratory, Peking University School and Hospital of Stomatology, Peking University, Beijing 100871, China
| | - Hao Liu
- School of Materials Science and Engineering, The Central Laboratory, Peking University School and Hospital of Stomatology, Peking University, Beijing 100871, China
| | - Hai Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Lingwei Xue
- Yaoshan Laboratory, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Liwei Mi
- Yaoshan Laboratory, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Irina A Veselova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Shixian Lv
- School of Materials Science and Engineering, The Central Laboratory, Peking University School and Hospital of Stomatology, Peking University, Beijing 100871, China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
4
|
Zhou H, Yang Z, Jin G, Wang L, Su Y, Liu H, Sun H, Xue L, Mi L, Veselova IA, Li M, Lv S, Chen X. Polymeric Nanoparticles Simultaneously Delivering Paclitaxel Prodrug and Combretastatin A4 with Exceptionally High Drug Loading for Cancer Combination Therapy. NANO LETTERS 2025; 25:3479-3488. [PMID: 39993999 DOI: 10.1021/acs.nanolett.4c05863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Nanomedicines capable of delivering multiple drugs have become essential in combination therapy. However, the challenges of low drug loading capacity (DLC) and difficulties in administering dosages between different drugs significantly limit the antitumor efficacy. In this study, a nanomedicine constructed through a rational prodrug and nanocarrier design was reported for cancer combination therapy. Initially, a phenylborate ester (PBE) group-modified paclitaxel (PTX) prodrug (PTX-PBE) was synthesized and could self-assemble in water. Subsequently, combretastatin A4 (CA4) polymer conjugates, mPEG-PCA4 (PCA4), were synthesized as nanocarriers to facilitate the exceptionally high drug loading of PTX-PBE in a precisely controlled manner. Both the in vitro and in vivo experiments demonstrated that the PCA4 loading PTX-PBE nanoparticles (PCA4/PTX-PBE NPs) exhibited potent antitumor efficacy and favorable biocompatibility. Our approach provides a straightforward, efficient, and controllable strategy for the co-delivery of pharmaceuticals in clinical cancer combination therapy.
Collapse
Affiliation(s)
- Huicong Zhou
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Zhaofan Yang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Guanyu Jin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lanqing Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuanzhen Su
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Hai Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Lingwei Xue
- Yaoshan laboratory, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Liwei Mi
- Yaoshan laboratory, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Irina A Veselova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
5
|
Li G, Wang M, Luo L, Tang D, Xu N, Huang R, Yang Y, Chen G, Liu Z, Wang H, Huang X. Discovery of novel dual tubulin and MMPs inhibitors for the treatment of lung cancer and overcoming drug resistance. Eur J Med Chem 2025; 285:117249. [PMID: 39823807 DOI: 10.1016/j.ejmech.2025.117249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Nowadays, hybrid molecule with dual targets activity or effect is regarded as an effective strategy for combating the drug resistance development in cancer therapy. Herein, novel of bifunctional conjugates targeting tubulin and MMPs inhibitors were synthesized. Among them, 15j exhibited robust anticancer activity in vitro and in vivo, with IC50 values of 0.154-0.296 μM against four human cancer cells and a 74.7 % (@20 mg/kg) tumor growth inhibition in vivo without obvious systemic toxicity. Mechanistic studies indicated that 15j exerted inhibitory effects on both tubulin polymerization, MMP-2 and MMP-9 activity. Moreover, 15j remarkably inhibited cell proliferation, migration and invasion, and accordingly disrupted the NF-κB signaling transduction. Furthermore, 15j effectively initiated mitochondria-dependent apoptotic pathway by causing mitochondrial dysfunction, promoting the accumulation of reactive oxygen species, and inducing DNA damage. Collectively, these results demonstrated that 15j, as a tubulin/MMPs dual-targeting inhibitor, has exhibited significant potential for the lung cancer therapy.
Collapse
Affiliation(s)
- Guimei Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China
| | - Meng Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Institute of Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Li Luo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China
| | - Demin Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China
| | - Nan Xu
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Institute of Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Rizhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Yong Yang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Institute of Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Guiping Chen
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Institute of Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Zhikun Liu
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Institute of Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China.
| | - Xiaochao Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Institute of Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
6
|
Tantray J, Patel A, Parveen H, Prajapati B, Prajapati J. Nanotechnology-based biomedical devices in the cancer diagnostics and therapy. Med Oncol 2025; 42:50. [PMID: 39828813 DOI: 10.1007/s12032-025-02602-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Nanotechnology has significantly transformed the field of cancer diagnostics and therapeutics by introducing advanced biomedical devices. These nanotechnology-based devices exhibit remarkable capabilities in detecting and treating various cancers, addressing the limitations of traditional approaches, such as limited specificity and sensitivity. This review aims to explore the advancements in nanotechnology-driven biomedical devices, emphasizing their role in the diagnosis and treatment of cancer. Through a comprehensive analysis, we evaluate various nanotechnology-based devices across different cancer types, detailing their diagnostic and therapeutic effectiveness. The review also discusses FDA-approved nanotechnology products, patents, and regulatory trends, highlighting the innovation and clinical impact in oncology. Nanotechnology-based devices, including nanobots, smart pills, and multifunctional nanoparticles, enable precise targeting and treatment, reducing adverse effects on healthy tissues. Devices such as DNA-based nanorobots, quantum dots, and biodegradable stents offer noninvasive diagnostic and therapeutic options, showing high efficacy in preclinical and clinical settings. FDA-approved products underscore the acceptance of these technologies. Nanotechnology-based biomedical devices offer a promising future for oncology, with the potential to revolutionize cancer care through early detection, targeted treatment, and minimal side effects. Continued research and technological improvements are essential to fully realize their potential in personalized cancer therapy.
Collapse
Affiliation(s)
- Junaid Tantray
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Akhilesh Patel
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Hiba Parveen
- Faculty of Pharmacy, Veer Madho Singh Bhandari Uttrakhand Technical University, Dehradun, India
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Jigna Prajapati
- Faculty of Computer Application, Ganpat University, Mehsana, Gujarat, 384012, India.
| |
Collapse
|
7
|
Guelfi S, Hodivala-Dilke K, Bergers G. Targeting the tumour vasculature: from vessel destruction to promotion. Nat Rev Cancer 2024; 24:655-675. [PMID: 39210063 DOI: 10.1038/s41568-024-00736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
As angiogenesis was recognized as a core hallmark of cancer growth and survival, several strategies have been implemented to target the tumour vasculature. Yet to date, attempts have rarely been so diverse, ranging from vessel growth inhibition and destruction to vessel normalization, reprogramming and vessel growth promotion. Some of these strategies, combined with standard of care, have translated into improved cancer therapies, but their successes are constrained to certain cancer types. This Review provides an overview of these vascular targeting approaches and puts them into context based on our subsequent improved understanding of the tumour vasculature as an integral part of the tumour microenvironment with which it is functionally interlinked. This new knowledge has already led to dual targeting of the vascular and immune cell compartments and sets the scene for future investigations of possible alternative approaches that consider the vascular link with other tumour microenvironment components for improved cancer therapy.
Collapse
Affiliation(s)
- Sophie Guelfi
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK.
| | - Gabriele Bergers
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology and KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Belhouala K, Pandiella A, Benarba B. Synergistic effects of medicinal plants in combination with spices from algeria: Anticancer, antiangiogenic activities, and embrytoxicity studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118187. [PMID: 38615699 DOI: 10.1016/j.jep.2024.118187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bryonia dioica Jacq., Evernia prunastri (L.) Ach., Telephium imperati L., and Aristolochia longa L. are species widely used in traditional medicine to treat several diseases including cancer. Conjugation of two or more extracts is an approach to improve the effectiveness of their pharmacological activities. AIM OF THE STUDY To evaluate the synergistic anticancer and anti-angiogenic effects of medicinal plants and edible species combinations. MATERIALS AND METHODS In this work, B. dioica, E. prunastri, Telephium imperati, and Aristolochia longa extracts were conjugated to form four mixtures. The antiproliferative effect of mixtures on several carcinoma cells was examined by MTT assay, and the antiangiogenic activity was estimated through Hen's egg test in vivo. Moreover, in an Ovo model, 35 fertilized Ross eggs were used to test the embryotoxicity of mixtures. RESULTS At the highest concentration of 200 μg/mL, both mixtures exerted an important cytotoxic effect against human carcinoma cells. The mixture BETE (Bryonia Evernia Telephium Extract) significantly reduced HT-29, PC-3, and A-549 cell viability. Likewise, this mixture strongly suppressed vascularization in vivo at 200 μg/mL. Interestingly, no signs of toxicity on Perdix embryos were recorded within 21 days of treatment. More importantly, the mixture did not have any cytotoxic effect on non cancerous cells. CONCLUSION Taken together, our results suggest that the synergy between B. dioica, E. prunastri and T. imperati may be promising for developing new anti-cancer treatments.
Collapse
Affiliation(s)
- Khadidja Belhouala
- Laboratory Research on Biological Systems and Geomatics, Mustapha Stambouli University of Mascara, Algeria
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular Del Cáncer and CIBERONC, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Bachir Benarba
- Laboratory Research on Biological Systems and Geomatics, Mustapha Stambouli University of Mascara, Algeria.
| |
Collapse
|
9
|
Romaní-Cubells E, Martínez-Erro S, Morales V, Chocarro-Calvo A, García-Martínez JM, Sanz R, García-Jiménez C, García-Muñoz RA. Magnetically modified-mitoxantrone mesoporous organosilica drugs: an emergent multimodal nanochemotherapy for breast cancer. J Nanobiotechnology 2024; 22:249. [PMID: 38745193 PMCID: PMC11092073 DOI: 10.1186/s12951-024-02522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Chemotherapy, the mainstay treatment for metastatic cancer, presents serious side effects due to off-target exposure. In addition to the negative impact on patients' quality of life, side effects limit the dose that can be administered and thus the efficacy of the drug. Encapsulation of chemotherapeutic drugs in nanocarriers is a promising strategy to mitigate these issues. However, avoiding premature drug release from the nanocarriers and selectively targeting the tumour remains a challenge. RESULTS In this study, we present a pioneering method for drug integration into nanoparticles known as mesoporous organosilica drugs (MODs), a distinctive variant of periodic mesoporous organosilica nanoparticles (PMOs) in which the drug is an inherent component of the silica nanoparticle structure. This groundbreaking approach involves the chemical modification of drugs to produce bis-organosilane prodrugs, which act as silica precursors for MOD synthesis. Mitoxantrone (MTO), a drug used to treat metastatic breast cancer, was selected for the development of MTO@MOD nanomedicines, which demonstrated a significant reduction in breast cancer cell viability. Several MODs with different amounts of MTO were synthesised and found to be efficient nanoplatforms for the sustained delivery of MTO after biodegradation. In addition, Fe3O4 NPs were incorporated into the MODs to generate magnetic MODs to actively target the tumour and further enhance drug efficacy. Importantly, magnetic MTO@MODs underwent a Fenton reaction, which increased cancer cell death twofold compared to non-magnetic MODs. CONCLUSIONS A new PMO-based material, MOD nanomedicines, was synthesised using the chemotherapeutic drug MTO as a silica precursor. MTO@MOD nanomedicines demonstrated their efficacy in significantly reducing the viability of breast cancer cells. In addition, we incorporated Fe3O4 into MODs to generate magnetic MODs for active tumour targeting and enhanced drug efficacy by ROS generation. These findings pave the way for the designing of silica-based multitherapeutic nanomedicines for cancer treatment with improved drug delivery, reduced side effects and enhanced efficacy.
Collapse
Affiliation(s)
- Eva Romaní-Cubells
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain
| | - Samuel Martínez-Erro
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain
| | - Victoria Morales
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain
| | - Ana Chocarro-Calvo
- Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Avda. Atenas s/n, Alcorcón, Madrid, 28922, Spain
| | - José M García-Martínez
- Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Avda. Atenas s/n, Alcorcón, Madrid, 28922, Spain
| | - Raúl Sanz
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain
| | - Custodia García-Jiménez
- Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Avda. Atenas s/n, Alcorcón, Madrid, 28922, Spain.
| | - Rafael A García-Muñoz
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, Madrid, 28933, Spain.
| |
Collapse
|
10
|
Leng J, Zhao Y, Zhao S, Xie S, Sheng P, Zhu L, Zhang M, Chen T, Kong L, Yin Y. Discovery of Novel Isoquinoline Analogues as Dual Tubulin Polymerization/V-ATPase Inhibitors with Immunogenic Cell Death Induction. J Med Chem 2024; 67:3144-3166. [PMID: 38336655 DOI: 10.1021/acs.jmedchem.3c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Cancer immunotherapy has revolutionized clinical advances in a variety of cancers. Due to the low immunogenicity of the tumor, only a few patients can benefit from it. Specific microtubule inhibitors can effectively induce immunogenic cell death and improve immunogenicity of the tumor. A series of isoquinoline derivatives based on the natural products podophyllotoxin and diphyllin were designed and synthesized. Among them, F10 showed robust antiproliferation activity against four human cancer cell lines, and it was verified that F10 exerted antiproliferative activity by inhibiting tubulin and V-ATPase. Further studies indicated that F10 is able to induce immunogenic cell death in addition to apoptosis. Meanwhile, F10 inhibited tumor growth in an RM-1 homograft model with enhanced T lymphocyte infiltration. These results suggest that F10 may be a promising lead compound for the development of a new generation of microtubule drugs.
Collapse
Affiliation(s)
- Jiafu Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yongjun Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shifang Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shanshan Xie
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ping Sheng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Liqiao Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Mengyu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Tingting Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
11
|
Barachini S, Ghelardoni S, Varga ZV, Mehanna RA, Montt-Guevara MM, Ferdinandy P, Madonna R. Antineoplastic drugs inducing cardiac and vascular toxicity - An update. Vascul Pharmacol 2023; 153:107223. [PMID: 37678516 DOI: 10.1016/j.vph.2023.107223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
With the improvement in cancer prognosis due to advances in antitumor therapeutic protocols and new targeted and immunotherapies, we are witnessing a growing increase in survival, however, at the same timeincrease in morbidity among cancer survivors as a consequences of the increased cardiovascular adverse effects of antineoplastic drugs. Common cardiovascular complications of antineoplastic therapies may include cardiac complications such as arrhythmias, myocardial ischemia, left ventricular dysfunction culminating in heart failure as well as vascular complications including arterial hypertension, thromboembolic events, and accelerated atherosclerosis. The toxicity results from the fact that these drugs not only target cancer cells but also affect normal cells within the cardiovascular system. In this article, we review the clinical features and main mechanisms implicated in antineoplastic drug-induced cardiovascular toxicity, including oxidative stress, inflammation, immunothrombosis and growth factors-induced signaling pathways.
Collapse
Affiliation(s)
- Serena Barachini
- Department of Clinical and Experimental Medicine, Laboratory for Cell Therapy, University of Pisa, Pisa, Italy
| | - Sandra Ghelardoni
- Department of Pathology, Laboratory of Biochemistry, University of Pisa, Pisa, Italy
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary; MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Radwa A Mehanna
- Medical Physiology Department, Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Egypt
| | | | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, Pisa, Italy.
| |
Collapse
|
12
|
Xu H, Xiong S, Chen Y, Ye Q, Guan N, Hu Y, Wu J. Flagella of Tumor-Targeting Bacteria Trigger Local Hemorrhage to Reprogram Tumor-Associated Macrophages for Improved Antitumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303357. [PMID: 37310893 DOI: 10.1002/adma.202303357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Indexed: 06/15/2023]
Abstract
Tumor-associated macrophages (TAMs) exhibit an immunosuppressive M2 phenotype and lead to failure of antitumor therapy. Infiltrated erythrocytes during hemorrhage are recognized as a promising strategy for polarizing TAMs. However, novel materials that precisely induce tumor hemorrhage without affecting normal coagulation still face challenges. Here, tumor-targeting bacteria (flhDC VNP) are genetically constructed to realize precise tumor hemorrhage. FlhDC VNP colonizes the tumor and overexpresses flagella during proliferation. The flagella promote the expression of tumor necrosis factor α, which induces local tumor hemorrhage. Infiltrated erythrocytes during the hemorrhage temporarily polarize macrophages to the M1 subtype. In the presence of artesunate, this short-lived polarization is transformed into a sustained polarization because artesunate and heme form a complex that continuously produces reactive oxygen species. Therefore, the flagella of active tumor-targeting bacteria may open up new strategies for reprogramming TAMs and improving antitumor therapy.
Collapse
Affiliation(s)
- Haiheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
- Department of Andrology, Medical School of Nanjing University, Nanjing, 210093, China
- Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi, 214101, China
| | - Shuqin Xiong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
- Department of Andrology, Medical School of Nanjing University, Nanjing, 210093, China
- Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi, 214101, China
| | - Yiyun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
- Department of Andrology, Medical School of Nanjing University, Nanjing, 210093, China
- Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi, 214101, China
| | - Qingsong Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
- Department of Andrology, Medical School of Nanjing University, Nanjing, 210093, China
- Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi, 214101, China
| | - Nan Guan
- Molecular, Cellular and Development Biology Department, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China
- Department of Andrology, Medical School of Nanjing University, Nanjing, 210093, China
- Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi, 214101, China
| |
Collapse
|
13
|
Czapla J, Drzyzga A, Matuszczak S, Cichoń T, Rusin M, Jarosz-Biej M, Pilny E, Smolarczyk R. Antitumor effect of anti-vascular therapy with STING agonist depends on the tumor microenvironment context. Front Oncol 2023; 13:1249524. [PMID: 37655095 PMCID: PMC10465696 DOI: 10.3389/fonc.2023.1249524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
Introduction Targeting tumor vasculature is an efficient weapon to fight against cancer; however, activation of alternative pathways to rebuild the disrupted vasculature leads to rapid tumor regrowth. Immunotherapy that exploits host immune cells to elicit and sustain potent antitumor response has emerged as one of the most promising tools for cancer treatment, yet many treatments fail due to developed resistance mechanisms. Therefore, our aim was to examine whether combination of immunotherapy and anti-vascular treatment will succeed in poorly immunogenic, difficult-to-treat melanoma and triple-negative breast tumor models. Methods Our study was performed on B16-F10 melanoma and 4T1 breast tumor murine models. Mice were treated with the stimulator of interferon genes (STING) pathway agonist (cGAMP) and vascular disrupting agent combretastatin A4 phosphate (CA4P). Tumor growth was monitored. The tumor microenvironment (TME) was comprehensively investigated using multiplex immunofluorescence and flow cytometry. We also examined if such designed therapy sensitizes investigated tumor models to an immune checkpoint inhibitor (anti-PD-1). Results The use of STING agonist cGAMP as monotherapy was insufficient to effectively inhibit tumor growth due to low levels of STING protein in 4T1 tumors. However, when additionally combined with an anti-vascular agent, a significant therapeutic effect was obtained. In this model, the obtained effect was related to the TME polarization and the stimulation of the innate immune response, especially activation of NK cells. Combination therapy was unable to activate CD8+ T cells. Due to the lack of PD-1 upregulation, no improved therapeutic effect was observed when additionally combined with the anti-PD-1 inhibitor. In B16-F10 tumors, highly abundant in STING protein, cGAMP as monotherapy was sufficient to induce potent antitumor response. In this model, the therapeutic effect was due to the infiltration of the TME with activated NK cells. cGAMP also caused the infiltration of CD8+PD-1+ T cells into the TME; hence, additional benefits of using the PD-1 inhibitor were observed. Conclusion The study provides preclinical evidence for a great influence of the TME on the outcome of applied therapy, including immune cell contribution and ICI responsiveness. We pointed the need of careful TME screening prior to antitumor treatments to achieve satisfactory results.
Collapse
Affiliation(s)
- Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | | | | | | | | | | | | | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| |
Collapse
|
14
|
Kong X, Gao P, Wang J, Fang Y, Hwang KC. Advances of medical nanorobots for future cancer treatments. J Hematol Oncol 2023; 16:74. [PMID: 37452423 PMCID: PMC10347767 DOI: 10.1186/s13045-023-01463-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Early detection and diagnosis of many cancers is very challenging. Late stage detection of a cancer always leads to high mortality rates. It is imperative to develop novel and more sensitive and effective diagnosis and therapeutic methods for cancer treatments. The development of new cancer treatments has become a crucial aspect of medical advancements. Nanobots, as one of the most promising applications of nanomedicines, are at the forefront of multidisciplinary research. With the progress of nanotechnology, nanobots enable the assembly and deployment of functional molecular/nanosized machines and are increasingly being utilized in cancer diagnosis and therapeutic treatment. In recent years, various practical applications of nanobots for cancer treatments have transitioned from theory to practice, from in vitro experiments to in vivo applications. In this paper, we review and analyze the recent advancements of nanobots in cancer treatments, with a particular emphasis on their key fundamental features and their applications in drug delivery, tumor sensing and diagnosis, targeted therapy, minimally invasive surgery, and other comprehensive treatments. At the same time, we discuss the challenges and the potential research opportunities for nanobots in revolutionizing cancer treatments. In the future, medical nanobots are expected to become more sophisticated and capable of performing multiple medical functions and tasks, ultimately becoming true nanosubmarines in the bloodstream.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Peng Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Division of Breast Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan ROC.
| |
Collapse
|
15
|
Li Y, Zhang J, Lu C, Guo M, Zhang J, Huang G, Ni Y, Chen Y. Feasibility of the novel vascular disrupting agent C118P for facilitating high-intensity focused ultrasound ablation of uterine fibroids. Int J Hyperthermia 2023; 40:2185576. [PMID: 36913972 DOI: 10.1080/02656736.2023.2185576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
OBJECTIVE In this study, C118P, a novel vascular disrupting agent (VDA), was evaluated for its ability in improving the ablative effect of high-intensity focused ultrasound (HIFU) on uterine fibroids by reducing blood perfusion. METHODS Eighteen female rabbits were infused with isotonic sodium chloride solution (ISCS), C118P or oxytocin for 30 min, and an HIFU ablation of the leg muscles was performed within the last 2 min. Blood pressure, heart rate and laser speckle flow imaging (LSFI) of the auricular blood vessels were recorded during perfusion. Ears with vessels, uterus and muscle ablation sites were collected and sliced for hematoxylin-eosin (HE) staining to compare vascular size, as well as nicotinamide adenine dinucleotide-tetrazolium reductase (NADH-TR) staining to observe necrosis after ablation. RESULTS Analyses revealed that the perfusion of C118P or oxytocin steadily reduced blood perfusion in the ears to approximately half by the end of the perfusion, constricted the blood vessels of the ears and uterus, and improved HIFU ablation in the muscle tissues. C118P increased blood pressure and decreased heart rate. The degree of contraction of the auricular and uterine blood vessels was positively correlated. CONCLUSION This study confirmed that C118P could reduce blood perfusion in various tissues and had a better synergistic effect with HIFU ablation of muscle (the same tissue type as fibroids) than did oxytocin. C118P could therefore possibly replace oxytocin in facilitating HIFU ablation of uterine fibroids; however, electrocardiographic monitoring is required.
Collapse
Affiliation(s)
- Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jinyong Zhang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Mingrui Guo
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jue Zhang
- College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yicheng Ni
- Department of Imaging & Pathology, Biomedical Sciences Group, Leuven, Belgium
| | - Yini Chen
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicinel, Shanghai, China.,Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| |
Collapse
|
16
|
Guo K, Ma X, Li J, Zhang C, Wu L. Recent advances in combretastatin A-4 codrugs for cancer therapy. Eur J Med Chem 2022; 241:114660. [PMID: 35964428 DOI: 10.1016/j.ejmech.2022.114660] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
CA4 is a potent microtubule polymerization inhibitor and vascular disrupting agent. However, the in vivo efficiency of CA4 is limited owing to its poor pharmacokinetics resulting from its high lipophilicity and low water solubility. To improve the water solubility, CA4 phosphate (CA4P) has been developed and shows potent antivascular and antitumor effects. CA4P had been evaluated as a vascular disrupting agent in previousc linical trials. However, it had been discontinued due to the lack of a meaningful improvement in progression-free survival and unfavorable partial response data. Codrug is a drug design approach to chemically bind two or more drugs to improve therapeutic efficiency or decrease adverse effects. This review describes the progress made over the last twenty years in developing CA4-based codrugs to improve the therapeutic profile and achieve targeted delivery to cancer tissues. It also discusses the existing problems and the developmental prospects of CA4 codrugs.
Collapse
Affiliation(s)
- Kerong Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xin Ma
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jian Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chong Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
17
|
A self-activating nanoized vascular disrupting agent for selective anti-tumor therapy. Biomaterials 2022; 288:121736. [PMID: 35995623 DOI: 10.1016/j.biomaterials.2022.121736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/23/2022] [Accepted: 08/06/2022] [Indexed: 12/29/2022]
Abstract
Vascular disrupting agents (VDAs) have great potential in antitumor therapy, while the efficiency is limited by cardiovascular toxicity. In this study, a self-activating nanoized plinabulin (poly (l-glutamic acid) grafted Azo-Plinabulin, AzoP-NP) was constructed. The AzoP-NPs can selectively be activated to an amino derivative of plinabulin (AmP) by intrinsic tumor hypoxia, disrupting tumor vessels and amplifying hypoxia, whilst be activated by self-amplified tumor hypoxia, then selectively inhibit tumor growth. In 4T1 tumor model, the AzoP-NPs had a selective biodistribution in tumor, as the free AmP in tumors at 24 h after AzoP-NPs treatment was 18.6 fold of that after AmP treatment and significantly higher than that in other tissues. Accordingly, AzoP-NPs resulted in no obvious acute cardiovascular toxicity (plasma von Willebrand factor in PBS, AzoP-NPs and AmP group: 143.1, 184.0 and 477.6 ng/mL) and a significantly stronger tumor inhibition than AmP. And the sustained release of drug in AzoP-NPs led to a higher maximum tolerated dose (MTD) (MTD of AzoP-NPs and AmP: > 80 vs 20 mg/kg). In addition, AzoP-NPs amplified tumor hypoxic, and synergized the anti-tumor effect of Tirapazamine (TPZ), a hypoxia-activated drug in clinical trials, with an inhibition rate of 97.7% and Q value of 1.89. Therefore, our findings provide new insights into next generation VDAs and their application in tumor therapy.
Collapse
|
18
|
Li F, Shao X, Liu D, Jiao X, Yang X, Yang W, Liu X. Vascular Disruptive Hydrogel Platform for Enhanced Chemotherapy and Anti-Angiogenesis through Alleviation of Immune Surveillance. Pharmaceutics 2022; 14:1809. [PMID: 36145556 PMCID: PMC9505154 DOI: 10.3390/pharmaceutics14091809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Patients undergoing immunotherapy always exhibit a low-response rate due to tumor heterogeneity and immune surveillance in the tumor. Angiogenesis plays an important role in affecting the status of tumor-infiltrated lymphocytes by inducing hypoxia and acidosis microenvironment, suggesting its synergistic potential in immunotherapy. However, the antitumor efficacy of singular anti-angiogenesis therapy often suffers from failure in the clinic due to the compensatory pro-angiogenesis signaling pathway. In this work, classic injectable thermosensitive PLGA-PEG-PLGA copolymer was used to construct a platform to co-deliver CA4P (vascular disruptive agent) and EPI for inducing immunogenic cell death of cancer cells by targeting the tumor immune microenvironment. Investigation of 4T1 tumor-bearing mouse models suggests that local administration of injectable V+E@Gel could significantly inhibit the proliferation of cancer cells and prolong the survival rate of 4T1 tumor-bearing mouse models. Histological analysis further indicates that V+E@Gel could effectively inhibit tumor angiogenesis and metastasis by down-regulating the expression of CD34, CD31, MTA1 and TGF-β. Moreover, due to the sustained release kinetics of V+E@Gel, its local administration relieves the immune surveillance in tumor tissues and thus induces a robust and long-lasting specific antitumor immune response. Overall, this work provides a new treatment strategy through the mediation of the tumor immune microenvironment by vascular disruption to fulfill enhanced chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Fasheng Li
- Department of Imaging, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| | - Xinmei Shao
- Department of Neurology, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| | - Dehui Liu
- Department of Imaging, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| | - Xiaogang Jiao
- Department of Imaging, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| | - Xinqi Yang
- Department of Imaging, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| | - Wencai Yang
- Department of Interventional, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| | - Xiaoyan Liu
- Department of Neurology, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| |
Collapse
|
19
|
Stimuli-responsive nanoassemblies for targeted delivery against tumor and its microenvironment. Biochim Biophys Acta Rev Cancer 2022; 1877:188779. [PMID: 35977690 DOI: 10.1016/j.bbcan.2022.188779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 02/06/2023]
Abstract
Despite the emergence of various cancer treatments, such as surgery, chemotherapy, radiotherapy, and immunotherapy, their use remains restricted owing to their limited tumor elimination efficacy and side effects. The use of nanoassemblies as delivery systems in nanomedicine for tumor diagnosis and therapy is flourishing. These nanoassemblies can be designed to have various shapes, sizes, and surface charges to meet the requirements of different applications. It is crucial for nanoassemblies to have enhanced delivery of payloads while inducing minimal to no toxicity to healthy tissues. In this review, stimuli-responsive nanoassemblies capable of combating the tumor microenvironment (TME) are discussed. First, various TME characteristics, such as hypoxia, oxidoreduction, adenosine triphosphate (ATP) elevation, and acidic TME, are described. Subsequently, the unique characteristics of the vascular and stromal TME are differentiated, and multiple barriers that have to be overcome are discussed. Furthermore, strategies to overcome these barriers for successful drug delivery to the targeted site are reviewed and summarized. In conclusion, the possible challenges and prospects of using these nanoassemblies for tumor-targeted delivery are discussed. This review aims at inspiring researchers to develop stimuli-responsive nanoassemblies for tumor-targeted delivery for clinical applications.
Collapse
|
20
|
Zhu H, Tan Y, He C, Liu Y, Duan Y, Zhu W, Zheng T, Li D, Xu J, Yang DH, Chen ZS, Xu S. Discovery of a Novel Vascular Disrupting Agent Inhibiting Tubulin Polymerization and HDACs with Potent Antitumor Effects. J Med Chem 2022; 65:11187-11213. [PMID: 35926141 DOI: 10.1021/acs.jmedchem.2c00681] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most vascular disrupting agents (VDAs) fail to prevent the regrowth of blood vessels at the edge of tumors, causing tumor rebound and relapse. Herein, a series of novel multifunctional vascular disrupting agents (VDAs) capable of inhibiting microtubule polymerization and histone deacetylases (HDACs) were designed and synthesized using the tubulin polymerization inhibitor TH-0 as the lead compound. Among them, compound TH-6 exhibited the most potent antiproliferative activity (IC50 = 18-30 nM) against a panel of cancer cell lines. As expected, TH-6 inhibited tubulin assembly and increased the acetylation level of HDAC substrate proteins in HepG2 cells. Further in vivo antitumor assay displayed that TH-6 effectively inhibited tumor growth with no apparent toxicity. More importantly, TH-6 disrupted both the internal and peripheral tumor vasculatures, which contributed to the persistent tumor inhibitory effects after drug withdrawal. Altogether, TH-6 deserves to be further investigated for the new approach to clinical cancer therapy.
Collapse
Affiliation(s)
- Huajian Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Yuchen Tan
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Chen He
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Yang Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Yiping Duan
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Wenjian Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Tiandong Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Dong-Hua Yang
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| |
Collapse
|
21
|
Ni N, Wang W, Sun Y, Sun X, Leong DT. Inducible endothelial leakiness in nanotherapeutic applications. Biomaterials 2022; 287:121640. [PMID: 35772348 DOI: 10.1016/j.biomaterials.2022.121640] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
All intravenous delivered nanomedicine needs to escape from the blood vessel to exert their therapeutic efficacy at their designated site of action. Failure to do so increases the possibility of detrimental side effects and negates their therapeutic intent. Many powerful anticancer nanomedicine strategies rely solely on the tumor derived enhanced permeability and retention (EPR) effect for the only mode of escaping from the tumor vasculature. However, not all tumors have the EPR effect nor can the EPR effect be induced or controlled for its location and timeliness. In recent years, there have been exciting developments along the lines of inducing endothelial leakiness at the tumor to decrease the dependence of EPR. Physical disruption of the endothelial-endothelial cell junctions with coordinated biological intrinsic pathways have been proposed that includes various modalities like ultrasound, radiotherapy, heat and even nanoparticles, appear to show good progress towards the goal of inducing endothelial leakiness. This review explains the intricate and complex biological background behind the endothelial cells with linkages on how updated reported nanomedicine strategies managed to induce endothelial leakiness. This review will also end off with fresh insights on where the future of inducible endothelial leakiness holds.
Collapse
Affiliation(s)
- Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Weiyi Wang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yu Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore; Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Xiao Sun
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China.
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
22
|
Wang Y, Wozniak A, Cornillie J, Avilés P, Debiec-Rychter M, Sciot R, Schöffski P. Plocabulin, a Novel Tubulin Inhibitor, Has Potent Antitumour Activity in Patient-Derived Xenograft Models of Soft Tissue Sarcoma. Int J Mol Sci 2022; 23:7454. [PMID: 35806460 PMCID: PMC9267286 DOI: 10.3390/ijms23137454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
A clinically relevant subset of patients with soft tissue sarcoma presents with either locally advanced or upfront metastatic disease, or will develop distant metastases over time, despite successful treatment of their primary tumour. The currently available systemic agents to treat such advanced cases only provide modest disease control and are not active in all histological subtypes. Thus, there is an unmet need for novel and more efficacious agents to improve the outcome of this rare disease. In the current preclinical in vivo study, we evaluated plocabulin, a novel tubulin inhibitor, in five distinct histological subtypes of soft tissue sarcoma: dedifferentiated liposarcoma, leiomyosarcoma, undifferentiated sarcoma, intimal sarcoma and CIC-rearranged sarcoma. The efficacy was tested in seven patient-derived xenograft models, which were generated by the engraftment of tumour fragments from patients directly into nude mice. The treatment lasted 22 days, and the efficacy of the drug was assessed and compared to the doxorubicin and vehicle groups by volumetric analysis, histopathology and immunohistochemistry. We observed tumour volume control in all the tested histological subtypes. Additionally, in three sarcoma subtypes, extensive central necrosis, associated with significant tumour regression, was seen. This histological response is explained by the drug's vascular-disruptive properties, reflected by a decreased total vascular area in the xenografts. Our results demonstrate the in vivo efficacy of plocabulin in the preclinical models of soft tissue sarcoma and corroborate the findings of our previous study, which demonstrated similar vascular-disruptive effects in gastrointestinal stromal tumours-another subtype of soft tissue sarcoma. Our data provide a convincing rationale for further clinical exploration of plocabulin in soft tissue sarcomas.
Collapse
Affiliation(s)
- Yannick Wang
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (A.W.); (J.C.); (P.S.)
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (A.W.); (J.C.); (P.S.)
| | - Jasmien Cornillie
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (A.W.); (J.C.); (P.S.)
| | | | - Maria Debiec-Rychter
- Department of Human Genetics, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium;
| | - Raf Sciot
- Department of Pathology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium;
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (A.W.); (J.C.); (P.S.)
- Department of General Medical Oncology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
23
|
Fang Y, Liu Z, Wang H, Luo X, Xu Y, Chan HF, Lv S, Tao Y, Li M. Implantable Sandwich-like Scaffold/Fiber Composite Spatiotemporally Releasing Combretastatin A4 and Doxorubicin for Efficient Inhibition of Postoperative Tumor Recurrence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27525-27537. [PMID: 35687834 DOI: 10.1021/acsami.2c02103] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tumor recurrence is a critical conundrum in the postoperative therapy, on account of severe bleeding with disseminated tumor cells, residual tumor cells, and the rich nutrient and oxygen supply transported to tumors by the abundant blood vessels. Biodegradable drug-loaded implants, inserted in the resection cavity right away upon the surgery, possess bleeding prevention and efficient chemotherapeutic capabilities, considered to be a promising strategy to efficiently inhibit the recurrence of the solid tumor. Here, we developed a sandwich-like composite consisting of the combretastatin A4 (CA4)-loaded 3D-printed scaffold and doxorubicin (DOX)-loaded electrospun fiber (Scaffold-CA4@Fiber-DOX), presenting hemostatic, chemotherapeutic, and antibacterial potencies. The lyophilized 3D-printed scaffold with a porous structure rapidly absorbed and clotted the blood cells and disseminated tumor cells to prevent bleeding and tumor metastasis. Subsequently, the preferentially released CA4 from the scaffold disrupted the microtubules of the vascular endothelial cell, resulting in vascular deformation and consequent insufficient nutrient supply to the solid tumor. The sustained release of DOX from the sandwiched electrospun fiber dramatically inhibited the peripheral tumor cell proliferation. This all-in-one multifunctional implant system, combining efficient vascular disruption and chemotherapy, provides a promising strategy for postoperative tumor therapy.
Collapse
Affiliation(s)
- Youqiang Fang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zheng Liu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xing Luo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| |
Collapse
|
24
|
Yavvari P, Laporte A, Elomaa L, Schraufstetter F, Pacharzina I, Daberkow AD, Hoppensack A, Weinhart M. 3D-Cultured Vascular-Like Networks Enable Validation of Vascular Disruption Properties of Drugs In Vitro. Front Bioeng Biotechnol 2022; 10:888492. [PMID: 35769106 PMCID: PMC9234334 DOI: 10.3389/fbioe.2022.888492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Vascular-disrupting agents are an interesting class of anticancer compounds because of their combined mode of action in preventing new blood vessel formation and disruption of already existing vasculature in the immediate microenvironment of solid tumors. The validation of vascular disruption properties of these drugs in vitro is rarely addressed due to the lack of proper in vitro angiogenesis models comprising mature and long-lived vascular-like networks. We herein report an indirect coculture model of human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs) to form three-dimensional profuse vascular-like networks. HUVECs embedded and sandwiched in the collagen scaffold were cocultured with HDFs located outside the scaffold. The indirect coculture approach with the vascular endothelial growth factor (VEGF) producing HDFs triggered the formation of progressively maturing lumenized vascular-like networks of endothelial cells within less than 7 days, which have proven to be viably maintained in culture beyond day 21. Molecular weight-dependent Texas red-dextran permeability studies indicated high vascular barrier function of the generated networks. Their longevity allowed us to study the dose-dependent response upon treatment with the three known antiangiogenic and/or vascular disrupting agents brivanib, combretastatin A4 phosphate (CA4P), and 6´-sialylgalactose (SG) via semi-quantitative brightfield and qualitative confocal laser scanning microscopic (CLSM) image analysis. Compared to the reported data on in vivo efficacy of these drugs in terms of antiangiogenic and vascular disrupting effects, we observed similar trends with our 3D model, which are not reflected in conventional in vitro angiogenesis assays. High-vascular disruption under continuous treatment of the matured vascular-like network was observed at concentrations ≥3.5 ng·ml−1 for CA4P and ≥300 nM for brivanib. In contrast, SG failed to induce any significant vascular disruption in vitro. This advanced model of a 3D vascular-like network allows for testing single and combinational antiangiogenic and vascular disrupting effects with optimized dosing and may thus bridge the gap between the in vitro and in vivo experiments in validating hits from high-throughput screening. Moreover, the physiological 3D environment mimicking in vitro assay is not only highly relevant to in vivo studies linked to cancer but also to the field of tissue regeneration.
Collapse
Affiliation(s)
| | - Anna Laporte
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Inga Pacharzina
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Anke Hoppensack
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
- *Correspondence: Marie Weinhart, ,
| |
Collapse
|
25
|
Liu Z, Zhang Y, Shen N, Sun J, Tang Z, Chen X. Destruction of tumor vasculature by vascular disrupting agents in overcoming the limitation of EPR effect. Adv Drug Deliv Rev 2022; 183:114138. [PMID: 35143895 DOI: 10.1016/j.addr.2022.114138] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023]
Abstract
Nanomedicine greatly improves the efficiency in the delivery of antitumor drugs into the tumor, but insufficient tumoral penetration impairs the therapeutic efficacy of most nanomedicines. Vascular disrupting agent (VDA) nanomedicines are distributed around the tumor vessels due to the low tissue penetration in solid tumors, and the released drugs can selectively destroy immature tumor vessels and block the supply of oxygen and nutrients, leading to the internal necrosis of the tumors. VDAs can also improve the vascular permeability of the tumor, further increasing the extravasation of VDA nanomedicines in the tumor site, markedly reducing the dependence of nanomedicines on the enhanced permeability and retention effect (EPR effect). This review highlights the progress of VDA nanomedicines in recent years and their application in cancer therapy. First, the mechanisms of different VDAs are introduced. Subsequently, different strategies of delivering VDAs are described. Finally, multiple combination strategies with VDA nanomedicines in cancer therapy are described in detail.
Collapse
|
26
|
Metastasis prevention: targeting causes and roots. Clin Exp Metastasis 2022; 39:505-519. [PMID: 35347574 DOI: 10.1007/s10585-022-10162-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
The spread of tumor cells from the primary focus, metastasis, is the main cause of cancer mortality. Therefore, anticancer therapy should be focused on the prevention of metastatic disease. Key targets can be conditions in the primary tumor that are favorable for the appearance of metastatic cells and the first steps of the metastatic cascade. Here, we discuss different approaches for targeting metastasis causes (hypoxia, metabolism changes, and tumor microenvironment) and roots (angiogenesis, epithelial-mesenchymal transition, migration, and invasion). Also, we emphasize the challenges of the existing approaches for metastasis prevention and suggest opportunities to overcome them. In conclusion, we highlight the importance of clinical evaluation of the agents showing antimetastatic effects in vivo, especially in patients with early-stage cancers, the identification of metastatic seeds, and the development of therapeutics for their eradication.
Collapse
|
27
|
Tsang W, Gan L, Zhang Z, Li T, Luo Y, Zhong L, Huang Y. Clinical Application of Tumor Vascular Disrupting Therapy: A Systematic Review and Meta-Analysis. Onco Targets Ther 2021; 14:5085-5093. [PMID: 34707366 PMCID: PMC8542587 DOI: 10.2147/ott.s321658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose The occurrence, progression, invasion and metastasis of tumors depend on a tumor vascular network. Vascular disrupting agents (VDAs) are a new class of drugs targeting the tumor vasculature, by blocking the existing tumor blood vessels. However, there is no clear consensus on the clinical efficacy of tumor vascular disrupting therapy. In this study, we performed the first systematic review and meta-analysis of published clinical trials focused on tumor vascular disrupting therapies. Materials and Methods We searched PubMed, EMBASE, and the Cochrane Library to identify clinical trials that used VDAs to treat tumors. After literature screening and data extraction, according to inclusion and exclusion labels, meta-analysis was performed using RevMan5.3 software. Results In this meta-analysis, we included 2659 patients from eight randomized controlled trials involving non-small-cell lung cancer, prostate, epithelial ovarian, fallopian tube, and primary peritoneal carcinoma. Compared with the control arm, the experimental arm exhibited an effective improvement of 0.5-year and 1-year survival, as well as the 6-month progression-free survival rate. There was no significant difference between patients in the experimental compared to the control arm with respect to objective response and disease control rates, and 12-month progression-free survival. Conclusion Vascular disrupting therapy can effectively prolong the survival of cancer patients. However, for indicators of short-term efficacy, such as objective response rate and disease control rate, there is still a lack of high-quality, large-scale clinical trial data to confirm the effectiveness of VDAs.
Collapse
Affiliation(s)
- Wen Tsang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.,Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning,, Guangxi, 530021, People's Republic of China
| | - Lu Gan
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.,Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning,, Guangxi, 530021, People's Republic of China
| | - Zhikun Zhang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.,Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning,, Guangxi, 530021, People's Republic of China.,Mental Health Center, the Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Tong Li
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.,Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning,, Guangxi, 530021, People's Republic of China
| | - Yiqun Luo
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.,Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning,, Guangxi, 530021, People's Republic of China
| | - Liping Zhong
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.,Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning,, Guangxi, 530021, People's Republic of China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.,Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning,, Guangxi, 530021, People's Republic of China
| |
Collapse
|
28
|
Zhang Y, He J. Tumor vasculature-targeting nanomedicines. Acta Biomater 2021; 134:1-12. [PMID: 34271167 DOI: 10.1016/j.actbio.2021.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022]
Abstract
Uncontrolled tumor growth and subsequent distant metastasis are highly dependent on an adequate nutrient supply from tumor blood vessels, which have relatively different pathophysiological characteristics from those of normal vasculature. Obviously, strategies targeting tumor vasculature, such as anti-angiogenic drugs and vascular disrupting agents, are attractive methods for cancer therapy. However, the off-target effects and high dose administration of these drug regimens critically restrict their clinical applications. In recent years, nanomedicines focused on tumor vasculature have been shown to be superior to traditional therapeutic methods and do not induce side effects. This review will first highlight the recent development of tumor vasculature-targeting nanomedicines from the following four aspects: 1) angiogenesis-inhibiting nanomedicines (AINs); 2) vasculature-disrupting nanomedicines (VDNs); 3) vasculature infarction nanomedicines (VINs); and 4) vasculature-regulating nanomedicines (VRNs). Furthermore, the design principles, limitations, and future directions are also discussed. STATEMENT OF SIGNIFICANCE: Based on the essential roles of tumor blood vessels, the therapeutic strategies targeting tumor vasculature have exhibited good clinical therapeutic outcomes. However, poor patient adherence to free drug administration limits their clinical usage. Nanomedicines have great potential to overcome the abovementioned obstacle. This review summarizes the tumor-vasculature targeting nanomedicines from four aspects: 1) angiogenesis-inhibiting nanomedicines (AINs); 2) vasculature-disrupting nanomedicines (VDNs); 3) vasculature infarction nanomedicines (VINs); and 4) vasculature regulating nanomedicines (VRNs). In addition, this review provides perspectives on this research field.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Jingni He
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, PR China.
| |
Collapse
|
29
|
Guo Y, Wang H, Gerberich JL, Odutola SO, Charlton-Sevcik AK, Li M, Tanpure RP, Tidmore JK, Trawick ML, Pinney KG, Mason RP, Liu L. Imaging-Guided Evaluation of the Novel Small-Molecule Benzosuberene Tubulin-Binding Agent KGP265 as a Potential Therapeutic Agent for Cancer Treatment. Cancers (Basel) 2021; 13:cancers13194769. [PMID: 34638255 PMCID: PMC8507561 DOI: 10.3390/cancers13194769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Vascular-disrupting agents promise significant therapeutic efficacy against solid tumors by selectively damaging tumor-associated vasculature. Dynamic BLI and oxygen-enhanced multispectral optoacoustic tomography (OE-MSOT) were used to compare vascular shutdown following administration of KGP265. BLI signal and vascular oxygenation response (ΔsO2) to a gas breathing challenge were both significantly reduced within 2 h indicating vascular disruption, which continued over 24 h. Twice-weekly doses of KGP265 caused a significant growth delay in MDA-MB-231 human breast tumor xenografts and 4T1 syngeneic breast tumors growing orthotopically in mice. Abstract The selective disruption of tumor-associated vasculature represents an attractive therapeutic approach. We have undertaken the first in vivo evaluation of KGP265, a water-soluble prodrug of a benzosuberene-based tubulin-binding agent, and found promising vascular-disrupting activity in three distinct tumor types. Dose escalation in orthotopic MDA-MB-231-luc breast tumor xenografts in mice indicated that higher doses produced more effective vascular shutdown, as revealed by dynamic bioluminescence imaging (BLI). In syngeneic orthotopic 4T1-luc breast and RENCA-luc kidney tumors, dynamic BLI and oxygen enhanced multispectral optoacoustic tomography (OE-MSOT) were used to compare vascular shutdown following the administration of KGP265 (7.5 mg/kg). The BLI signal and vascular oxygenation response (ΔsO2) to a gas breathing challenge were both significantly reduced within 2 h, indicating vascular disruption, which continued over 24 h. A correlative histology confirmed increased necrosis and hemorrhage. Twice-weekly doses of KGP265 caused significant growth delay in both MDA-MB-231 and 4T1 breast tumors, with no obvious systemic toxicity. A combination with carboplatin produced significantly greater tumor growth delay than carboplatin alone, though significant carboplatin-associated toxicity was observed (whole-body weight loss). KGP265 was found to be effective at low concentrations, generating long-term vascular shutdown and tumor growth delay, thus providing strong rationale for further development, particularly in combination therapies.
Collapse
Affiliation(s)
- Yihang Guo
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha 410013, China
| | - Honghong Wang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jeni L. Gerberich
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
| | - Samuel O. Odutola
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Amanda K. Charlton-Sevcik
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Maoping Li
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rajendra P. Tanpure
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Justin K. Tidmore
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (R.P.M.); (L.L.)
| | - Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (R.P.M.); (L.L.)
| |
Collapse
|
30
|
The Proper Administration Sequence of Radiotherapy and Anti-Vascular Agent-DMXAA Is Essential to Inhibit the Growth of Melanoma Tumors. Cancers (Basel) 2021; 13:cancers13163924. [PMID: 34439079 PMCID: PMC8394873 DOI: 10.3390/cancers13163924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 01/13/2023] Open
Abstract
Vascular disrupting agents (VDAs), such as DMXAA, effectively destroy tumor blood vessels and cause the formation of large areas of necrosis in the central parts of the tumors. However, the use of VDAs is associated with hypoxia activation and residues of rim cells on the edge of the tumor that are responsible for tumor regrowth. The aim of the study was to combine DMXAA with radiotherapy (brachytherapy) and find the appropriate administration sequence to obtain the maximum synergistic therapeutic effect. We show that the combination in which tumors were irradiated prior to VDAs administration is more effective in murine melanoma growth inhibition than in either of the agents individually or in reverse combination. For the first time, the significance of immune cells' activation in such a combination is demonstrated. The inhibition of tumor growth is linked to the reduction of tumor blood vessels, the increased infiltration of CD8+ cytotoxic T lymphocytes and NK cells and the polarization of macrophages to the cytotoxic M1 phenotype. The reverse combination of therapeutic agents showed no therapeutic effect and even abolished the effect of DMXAA. The combination of brachytherapy and vascular disrupting agent effectively inhibits the growth of melanoma tumors but requires careful planning of the sequence of administration of the agents.
Collapse
|
31
|
Liu L, O’Kelly D, Schuetze R, Carlson G, Zhou H, Trawick ML, Pinney KG, Mason RP. Non-Invasive Evaluation of Acute Effects of Tubulin Binding Agents: A Review of Imaging Vascular Disruption in Tumors. Molecules 2021; 26:2551. [PMID: 33925707 PMCID: PMC8125421 DOI: 10.3390/molecules26092551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor vasculature proliferates rapidly, generally lacks pericyte coverage, and is uniquely fragile making it an attractive therapeutic target. A subset of small-molecule tubulin binding agents cause disaggregation of the endothelial cytoskeleton leading to enhanced vascular permeability generating increased interstitial pressure. The resulting vascular collapse and ischemia cause downstream hypoxia, ultimately leading to cell death and necrosis. Thus, local damage generates massive amplification and tumor destruction. The tumor vasculature is readily accessed and potentially a common target irrespective of disease site in the body. Development of a therapeutic approach and particularly next generation agents benefits from effective non-invasive assays. Imaging technologies offer varying degrees of sophistication and ease of implementation. This review considers technological strengths and weaknesses with examples from our own laboratory. Methods reveal vascular extent and patency, as well as insights into tissue viability, proliferation and necrosis. Spatiotemporal resolution ranges from cellular microscopy to single slice tomography and full three-dimensional views of whole tumors and measurements can be sufficiently rapid to reveal acute changes or long-term outcomes. Since imaging is non-invasive, each tumor may serve as its own control making investigations particularly efficient and rigorous. The concept of tumor vascular disruption was proposed over 30 years ago and it remains an active area of research.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Devin O’Kelly
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Regan Schuetze
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Graham Carlson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Heling Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| |
Collapse
|
32
|
Brooks J, Kumar B, Zuro DM, Raybuck JD, Madabushi SS, Vishwasrao P, Parra LE, Kortylewski M, Armstrong B, Froelich J, Hui SK. Biophysical Characterization of the Leukemic Bone Marrow Vasculature Reveals Benefits of Neoadjuvant Low-Dose Radiation Therapy. Int J Radiat Oncol Biol Phys 2021; 109:60-72. [PMID: 32841681 PMCID: PMC7736317 DOI: 10.1016/j.ijrobp.2020.08.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Although vascular alterations in solid tumor malignancies are known to decrease therapeutic delivery, the effects of leukemia-induced bone marrow vasculature (BMV) alterations on therapeutic delivery are not well known. Additionally, functional quantitative measurements of the leukemic BMV during chemotherapy and radiation therapy are limited, largely due to a lack of high-resolution imaging techniques available preclinically. This study develops a murine model using compartmental modeling for quantitative multiphoton microscopy (QMPM) to characterize the malignant BMV before and during treatment. METHODS AND MATERIALS Using QMPM, live time-lapsed images of dextran leakage from the local BMV to the surrounding bone marrow of mice bearing acute lymphoblastic leukemia (ALL) were taken and fit to a 2-compartment model to measure the transfer rate (Ktrans), fractional extracellular extravascular space (νec), and vascular permeability parameters, as well as functional single-vessel characteristics. In response to leukemia-induced BMV alterations, the effects of 2 to 4 Gy low-dose radiation therapy (LDRT) on the BMV, drug delivery, and mouse survival were assessed post-treatment to determine whether neoadjuvant LDRT before chemotherapy improves treatment outcome. RESULTS Mice bearing ALL had significantly altered Ktrans, increased νec, and increased permeability compared with healthy mice. Angiogenesis, decreased single-vessel perfusion, and decreased vessel diameter were observed. BMV alterations resulted in disease-dependent reductions in cellular uptake of Hoechst dye. LDRT to mice bearing ALL dilated BMV, increased single-vessel perfusion, and increased daunorubicin uptake by ALL cells. Consequently, LDRT administered to mice before receiving nilotinib significantly increased survival compared with mice receiving LDRT after nilotinib, demonstrating the importance of LDRT conditioning before therapeutic administration. CONCLUSION The developed QMPM enables single-platform assessments of the pharmacokinetics of fluorescent agents and characterization of the BMV. Initial results suggest BMV alterations after neoadjuvant LDRT may contribute to enhanced drug delivery and increased treatment efficacy for ALL. The developed QMPM enables observations of the BMV for use in ALL treatment optimization.
Collapse
Affiliation(s)
- Jamison Brooks
- Department of Radiation Oncology, City of Hope, Duarte, California; Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota
| | - Bijender Kumar
- Department of Radiation Oncology, City of Hope, Duarte, California; Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California
| | - Darren M Zuro
- Department of Radiation Oncology, City of Hope, Duarte, California; Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota
| | | | | | | | | | - Marcin Kortylewski
- Department of Immuno-Oncology, City of Hope, Duarte, California; Beckman Research Institute of City of Hope, Duarte, California
| | - Brian Armstrong
- Beckman Research Institute of City of Hope, Duarte, California; Department of Development and Stem Cell Biology, City of Hope, Duarte, California
| | - Jerry Froelich
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Susanta K Hui
- Department of Radiation Oncology, City of Hope, Duarte, California; Beckman Research Institute of City of Hope, Duarte, California.
| |
Collapse
|
33
|
Smolarczyk R, Czapla J, Jarosz-Biej M, Czerwinski K, Cichoń T. Vascular disrupting agents in cancer therapy. Eur J Pharmacol 2020; 891:173692. [PMID: 33130277 DOI: 10.1016/j.ejphar.2020.173692] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Tumor blood vessel formation is a key process for tumor expansion. Tumor vessels are abnormal and differ from normal vessels in architecture and components. Besides oxygen and nutrients supply, the tumor vessels system, due to its abnormality, is responsible for: hypoxia formation, and metastatic routes. Tumor blood vessels can be a target of anti-cancer therapies. There are two types of therapies that target tumor vessels. The first one is the inhibition of the angiogenesis process. However, the inhibition is often ineffective because of alternative angiogenesis mechanism activation. The second type is a specific targeting of existing tumor blood vessels by vascular disruptive agents (VDAs). There are three groups of VDAs: microtubule destabilizing drugs, flavonoids with anti-vascular functions, and tumor vascular targeted drugs based on endothelial cell receptors. However, VDAs possess some limitations. They may be cardiotoxic and their application in therapy may leave viable residual, so called, rim cells on the edge of the tumor. However, it seems that a well-designed combination of VDAs with other anti-cancer drugs may bring a significant therapeutic effect. In this article, we describe three groups of vascular disruptive agents with their advantages and disadvantages. We mention VDAs clinical trials. Finally, we present the current possibilities of VDAs combination with other anti-cancer drugs.
Collapse
Affiliation(s)
- Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| | - Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| | - Kyle Czerwinski
- University of Manitoba, Faculty of Science. 66 Chancellors Cir, Winnipeg, Canada.
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| |
Collapse
|
34
|
A 2-step synthesis of Combretastatin A-4 and derivatives as potent tubulin assembly inhibitors. Bioorg Med Chem 2020; 28:115684. [DOI: 10.1016/j.bmc.2020.115684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 11/19/2022]
|
35
|
Keller SB, Suo D, Wang YN, Kenerson H, Yeung RS, Averkiou MA. Image-Guided Treatment of Primary Liver Cancer in Mice Leads to Vascular Disruption and Increased Drug Penetration. Front Pharmacol 2020; 11:584344. [PMID: 33101038 PMCID: PMC7554611 DOI: 10.3389/fphar.2020.584344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Despite advances in interventional procedures and chemotherapeutic drug development, hepatocellular carcinoma (HCC) is still the fourth leading cause of cancer-related deaths worldwide with a <30% 5-year survival rate. This poor prognosis can be attributed to the fact that HCC most commonly occurs in patients with pre-existing liver conditions, rendering many treatment options too aggressive. Patient survival rates could be improved by a more targeted approach. Ultrasound-induced cavitation can provide a means for overcoming traditional barriers defining drug uptake. The goal of this work was to evaluate preclinical efficacy of image-guided, cavitation-enabled drug delivery with a clinical ultrasound scanner. To this end, ultrasound conditions (unique from those used in imaging) were designed and implemented on a Philips EPIQ and S5-1 phased array probe to produced focused ultrasound for cavitation treatment. Sonovue® microbubbles which are clinically approved as an ultrasound contrast agent were used for both imaging and cavitation treatment. A genetically engineered mouse model was bred and used as a physiologically relevant preclinical analog to human HCC. It was observed that image-guided and targeted microbubble cavitation resulted in selective disruption of the tumor blood flow and enhanced doxorubicin uptake and penetration. Histology results indicate that no gross morphological damage occurred as a result of this process. The combination of these effects may be exploited to treat HCC and other challenging malignancies and could be implemented with currently available ultrasound scanners and reagents.
Collapse
Affiliation(s)
- Sara B Keller
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Dingjie Suo
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Yak-Nam Wang
- Applied Physics Laboratory, University of Washington, Seattle, WA, United States
| | - Heidi Kenerson
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - Raymond S Yeung
- Department of Surgery, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
36
|
Wang Y, Wozniak A, Wellens J, Gebreyohannes YK, Guillén MJ, Avilés PM, Debiec-Rychter M, Sciot R, Schöffski P. Plocabulin, a novel tubulin inhibitor, has potent antitumor activity in patient-derived xenograft models of gastrointestinal stromal tumors. Transl Oncol 2020; 13:100832. [PMID: 32711367 PMCID: PMC7381700 DOI: 10.1016/j.tranon.2020.100832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
The majority of patients with gastrointestinal stromal tumors (GIST) eventually become resistant with time due to secondary mutations in the driver receptor tyrosine kinase. Novel treatments that do not target these receptors may therefore be preferable. For the first time, we evaluated a tubulin inhibitor, plocabulin, in patient-derived xenograft (PDX) models of GIST, a disease generally considered to be resistant to cytotoxic agents. Three PDX models of GIST with different KIT genotype were generated by implanting tumor fragments from patients directly into nude mice. We then used these well characterized models with distinct sensitivity to imatinib to evaluate the efficacy of the novel tubulin inhibitor. The efficacy of the drug was assessed by volumetric analysis of the tumors, histopathology, immunohistochemistry and Western blotting. Plocabulin treatment led to extensive necrosis in all three models and significant tumor shrinkage in two models. This histological response can be explained by the drug's vascular-disruptive properties, which resulted in a shutdown of tumor vasculature, reflected by a decreased total vascular area in the tumor tissue. Our results demonstrated the in vivo efficacy of the novel tubulin inhibitor plocabulin in PDX models of GIST and challenge the established view that GIST are resistant to cytotoxic agents in general and to tubulin inhibitors in particular. Our findings provide a convincing rationale for early clinical exploration of plocabulin in GIST and warrant further exploration of this class of drugs in the management of this common sarcoma subtype. First study evaluating a tubulin inhibitor in patient-derived xenograft models of gastro-intestinal stromal tumors Plocabulin, a novel tubulin inhibitor, has efficacy independant of KIT genotype Plocabulin induced extensive, central tumor necrosis, mainly through its antiangiogenic properties. Our results challenge the established view that gastro-intestinal stromal tumors are resistant to cytotoxic agents.
Collapse
Affiliation(s)
- Yannick Wang
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jasmien Wellens
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | | | | | - Maria Debiec-Rychter
- Department of Human Genetics, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Raf Sciot
- Department of Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium; Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Tao N, Liu Y, Wu Y, Li X, Li J, Sun X, Chen S, Liu YN. Minimally Invasive Antitumor Therapy Using Biodegradable Nanocomposite Micellar Hydrogel with Functionalities of NIR-II Photothermal Ablation and Vascular Disruption. ACS APPLIED BIO MATERIALS 2020; 3:4531-4542. [DOI: 10.1021/acsabm.0c00465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Na Tao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Yandi Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Yingjiao Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Xilong Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Juan Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Xiaoyi Sun
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P.R. China
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| |
Collapse
|
38
|
Gracheva IA, Shchegravina ES, Schmalz HG, Beletskaya IP, Fedorov AY. Colchicine Alkaloids and Synthetic Analogues: Current Progress and Perspectives. J Med Chem 2020; 63:10618-10651. [PMID: 32432867 DOI: 10.1021/acs.jmedchem.0c00222] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colchicine, the main alkaloid of Colchicum autumnale, is one of the most famous natural molecules. Although colchicine belongs to the oldest drugs (in use since 1500 BC), its pharmacological potential as a lead structure is not yet fully exploited. This review is devoted to the synthesis and structure-activity relationships (SAR) of colchicine alkaloids and their analogues with modified A, B, and C rings, as well as hybrid compounds derived from colchicinoids including prodrugs, conjugates, and delivery systems. The systematization of a vast amount of information presented to date will create a paradigm for future studies of colchicinoids for neoplastic and various other diseases.
Collapse
Affiliation(s)
- Iuliia A Gracheva
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Ekaterina S Shchegravina
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | | | - Irina P Beletskaya
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119992, Russian Federation
| | - Alexey Yu Fedorov
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| |
Collapse
|
39
|
Zheng K, Kros JM, Li J, Zheng PP. DNA-nanorobot-guided thrombin-inducing tumor infarction: raising new potential clinical concerns. Drug Discov Today 2020; 25:951-955. [PMID: 32205200 DOI: 10.1016/j.drudis.2020.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 11/19/2022]
Abstract
DNA-nanorobot-guided thrombin-inducing tumor infarction (DNA NanorobotTh-ITI) is emerging as a powerful therapeutic strategy for treatment of solid cancers. The technology represents a major advance in the application of DNA nanotechnology for anticancer therapy. More importantly, the technology is being translated from preclinical studies to the clinic owing to its promising anticancer effects with fewer toxicities demonstrated in preclinical settings. However, despite these beneficial effects of the technology, it is important to point out that some important potential clinical concerns remain to be addressed. Here, we raise these clinical concerns along with these beneficial effects of the technology. Hopefully, these newly raised potential clinical concerns could drive forward research in this field to expedite its clinical translation.
Collapse
Affiliation(s)
- Kang Zheng
- Department of Orthopedics, Ningbo Medical Center Li Hui Li Hospital, Ningbo, Zhejiang, China
| | - Johan M Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jin Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping-Pin Zheng
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
40
|
Kim SJ, Jegal KH, Im JH, Park G, Kim S, Jeong HG, Cho IJ, Kang KW. Involvement of ER stress and reactive oxygen species generation in anti-cancer effect of CKD-516 for lung cancer. Cancer Chemother Pharmacol 2020; 85:685-697. [PMID: 32157413 DOI: 10.1007/s00280-020-04043-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE CKD-516 (Valecobulin), a vascular-disrupting agent, inhibits microtubule elongation. We evaluated the effect of CKD-516 on lung cancer cells and the underlying molecular mechanisms. METHODS The effects of S516, an active metabolite of CKD-516, were evaluated in HUVECs and three lung cancer cell lines and by a microtubule polymerization assay. Tubulin cross-linking was used to identify the binding site of S516 on tubulin, and Western blotting was performed to identify the intracellular pathways leading to cell death. Subcutaneous lung cancer xenograft models were used to assess the in vivo effect of CKD-516 on tumor growth. RESULTS S516 targeted the colchicine binding site on β-tubulin. In lung cancer cells, S516 increased endoplasmic reticulum (ER) stress and induced reactive oxygen species (ROS) generation by mitochondria and the ER. In addition, CKD-516 monotherapy strongly inhibited the growth of lung cancer xenograft tumors and exerted a synergistic effect with carboplatin. CONCLUSION The findings suggest that CKD-516 exerts an anticancer effect in company with inducing ER stress and ROS production via microtubule disruption in lung cancer cells. CKD-516 may thus have therapeutic potential for lung cancer.
Collapse
Affiliation(s)
- Soo Jin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, Yongin-si, Gyeonggi-do, 16995, Republic of Korea
| | - Kyung Hwan Jegal
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Hye Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gyutae Park
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, Yongin-si, Gyeonggi-do, 16995, Republic of Korea
| | - Suntae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Il Je Cho
- Department of Herbal Formulation, MRC-GHF, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do, 38610, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
41
|
Kraus Y, Glas C, Melzer B, Gao L, Heise C, Preuße M, Ahlfeld J, Bracher F, Thorn-Seshold O. Isoquinoline-based biaryls as a robust scaffold for microtubule inhibitors. Eur J Med Chem 2020; 186:111865. [PMID: 31735573 DOI: 10.1016/j.ejmech.2019.111865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/08/2019] [Accepted: 11/06/2019] [Indexed: 11/25/2022]
Abstract
We here report the discovery of isoquinoline-based biaryls as a new scaffold for colchicine domain tubulin inhibitors. Colchicinoid inhibitors offer highly desirable cytotoxic and vascular disrupting bioactivities, but their further development requires improving in vivo robustness and tolerability: properties that both depend on the scaffold structure employed. We have developed isoquinoline-based biaryls as a novel scaffold for high-potency tubulin inhibitors, with excellent robustness, druglikeness, and facile late-stage structural diversification, accessible through a tolerant synthetic route. We confirmed their bioactivity mechanism in vitro, developed soluble prodrugs, and established safe in vivo dosing in mice. By addressing several problems facing the current families of inhibitors, we expect that this new scaffold will find a range of in vivo applications towards translational use in cancer therapy.
Collapse
Affiliation(s)
- Yvonne Kraus
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Carina Glas
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Benedikt Melzer
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Li Gao
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Constanze Heise
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Monique Preuße
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Julia Ahlfeld
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Butenandtstrasse 5-13, Munich, 81377, Germany.
| |
Collapse
|
42
|
He J, Liu C, Li T, Liu Y, Wang S, Zhang J, Chen L, Wang C, Feng Y, Floris G, Wang Z, Zhang X, Zhao L, Li Y, Shao H, Ni Y. Pictorial Imaging-Histopathology Correlation in a Rabbit with Hepatic VX2 Tumor Treated by Transarterial Vascular Disrupting Agent Administration. Int J Med Sci 2020; 17:2269-2275. [PMID: 32922191 PMCID: PMC7484646 DOI: 10.7150/ijms.46165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/17/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer vasculature is immature, disorganized and hyperpermeable and can serve as a target for anti-cancer therapies. Vascular disrupting agents (VDAs) are tubulin protein binding and depolymerizing agents that induce rapid tumoral vascular shutdown and subsequent cancer necrosis. However, two clinical problems exist with all VDAs, i.e. 1) incomplete anticancer effect and 2) dose-dependent toxicity. To tackle these problems, in our ongoing research, a novel VDA C118P is applied by transarterial administration of half the intravenous dose in rabbits with implanted VX2 liver tumor to assess its therapeutic efficacy. Nearly complete tumor necrosis was achieved by only a single arterial dose of C118P at 5 mg/kg, which was documented in a representative case by in vivo digital subtraction arteriogram (DSA) and magnetic resonance imaging (MRI), and further confirmed by ex vivo microangiogram and histopathology. This convincing and promising preliminary outcome would warrant further comprehensive studies to explore the potentials of VDAs by transarterial administration either in mono-drug or in combination for management of solid cancers.
Collapse
Affiliation(s)
- Jintong He
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Chong Liu
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Tian Li
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yewei Liu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Shuncong Wang
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Jian Zhang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Lei Chen
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Chao Wang
- Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Yuanbo Feng
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Giuseppe Floris
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Zhiqiang Wang
- Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Xian Zhang
- Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Liwen Zhao
- Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Haibo Shao
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yicheng Ni
- KU Leuven, Biomedical Group, Campus Gasthuisberg, 3000 Leuven, Belgium
| |
Collapse
|