1
|
Metz CN, Brines M, Xue X, Chatterjee PK, Adelson RP, Roth J, Tracey KJ, Gregersen PK, Pavlov VA. Increased plasma lipopolysaccharide-binding protein and altered inflammatory mediators reveal a pro-inflammatory state in overweight women. BMC Womens Health 2025; 25:57. [PMID: 39930423 PMCID: PMC11809003 DOI: 10.1186/s12905-025-03588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Chronic low-grade inflammation has been recognized as an underlying event linking obesity to diabetes and cardiovascular disease (CVD). However, inflammatory alterations in individuals and specifically women who are overweight remain understudied. Providing relevant insights is of substantial interest for women's cardiovascular health. METHODS We determined the levels of key circulating biomarkers of innate immune responses and inflammation, including lipopolysaccharide-binding protein (LBP), C-reactive protein (CRP), interleukin-6 (IL-6), leptin, and adiponectin in adult female subjects who were lean (n = 20) or overweight (n = 20) and had high cholesterol and/or high blood pressure - two important conventional risk factors for CVD. RESULTS Plasma levels of LBP were significantly higher in the overweight group compared with the lean group (P = 0.017). The levels of CRP were also significantly higher in overweight subjects (P = 0.023), as were IL-6 (P = 0.016) and leptin (P = 0.004), pro-inflammatory mediators associated with cardiovascular risk. Levels of adiponectin, an adipokine with anti-inflammatory and anti-atherogenic functions, were significantly lower in the overweight group (P = 0.006). The leptin/adiponectin ratio, a preferential atherogenic marker was significantly increased in women who are overweight (P = 0.0007). LBP, CRP, leptin, IL-6, leptin, and adiponectin levels significantly correlated with BMI, but not with age and there was a significant correlation between LBP and IL-6 levels and LBP and CRP levels. CONCLUSIONS These results reveal the presence of a pro-inflammatory state in overweight women and are of interest for further studies with the goal for improved understanding of cardiovascular health risks in women.
Collapse
Affiliation(s)
- Christine N Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell-Hofstra University, Hempstead, NY, 11550, USA.
| | - Michael Brines
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Xiangying Xue
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Prodyot K Chatterjee
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Robert P Adelson
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Jesse Roth
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell-Hofstra University, Hempstead, NY, 11550, USA
| | - Kevin J Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell-Hofstra University, Hempstead, NY, 11550, USA
| | - Peter K Gregersen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell-Hofstra University, Hempstead, NY, 11550, USA
| | - Valentin A Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell-Hofstra University, Hempstead, NY, 11550, USA.
| |
Collapse
|
2
|
Bordoni B, Escher AR. Obesity and the Importance of Breathing. Cureus 2025; 17:e77431. [PMID: 39811724 PMCID: PMC11731540 DOI: 10.7759/cureus.77431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2025] [Indexed: 01/16/2025] Open
Abstract
Obesity is a complex and non-communicable disease with a pandemic entity. Currently, multiple causes can lead to obesity, and it is not always easy to create a direct relationship between physical inactivity, poor quality of nutrients consumed, and calculation of excess calories. Among the associated comorbidities, obesity creates a dysfunctional environment of respiratory rhythms at the central and peripheral levels, with functional, morphological, and phenotypic alteration of the diaphragm muscle. This pathological adaptation of breathing is one of the most important causes of the dysregulation of the autonomic system, which will negatively affect the progression of comorbidities and chronic non-physiological adaptations in obese persons. Introducing a physical activity program involving diaphragm training could be a very valid strategy to restore the systemic autonomic response, delaying or avoiding the onset of pathologies in excess fat. This brief narrative review focuses on the importance of breathing in obese subjects.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Allan R Escher
- Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, USA
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|
3
|
Nagai M, Rommel KP, Po SS, Dasari TW. Autonomic neuromodulation for cardiomyopathy associated with metabolic syndrome - Prevention of precursors for heart failure with preserved ejection fraction. Hypertens Res 2024; 47:3318-3329. [PMID: 39261699 DOI: 10.1038/s41440-024-01886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Metabolic syndrome (MetS) induces a systemic inflammatory state which can lead to cardiomyopathy, manifesting clinically as heart failure (HF) with preserved ejection fraction (HFpEF). MetS components are intricately linked to the pathophysiologic processes of myocardial remodeling. Increased sympathetic nervous system activity, which is noted as an upstream factor of MetS, has been linked to adverse myocardial structural changes. Since renal denervation and vagus nerve stimulation have a sympathoinhibitory effect, attention has been paid to the cardioprotective effects of autonomic neuromodulation. In this review, the pathophysiology underlying the relationship between MetS and HF is elucidated, and the evidence regarding autonomic neuromodulation in HFpEF is summarized.
Collapse
Affiliation(s)
- Michiaki Nagai
- Cardiovascular section, Department of Medicine, University of Oklahoma, Health Science Center, Oklahoma, USA.
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan.
| | - Karl-Philipp Rommel
- Department of Cardiology, University Medical Center Mainz and German Center for Cardiovascular Research, Mainz, Germany
| | - Sunny S Po
- Cardiovascular section, Department of Medicine, University of Oklahoma, Health Science Center, Oklahoma, USA
| | - Tarun W Dasari
- Cardiovascular section, Department of Medicine, University of Oklahoma, Health Science Center, Oklahoma, USA.
| |
Collapse
|
4
|
Liu FJ, Wu J, Gong LJ, Yang HS, Chen H. Non-invasive vagus nerve stimulation in anti-inflammatory therapy: mechanistic insights and future perspectives. Front Neurosci 2024; 18:1490300. [PMID: 39605787 PMCID: PMC11599236 DOI: 10.3389/fnins.2024.1490300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Non-invasive vagus nerve stimulation (VNS) represents a transformative approach for managing a broad spectrum of inflammatory and autoimmune conditions, including rheumatoid arthritis and inflammatory bowel disease. This comprehensive review delineates the mechanisms underlying VNS, emphasizing the cholinergic anti-inflammatory pathway, and explores interactions within the neuro-immune and vagus-gut axes based on both clinical outcomes and pre-clinical models. Clinical applications have confirmed the efficacy of VNS in managing specific autoimmune diseases, such as rheumatoid arthritis, and chronic inflammatory conditions like inflammatory bowel disease, showcasing the variability in stimulation parameters and patient responses. Concurrently, pre-clinical studies have provided insights into the potential of VNS in modulating cardiovascular and broader inflammatory responses, paving the way for its translational application in clinical settings. Innovations in non-invasive VNS technology and precision neuromodulation are enhancing its therapeutic potential, making it a viable option for patients who are unresponsive to conventional treatments. Nonetheless, the widespread adoption of this promising therapy is impeded by regulatory challenges, patient compliance issues, and the need for extensive studies on long-term efficacy and safety. Future research directions will focus on refining VNS technology, optimizing treatment parameters, and exploring synergistic effects with other therapeutic modalities, which could revolutionize the management of chronic inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Fu-Jun Liu
- Neurology Medical Center II, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Jing Wu
- Department of Medical Imaging, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Li-Jun Gong
- Center of Surgical Anesthesia, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong-Shuai Yang
- Central Operating Room, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Huan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Habas E, Farfar K, Habas E, Rayani A, Elzouki AN. Extended Review and Updates of Nonalcoholic Fatty Pancreas Disease. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2024; 12:284-291. [PMID: 39539795 PMCID: PMC11556510 DOI: 10.4103/sjmms.sjmms_526_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 11/16/2024]
Abstract
Non-alcoholic fatty pancreatic disease (NAFPD), also known as pancreatic steatosis, is a benign condition characterized by deposition of lipids in the pancreas and is associated with insulin resistance, malnutrition, obesity, metabolic syndrome, aging, and absence of heavy alcohol intake or infection. Similar to nonalcoholic fatty liver disease, NAFPD is a phenotypic entity that includes fat buildup in the pancreas, pancreatic inflammation, and subsequent fibrosis. The extent to which pancreatic fat infiltration is clinically important remains unclear. Despite these clinical associations, most of the clinical effects of NAFPD are not known. NAFPD may be identified by transabdominal and elastography ultrasound, computed tomography scan, or magnetic resonance imaging modalities, but a confirmatory diagnosis can only be made through tissue histology. In addition to complications such as acute and chronic pancreatitis, NAFPD may progress to pancreatic ductal adenocarcinoma. However, further research is required to fully understand the associations, pathophysiology, and effects of NAFPD. This review provides a narrative synthesis of the current literature on the epidemiology, pathophysiology, complications, diagnostic and imaging tools, and management of NAFPD.
Collapse
Affiliation(s)
- Elmukhtar Habas
- Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, College of Medicine, Qatar University, Doha, Qatar
| | - Kalifa Farfar
- Department of Medicine, Alwakra General Hospital, Alwakra, Qatar
| | - Eshrak Habas
- Department of Medicine, Tripoli Central Hospital, Tripoli, Libya
| | - Amnna Rayani
- Tripoli Children Hospital, Medical College, Tripoli University, Tripoli, Libya
| | - Abdul-Naser Elzouki
- Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, College of Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Falvey A, Palandira SP, Chavan SS, Brines M, Dantzer R, Tracey KJ, Pavlov VA. Electrical stimulation of the dorsal motor nucleus of the vagus in male mice can regulate inflammation without affecting the heart rate. Brain Behav Immun 2024; 120:630-639. [PMID: 38670240 PMCID: PMC11957331 DOI: 10.1016/j.bbi.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The vagus nerve plays an important role in neuroimmune interactions and in the regulation of inflammation. A major source of efferent vagus nerve fibers that contribute to the regulation of inflammation is the brainstem dorsal motor nucleus of the vagus (DMN), as recently shown using optogenetics. In contrast to optogenetics, electrical neuromodulation has broad therapeutic implications. However, the anti-inflammatory effectiveness of electrical stimulation of the DMN (eDMNS) and the possible heart rate (HR) alterations associated with this approach have not been investigated. Here, we examined the effects of eDMNS on HR and cytokine levels in mice administered with lipopolysaccharide (LPS, endotoxin) and in mice subjected to cecal ligation and puncture (CLP) sepsis. METHODS Anesthetized male 8-10-week-old C57BL/6 mice on a stereotaxic frame were subjected to eDMNS using a concentric bipolar electrode inserted into the left or right DMN or sham stimulation. eDMNS (500, 250 or 50 μA at 30 Hz, for 1 min) was performed and HR recorded. In endotoxemia experiments, sham or eDMNS utilizing 250 μA or 50 μA was performed for 5 mins and was followed by LPS (0.5 mg/kg) i.p. administration. eDMNS was also applied in mice with cervical unilateral vagotomy or sham operation. In CLP experiments sham or left eDMNS was performed immediately post CLP. Cytokines and corticosterone were analyzed 90 mins after LPS administration or 24 h after CLP. CLP survival was monitored for 14 days. RESULTS Either left or right eDMNS at 500 μA and 250 μA decreased HR, compared with baseline pre-stimulation. This effect was not observed at 50 μA. Left side eDMNS at 50 μA, compared with sham stimulation, significantly decreased serum and splenic levels of the pro-inflammatory cytokine TNF and increased serum levels of the anti-inflammatory cytokine IL-10 during endotoxemia. The anti-inflammatory effect of eDMNS was abrogated in mice with unilateral vagotomy and was not associated with serum corticosterone alterations. Right side eDMNS in endotoxemic mice suppressed serum TNF and increased serum IL-10 levels but had no effects on splenic cytokines. In mice with CLP, left side eDMNS suppressed serum IL-6, as well as splenic IL-6 and increased splenic IL-10 and significantly improved the survival rate of CLP mice. CONCLUSIONS For the first time we show that a regimen of eDMNS which does not cause bradycardia alleviates LPS-induced inflammation. These eDMNS anti-inflammatory effects require an intact vagus nerve and are not associated with corticosteroid alterations. eDMNS also decreases inflammation and improves survival in a model of polymicrobial sepsis. These findings are of interest for further studies exploring bioelectronic anti-inflammatory approaches targeting the brainstem DMN.
Collapse
Affiliation(s)
- Aidan Falvey
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Santhoshi P Palandira
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Sangeeta S Chavan
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA; Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Michael Brines
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Robert Dantzer
- University of Texas MD Anderson Cancer Center, Department of Symptom Research, Houston, TX 77030, USA
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA; Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Valentin A Pavlov
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA; Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
7
|
Le Thuc O, García-Cáceres C. Obesity-induced inflammation: connecting the periphery to the brain. Nat Metab 2024; 6:1237-1252. [PMID: 38997442 DOI: 10.1038/s42255-024-01079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Obesity is often associated with a chronic, low-grade inflammatory state affecting the entire body. This sustained inflammatory state disrupts the coordinated communication between the periphery and the brain, which has a crucial role in maintaining homeostasis through humoural, nutrient-mediated, immune and nervous signalling pathways. The inflammatory changes induced by obesity specifically affect communication interfaces, including the blood-brain barrier, glymphatic system and meninges. Consequently, brain areas near the third ventricle, including the hypothalamus and other cognition-relevant regions, become susceptible to impairments, resulting in energy homeostasis dysregulation and an elevated risk of cognitive impairments such as Alzheimer's disease and dementia. This Review explores the intricate communication between the brain and the periphery, highlighting the effect of obesity-induced inflammation on brain function.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
8
|
Szafarowska M, Rosiński M, Segiet-Święcicka A, Jędrzejczyk S, Jerzak M, Jerzak M. Effect of physiotherapy on infertility treatment in polycystic ovary syndrome patients. PRZEGLAD MENOPAUZALNY = MENOPAUSE REVIEW 2024; 23:14-20. [PMID: 38690069 PMCID: PMC11056729 DOI: 10.5114/pm.2024.136439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/29/2023] [Indexed: 05/02/2024]
Abstract
Introduction Polycystic ovary syndrome (PCOS) is a complex hormonal condition associated with psychological, reproductive, and metabolic features. Low-grade inflammation is a recognised factor causing metabolic and reproductive disorders in PCOS, which is why anti-inflammation approaches in PCOS treatment, especially during the COVID pandemic, are considered. A promising therapeutic option is osteopathic manipulative treatment (OMT), which activates the cholinergic anti-inflammatory pathway and can inhibit proinflammatory cytokines, such as TNF, IL-1β, and TNF-β. In our paper we analysed the influence of OMT in women with PCOS. Material and methods Seventy-three patients, aged 29-46 years, with a history of reproductive failure, who underwent a physiotherapeutic treatment were evaluated. Six months after the end of a physiotherapy session, a follow-up questionnaire was performed. Results The results show that most women (83.6%) were satisfied with the therapeutic process, and that the sessions met the patient's expectations. Reducing the level of anxiety related to infertility treatment and pregnancy was declared by 60 (82.2%) women, an improvement in well-being was declared by 72 (97.3%) (p = 0.04), and increasing awareness of the body after physiotherapy sessions was declared by 70 (95.9%) women. Conclusions The physiotherapeutic sessions improved infertility treatment, enhanced quality of life, and had a positive effect on overall health in PCOS women.
Collapse
Affiliation(s)
- Monika Szafarowska
- Department of Gynaecology and Oncological Gynaecology, Military Institute of Medicine, Warsaw, Poland
| | | | - Agnieszka Segiet-Święcicka
- Department of Coronary Artery Disease and Cardiac Rehabilitation, National Institute of Cardiology, Warsaw, Poland
| | | | | | | |
Collapse
|
9
|
Marsili F, Potgieter P, Birkill CF. Adaptive Autonomic and Neuroplastic Control in Diabetic Neuropathy: A Narrative Review. Curr Diabetes Rev 2024; 20:38-54. [PMID: 38018186 DOI: 10.2174/0115733998253213231031050044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a worldwide socioeconomic burden, and is accompanied by a variety of metabolic disorders, as well as nerve dysfunction referred to as diabetic neuropathy (DN). Despite a tremendous body of research, the pathogenesis of DN remains largely elusive. Currently, two schools of thought exist regarding the pathogenesis of diabetic neuropathy: a) mitochondrial-induced toxicity, and b) microvascular damage. Both mechanisms signify DN as an intractable disease and, as a consequence, therapeutic approaches treat symptoms with limited efficacy and risk of side effects. OBJECTIVE Here, we propose that the human body exclusively employs mechanisms of adaptation to protect itself during an adverse event. For this purpose, two control systems are defined, namely the autonomic and the neural control systems. The autonomic control system responds via inflammatory and immune responses, while the neural control system regulates neural signaling, via plastic adaptation. Both systems are proposed to regulate a network of temporal and causative connections which unravel the complex nature of diabetic complications. RESULTS A significant result of this approach infers that both systems make DN reversible, thus opening the door to novel therapeutic applications.
Collapse
Affiliation(s)
| | - Paul Potgieter
- Research Department, Algiamed Technologies, Burnaby, Canada
| | | |
Collapse
|
10
|
Elkattawy HA, Mahmoud SM, Hassan AES, Behiry A, Ebrahim HA, Ibrahim AM, Zaghamir DEF, El-Sherbiny M, El-Sayed SF. Vagal Stimulation Ameliorates Non-Alcoholic Fatty Liver Disease in Rats. Biomedicines 2023; 11:3255. [PMID: 38137476 PMCID: PMC10741668 DOI: 10.3390/biomedicines11123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The harmful consequences of non-alcoholic fatty liver disease (NAFLD) are posing an increasing threat to public health as the incidence of diabetes and obesity increases globally. A non-invasive treatment with a range of autonomic and metabolic benefits is transcutaneous vagus nerve stimulation (tVNS). AIM OF THE STUDY To investigate the possible preventive impacts of VNS against adult rats' NAFLD caused by a high-fat diet (HFD) and to clarify the underlying mechanisms. METHODS A total of thirty-two adult male rats were split into two groups: the HFD-induced NAFLD group (n = 24) and the control normal group (n = 8). The obesogenic diet was maintained for 12 weeks to induce hepatic steatosis. The HFD-induced NAFLD group (n = 24) was separated into three groups: the group without treatment (n = 8), the group with sham stimulation (n = 8), and the group with VNS treatment (n = 8). VNS was delivered for 30 min per day for 6 weeks after the establishment of NAFLD using a digital TENS device. The subsequent assessments included hepatic triglyceride, cholesterol content, serum lipid profile, and liver function testing. In this context, inflammatory biomarkers (TNF-α, IL-6) and hepatic oxidative stress (MDA, SOD, and GPx) were also assessed. To clarify the possible mechanisms behind the protective benefits of VNS, additional histological inspection and immunohistochemistry analysis of TNF-α and Caspase-3 were performed. RESULTS In the NAFLD-affected obese rats, VNS markedly decreased the rats' body mass index (BMI) and abdominal circumference (AC). Liver function markers (albumin, ALT, and AST) and the serum lipid profile-which included a notable decrease in the amounts of hepatic triglycerides and cholesterol-were both markedly improved. Additionally, oxidative stress and inflammatory indicators showed a considerable decline with VNS. Notably, the liver tissues examined by histopathologists revealed that there is evidence of the protective impact of VNS on the oxidative and inflammatory states linked to HFD-induced NAFLD while maintaining the architectural and functional condition of the liver. CONCLUSIONS Our findings suggest that VNS may represent a promising therapeutic candidate for managing NAFLD induced by obesity. It can be considered to be an effective adjuvant physiological intervention for the obese population with NAFLD to spare the liver against obesity-induced deleterious injury.
Collapse
Affiliation(s)
- Hany A. Elkattawy
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11579, Saudi Arabia;
- Medical Physiology Department, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt; (A.E.-S.H.); (S.F.E.-S.)
| | - Samar Mortada Mahmoud
- Department of Human Anatomy and Embryology, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt;
| | - Ahmed El-Sayed Hassan
- Medical Physiology Department, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt; (A.E.-S.H.); (S.F.E.-S.)
- Department of Basic Medical Sciences, College of Medicine, Sulaiman Al-Rajhi University, Bukayriah 51941, Saudi Arabia
| | - Ahmed Behiry
- Department of Tropical Medicine and Endemic Diseases, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt;
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Ateya Megahed Ibrahim
- Department of Nursing, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.M.I.); (D.E.F.Z.)
- Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Port Said P.O. Box 42511, Egypt
| | - Donia Elsaid Fathi Zaghamir
- Department of Nursing, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.M.I.); (D.E.F.Z.)
- Department of Pediatric Nursing, Faculty of Nursing, Port Said University, Port Said P.O. Box 42511, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11579, Saudi Arabia;
| | - Sherein F. El-Sayed
- Medical Physiology Department, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt; (A.E.-S.H.); (S.F.E.-S.)
| |
Collapse
|
11
|
Metz CN, Xue X, Chatterjee PK, Adelson RP, Roth J, Brines M, Tracey KJ, Gregersen PK, Pavlov VA. Increased plasma lipopolysaccharide-binding protein and altered inflammatory mediators in overweight women suggest a state of subclinical endotoxemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.540879. [PMID: 37293028 PMCID: PMC10245681 DOI: 10.1101/2023.05.18.540879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic low-grade inflammation has been recognized as an underlying event linking obesity to cardiovascular disease (CVD). However, inflammatory alterations in individuals who are overweight remain understudied. To provide insight, we determined the levels of key circulating biomarkers of endotoxemia and inflammation, including lipopolysaccharide-binding protein (LBP), CRP, IL-6, leptin, and adiponectin in adult female subjects (n=40) who were lean or overweight and had high cholesterol and/or high blood pressure - two important conventional risk factors for CVD. Plasma levels of LBP were significantly higher in the overweight group compared with the lean group (P=0.005). The levels of CRP were also significantly higher in overweight subjects (P=0.01), as were IL-6 (P=0.02) and leptin (P=0.002), pro-inflammatory mediators associated with cardiovascular risk. Levels of adiponectin, an adipokine with anti-inflammatory and anti-atherogenic functions, were significantly lower in the overweight group (P=0.002). The leptin/adiponectin ratio, a preferential atherogenic marker was significantly increased in women who are overweight (P=0.02). LBP, CRP, leptin, and adiponectin levels significantly correlated with BMI, but not with age and there was a significant correlation between LBP and IL-6 levels. These results reveal the presence of subclinical endotoxemia and a pro-inflammatory state in overweight women and are of interest for further studies with the goal for improved understanding of cardiovascular health risks in women.
Collapse
Affiliation(s)
- Christine N. Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell-Hofstra University, Hempstead, NY 11550, USA
| | - Xiangying Xue
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Prodyot K Chatterjee
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Robert P. Adelson
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Jesse Roth
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell-Hofstra University, Hempstead, NY 11550, USA
| | - Michael Brines
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell-Hofstra University, Hempstead, NY 11550, USA
| | - Peter K. Gregersen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell-Hofstra University, Hempstead, NY 11550, USA
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell-Hofstra University, Hempstead, NY 11550, USA
| |
Collapse
|
12
|
Metz CN, Xue X, Chatterjee PK, Adelson RP, Brines M, Tracey KJ, Gregersen PK, Pavlov VA. Increased plasma lipopolysaccharide-binding protein and altered inflammatory mediators in overweight women suggest a state of subclinical endotoxemia. RESEARCH SQUARE 2023:rs.3.rs-3356683. [PMID: 37841878 PMCID: PMC10571637 DOI: 10.21203/rs.3.rs-3356683/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Chronic low-grade inflammation has been recognized as an underlying event linking obesity to cardiovascular disease (CVD). However, inflammatory alterations in individuals who are overweight remain understudied. To provide insight, we determined the levels of key circulating biomarkers of endotoxemia and inflammation, including lipopolysaccharide-binding protein (LBP), CRP, IL-6, leptin, and adiponectin in adult female subjects (n = 20) who were lean or overweight and had high cholesterol and/or high blood pressure - two important conventional risk factors for CVD. Plasma levels of LBP (a recognized marker of metabolic endotoxemia in obesity) were significantly higher in the overweight group compared with the lean group (P = 0.005). The levels of CRP, a general marker of inflammation, were also significantly higher in overweight subjects (P = 0.01), as were IL-6 (P = 0.02) and leptin (P = 0.002), pro-inflammatory mediators associated with cardiovascular risk. Levels of adiponectin, an adipokine with anti-inflammatory and anti-atherogenic functions, were significantly lower in the overweight group (P = 0.002). The leptin/adiponectin ratio, a preferential atherogenic marker was significantly increased in women who are overweight (P = 0.02). LBP, CRP, leptin, and adiponectin levels significantly correlated with BMI, but not with age. These results reveal the presence of subclinical endotoxemia and a pro-inflammatory state in overweight women and are of interest for further studies with the goal for improved understanding of women's cardiovascular health.
Collapse
|
13
|
Gajewska A, Strzelecki D, Gawlik-Kotelnicka O. Ghrelin as a Biomarker of "Immunometabolic Depression" and Its Connection with Dysbiosis. Nutrients 2023; 15:3960. [PMID: 37764744 PMCID: PMC10537261 DOI: 10.3390/nu15183960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Ghrelin, a gastrointestinal peptide, is an endogenous ligand of growth hormone secretagogue receptor 1a (GHSR1a), which is mainly produced by X/A-like cells in the intestinal mucosa. Beyond its initial description as a growth hormone (GH) secretagogue stimulator of appetite, ghrelin has been revealed to have a wide range of physiological effects, for example, the modulation of inflammation; the improvement of cardiac performance; the modulation of stress, anxiety, taste sensation, and reward-seeking behavior; and the regulation of glucose metabolism and thermogenesis. Ghrelin secretion is altered in depressive disorders and metabolic syndrome, which frequently co-occur, but it is still unknown how these modifications relate to the physiopathology of these disorders. This review highlights the increasing amount of research establishing the close relationship between ghrelin, nutrition, microbiota, and disorders such as depression and metabolic syndrome, and it evaluates the ghrelinergic system as a potential target for the development of effective pharmacotherapies.
Collapse
Affiliation(s)
- Agata Gajewska
- Faculty of Medicine, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| |
Collapse
|
14
|
Falvey A, Palandira SP, Chavan SS, Brines M, Tracey KJ, Pavlov VA. Electrical stimulation of the dorsal motor nucleus of the vagus regulates inflammation without affecting the heart rate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541191. [PMID: 37292846 PMCID: PMC10245723 DOI: 10.1101/2023.05.17.541191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background The vagus nerve plays an important role in neuroimmune interactions and in the regulation of inflammation. A major source of efferent vagus nerve fibers that contribute to the regulation of inflammation is the brainstem dorsal motor nucleus of the vagus (DMN) as recently shown using optogenetics. In contrast to optogenetics, electrical neuromodulation has broad therapeutic implications, but the anti-inflammatory efficacy of electrical DMN stimulation (eDMNS) was not previously investigated. Here, we examined the effects of eDMNS on heart rate (HR) and cytokine levels in murine endotoxemia as well as the cecal ligation and puncture (CLP) model of sepsis. Methods Anesthetized male 8-10-week-old C57BL/6 mice on a stereotaxic frame were subjected to eDMNS using a concentric bipolar electrode inserted into the left or right DMN or sham stimulation. eDMNS (50, 250 or 500 μA and 30 Hz, for 1 min) was performed and HR recorded. In endotoxemia experiments, sham or eDMNS utilizing 250 μA or 50 μA was performed for 5 mins and was followed by LPS (0.5 mg/kg) i.p. administration. eDMNS was also applied in mice with cervical unilateral vagotomy or sham operation. In CLP experiments sham or left eDMNS was performed immediately post CLP. Cytokines and corticosterone were analyzed 90 mins after LPS administration or 24h after CLP. CLP survival was monitored for 14 days. Results Either left or right eDMNS at 250 μA and 500 μA decreased HR, compared with pre- and post-stimulation. This effect was not observed at 50 μA. Left side eDMNS at 50 μA, compared with sham stimulation, significantly decreased serum and splenic levels of the pro-inflammatory cytokine TNF and increased serum levels of the anti-inflammatory cytokine IL-10 during endotoxemia. The anti-inflammatory effect of eDMNS was abrogated in mice with unilateral vagotomy and were not associated with serum corticosterone alterations. Right side eDMNS suppressed serum TNF levels but had no effects on serum IL-10 and on splenic cytokines. In mice with CLP, left side eDMNS suppressed serum TNF and IL-6, as well as splenic IL-6 and increased splenic IL-10 and significantly improved the survival rate of CLP mice. Conclusions For the first time we show that a regimen of eDMNS which does not cause bradycardia alleviates LPS-induced inflammation and these effects require an intact vagus nerve and are not associated with corticosteroid alterations. eDMNS also decreases inflammation and improves survival in a model of polymicrobial sepsis. These findings are of interest for further studies exploring bioelectronic anti-inflammatory approaches targeting the brainstem DMN.
Collapse
Affiliation(s)
- Aidan Falvey
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Santhoshi P. Palandira
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Sangeeta S. Chavan
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, New York 11549, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Michael Brines
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Kevin J. Tracey
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, New York 11549, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Valentin A. Pavlov
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, New York 11549, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| |
Collapse
|
15
|
de Moraes TL, Costa FO, Cabral DG, Fernandes DM, Sangaleti CT, Dalboni MA, Motta E Motta J, de Souza LA, Montano N, Irigoyen MC, Brines M, J Tracey K, Pavlov VA, Consolim Colombo FM. Brief periods of transcutaneous auricular vagus nerve stimulation improve autonomic balance and alter circulating monocytes and endothelial cells in patients with metabolic syndrome: a pilot study. Bioelectron Med 2023; 9:7. [PMID: 36998060 PMCID: PMC10064781 DOI: 10.1186/s42234-023-00109-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/11/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND There is emerging evidence that the nervous system regulates immune and metabolic alterations mediating Metabolic syndrome (MetS) pathogenesis via the vagus nerve. This study evaluated the effects of transcutaneous auricular vagus nerve stimulation (TAVNS) on key cardiovascular and inflammatory components of MetS. METHODS We conducted an open label, randomized (2:1), two-arm, parallel-group controlled trial in MetS patients. Subjects in the treatment group (n = 20) received 30 min of TAVNS with a NEMOS® device placed on the cymba conchae of the left ear, once weekly. Patients in the control group (n = 10) received no stimulation. Hemodynamic, heart rate variability (HRV), biochemical parameters, and monocytes, progenitor endothelial cells, circulating endothelial cells, and endothelial micro particles were evaluated at randomization, after the first TAVNS treatment, and again after 8 weeks of follow-up. RESULTS An improvement in sympathovagal balance (HRV analysis) was observed after the first TAVNS session. Only patients treated with TAVNS for 8 weeks had a significant decrease in office BP and HR, a further improvement in sympathovagal balance, with a shift of circulating monocytes towards an anti-inflammatory phenotype and endothelial cells to a reparative vascular profile. CONCLUSION These results are of interest for further study of TAVNS as treatment of MetS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Michael Brines
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Kevin J Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Valentin A Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Fernanda M Consolim Colombo
- Nove de Julho University - UNINOVE, São Paulo, Brazil.
- University of São Paulo, Hypertension Unit, São Paulo, Brazil.
| |
Collapse
|
16
|
Sharma AK. Current Trends in Nanotheranostics: A Concise Review on Bioimaging and Smart Wearable Technology. Nanotheranostics 2023; 7:258-269. [PMID: 37064611 PMCID: PMC10093415 DOI: 10.7150/ntno.82886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
The area of interventional nanotheranostics combines the use of interventional procedures with nanotechnology for the detection and treatment of physiological disorders. Using catheters or endoscopes, for example, interventional techniques make use of minimally invasive approaches to diagnose and treat medical disorders. It is feasible to increase the precision of these approaches and potency by integrating nanotechnology. To visualize and target various parts of the body, such as tumors or obstructed blood veins, one can utilize nanoscale probes or therapeutic delivery systems. Interventional nanotheranostics offers targeted, minimally invasive therapies that can reduce side effects and enhance patient outcomes, and it has the potential to alter the way that many medical illnesses are handled. Clinical enrollment and implementation of such laboratory scale theranostics approach in medical practice is promising for the patients where the user can benefit by tracking its physiological state. This review aims to introduce the most recent advancements in the field of clinical imaging and diagnostic techniques as well as newly developed on-body wearable devices to deliver therapeutics and monitor its due alleviation in the biological milieu.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
17
|
Leitzke M. Is the post-COVID-19 syndrome a severe impairment of acetylcholine-orchestrated neuromodulation that responds to nicotine administration? Bioelectron Med 2023; 9:2. [PMID: 36650574 PMCID: PMC9845100 DOI: 10.1186/s42234-023-00104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Following a SARS-CoV-2 infection, many individuals suffer from post-COVID-19 syndrome. It makes them unable to proceed with common everyday activities due to weakness, memory lapses, pain, dyspnea and other unspecific physical complaints. Several investigators could demonstrate that the SARS-CoV-2 related spike glycoprotein (SGP) attaches not only to ACE-2 receptors but also shows DNA sections highly affine to nicotinic acetylcholine receptors (nAChRs). The nAChR is the principal structure of cholinergic neuromodulation and is responsible for coordinated neuronal network interaction. Non-intrinsic viral nAChR attachment compromises integrative interneuronal communication substantially. This explains the cognitive, neuromuscular and mood impairment, as well as the vegetative symptoms, characterizing post-COVID-19 syndrome. The agonist ligand nicotine shows an up to 30-fold higher affinity to nACHRs than acetylcholine (ACh). We therefore hypothesize that this molecule could displace the virus from nAChR attachment and pave the way for unimpaired cholinergic signal transmission. Treating several individuals suffering from post-COVID-19 syndrome with a nicotine patch application, we witnessed improvements ranging from immediate and substantial to complete remission in a matter of days.
Collapse
Affiliation(s)
- Marco Leitzke
- Department of Anesthesiology, Helios Clinics, Colditzer Straße 48, 04703, Leisnig, Germany.
| |
Collapse
|
18
|
Migliolo L, de A. Boleti A, de O. Cardoso P, Frihling BF, e Silva P, de Moraes LRN. Adipose tissue, systematic inflammation, and neurodegenerative diseases. Neural Regen Res 2023; 18:38-46. [PMID: 35799506 PMCID: PMC9241402 DOI: 10.4103/1673-5374.343891] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
19
|
Pavlov VA, Tracey KJ. Bioelectronic medicine: Preclinical insights and clinical advances. Neuron 2022; 110:3627-3644. [PMID: 36174571 PMCID: PMC10155266 DOI: 10.1016/j.neuron.2022.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/28/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The nervous system maintains homeostasis and health. Homeostatic disruptions underlying the pathobiology of many diseases can be controlled by bioelectronic devices targeting CNS and peripheral neural circuits. New insights into the regulatory functions of the nervous system and technological developments in bioelectronics drive progress in the emerging field of bioelectronic medicine. Here, we provide an overview of key aspects of preclinical research, translation, and clinical advances in bioelectronic medicine.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Institute of Bioelectronic Medicine, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
20
|
Bloom O, Tracey KJ, Pavlov VA. Exploring the vagus nerve and the inflammatory reflex for therapeutic benefit in chronic spinal cord injury. Curr Opin Neurol 2022; 35:249-257. [PMID: 35102123 PMCID: PMC9258775 DOI: 10.1097/wco.0000000000001036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To describe features and implications of chronic systemic inflammation in individuals with spinal cord injury (SCI) and to summarize the growing therapeutic possibilities to explore the vagus nerve-mediated inflammatory reflex in this context. RECENT FINDINGS The discovery of the inflammatory reflex provides a rationale to explore neuromodulation modalities, that is, electrical vagus nerve stimulation and pharmacological cholinergic modalities to regulate inflammation after SCI. SUMMARY Inflammation in individuals with SCI may negatively impact functional recovery and medical consequences after SCI. Exploring the potential of the vagus nerve-based inflammatory reflex to restore autonomic regulation and control inflammation may provide a novel approach for functional improvement in SCI.
Collapse
Affiliation(s)
- Ona Bloom
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset
- Donald and Barbara Zucker School of Medicine, Hempstead, New York, USA
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset
- Donald and Barbara Zucker School of Medicine, Hempstead, New York, USA
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset
- Donald and Barbara Zucker School of Medicine, Hempstead, New York, USA
| |
Collapse
|
21
|
Evaluation of the Potential Risk of Mortality from SARS-CoV-2 Infection in Hospitalized Patients According to the Charlson Comorbidity Index. Healthcare (Basel) 2022; 10:healthcare10020362. [PMID: 35206976 PMCID: PMC8872141 DOI: 10.3390/healthcare10020362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background: The pandemic of COVID-19 has represented a major threat to global public health in the last century and therefore to identify predictors of mortality among COVID-19 hospitalized patients is widely justified. The aim of this study was to evaluate the possible usefulness of Charlson Comorbidity Index (CCI) as mortality predictor in patients hospitalized because COVID-19. Methods: This study was carried out in Zacatecas, Mexico, and it included 705 hospitalized patients with suspected of SARS-CoV-2 infection. Clinical data were collected, and the CCI score was calculated online using the calculator from the Sociedad Andaluza de Medicina Intensiva y Unidades Coronarias; the result was evaluated as mortality predictor among the patients with COVID-19. Results: 377 patients were positive for SARS-COV-2. Obesity increased the risk of intubation among the study population (odds ratio (OR) = 2.59; 95 CI: 1.36–4.92; p = 0.003). The CCI values were higher in patients who died because of COVID-19 complications than those observed in patients who survived (p < 0.001). Considering a CCI cutoff > 31.69, the area under the ROC curve was 0.75, with a sensitivity and a specificity of 63.6% and 87.7%, respectively. Having a CCI value > 31.69 increased the odds of death by 12.5 times among the study population (95% CI: 7.3–21.4; p < 0.001). Conclusions: The CCI is a suitable tool for the prediction of mortality in patients hospitalized for COVID-19. The presence of comorbidities in hospitalized patients with COVID-19 reflected as CCI > 31.69 increased the risk of death among the study population, so it is important to take precautionary measures in patients due to their condition and their increased vulnerability to SARS-CoV-2 infection.
Collapse
|
22
|
Falvey A, Metz CN, Tracey KJ, Pavlov VA. Peripheral nerve stimulation and immunity: the expanding opportunities for providing mechanistic insight and therapeutic intervention. Int Immunol 2022; 34:107-118. [PMID: 34498051 PMCID: PMC8783605 DOI: 10.1093/intimm/dxab068] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022] Open
Abstract
Pre-clinical research advances our understanding of the vagus nerve-mediated regulation of immunity and clinical trials successfully utilize electrical vagus nerve stimulation in the treatment of patients with inflammatory disorders. This symbiotic relationship between pre-clinical and clinical research exploring the vagus nerve-based 'inflammatory reflex' has substantially contributed to establishing the field of bioelectronic medicine. Recent studies identify a crosstalk between the vagus nerve and other neural circuitries in controlling inflammation and delineate new neural immunoregulatory pathways. Here we outline current mechanistic insights into the role of vagal and non-vagal neural pathways in neuro-immune communication and inflammatory regulation. We also provide a timely overview of expanding opportunities for bioelectronic neuromodulation in the treatment of various inflammatory disorders.
Collapse
Affiliation(s)
- Aidan Falvey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Christine N Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kevin J Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Valentin A Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
23
|
Castillo RL, Gonzaléz-Candia A, Candia AA. Pathophysiology of Acute Respiratory Failure by CoV-2 Infection: Role of Oxidative Stress, Endothelial Dysfunction and Obesity. Open Respir Med J 2021. [DOI: 10.2174/1874306402115010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) due to CoV-2 (coronavirus type 2) virus possess a particular risk of developing acute respiratory distress syndrome (ARDS) or SARS (severe acute respiratory syndrome coronavirus 2)-CoV2 in people with pre-existing conditions related to endothelial dysfunction and increased pro-inflammatory and pro-oxidant state. In between these conditions, chronic systemic inflammation related to obese patients is associated with the development of atherosclerosis, type 2 diabetes, and hypertension, comorbidities that adversely affect the clinical outcome in critical patients with COVID-19. Obesity affects up to 40% of the general population in the USA and more than 30% of the adult population in Chile. Until April 2021, 1,019,478 people have been infected, with 23,524 deaths. Given the coexistence of this worldwide obesity epidemic, COVID-19 negative outcomes are seriously enhanced in the current scenario. On the other hand, obesity is characterized by endothelial dysfunction observed in different vascular beds, an alteration which can be associated with impaired vasodilation, oxidative stress, and inflammatory events. Emerging evidence shows that obesity-related conditions such as endothelial dysfunction are associated with detrimental outcomes for COVID-19 evolution, especially if the patient derives to Intensive Care Units (ICU). This implies the need to understand the pathophysiology of the infection in the obese population, in order to propose therapeutic alternatives and public health policies, especially if the virus remains in the population. In this review, we summarize evidence about the pathogeny of Cov-2 infection in obese individuals and discuss how obesity-associated inflammatory and prooxidant status increase the severity of COVID-19.
Collapse
|
24
|
Li Z, Wang S, He Y, Li Q, Gao G, Tong G. Regulation of Apelin-13 on Bcl-2 and Caspase-3 and Its Effects on Adipocyte Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1687919. [PMID: 34603462 PMCID: PMC8486539 DOI: 10.1155/2021/1687919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The effects of apelin-13 on the expression of Bcl-2 and caspase-3 factors and the apoptosis of adipocytes were studied at the cellular and animal levels. METHODS 3T3-L1 preadipocytes were cultured and grouped. The third-generation cells were added to the control DMSO solvent and amidation-modified apelin-13. The expression of Bcl-2 and caspase-3 were detected. The cell growth viability and cell apoptosis were detected. DOI model rats were established. The effects of apelin-13 on DOI rat biochemical indicators, the expression of Bcl-2, caspase-3, and cell apoptosis were investigated by injecting amidation-modified apelin-13 through the tail vein. RESULT In in vitro experiments, amidation-modified apelin-13 can significantly reduce the growth viability of adipocytes and the expression of Bcl-2, increase the expression of caspase-3, and promote the apoptosis of adipocytes. Animal experiments also show that apelin-13 modified by amidation can adjust the abnormal biochemical indicators of DOI rats, decrease the expression of Bcl-2 in adipose tissue, increase the expression of caspase-3, and promote the apoptosis of adipocytes. CONCLUSION Amidation of apelin-13 can promote fat cell apoptosis and reduce the incidence of obesity. The mechanism may be accomplished by inhibiting Bcl-2 and caspase-3 factors. This study helps us understand the effect of apelin-13 on fat cell apoptosis and hopes to provide a basis for the development of antiobesity drugs.
Collapse
Affiliation(s)
- Zhan Li
- Department of Cardiology, The First Affiliated Hospital, Changsha Medical University, Changsha 410219, Hunan Province, China
| | - Sha Wang
- Department of Endocrinology, The First Affiliated Hospital, Changsha Medical University, Changsha 410219, Hunan Province, China
| | - Yiwei He
- Department of Cardiology, The First Affiliated Hospital, Changsha Medical University, Changsha 410219, Hunan Province, China
| | - Qiong Li
- Department of Endocrinology, The First Affiliated Hospital, Changsha Medical University, Changsha 410219, Hunan Province, China
| | - Guoying Gao
- Department of Cardiology, The First Affiliated Hospital, Changsha Medical University, Changsha 410219, Hunan Province, China
| | - Guoxiang Tong
- Department of Endocrinology, The First Affiliated Hospital, Changsha Medical University, Changsha 410219, Hunan Province, China
| |
Collapse
|
25
|
Zhang CL, Wang JJ, Li JN, Yang Y. Nonalcoholic fatty pancreas disease: An emerging clinical challenge. World J Clin Cases 2021; 9:6624-6638. [PMID: 34447810 PMCID: PMC8362510 DOI: 10.12998/wjcc.v9.i23.6624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty pancreas disease (NAFPD) is an emerging disease that has gained an increasing amount of attention in recent years. It describes fat accumulation in the pancreas with insignificant alcohol consumption, but the pathogenesis is largely unknown. A wide range of terms have been used to describe the phenomenon of pancreatic fat accumulation, but NAFPD remains an under-recognized and non-independent disorder. Obesity, age, sex, race, and unhealthy lifestyle are established independent risk factors for NAFPD, which is strongly associated with metabolic syndrome, type 2 diabetes, pancreatitis, pancreatic fistula, pancreatic cancer, and nonalcoholic fatty liver disease. At present, imaging techniques are common diagnostic aids, but uniform criteria and consensus are lacking. Therapeutically, healthy diet, weight loss, and exercise are the mainstays to reduce pancreatic fat accumulation. It can be seen that there is a limited understanding of NAFPD at this stage and further exploration is needed. Previous studies have revealed that NAFPD may directly affect diagnosis and clinical decision-making. Therefore, exploring the pathophysiological mechanism and clinical associations of NAFPD is a major challenge for researchers and clinicians.
Collapse
Affiliation(s)
- Cheng-Lei Zhang
- Department of Clinical Laboratory, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- The Institute of Endocrinology, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jing-Jiao Wang
- Department of Stomatology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jian-Ning Li
- The Institute of Endocrinology, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Yang
- The Institute of Endocrinology, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
26
|
Rangon CM, Barruet R, Mazouni A, Le Cossec C, Thevenin S, Guillaume J, Léguillier T, Huysman F, Luis D. Auricular Neuromodulation for Mass Vagus Nerve Stimulation: Insights From SOS COVID-19 a Multicentric, Randomized, Controlled, Double-Blind French Pilot Study. Front Physiol 2021; 12:704599. [PMID: 34408665 PMCID: PMC8365750 DOI: 10.3389/fphys.2021.704599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Importance: An exacerbated inflammatory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is believed to be one of the major causes of the morbidity and mortality of the coronavirus disease 2019 (COVID-19). Neuromodulation therapy, based on vagus nerve stimulation, was recently hypothesized to control both the SARS-CoV-2 replication and the ensuing inflammation likely through the inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cells pathway and could improve the clinical outcomes as an adjunct treatment. We proposed to test it by the stimulation of the auricular branch of the vagus nerve, i.e., auricular neuromodulation (AN), a non-invasive procedure through the insertion of semipermanent needles on the ears. Objective: The aim of this study was to assess the effect of AN on the clinical outcomes in patients affected by COVID-19. Design, Setting, and Participants: A multicenter, randomized, placebo-controlled, double-blind clinical trial included 31 patients with respiratory failure due to COVID-19 requiring hospitalization. Within 72 h after admission, patients received either AN (n = 14) or sham neuromodulation (SN, n = 15) in addition to the conventional treatments. Main Outcome and Measures: The primary endpoint of the study was the rate of a clinical benefit conferred by AN at Day 14 (D14) as assessed by a 7-point Clinical Progression Scale. The secondary endpoint of the study was the impact of AN on the rate of transfer to the intensive care unit (ICU) and on the survival rate at D14. Results: The AN procedure was well-tolerated without any reported side effects but with no significant improvement for the measures of both primary (p > 0.3) and secondary (p > 0.05) endpoints at the interim analysis. None of the AN-treated patients died but one in the SN group did (81 years). Two AN-treated patients (73 and 79 years, respectively) and one SN-treated patient (59 years) were transferred to ICU. Remarkably, AN-treated patients were older with more representation by males than in the SN arm (i.e., the median age of 75 vs. 65 years, 79% male vs. 47%). Conclusion: The AN procedure, which was used within 72 h after the admission of patients with COVID-19, was safe and could be successfully implemented during the first two waves of COVID-19 in France. Nevertheless, AN did not significantly improve the outcome of the patients in our small preliminary study. It is pertinent to explore further to validate AN as the non-invasive mass vagal stimulation solution for the forthcoming pandemics. Clinical Trial Registration: [https://clinicaltrials.gov/], identifier [NCT04341415].
Collapse
Affiliation(s)
- Claire-Marie Rangon
- Pain and Neuromodulation Unit, Neurosurgery Department, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Régine Barruet
- Infectious Diseases Department, Centre Hospitalier Simone Veil, Beauvais, France
| | | | - Chloé Le Cossec
- Clinical Research Department, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Sophie Thevenin
- Clinical Research Department, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Jessica Guillaume
- Clinical Research Department, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Teddy Léguillier
- Clinical Research Department, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Fabienne Huysman
- Clinical Research Department, Centre Hospitalier Simone Veil, Beauvais, France
| | - David Luis
- Clinical Research Department, Centre Hospitalier Simone Veil, Beauvais, France
- Intensive Care Unit, Centre Hospitalier Simone Veil, Beauvais, France
| |
Collapse
|
27
|
Yan T, Xiao R, Wang N, Shang R, Lin G. Obesity and severe coronavirus disease 2019: molecular mechanisms, paths forward, and therapeutic opportunities. Theranostics 2021; 11:8234-8253. [PMID: 34373739 PMCID: PMC8343994 DOI: 10.7150/thno.59293] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/20/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears to have higher pathogenicity among patients with obesity. Obesity, termed as body mass index greater than 30 kg/m2, has now been demonstrated to be important comorbidity for disease severity during coronavirus disease 2019 (COVID-19) pandemic and associated with adverse events. Unraveling mechanisms behind this phenomenon can assist scientists, clinicians, and policymakers in responding appropriately to the COVID-19 pandemic. In this review, we systemically delineated the potential mechanistic links between obesity and worsening COVID-19 from altered physiology, underlying diseases, metabolism, immunity, cytokine storm, and thrombosis. Problematic ventilation caused by obesity and preexisting medical disorders exacerbate organ dysfunction for patients with obesity. Chronic metabolic disorders, including dyslipidemia, hyperglycemia, vitamin D deficiency, and polymorphisms of metabolism-related genes in obesity, probably aid SARS-CoV-2 intrusion and impair antiviral responses. Obesity-induced inadequate antiviral immunity (interferon, natural killer cells, invariant natural killer T cell, dendritic cell, T cells, B cell) at the early stage of SARS-CoV-2 infection leads to delayed viral elimination, increased viral load, and expedited viral mutation. Cytokine storm, with the defective antiviral immunity, probably contributes to tissue damage and pathological progression, resulting in severe symptoms and poor prognosis. The prothrombotic state, driven in large part by endothelial dysfunction, platelet hyperactivation, hypercoagulability, and impaired fibrinolysis in obesity, also increases the risk of severe COVID-19. These mechanisms in the susceptibility to severe condition also open the possibility for host-directed therapies in population with obesity. By bridging work done in these fields, researchers can gain a holistic view of the paths forward and therapeutic opportunities to break the vicious cycle of obesity and its devastating complications in the next emerging pandemic.
Collapse
Affiliation(s)
- Tiantian Yan
- Military Burn Center, the 990th Hospital of People's Liberation Army Joint Logistics Support Force, Zhumadian, Henan, China
| | - Rong Xiao
- Military Burn Center, the 990th Hospital of People's Liberation Army Joint Logistics Support Force, Zhumadian, Henan, China
| | - Nannan Wang
- Military Burn Center, the 990th Hospital of People's Liberation Army Joint Logistics Support Force, Zhumadian, Henan, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Guoan Lin
- Military Burn Center, the 990th Hospital of People's Liberation Army Joint Logistics Support Force, Zhumadian, Henan, China
| |
Collapse
|
28
|
Bricher Choque PN, Vieira RP, Ulloa L, Grabulosa C, Irigoyen MC, De Angelis K, Ligeiro De Oliveira AP, Tracey KJ, Pavlov VA, Consolim-Colombo FM. The Cholinergic Drug Pyridostigmine Alleviates Inflammation During LPS-Induced Acute Respiratory Distress Syndrome. Front Pharmacol 2021; 12:624895. [PMID: 34017249 PMCID: PMC8129580 DOI: 10.3389/fphar.2021.624895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/13/2021] [Indexed: 01/12/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a critical illness complication that is associated with high mortality. ARDS is documented in severe cases of COVID-19. No effective pharmacological treatments for ARDS are currently available. Dysfunctional immune responses and pulmonary and systemic inflammation are characteristic features of ARDS pathogenesis. Recent advances in our understanding of the regulation of inflammation point to an important role of the vagus-nerve-mediated inflammatory reflex and neural cholinergic signaling. We examined whether pharmacological cholinergic activation using a clinically approved (for myasthenia gravis) cholinergic drug, the acetylcholinesterase inhibitor pyridostigmine alters pulmonary and systemic inflammation in mice with lipopolysaccharide (LPS)-induced ARDS. Male C57Bl/6 mice received one intratracheal instillation of LPS or were sham manipulated (control). Both groups were treated with either vehicle or pyridostigmine (1.5 mg/kg twice daily, 3 mg/day) administered by oral gavage starting at 1 h post-LPS and euthanized 24 h after LPS administration. Other groups were either sham manipulated or received LPS for 3 days and were treated with vehicle or pyridostigmine and euthanized at 72 h. Pyridostigmine treatment reduced the increased total number of cells and neutrophils in the bronchoalveolar lavage fluid (BALF) in mice with ARDS at 24 and 72 h. Pyridostigmine also reduced the number of macrophages and lymphocytes at 72 h. In addition, pyridostigmine suppressed the levels of TNF, IL-1β, IL-6, and IFN-γ in BALF and plasma at 24 and 72 h. However, this cholinergic agent did not significantly altered BALF and plasma levels of the anti-inflammatory cytokine IL-10. Neither LPS nor pyridostigmine affected BALF IFN-γ and IL-10 levels at 24 h post-LPS. In conclusion, treatments with the cholinergic agent pyridostigmine ameliorate pulmonary and systemic inflammatory responses in mice with endotoxin-induced ARDS. Considering that pyridostigmine is a clinically approved drug, these findings are of substantial interest for implementing pyridostigmine in therapeutic strategies for ARDS.
Collapse
Affiliation(s)
- Pamela Nithzi Bricher Choque
- Laboratory of Pulmonary Immunology, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Rodolfo P. Vieira
- Post-graduation Program in Bioengineering and in Biomedical Engineering, Universidade Brasil, São Paulo, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São Paulo, Brazil
- Federal University of São Paulo (UNIFESP), Post-graduation Program in Sciences of Human Movement and Rehabilitation, São Paulo, Brazil
- Departament of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Luis Ulloa
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Caren Grabulosa
- Laboratory of Pulmonary Immunology, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Maria Claudia Irigoyen
- Hypertension Unit, Heart Institute (INCOR), Medical School of University of São Paulo, São Paulo, Brazil
| | - Katia De Angelis
- Departament of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Ana Paula Ligeiro De Oliveira
- Laboratory of Pulmonary Immunology, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Fernanda Marciano Consolim-Colombo
- Laboratory of Pulmonary Immunology, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- Hypertension Unit, Heart Institute (INCOR), Medical School of University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Sangaleti CT, Katayama KY, De Angelis K, Lemos de Moraes T, Araújo AA, Lopes HF, Camacho C, Bortolotto LA, Michelini LC, Irigoyen MC, Olofsson PS, Barnaby DP, Tracey KJ, Pavlov VA, Consolim Colombo FM. The Cholinergic Drug Galantamine Alleviates Oxidative Stress Alongside Anti-inflammatory and Cardio-Metabolic Effects in Subjects With the Metabolic Syndrome in a Randomized Trial. Front Immunol 2021; 12:613979. [PMID: 33776997 PMCID: PMC7991724 DOI: 10.3389/fimmu.2021.613979] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background: The metabolic syndrome (MetS) is an obesity-associated disorder of pandemic proportions and limited treatment options. Oxidative stress, low-grade inflammation and altered neural autonomic regulation, are important components and drivers of pathogenesis. Galantamine, an acetylcholinesterase inhibitor and a cholinergic drug that is clinically-approved (for Alzheimer's disease) has been implicated in neural cholinergic regulation of inflammation in several conditions characterized with immune and metabolic derangements. Here we examined the effects of galantamine on oxidative stress in parallel with inflammatory and cardio-metabolic parameters in subjects with MetS. Trial Design and Methods: The effects of galantamine treatment, 8 mg daily for 4 weeks or placebo, followed by 16 mg daily for 8 weeks or placebo were studied in randomly assigned subjects with MetS (n = 22 per group) of both genders. Oxidative stress, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase activities, lipid and protein peroxidation, and nitrite levels were analyzed before and at the end of the treatment. In addition, plasma cytokine and adipokine levels, insulin resistance (HOMA-IR) and other relevant cardio-metabolic indices were analyzed. Autonomic regulation was also examined by heart rate variability (HRV) before treatment, and at every 4 weeks of treatment. Results: Galantamine treatment significantly increased antioxidant enzyme activities, including SOD [+1.65 USOD/mg protein, [95% CI 0.39-2.92], P = 0.004] and CAT [+0.93 nmol/mg, [95% CI 0.34-1.51], P = 0.01], decreased lipid peroxidation [thiobarbituric acid reactive substances [log scale 0.72 pmol/mg, [95% CI 0.46-1.07], P = 0.05], and systemic nitrite levels [log scale 0.83 μmol/mg protein, [95% CI 0.57-1.20], P = 0.04] compared with placebo. In addition, galantamine significantly alleviated the inflammatory state and insulin resistance, and decreased the low frequency/high frequency ratio of HRV, following 8 and 12 weeks of drug treatment. Conclusion: Low-dose galantamine alleviates oxidative stress, alongside beneficial anti-inflammatory, and metabolic effects, and modulates neural autonomic regulation in subjects with MetS. These findings are of considerable interest for further studies with the cholinergic drug galantamine to ameliorate MetS.
Collapse
Affiliation(s)
- Carine Teles Sangaleti
- Hypertension Unit, University of São Paulo (USP), São Paulo, Brazil
- Postgraduate Program in Health Science, Midwestern State University (UNICENTRO), Paraná, Brazil
| | - Keyla Yukari Katayama
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | - Kátia De Angelis
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
- Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Tércio Lemos de Moraes
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | | | - Heno F. Lopes
- Hypertension Unit, University of São Paulo (USP), São Paulo, Brazil
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | - Cleber Camacho
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | | | - Lisete Compagno Michelini
- Biomedical Sciences Institute Department of Physiology and Biophysics, University of São Paulo (USP), São Paulo, Brazil
| | | | - Peder S. Olofsson
- Laboratory of Immunobiology, Department of Medicine, Center for Bioelectronic Medicine, Karolinska Institutet, Stockholm, Sweden
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Douglas P. Barnaby
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Fernanda Marciano Consolim Colombo
- Hypertension Unit, University of São Paulo (USP), São Paulo, Brazil
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| |
Collapse
|