1
|
Parvanian S, Ge X, Garris CS. Recent developments in myeloid immune modulation in cancer therapy. Trends Cancer 2025; 11:365-375. [PMID: 39794212 DOI: 10.1016/j.trecan.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025]
Abstract
Myeloid cells play a crucial dual role in cancer progression and response to therapy, promoting tumor growth, enabling immune suppression, and contributing to metastatic spread. The ability of these cells to modulate the immune system has made them attractive targets for therapeutic strategies aimed at shifting their function from tumor promotion to fostering antitumor immunity. Therapeutic approaches targeting myeloid cells focus on modifying their numbers, genetics, metabolism, and interactions within the tumor microenvironment. These strategies aim to reverse their suppressive functions and redirect them to support antitumor immune responses by inhibiting immunosuppressive pathways, targeting specific receptors, and promoting their differentiation into less immunosuppressive phenotypes. Here, we discuss recent approaches to clinically target tumor myeloid cells, focusing on reprogramming myeloid cells to promote antitumor immunity.
Collapse
Affiliation(s)
- Sepideh Parvanian
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA
| | - Xinying Ge
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA; Master's Program in Immunology Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | - Christopher S Garris
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA.
| |
Collapse
|
2
|
Ibrahem SM, Ahmed EH, Shafik EA, Hetta HF, Bakry RM. Evaluation of circ_0002232 and circ-vimentin gene expressions as valuable biomarkers in acute myeloid leukemia patients. Mol Biol Rep 2025; 52:105. [PMID: 39776264 DOI: 10.1007/s11033-024-10113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND AND AIM Acute myeloid leukemia (AML) is a remarkably complex malignancy; with considerable genetic, epigenetic, and phenotypic heterogenicity. Circ-RNAs are a novel class of non-coding RNA. They may influence leukemia development and offer exciting possibilities for targeted AML diagnosis and therapy. This study aimed to detect circ_0002232 and circ-VIM expression levels in AML patients and their relation to the clinicopathological characteristics and disease outcome to assess the prognostic potential of both circ-RNAs and achieve a new target therapy for the disease. METHODS Circ_0002232 and circ-VIM gene expressions were measured in 60 AML patients and 30 controls using qRT-PCR. RESULTS Circ_0002232 was significantly downregulated in our patients compared to controls (P value < 0.001). On the other hand, circ-VIM was notably upregulated in our patients (P value = 0.005). Using ROC curve, circ_0002232 and circ-VIM biomarkers could distinguish AML patients from controls with AUC 0.847, 0.683 and P value < 0.0001, = 0.004 respectively. Patients with downregulated circ_0002232 were significantly younger than upregulated patients (p value = 0.003). In addition, downregulated circ_0002232 was significantly associated with decreased hemoglobin level and increased overall survival (OS). Regarding high circ-VIM expression in AML patients, it was significantly correlated with lacking complete remission and leukocytosis. CONCLUSION Circ_0002232 and circ-VIM could be valuable diagnostic biomarkers to differentiate AML patients from healthy controls in clinical use. Circ-VIM expression may influence AML prognosis. Further research is needed to validate the clinical utility of circ_0002232 as a prognostic marker for OS in AML patients.
Collapse
Affiliation(s)
- Salma Mahfouz Ibrahem
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Eman Hasan Ahmed
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Engy Adel Shafik
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Helal F Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia.
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Rania Mohamed Bakry
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Macečková D, Vaňková L, Bufka J, Hošek P, Moravec J, Pitule P. Antisense oligonucleotides as a targeted therapeutic approach in model of acute myeloid leukemia. Mol Biol Rep 2024; 52:57. [PMID: 39692897 DOI: 10.1007/s11033-024-10172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND The genetic and epigenetic alterations observed in acute myeloid leukemia (AML) contribute to its heterogeneity, influencing disease progression response to therapy, and patient outcomes. The use of antisense oligonucleotides (ASOs) technology allows for the design of oligonucleotide inhibitors based on gene sequence information alone, enabling precise targeting of key molecular pathways or specific genes implicated in AML. METHODS AND RESULTS Midostaurin, a FLT3 specific inhibitor and ASOs targeting particular genes, exons, or mutations was conducted using AML models. This ASOs treatment was designed to bind to exon 7 of the MBNL1 (muscleblind-like) gene. Another target was the FLT3 gene, focusing on two aspects: (a) FLT3-ITD (internal tandem duplication), to inhibit the expression of this aberrant gene form, and (b) the FLT3 in general. Treated and untreated cells were analyzed using quantitative PCR (qPCR), dot blot, and Raman spectroscopy. This study contrasts midostaurin with ASOs that inhibit FLT3 protein production or its isoforms via mRNA degradation. A trend of increased FLT3 expression was observed in midostaurin-treated cells, while ASO-treated cells showed decreased expression, though these changes were not statistically significant. CONCLUSIONS In AML, exon 7 of MBNL1 is involved in several cellular processes and in this study, exon 7 of MBNL1 was targeted for method optimization, with the highest block of the exon 7 gene variant observed 48 h post-transfection. Midostaurin, a multitargeted kinase inhibitor, acts against the receptor tyrosine kinase FLT3, a critical molecule in AML pathogenesis. While midostaurin blocks FLT3 signaling pathways, it paradoxically increases FLT3 expression.
Collapse
Affiliation(s)
- Diana Macečková
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.
- Laboratory of Tumor Biology and Immunotherapy Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, Pilsen, 32300, Czech Republic.
| | - Lenka Vaňková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jiří Bufka
- Department of Pediatrics, University Hospital Pilsen and Faculty of Medicine in Pilsen, Pilsen, Czechia
| | - Petr Hošek
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jiří Moravec
- Laboratory of Proteomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Pavel Pitule
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
4
|
Ali A, Phan A, Vaikari V, Park M, Pospiech M, Chu R, Meng Y, MacKay JA, Alachkar H. FLT3/CD99 Bispecific Antibody-Based Nanoparticles for Acute Myeloid Leukemia. CANCER RESEARCH COMMUNICATIONS 2024; 4:1946-1962. [PMID: 39007347 PMCID: PMC11305399 DOI: 10.1158/2767-9764.crc-24-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/22/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Cluster of differentiation 99 (CD99) is a receptor that is significantly upregulated in acute myeloid leukemia (AML). FMS-like tyrosine kinase 3 internal tandem duplication mutation in AML (FLT3-ITD AML) exhibits even higher levels of CD99 expression. Our group previously employed a novel peptide platform technology called elastin-like polypeptides and fused it with single-chain antibodies capable of binding to FLT3 (FLT3-A192) or CD99 (CD99-A192). Targeting either FLT3 or CD99 using FLT3-A192 or CD99-A192 led to AML cell death and reduced leukemia burden in AML mouse models. Here, we report on the development of a novel Co-Assembled construct that is capable of binding to both CD99 and FLT3 and the antileukemia activity of the bispecific construct in FLT3-ITD AML preclinical models. This dual-targeting Co-Assembled formulation exhibits cytotoxic effects on AML cells (AML cell lines and primary blasts) and reduced leukemia burden and prolonged survival in FLT3-ITD AML mouse models. Altogether, this study demonstrates the potential of an innovative therapeutic strategy that targets both FLT3 and CD99 in FLT3-ITD AML. SIGNIFICANCE This study investigates a dual-targeting strategy in acute myeloid leukemia (AML), focusing on FLT3 and CD99. The approach demonstrates enhanced therapeutic potential, presenting a novel option for AML treatment.
Collapse
Affiliation(s)
- Atham Ali
- Department of Clinical Pharmacy, USC School of Pharmacy, University of Southern California, Los Angeles, California.
| | - Alvin Phan
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, University of Southern California, Los Angeles, California.
| | - Vijaya Vaikari
- Department of Clinical Pharmacy, USC School of Pharmacy, University of Southern California, Los Angeles, California.
| | - Mincheol Park
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, University of Southern California, Los Angeles, California.
| | - Mateusz Pospiech
- Department of Clinical Pharmacy, USC School of Pharmacy, University of Southern California, Los Angeles, California.
| | - Ryan Chu
- Department of Clinical Pharmacy, USC School of Pharmacy, University of Southern California, Los Angeles, California.
| | - Yiting Meng
- Department of Clinical Pharmacy, USC School of Pharmacy, University of Southern California, Los Angeles, California.
| | - J. Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, University of Southern California, Los Angeles, California.
- Department of Ophthalmology, USC Roski Eye Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, California.
- Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California.
| | - Houda Alachkar
- Department of Clinical Pharmacy, USC School of Pharmacy, University of Southern California, Los Angeles, California.
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| |
Collapse
|
5
|
Xu J, Zong S, Sheng T, Zheng J, Wu Q, Wang Q, Tang A, Song Y, Fei Y, Li Z. Rapamycin increases leukemia cell sensitivity to chemotherapy by regulating mTORC1 pathway-mediated apoptosis and autophagy. Int J Hematol 2024; 119:541-551. [PMID: 38530586 DOI: 10.1007/s12185-024-03732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 03/28/2024]
Abstract
This study investigated the effect of rapamycin alone and in combination with chemotherapy (doxorubicin and cytarabine) on AML. Human acute monocytic leukemia cell line SHI-1 and NPG AML model mice created by intravenous injection of SHI-1 cell were treated with rapamycin, chemotherapy, or rapamycin plus chemotherapy. Analysis by cell counting kit-8, western blot, flow cytometry, and immunohistochemistry was performed, and results suggested that both rapamycin and chemotherapy inhibited proliferation of SHI-1 cells both in vitro and in vivo, suppressed neoplasm growth in vivo, and promoted survival of NPG AML mice. The antitumor effect of rapamycin plus chemotherapy was better than that of rapamycin alone and chemotherapy alone. In addition, western blot results demonstrated that rapamycin inhibited the phosphorylation of mTOR downstream targets 4EBP1 and S6K1 in SHI-1 cells, and increased the pro-apoptosis-related protein Bax and autophagy-associated proteins Beclin-1, LC3B-II, and ATG5 while reducing the anti-apoptosis-related protein Bcl-2. In conclusion, the results of this study indicate that rapamycin acts synergistically with doxorubicin and cytarabine in AML treatment, and its underlying mechanism might be associated with mTORC1 pathway-mediated apoptosis and autophagy.
Collapse
Affiliation(s)
- Jing Xu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Siwen Zong
- Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Tianle Sheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jifu Zheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Qiong Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qingming Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Aiping Tang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Yuan Song
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Yan Fei
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Zhenjiang Li
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
6
|
Wang J, Rong Q, Ye L, Fang B, Zhao Y, Sun Y, Zhou H, Wang D, He J, Cui Z, Zhang Q, Kang D, Hu L. Discovery of a Novel Orally Bioavailable FLT3-PROTAC Degrader for Efficient Treatment of Acute Myeloid Leukemia and Overcoming Resistance of FLT3 Inhibitors. J Med Chem 2024. [PMID: 38655686 DOI: 10.1021/acs.jmedchem.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Fms-like tyrosine receptor kinase 3 (FLT3) proteolysis-targeting chimeras (PROTACs) represent a promising approach to eliminate the resistance of FLT3 inhibitors. However, due to the poor druggability of PROTACs, the development of orally bioavailable FLT3-PROTACs faces great challenges. Herein, a novel orally bioavailable FLT3-ITD degrader A20 with excellent pharmacokinetic properties was discovered through reasonable design. A20 selectively inhibited the proliferation of FLT3-ITD mutant acute myeloid leukemia (AML) cells and potently induced FLT3-ITD degradation through the ubiquitin-proteasome system. Notably, oral administration of A20 resulted in complete tumor regression on subcutaneous AML xenograft models. Furthermore, on systemic AML xenograft models, A20 could completely eliminate the CD45+CD33+ human leukemic cells in murine and significantly prolonged the survival time of mice. Most importantly, A20 exerted significantly improved antiproliferative activity against drug-resistant AML cells compared to existing FLT3 inhibitors. These findings suggested that A20 could serve as a promising drug candidate for relapsed or refractory AML.
Collapse
Affiliation(s)
- Junwei Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Quanjin Rong
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lei Ye
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Bingqian Fang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yifan Zhao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yu Sun
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Haikun Zhou
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Dan Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jinting He
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zhenzhen Cui
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Qijian Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Di Kang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Su Y, Wu M, Zhou B, Bai Z, Pang R, Liu Z, Zhao W. Paclitaxel mediates the PI3K/AKT/mTOR pathway to reduce proliferation of FLT3‑ITD + AML cells and promote apoptosis. Exp Ther Med 2024; 27:161. [PMID: 38476887 PMCID: PMC10928971 DOI: 10.3892/etm.2024.12449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Acute myeloid leukemia (AML) with internal tandem duplication (ITD) mutations in the FLT3 tyrosine kinase tend to have a poor prognosis. FLT3-ITD can promote the progress of AML by activating the PI3K/AKT/mTOR pathway. Paclitaxel (PTX) is a natural anticancer drug that has been widely used in chemotherapy for multiple malignancies. The present study used the CCK-8 assay, flow cytometry, PCR and western blotting to explore the anti-leukemia effect and possible mechanisms of PTX on MV4-11 cells with the FLT3-ITD mutation and the underlying mechanism. As a result, it was found that PTX could inhibit proliferation of MV4-11 cells and promoted apoptosis by inhibiting the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yanyun Su
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Meiqing Wu
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Baowen Zhou
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ziwen Bai
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ruli Pang
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhenfang Liu
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Weihua Zhao
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
8
|
Jia Y, Sun C, Chen T, Zhu H, Wang T, Ye Y, Luo X, Zeng X, Yang Y, Zeng H, Zou Q, Liu E, Li J, Sun H. Recent advance in phytonanomedicine and mineral nanomedicine delivery system of the treatment for acute myeloid leukemia. J Nanobiotechnology 2023; 21:240. [PMID: 37491290 PMCID: PMC10369765 DOI: 10.1186/s12951-023-01968-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/25/2023] [Indexed: 07/27/2023] Open
Abstract
Acute myeloid leukemia (AML) is an invasive hematopoietic malignancy caused by excessive proliferation of myeloblasts. Classical chemotherapies and cell transplantation therapies have remarkable efficacy in AML treatment; however, 30-40% of patients relapsed or had refractory disease. The resistance of AML is closely related to its inherent cytogenetics or various gene mutations. Recently, phytonanomedicine are found to be effective against resistant AML cells and have become a research focus for nanotechnology development to improve their properties, such as increasing solubility, improving absorption, enhancing bioavailability, and maintaining sustained release and targeting. These novel phytonanomedicine and mineral nanomedicine, including nanocrystals, nanoemulsion, nanoparticles, nanoliposome, and nanomicelles, offer many advantages, such as flexible dosages or forms, multiple routes of administration, and curative effects. Therefore, we reviewed the application and progress of phytomedicine in AML treatment and discussed the limitations and future prospects. This review may provide a solid reference to guide future research on AML treatment.
Collapse
Affiliation(s)
- Yimin Jia
- Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Cun Sun
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Ting Chen
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Hui Zhu
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Tianrui Wang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yan Ye
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xing Luo
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xiaoqiang Zeng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yun Yang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Hao Zeng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Enqiang Liu
- Department of Hematology and Oncology, Qianjiang Central Hospital of Chongqing Municipality, Qian Jiang, Chonqing, 409000, China.
| | - Jieping Li
- Chongqing University Cancer Hospital, Chongqing, 400030, China.
- Department of Hematology and Oncology, Qianjiang Central Hospital of Chongqing Municipality, Qian Jiang, Chonqing, 409000, China.
| | - Hongwu Sun
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
9
|
Qian Y, Zhang X, Mao S, Wei W, Lin X, Ling Q, Ye W, Li F, Pan J, Zhou Y, Zhao Y, Huang X, Huang J, Tong H, Sun J, Jin J. ACC010, a novel BRD4 inhibitor, synergized with homoharringtonine in acute myeloid leukemia with FLT3-ITD. Mol Oncol 2022. [PMID: 36567628 DOI: 10.1002/1878-0261.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/06/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022] Open
Abstract
Bromodomain-containing protein 4 (BRD4) inhibitors have been clinically developed to treat acute myeloid leukemia (AML), but their application is limited by the possibility of drug resistance, which is reportedly associated with the activation of the WNT/β-catenin pathway. Meanwhile, homoharringtonine (HHT), a classic antileukemia drug, possibly inhibits the WNT/β-catenin pathway. In this study, we attempted to combine a novel BRD4 inhibitor (ACC010) and HHT to explore their synergistic lethal effects in treating AML. Here, we found that co-treatment with ACC010 and HHT synergistically inhibited cell proliferation, induced apoptosis, and arrested the cell cycle in FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD)-positive AML cells in vitro, and significantly inhibiting AML progression in vivo. Mechanistically, ACC010 and HHT cooperatively downregulated MYC and inhibited FLT3 activation. Further, when HHT was added, ACC010-resistant cells demonstrated a good synergy. We also extended our study to the mouse BaF3 cell line with FLT3-inhibitor-resistant FLT3-ITD/tyrosine kinase domain mutations and AML cells without FLT3-ITD. Collectively, our results suggested that the combination treatment of ACC010 and HHT might be a promising strategy for AML patients, especially those carrying FLT3-ITD.
Collapse
Affiliation(s)
- Yu Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Shihui Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Wenwen Wei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Xiangjie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Qing Ling
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Fenglin Li
- The Affiliated People's Hospital of Ningbo University, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Yutong Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Yanchun Zhao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,Jinan Microecological Biomedicine Shandong Laboratory, China
| |
Collapse
|
10
|
Zhou M, Gao X, Zheng X, Luo J. Functions and clinical significance of circular RNAs in acute myeloid leukemia. Front Pharmacol 2022; 13:1010579. [PMID: 36506538 PMCID: PMC9729264 DOI: 10.3389/fphar.2022.1010579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently closed single-stranded RNA molecules. Four types of circRNAs have been reported in animal cells, and they have typical characteristics in their biogenesis, nuclear export and degradation. Advances in our understanding of the molecular functions of circRNAs in sponging microRNAs, modulating transcription, regulating RNA-binding proteins, as well as encoding proteins have been made very recently. Dysregulated circRNAs are associated with human diseases such as acute myeloid leukemia (AML). In this review, we focus on the recently described mechanisms, role and clinical significance of circRNAs in AML. Although great progress of circRNAs in AML has been achieved, substantial efforts are still required to explore whether circRNAs exert their biological function by other mechanisms such as regulation of gene transcription or serving as translation template in AML. It is also urgent that researchers study the machineries regulating circRNAs fate, the downstream effectors of circRNAs modulatory networks, and the clinical application of circRNAs in AML.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Chongqing University, Chongqing, China,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China,*Correspondence: Min Zhou, ; Jing Luo,
| | - Xianling Gao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xin Zheng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Luo
- Department of Anesthesiology, The First People’s Hospital of Yunnan Province, Kunming, China,Department of Anesthesiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China,*Correspondence: Min Zhou, ; Jing Luo,
| |
Collapse
|
11
|
Ge SS, Liu SB, Xue SL. Developments and challenges of FLT3 inhibitors in acute myeloid leukemia. Front Oncol 2022; 12:996438. [PMID: 36185253 PMCID: PMC9515417 DOI: 10.3389/fonc.2022.996438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
FLT3 mutations are one of the most common genetic alterations in acute myeloid leukemia (AML) and are identified in approximately one-third of newly diagnosed patients. Aberrant FLT3 receptor signaling has important implications for the biology and clinical management of AML. In recent years, targeting FLT3 has been a part of every course of treatment in FLT3-ITD/TKD-mutated AML and contributes to substantially prolonged survival. At the same time, wide application of next-generation sequencing (NGS) technology has revealed a series of non-canonical FLT3 mutations, including point mutations and small insertions/deletions. Some of these mutations may be able to influence downstream phosphorylation and sensitivity to FLT3 inhibitors, while the correlation with clinical outcomes remains unclear. Exploration of FLT3-targeted therapy has made substantial progress, but resistance to FLT3 inhibitors has become a pressing issue. The mechanisms underlying FLT3 inhibitor tolerance can be roughly divided into primary resistance and secondary resistance. Primary resistance is related to abnormalities in signaling factors, such as FL, CXCL12, and FGF2, and secondary resistance mainly involves on-target mutations and off-target aberrations. To overcome this problem, novel agents such as FF-10101 have shown promising potential. Multitarget strategies directed at FLT3 and anomalous signaling factors simultaneously are in active clinical development and show promising results.
Collapse
Affiliation(s)
- Shuai-Shuai Ge
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Binding Studies and Lead Generation of Pteridin-7(8H)-one Derivatives Targeting FLT3. Int J Mol Sci 2022; 23:ijms23147696. [PMID: 35887060 PMCID: PMC9319409 DOI: 10.3390/ijms23147696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Ligand modification by substituting chemical groups within the binding pocket is a popular strategy for kinase drug development. In this study, a series of pteridin-7(8H)-one derivatives targeting wild-type FMS-like tyrosine kinase-3 (FLT3) and its D835Y mutant (FL3D835Y) were studied using a combination of molecular modeling techniques, such as docking, molecular dynamics (MD), binding energy calculation, and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies. We determined the protein–ligand binding affinity by employing molecular mechanics Poisson–Boltzmann/generalized Born surface area (MM-PB/GBSA), fast pulling ligand (FPL) simulation, linear interaction energy (LIE), umbrella sampling (US), and free energy perturbation (FEP) scoring functions. The structure–activity relationship (SAR) study was conducted using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), and the results were emphasized as a SAR scheme. In both the CoMFA and CoMSIA models, satisfactory correlation statistics were obtained between the observed and predicted inhibitory activity. The MD and SAR models were co-utilized to design several new compounds, and their inhibitory activities were anticipated using the CoMSIA model. The designed compounds with higher predicted pIC50 values than the most active compound were carried out for binding free energy evaluation to wild-type and mutant receptors using MM-PB/GBSA, LIE, and FEP methods.
Collapse
|
13
|
Molecular Modeling Studies of N-phenylpyrimidine-4-amine Derivatives for Inhibiting FMS-like Tyrosine Kinase-3. Int J Mol Sci 2021; 22:ijms222212511. [PMID: 34830393 PMCID: PMC8622510 DOI: 10.3390/ijms222212511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Overexpression and frequent mutations in FMS-like tyrosine kinase-3 (FLT3) are considered risk factors for severe acute myeloid leukemia (AML). Hyperactive FLT3 induces premature activation of multiple intracellular signaling pathways, resulting in cell proliferation and anti-apoptosis. We conducted the computational modeling studies of 40 pyrimidine-4,6-diamine-based compounds by integrating docking, molecular dynamics, and three-dimensional structure-activity relationship (3D-QSAR). Molecular docking showed that K644, C694, F691, E692, N701, D829, and F830 are critical residues for the binding of ligands at the hydrophobic active site. Molecular dynamics (MD), together with Molecular Mechanics Poison-Boltzmann/Generalized Born Surface Area, i.e., MM-PB(GB)SA, and linear interaction energy (LIE) estimation, provided critical information on the stability and binding affinity of the selected docked compounds. The MD study suggested that the mutation in the gatekeeper residue F691 exhibited a lower binding affinity to the ligand. Although, the mutation in D835 in the activation loop did not exhibit any significant change in the binding energy to the most active compound. We developed the ligand-based comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) models. CoMFA (q2 = 0.802, r2 = 0.983, and QF32 = 0.698) and CoMSIA (q2 = 0.725, r2 = 0.965 and QF32 = 0.668) established the structure-activity relationship (SAR) and showed a reasonable external predictive power. The contour maps from the CoMFA and CoMSIA models could explain valuable information about the favorable and unfavorable positions for chemical group substitution, which can increase or decrease the inhibitory activity of the compounds. In addition, we designed 30 novel compounds, and their predicted pIC50 values were assessed with the CoMSIA model, followed by the assessment of their physicochemical properties, bioavailability, and free energy calculation. The overall outcome could provide valuable information for designing and synthesizing more potent FLT3 inhibitors.
Collapse
|
14
|
Liu W, Cheng F. Circular RNA circCRKL inhibits the proliferation of acute myeloid leukemia cells via the miR-196a-5p/miR-196b-5p/p27 axis. Bioengineered 2021; 12:7704-7713. [PMID: 34617876 PMCID: PMC8806729 DOI: 10.1080/21655979.2021.1982310] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
As a new type of non-coding RNA, the role of circular RNA (circRNA) in various diseases and tumors has received considerable attention. Studies have shown that circRNAs play an important role in the progression of acute myeloid leukemia (AML) via different mechanisms. However, the specific underlying molecular mechanism of circRNAs in the proliferation of AML cells remians unclear. This study aimed to clarify the biological role and mechanism of circCRKL in AML. The results indicated low circCRKL expression in AML cell lines and samples. Moreover, the overexpression of circCRKL inhibited the proliferation and colony-forming ability of AML cells, while its silencing promoted them. In addition, bioinformatics tools and luciferase assays revealed that circCRKL could sponge miR-196a-5p and miR-196b-5p to promote the expression of p27. Furthermore, circCRKL inhibited AML cell proliferation via the miR-196a-5p/miR-196b-5p/p27 axis, suggesting a potential new target for AML therapy.
Collapse
Affiliation(s)
- Wen Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|