1
|
Abdul Manan M. Progress in Probiotic Science: Prospects of Functional Probiotic-Based Foods and Beverages. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:5567567. [PMID: 40259922 PMCID: PMC12011469 DOI: 10.1155/ijfo/5567567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
This comprehensive review explores the evolving role of probiotic-based foods and beverages, highlighting their potential as functional and "future foods" that could significantly enhance nutrition, health, and overall well-being. These products are gaining prominence for their benefits in gut health, immune support, and holistic wellness. However, their future success depends on addressing critical safety concerns and navigating administrative complexities. Ensuring that these products "do more good than harm" involves rigorous evaluations of probiotic strains, particularly those sourced from the human gastrointestinal tract. Lactic acid bacteria (LABs) serve as versatile and effective functional starter cultures for the development of probiotic foods and beverages. The review emphasizes the role of LABs as functional starter cultures and the development of precision probiotics in advancing these products. Establishing standardized guidelines and transparent practices is essential, requiring collaboration among regulatory bodies, industry stakeholders, and the scientific community. The review underscores the importance of innovation in developing "friendly bacteria," "super probiotics," precision fermentation, and effective safety assessments. The prospects of functional probiotic-based foods and beverages rely on refining these elements and adapting to emerging scientific advancements. Ultimately, empowering consumers with accurate information, fostering innovation, and maintaining stringent safety standards will shape the future of these products as trusted and beneficial components of a health-conscious society. Probiotic-based foods and beverages, often infused with LABs, a "friendly bacteria," are emerging as "super probiotics" and "future foods" designed to "do more good than harm" for overall health.
Collapse
Affiliation(s)
- Musaalbakri Abdul Manan
- Food Science and Technology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), MARDI Headquarters, Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Chen L, Wang X, Wang S, Liu W, Song Z, Liao H. The impact of gut microbiota on the occurrence, treatment, and prognosis of ischemic stroke. Neurobiol Dis 2025; 207:106836. [PMID: 39952411 DOI: 10.1016/j.nbd.2025.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025] Open
Abstract
Ischemic stroke (IS) is a cerebrovascular disease that predominantly affects middle-aged and elderly populations, exhibiting high mortality and disability rates. At present, the incidence of IS is increasing annually, with a notable trend towards younger affected individuals. Recent discoveries concerning the "gut-brain axis" have established a connection between the gut and the brain. Numerous studies have revealed that intestinal microbes play a crucial role in the onset, progression, and outcomes of IS. They are involved in the entire pathophysiological process of IS through mechanisms such as chronic inflammation, neural regulation, and metabolic processes. Although numerous studies have explored the relationship between IS and intestinal microbiota, comprehensive analyses of specific microbiota is relatively scarce. Therefore, this paper provides an overview of the typical changes in gut microbiota following IS and investigates the role of specific microorganisms in this context. Additionally, it presents a comprehensive analysis of post-stroke microbiological therapy and the relationship between IS and diet. The aim is to identify potential microbial targets for therapeutic intervention, as well as to highlight the benefits of microbiological therapies and the significance of dietary management. Overall, this paper seeks to provide key strategies for the treatment and management of IS, advocating for healthy diets and health programs for individuals. Meanwhile, it may offer a new perspective on the future interdisciplinary development of neurology, microbiology and nutrition.
Collapse
Affiliation(s)
- Liying Chen
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xi Wang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Shiqi Wang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Weili Liu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | | | - Huiling Liao
- Neurology Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
3
|
Yang Z, Zhang Z, Jiang S, Li A, Song H, Zhang J. Diet shapes and maintains the personalized native gut microbiomes in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2987-3000. [PMID: 39692041 DOI: 10.1002/jsfa.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND The gut microbiome plays a critical role in human health and disease. Different dietary backgrounds play an important role in the uniqueness and diversity of the gut microbiota in different individuals, which promotes heterogeneity in disease phenotypes and treatment responses. Here, we explored how diet affects the composition and function of the native gut microbiome of model mice, based on the shotgun metagenomic and metabolomic, by analyzing the gut microbiome of C57B/6J mice in different dietary backgrounds. RESULTS The gut microbiomes of mice receiving different diets consistently exhibit distinct compositions across bacterial species, strains, fungi and phages. This implies that native microbial communities cannot 'homogenize' rapidly becaise of priority effects and unchanging diets. Notably, hotspot bacteria such as Limosilactobacillus reuteri, Parabacteroides distasonis and Akkermansia muciniphila were significantly different among the groups. These species harbor diverse adaptive mutations, reflecting genomic evolutionary diversity. The functional profiles of the gut microbiota also exhibit selective differences, involving the capacity for carbohydrate, branched-chain amino acid and fatty acid synthesis, as well as virulence factors, carbohydrate-active enzymes and antibiotic resistance. Furthermore, the differences in the gut microbiota also propagate to the host's serum, where structural and specific metabolite differences were observed. Metabolites that directly impact host health, such as d-glucosamine 6-phosphate and testolic acid, also show significant differences between the different dietary groups. CONCLUSION Our findings underscore the profound influence of different dietary the composition and functionality of the gut microbiome, offering valuable insights into optimizing health outcomes through personalized nutritional interventions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhihan Yang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Zeng Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Ao Li
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Hainan Song
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| |
Collapse
|
4
|
Hou XW, Meng J, Chen XT, Zhao JX, Shang KM, Wei YJ, Liu R. Bacillus safensis M01 reversed the inflammatory injury of mice jejunum caused by enterotoxigenic Escherichia coli K88. Arch Microbiol 2025; 207:87. [PMID: 40087175 DOI: 10.1007/s00203-025-04287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major pathogen causing neonatal diarrhea in livestock, with antibiotics commonly used for control. However, antibiotic overuse has led to issues such as residues and bacterial resistance, underscoring the need for alternative prevention strategies. This study investigated the potential of Bacillus safensis (B. safensis) M01, isolated from healthy porcine feces in Shandong, China, to prevent ETEC infections. M01 exhibited over 80% inhibition of ETEC in vitro and was selected for further analysis. Pre-treatment of IPEC-J2 cells with M01 significantly reduced ETEC-induced cellular damage, enhanced cell viability, and inhibited bacterial adhesion. It modulated inflammatory responses by down-regulating IL-1β and TNF-α while up-regulating IL-10. Additionally, M01 promoted the expression of tight junction proteins, including Claudin-1, Occludin, and ZO-1. In the C57BL/6 mouse model, pre-feeding with M01 for 14 days improved jejunal injury caused by ETEC, as indicated by increased villus height/crypt depth ratios. Similar to in vitro findings, M01 reduced IL-1β and TNF-α expression while enhancing tight junction protein levels. These results suggest that B. safensis M01 is a promising probiotic candidate for preventing ETEC infections in livestock, offering an effective alternative to antibiotics.
Collapse
Affiliation(s)
- Xin-Wen Hou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Jinxin Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Xiao-Tong Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Ji-Xin Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Kai-Meng Shang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Yong-Jie Wei
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China
| | - Rui Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, People's Republic of China.
| |
Collapse
|
5
|
Wang M, Liu Y, Zhong L, Wu F, Wang J. Advancements in the investigation of gut microbiota-based strategies for stroke prevention and treatment. Front Immunol 2025; 16:1533343. [PMID: 40103814 PMCID: PMC11914130 DOI: 10.3389/fimmu.2025.1533343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Stroke represents a predominant cause of mortality and disability on a global scale, impacting millions annually and exerting a considerable strain on healthcare systems. The incidence of stroke exhibits regional variability, with ischemic stroke accounting for the majority of occurrences. Post-stroke complications, such as cognitive impairment, motor dysfunction, and recurrent stroke, profoundly affect patients' quality of life. Recent advancements have elucidated the microbiota-gut-brain axis (MGBA), underscoring the complex interplay between gut health and brain function. Dysbiosis, characterized by an imbalance in gut microbiota, is significantly linked to an elevated risk of stroke and unfavorable outcomes. The MGBA plays a crucial role in modulating immune function, neurotransmitter levels, and metabolic byproducts, which may intensify neuroinflammation and impair cerebral health. This review elucidates the role of MGBA in stroke pathophysiology and explores potential gut-targeted therapeutic strategies to reduce stroke risk and promote recovery, including probiotics, prebiotics, pharmacological interventions, and dietary modifications. However, the current prevention and treatment strategies based on intestinal flora still face many problems, such as the large difference of individual intestinal flora, the stability of efficacy, and the long-term safety need to be considered. Further research needs to be strengthened to promote its better application in clinical practice.
Collapse
Affiliation(s)
- Min Wang
- Department of Gastroenterology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Yan Liu
- Department of Gastroenterology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Li Zhong
- Department of Gastroenterology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Fang Wu
- Department of Gastroenterology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Jinjin Wang
- Department of Gastroenterology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Li J, Liu T, Xian M, Zhou K, Wei J. The Power of Exercise: Unlocking the Biological Mysteries of Peripheral-Central Crosstalk in Parkinson's Disease. J Adv Res 2025:S2090-1232(25)00143-2. [PMID: 40049515 DOI: 10.1016/j.jare.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/06/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Exercise is a widely recognized non-pharmacological treatment for Parkinson's Disease (PD). The bidirectional regulation between the brain and peripheral organs has emerged as a promising area of research, with the mechanisms by which exercise impacts PD closely linked to the interplay between peripheral signals and the central nervous system. AIM OF REVIEW This review aims to summarize the mechanisms by which exercise influences peripheral-central crosstalk to improve PD, discuss the molecular processes mediating these interactions, elucidate the pathways through which exercise may modulate PD pathophysiology, and identify directions for future research. KEY SCIENTIFIC CONCEPTS OF REVIEW This review examines how exercise-induced cytokine release promotes neuroprotection in PD. It discusses how exercise can stimulate cytokine secretion through various pathways, including the gut-brain, muscle-brain, liver-brain, adipose-brain, and bone-brain axes, thereby alleviating PD symptoms. Additionally, the potential contributions of the heart-brain, lung-brain, and spleen-brain axes, as well as multi-axis crosstalk-such as the brain-gut-muscle and brain-gut-bone axes-are explored in the context of exercise therapy. The study highlights the need for further research into peripheral-central crosstalk and outlines future directions to address challenges in clinical PD therapy.
Collapse
Affiliation(s)
- Jingwen Li
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, Henan, 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ke Zhou
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, Henan, 475004, China.
| | - Jianshe Wei
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, Henan, 475004, China; Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
7
|
Kim YR, Choi TR, Jo SH, Song WS, Kim T, Kim MG, Baek JH, Kwon SY, Choi BG, Seo SW, Jang CS, Yang YH, Kim YG. Deciphering the anti-obesity mechanisms of pharmabiotic probiotics through advanced multiomics analysis. iScience 2025; 28:111890. [PMID: 40017507 PMCID: PMC11867264 DOI: 10.1016/j.isci.2025.111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/23/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
Probiotics with "pharmabiotic" properties are increasingly recognized as effective tools for combating obesity by altering gut microbiota and reducing body fat. However, the molecular mechanisms underlying their anti-obesity effects remain largely unexplored due to the absence of a universal methodology. Herein, we developed a multiomics-based strategy to elucidate how probiotics reduce lipid production in adipocytes. Our initial investigation assessed the impact of probiotics at defined adipocyte differentiation stages. Leveraging these insights, we performed comprehensive multiomics analyses at key intervals to identify the suppression mechanisms of lipid formation. Lactobacillus reuteri, specifically, targets early differentiation stages, inhibits branched-chain amino acid catabolism, and reduces lipid accumulation in adipocytes by suppressing Krüppel-like factor 5. Concurrently, enhanced hypoxia-inducible factor 1 expression impedes adipogenesis by downregulating lipin-1 expression. This study not only demonstrates the effectiveness of our approach in revealing complex host-microbe interactions but also significantly advances probiotic therapeutic development, offering promising avenues for obesity management.
Collapse
Affiliation(s)
- Ye-Rim Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Won-Suk Song
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - TaeHyun Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Gyu Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Ji-Hyun Baek
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Seo-Young Kwon
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Bo-Gyeong Choi
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chol-Soon Jang
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
8
|
Tiwari S, Paramanik V. Lactobacillus fermentum ATCC 9338 Supplementation Prevents Depressive-Like Behaviors Through Glucocorticoid Receptor and N-Methyl-D-aspartate2b in Chronic Unpredictable Mild Stress Mouse Model. Mol Neurobiol 2025:10.1007/s12035-025-04738-3. [PMID: 39956887 DOI: 10.1007/s12035-025-04738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Depression is a long-term, related to stress neuropsychiatric disorder, leading to psychological health issues including worthlessness, anhedonia, sleep and appetite disturbances, dysregulated HPA axis, neuronal cell death, and alterations in the gut microbiota (GM). Dysregulated HPA axis increases level of glucocorticoids that induce proinflammatory response with activation of abnormal kynurenine pathway via metabolizing indoleamine-2,3-dioxygenase (IDO). Kynurenine pathway leads to excitotoxicity of N-methyl-D-aspartate (NMDA) receptor responsible for neuronal cell death. Further, probiotics supplementation gained attention from researchers and clinicians to treat neuropsychiatric diseases. GM alteration remains a key reason for depression; however, there is limited information about the role of probiotics on depression involving glucocorticoid receptor and NMDA excitotoxicity through IDO. Chronic unpredictable mild stress (CUMS) model was prepared to check the role of Lactobacillus fermentum ATCC 9338 (LF) and 1-methyl-D-tryptophan (1-MT) in depression. Herein, mice were placed into experimental groups: control, CUMS stressed, CUMS vehicle, CUMS LF, CUMS 1-MT, and CUMS UT (untreated). Results showed that peroral administration of 1 × 108 CFU/day/mouse LF and intraperitoneal dose of 1-MT (15 mg/kg BW/day) alleviate depressive-like behavior and improve motor coordination and walking patterns. Mice supplemented with LF and 1-MT exhibited a decreased expression of GR and NMDAR2b in the cortex, hippocampus, and medulla. Acetylcholinesterase, SOD, and CAT activities were improved in CUMS mice with supplementation of LF and 1-MT. The GM abundance in LF mice was similar to that in control mice. Such study suggests the roles of LF and 1-MT in depression and oxidative stress, and helpful to understand their therapeutic potential through the HPA axis and IDO.
Collapse
Affiliation(s)
- Sneha Tiwari
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484 887, India
| | - Vijay Paramanik
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484 887, India.
| |
Collapse
|
9
|
Jung SJ, Cho K, Jung ES, Son D, Byun JS, Kim SI, Chae SW, Yang JC, Lee SO, Lim S. Augmenting Cognitive Function in the Elderly with Mild Cognitive Impairment Using Probiotic Lacticaseibacillus rhamnosus CBT-LR5: A 12-Week Randomized, Double-Blind, Parallel-Group Non-Comparative Study. Nutrients 2025; 17:691. [PMID: 40005019 PMCID: PMC11858765 DOI: 10.3390/nu17040691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Probiotics have been shown to enhance cognitive function in individuals with mild cognitive impairment (MCI), but their efficacy varies, depending on the strain and dosage. OBJECTIVES Clinical investigations are crucial to confirm their safety, efficacy, and mechanism of action. This study was designed to assess the effective dosage, safety, and efficacy of MH-Pro, a test product containing Lacticaseibacillus rhamnosus CBT-LR5 (LR5) and skim milk (non-fat dry milk), in improving cognitive function and related physiological changes in older adults suspected of MCI over 12 weeks. METHODS In total, 20 participants (mean age: 68.9 years) were randomly assigned in a 1:1 ratio to either a low-dose group (1 × 1010 CFU LR5 with 1622 mg) or a high-dose group (1 × 1010 CFU LR5 with 4055 mg skim milk) in a double-blind, parallel-group clinical trial. RESULTS After 12 weeks, the low-dose group showed significant improvements in the MOCA-K subdomains, specifically in naming (p = 0.01) and delayed recall (p = 0.003). Additionally, levels of amyloid-β1 40/42 in the blood significantly decreased (p = 0.03) following supplementation in the low-dose group. The high-dose group exhibited significant improvement in orientation (p = 0.05). Moreover, overall cognitive enhancement was observed in the low-dose group (p = 0.003), while the high-dose group showed a trend toward improvement (p = 0.06). Fecal analysis revealed significant changes in bacterial composition, with an increase in Lacticaseibacillus after 12 weeks of MH-Pro consumption. Together, these findings provide foundational evidence suggesting that MH-Pro supplementation may serve as a potential intervention for enhancing cognitive function through gut-brain axis pathways in the elderly population. However, given the small sample size and the predominance of female participants, the impact of the outcome may be limited. Further large-scale studies are necessary to validate these preliminary results. CONCLUSIONS This study provides foundational evidence to recognize the use of LR5 and skim milk to prepare a probiotic supplement that enhances cognitive function in the aging population.
Collapse
Affiliation(s)
- Su-Jin Jung
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.-J.J.); (E.-S.J.); (S.-W.C.); (J.-C.Y.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Kyohee Cho
- R&D Center, Cell Biotech Co., Ltd., Gimpo-si 10003, Republic of Korea; (K.C.); (D.S.); (J.-S.B.); (S.-I.K.)
| | - Eun-Soo Jung
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.-J.J.); (E.-S.J.); (S.-W.C.); (J.-C.Y.)
| | - Dooheon Son
- R&D Center, Cell Biotech Co., Ltd., Gimpo-si 10003, Republic of Korea; (K.C.); (D.S.); (J.-S.B.); (S.-I.K.)
| | - Jong-Seon Byun
- R&D Center, Cell Biotech Co., Ltd., Gimpo-si 10003, Republic of Korea; (K.C.); (D.S.); (J.-S.B.); (S.-I.K.)
| | - Song-In Kim
- R&D Center, Cell Biotech Co., Ltd., Gimpo-si 10003, Republic of Korea; (K.C.); (D.S.); (J.-S.B.); (S.-I.K.)
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.-J.J.); (E.-S.J.); (S.-W.C.); (J.-C.Y.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Jong-Chul Yang
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.-J.J.); (E.-S.J.); (S.-W.C.); (J.-C.Y.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Seung-Ok Lee
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (S.-J.J.); (E.-S.J.); (S.-W.C.); (J.-C.Y.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Gastroenterology and Hepatology, Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Sanghyun Lim
- R&D Center, Cell Biotech Co., Ltd., Gimpo-si 10003, Republic of Korea; (K.C.); (D.S.); (J.-S.B.); (S.-I.K.)
| |
Collapse
|
10
|
Ju C, Liu R, Ma Y, Dong H, Xu R, Hu H, Hao D. Targeted microbiota dysbiosis repair: An important approach to health management after spinal cord injury. Ageing Res Rev 2025; 104:102648. [PMID: 39725357 DOI: 10.1016/j.arr.2024.102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Current research primarily focuses on the pathological mechanisms of spinal cord injury (SCI), seeking to promote spinal cord repair and restore motorial and sensory functions by elucidating mechanisms of cell death or axonal regeneration. However, SCI is almost irreversible, and patients often struggle to regain mobility or self-care abilities after injuries. Consequently, there has been significant interest in modulating systemic symptoms following SCI to improve patients' quality of life. Neuron axonal disconnection and substantial apoptotic events following SCI result in signal transmission loss, profoundly impacting various organ and systems, including the gastrointestinal tract. Dysbiosis can lead to severe bowel dysfunction in patients, substantially lowering their quality of life and significantly reducing life expectancy of them. Therefore, researches focusing on the restoration of the gut microbiota hold promise for potential therapeutic strategies aimed at rehabilitation after SCI. In this paper, we explore the regulatory roles that dietary fiber, short-chain fatty acids (SCFAs), probiotics, and microbiota transplantation play in patients with SCI, summarize the potential mechanisms of post-SCI dysbiosis, and discuss possible strategies to enhance long-term survival of SCI patients. We aim to provide potential insights for future research aimed at ameliorating dysbiosis in SCI patients.
Collapse
Affiliation(s)
- Cheng Ju
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Renfeng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Yanming Ma
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Hui Dong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Ruiqing Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Huimin Hu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| |
Collapse
|
11
|
Yin D, Zhao L, Deng S, Xie Y, Ro KS, Yang Z, Du L, Xie J, Wei D. Lactiplantibacillus plantarum X7022 Plays Roles on Aging Mice with Memory Impairment Induced by D-Galactose Through Restoring Neuronal Damage, Relieving Inflammation and Oxidative Stress. Probiotics Antimicrob Proteins 2025; 17:1-14. [PMID: 38183568 DOI: 10.1007/s12602-023-10208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/08/2024]
Abstract
In this study, Lactiplantibacillus plantarum X7022 was applied to ameliorate memory impairment of aging mice induced by D-galactose. The strain showed specific choloylglycine hydrolysis ability based on in vitro investigation. Morris water maze test showed L. plantarum X7022 administration improved learning ability and spatial memory of aging mice. The gavage of L. plantarum X7022 displayed a promising ability of relieving cerebral oxidative stress and hippocampal inflammatory condition according to the increased GSH level and SOD activity and decreased MDA level, as well as decreased TNF-α, IL-1β, and IL-6 levels. The intervention with the strain could protect neuron by regulating cell apoptosis and AChE overexpression and inhibiting amyloid-β deposition, as well as affect neuron functions by regulating CREB-BDNF signaling pathways and iNOS expression. Besides, the strain could improve fecal SCFA contents and increase the abundance of anti-inflammatory and antioxidant-related genera such as Lactobacillus, Akkermansia, and Adlercreutzia. These results suggest that L. plantarum X7022 could be a prospective therapeutic alternative for the improvement of memory impairment among the elderly.
Collapse
Affiliation(s)
- Deyi Yin
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, 130 # Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, 130 # Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Sijing Deng
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, 130 # Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Yaqi Xie
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, 130 # Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Kum-Song Ro
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, 130 # Meilong Rd, Shanghai, 200237, People's Republic of China
- Department of Biotechnology, Faculty of Life Science, Kim Hyong Jik University of Education, Pyongyang, 999093, Democratic People's Republic of Korea
| | - Zeyong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Municipal Key Clinical Specialty, Shanghai, 200030, People's Republic of China
| | - Lei Du
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, 130 # Meilong Rd, Shanghai, 200237, People's Republic of China.
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, 130 # Meilong Rd, Shanghai, 200237, People's Republic of China.
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, People's Republic of China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, 130 # Meilong Rd, Shanghai, 200237, People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, People's Republic of China
| |
Collapse
|
12
|
Pan Y, Huang Q, Liang Y, Xie Y, Tan F, Long X. Bifidobacterium breve BB05 alleviates depressive symptoms in mice via the AKT/mTOR pathway. Front Nutr 2025; 12:1529566. [PMID: 39949541 PMCID: PMC11821494 DOI: 10.3389/fnut.2025.1529566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction This study investigates the potential of Bifidobacterium breve BB05 (BB05) in mitigating depressive symptoms in a mouse model of Chronic Unpredictable Mild Stress (CUMS), with fluoxetine as a positive control. Methods and Results High-dose BB05 (1.0 × 109 CFU/kg, BB05H) significantly reduced anxiety- and depression-like behaviors in CUMS mice, as measured by the open field test, tail suspension test, and forced swim test. BB05 treatment also reduced pathological ileal damage, alleviated inflammation, and lowered serum levels of pro-inflammatory cytokines IL-6 and TNF-α. Additionally, BB05 increased serum 5-HT levels and decreased ACTH concentrations. Mechanistic analysis revealed that BB05 exerts antidepressant effects by activating the AKT/mTOR signaling pathway in the prefrontal cortex, promoting neuroprotection, neurogenesis, and synaptic plasticity. Discussion These findings suggest that BB05, particularly at higher doses, effectively alleviates CUMS-induced depressive behaviors and improves physiological outcomes, supporting the use of probiotics as a potential treatment for depression by targeting the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yanni Pan
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
| | - Qingling Huang
- Department of Sleep and Psychology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Yuan Liang
- School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Yuwuqi Xie
- School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Fang Tan
- College of Pre-School, Chongqing University of Education, Chongqing, China
| | - Xingyao Long
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
13
|
Tiwari S, Paramanik V. Role of Probiotics in Depression: Connecting Dots of Gut-Brain-Axis Through Hypothalamic-Pituitary Adrenal Axis and Tryptophan/Kynurenic Pathway involving Indoleamine-2,3-dioxygenase. Mol Neurobiol 2025:10.1007/s12035-025-04708-9. [PMID: 39875781 DOI: 10.1007/s12035-025-04708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025]
Abstract
Depression is one of the most disabling mental disorders worldwide and characterized by symptoms including worthlessness, anhedonia, sleep, and appetite disturbances. Recently, studies have suggested that tryptophan (Trp) metabolism plays a key role in depressed mood through serotonin and kynurenine pathway involving enzyme tryptophan 5-monooxygenase (TPH) and indoleamine-2,3-dioxygenase (IDO) respectively. Moreover, during neuroinflammation, IDO is activated by proinflammatory cytokines and affects neurogenesis, cognition, disturbed hypothalamic-pituitary-adrenal (HPA) axis, and gut homeostasis by altering the gut bacteria and its metabolites like Trp derivatives. Furthermore, over the decades, researchers have focused on understanding communication between the human microbiome, especially gut microbiota, and mental health, called gut-brain-axis (GBA), particularly through Trp metabolism. Supplementation of probiotics in depression has gained attention from researchers and clinicians. However, there is limited information about probiotics supplementation on depression involving enzyme IDO and kynurenine pathway metabolites. This review discussed the potential role of probiotics in depression through the tryptophan/kynurenine pathway.
Collapse
Affiliation(s)
- Sneha Tiwari
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak-484 887, MP, India
| | - Vijay Paramanik
- Cellular and Molecular Neurobiology and Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak-484 887, MP, India.
| |
Collapse
|
14
|
Kaltsas A, Giannakodimos I, Markou E, Adamos K, Stavropoulos M, Kratiras Z, Zachariou A, Dimitriadis F, Sofikitis N, Chrisofos M. The Role of Gut Microbiota Dysbiosis in Erectile Dysfunction: From Pathophysiology to Treatment Strategies. Microorganisms 2025; 13:250. [PMID: 40005617 PMCID: PMC11857656 DOI: 10.3390/microorganisms13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Erectile dysfunction (ED) is a prevalent male sexual disorder characterized by the persistent inability to achieve or maintain an erection sufficient for satisfactory sexual performance. While its etiology is multifactorial, encompassing vascular, neurological, hormonal, and psychological components, emerging evidence suggests a significant role for gut microbiota dysbiosis in its development. The gut microbiota influences various metabolic, inflammatory, and neuropsychological processes critical to erectile function. Dysbiosis can lead to systemic inflammation, endothelial dysfunction, hormonal imbalances, and altered neurotransmitter production, all of which are key factors in ED pathogenesis. This narrative review synthesizes current research on the association between gut microbiota alterations and ED, highlighting specific bacterial taxa implicated in ED through mechanisms involving inflammation, metabolic disturbances, and hormonal regulation. This review explores potential mechanisms linking gut microbiota and ED, including pro-inflammatory cytokines, gut barrier integrity disruption, metabolic disorders, psychological factors via the gut-brain axis, and hormonal regulation. Furthermore, the gut microbiota offers promising avenues for developing non-invasive biomarkers and therapeutic interventions such as probiotics, prebiotics, dietary modifications, and fecal microbiota transplantation. Future research should focus on longitudinal studies, mechanistic explorations, and clinical trials to validate these findings and translate them into clinical practice. Understanding the interplay between the gut microbiota and erectile function could unveil novel diagnostic biomarkers and pave the way for innovative treatments targeting the microbiota, ultimately improving men's sexual and overall health.
Collapse
Affiliation(s)
- Aris Kaltsas
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (I.G.); (K.A.); (M.S.); (Z.K.)
| | - Ilias Giannakodimos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (I.G.); (K.A.); (M.S.); (Z.K.)
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Konstantinos Adamos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (I.G.); (K.A.); (M.S.); (Z.K.)
| | - Marios Stavropoulos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (I.G.); (K.A.); (M.S.); (Z.K.)
| | - Zisis Kratiras
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (I.G.); (K.A.); (M.S.); (Z.K.)
| | - Athanasios Zachariou
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Nikolaos Sofikitis
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (I.G.); (K.A.); (M.S.); (Z.K.)
| |
Collapse
|
15
|
Zeng J, Cheong LYT, Lo CH. Therapeutic targeting of obesity-induced neuroinflammation and neurodegeneration. Front Endocrinol (Lausanne) 2025; 15:1456948. [PMID: 39897964 PMCID: PMC11781992 DOI: 10.3389/fendo.2024.1456948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Obesity is a major modifiable risk factor leading to neuroinflammation and neurodegeneration. Excessive fat storage in obesity promotes the progressive infiltration of immune cells into adipose tissue, resulting in the release of pro-inflammatory factors such as cytokines and adipokines. These inflammatory mediators circulate through the bloodstream, propagating inflammation both in the periphery and in the central nervous system. Gut dysbiosis, which results in a leaky intestinal barrier, exacerbates inflammation and plays a significant role in linking obesity to the pathogenesis of neuroinflammation and neurodegeneration through the gut-brain/gut-brain-liver axis. Inflammatory states within the brain can lead to insulin resistance, mitochondrial dysfunction, autolysosomal dysfunction, and increased oxidative stress. These disruptions impair normal neuronal function and subsequently lead to cognitive decline and motor deficits, similar to the pathologies observed in major neurodegenerative diseases, including Alzheimer's disease, multiple sclerosis, and Parkinson's disease. Understanding the underlying disease mechanisms is crucial for developing therapeutic strategies to address defects in these inflammatory and metabolic pathways. In this review, we summarize and provide insights into different therapeutic strategies, including methods to alter gut dysbiosis, lifestyle changes, dietary supplementation, as well as pharmacological agents derived from natural sources, that target obesity-induced neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Jialiu Zeng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, United States
| | - Lenny Yi Tong Cheong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chih Hung Lo
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, United States
- Department of Biology, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
16
|
Kim JH, Choi Y, Lee S, Oh MS. Probiotics as Potential Treatments for Neurodegenerative Diseases: a Review of the Evidence from in vivo to Clinical Trial. Biomol Ther (Seoul) 2025; 33:54-74. [PMID: 39676295 PMCID: PMC11704393 DOI: 10.4062/biomolther.2024.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
Neurodegenerative diseases (NDDs), characterized by the progressive deterioration of the structure and function of the nervous system, represent a significant global health challenge. Emerging research suggests that the gut microbiota plays a critical role in regulating neurodegeneration via modulation of the gut-brain axis. Probiotics, defined as live microorganisms that confer health benefits to the host, have garnered significant attention owing to their therapeutic potential in NDDs. This review examines the current research trends related to the microbiome-gut-brain axis across various NDDs, highlighting key findings and their implications. Additionally, the effects of specific probiotic strains, including Lactobacillus plantarum, Bifidobacterium breve, and Lactobacillus rhamnosus, on neurodegenerative processes were assessed, focusing on their potential therapeutic benefits. Overall, this review emphasizes the potential of probiotics as promising therapeutic agents for NDDs, underscoring the importance of further investigation into this emerging field.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yujin Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seungmin Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
17
|
De S, Banerjee S, Rakshit P, Banerjee S, Kumar SKA. Unraveling the Ties: Type 2 Diabetes and Parkinson's Disease - A Nano-Based Targeted Drug Delivery Approach. Curr Diabetes Rev 2025; 21:32-58. [PMID: 38747222 DOI: 10.2174/0115733998291968240429111357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 02/26/2025]
Abstract
The link between Type 2 Diabetes (T2DM) and Parkinson's Disease (PD) dates back to the early 1960s, and ongoing research is exploring this association. PD is linked to dysregulation of dopaminergic pathways, neuroinflammation, decreased PPAR-γ coactivator 1-α, increased phosphoprotein enriched in diabetes, and accelerated α-Syn amyloid fibril production caused by T2DM. This study aims to comprehensively evaluate the T2DM-PD association and risk factors for PD in T2DM individuals. The study reviews existing literature using reputable sources like Scopus, ScienceDirect, and PubMed, revealing a significant association between T2DM and worsened PD symptoms. Genetic profiles of T2DM-PD individuals show similarities, and potential risk factors include insulin-resistance and dysbiosis of the gut-brain microbiome. Anti-diabetic drugs exhibit neuroprotective effects in PD, and nanoscale delivery systems like exosomes, micelles, and liposomes show promise in enhancing drug efficacy by crossing the Blood-Brain Barrier (BBB). Brain targeting for PD uses exosomes, micelles, liposomes, dendrimers, solid lipid nanoparticles, nano-sized polymers, and niosomes to improve medication and gene therapy efficacy. Surface modification of nanocarriers with bioactive compounds (such as angiopep, lactoferrin, and OX26) enhances α-Syn conjugation and BBB permeability. Natural exosomes, though limited, hold potential for investigating DM-PD pathways in clinical research. The study delves into the underlying mechanisms of T2DM and PD and explores current therapeutic approaches in the field of nano-based targeted drug delivery. Emphasis is placed on resolved and ongoing issues in understanding and managing both conditions.
Collapse
Affiliation(s)
- Sourav De
- Department of Pharmaceutical Technology, Eminent College of Pharmaceutical Technology, Kolkata, 700126, West Bengal, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol, 713301, West Bengal, India
| | - Pallabita Rakshit
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol, 713301, West Bengal, India
| | - S K Ashok Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
18
|
Nami Y, Barghi A, Shahgolzari M, Salehian M, Haghshenas B. Mechanism of Action and Beneficial Effects of Probiotics in Amateur and Professional Athletes. Food Sci Nutr 2025; 13:e4658. [PMID: 39803224 PMCID: PMC11717059 DOI: 10.1002/fsn3.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Probiotics are live microorganisms that, when administered in adequate amounts, provide health benefits to the host. According to the International Society of Sports Nutrition (ISSN), probiotic supplementation can optimize the health, performance, and recovery of athletes at all stages of their careers. Recent research suggests that probiotics can improve immune system functions, reduce gastrointestinal distress, and increase gut permeability in athletes. Additionally, probiotics may provide athletes with secondary health benefits that could positively affect athletic performance through enhanced recovery from fatigue, improved immune function, and maintenance of healthy gastrointestinal tract function. The integration of some probiotic strains into athletes' diets and the consumption of multi-strain compounds may lead to an improvement in performance and can positively affect performance-related aspects such as fatigue, muscle pain, body composition, and cardiorespiratory fitness. In summary, probiotics can be beneficial for athletes at all stages of their careers, from amateur to professional. This paper reviews the progress of research on the role of probiotic supplementation in improving energy metabolism and immune system functions, reducing gastrointestinal distress, and enhancing recovery from fatigue in athletes at different levels.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West RegionAgricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO)TabrizIran
| | - Anahita Barghi
- Institute of Agricultural Life ScienceDong‐A UniversityBusanSouth Korea
| | - Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Biotechnology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Melika Salehian
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
19
|
Ou Y, Lin D, Ni X, Feng C, Rong J, Gao X, Yu Y, Liu X, Zhang Z, Xiao W, Tang Z, Zhao L. Acupuncture and moxibustion as adjunctive therapy for postoperative gastrointestinal dysfunction in gastric cancer: a systematic review and network meta-analysis. Front Med (Lausanne) 2024; 11:1464749. [PMID: 39722829 PMCID: PMC11668611 DOI: 10.3389/fmed.2024.1464749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Objectives This study aimed to evaluate and compare the efficacy and safety of different acupuncture and moxibustion techniques as adjunctive therapy in addressing Postoperative gastrointestinal dysfunction (PGD) associated with gastric cancer (GC). Methods Eight medical databases were comprehensively searched for relevant randomized controlled trials (RCTs) as of October 2024. A network meta-analysis (NMA) was performed using frequency models, combining all available direct and indirect evidence from RCTs. Time of first bowel sounds (TFBS) was set as the primary outcome, and time to first defecation (TFD) and time to first flatus (TFF) were set as the secondary outcomes. All outcomes were ranked using surface under the cumulative ranking curve (SUCRA) probabilities to determine a hierarchy of treatments, and the probability that the intervention will be in one of the top ranks increases with a higher SUCRA value. Results With 28 randomized controlled trials (RCTs) and 2,459 patients, 18 of which involved adjuvant acupuncture treatments. NMA based on SUCRA rankings showed that routine care (RC) with acupuncture (ACU), with acupressure (ACUP), with moxibustion (MOX) and acupoint injection (AI) were the top-ranked therapies for shortening TFBS and TFF in patients with GC compared with RC; additionally, RC + MOX + CUP and RC + MOX were the relatively best therapies for TFD. No serious adverse events were reported in the studies assessing the safety of adjunctive acupuncture therapy. Our study found that ST36, ST37, ST39, and PC6 were the most commonly used acupoints for adjuvant acupuncture treatments in treating PGD associated with GC. Conclusion Acupuncture and moxibustion, when used as supplementary therapies, demonstrated efficacy and relative safety in managing PGD associated with GC. The recommended order for adjunctive acupuncture- and moxibustion-related therapies for PGD in patients with GC, in terms of conservativeness, is as follows: RC + ACU, RC + MOX + AI, RC + ACUP, RC + MOX + CUP and RC + MOX. Despite their inclusion, the overall methodological quality of the studies was poor, which need for further high-quality randomized controlled trials to support existing results. Systematic review registration https://www.crd.york.ac.uk/PROSPERO.
Collapse
Affiliation(s)
- Yangxu Ou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dezhi Lin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xixiu Ni
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chengzhi Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Rong
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyu Gao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yang Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinrui Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhiyang Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wang Xiao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Centre for Acupuncture and Moxibustion, Chengdu, China
| | - Zili Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Centre for Acupuncture and Moxibustion, Chengdu, China
- Key Laboratory of Acupuncture for Senile Disease, Chengdu University of TCM, Ministry of Education, Chengdu, China
| |
Collapse
|
20
|
Li S, Chen H, Zhao R, Wang T, Ye J. Organic food consumption is positively associated with cognitive function among middle-aged and older adults: cross-sectional and longitudinal analyses. Eur J Nutr 2024; 64:40. [PMID: 39621138 DOI: 10.1007/s00394-024-03555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/27/2024] [Indexed: 02/16/2025]
Abstract
PURPOSE Examine cross-sectional and longitudinal relationships between organic food consumption and cognitive function among older adults. METHODS In this study, 6077 participants were selected from the 2012 Health and Retirement Study (HRS) and the Health Care and Nutrition Study (HCNS) for cross-sectional analyses, and retaining 4882 individuals for longitudinal analyses. Organic food consumption was assessed using a Food Frequency Questionnaire and participants were categorized based on their organic dietary diversity score. Cognitive function was evaluated using the Langa-Weir classification. A multivariable linear analysis was used to investigate the associations between organic food consumption and cognitive function. Cox proportional hazards model examined the association between mild cognitive impairment (MCI) and organic food consumption. RESULTS Our findings revealed a positive association between the organic food consumption and cognitive function among older adults. However, the consumption of organic food was found to significantly reduce the risk of MCI only among females, with a hazard ratio of 0.80 (95% CI 0.65-0.98). Furthermore, both organic animal and plant food consumption were independently linked to a 27% and 20% reduction in the risk of incident MCI, respectively. CONCLUSION This research results underscores the cognitive benefits of organic diets, particularly in mitigating the risk of MCI among females. Recognizing the sex-specific nature of this association suggests the importance of considering gender perspectives in the formulation of dietary interventions aimed at cognitive health.
Collapse
Affiliation(s)
- Shiyu Li
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Haowen Chen
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Ruxun Zhao
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingyu Wang
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jufeng Ye
- Experimental Teaching Center of Preventive Medicine, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), National preventive medicine experimental teaching demonstration center, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
21
|
Qian X, Li Q, Zhu H, Chen Y, Lin G, Zhang H, Chen W, Wang G, Tian P. Bifidobacteria with indole-3-lactic acid-producing capacity exhibit psychobiotic potential via reducing neuroinflammation. Cell Rep Med 2024; 5:101798. [PMID: 39471819 PMCID: PMC11604549 DOI: 10.1016/j.xcrm.2024.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/24/2024] [Accepted: 09/29/2024] [Indexed: 11/01/2024]
Abstract
The escalating global prevalence of depression demands effective therapeutic strategies, with psychobiotics emerging as a promising solution. However, the molecular mechanisms governing the neurobehavioral impact of psychobiotics remain elusive. This study reveals a significant reduction in hippocampal indole-3-lactic acid (ILA) levels in depressed mice, which is ameliorated by the psychobiotic Bifidobacterium breve. In both human subjects and mice, the ILA increase in the circulatory system results from bifidobacteria supplementation. Further investigation identifies the key aromatic lactate dehydrogenase (Aldh) gene and pathway in bifidobacteria responsible for ILA production. Importantly, the antidepressant effects are nullified in the Aldh mutants compared to the wild-type strain. At the bifidobacteria species level, those with Aldh exhibit heightened antidepressant effects. Finally, this study emphasizes the antidepressant efficacy of psychobiotic-derived ILA, potentially mediated by aryl hydrocarbon receptor (AhR) signaling activation to alleviate neuroinflammation. This study unveils the molecular and genetic foundations of psychobiotics' antidepressant effects, offering insights for microbial therapies targeting mood disorders.
Collapse
Affiliation(s)
- Xin Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qing Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Huiyue Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guopeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
22
|
Li Y, Yang J, Guo L. Role and mechanism of Lactobacillus casei in the modulation of alcohol preference in mice. Int Immunopharmacol 2024; 141:112902. [PMID: 39178519 DOI: 10.1016/j.intimp.2024.112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Prolonged alcohol consumption may lead to gastrointestinal tract dysfunction and cause abnormalities in the associated nervous system activity, thereby increasing the body's craving for alcohol. Lactobacillus casei is a probiotic that has been shown to reduce the incidence of alcohol-related diseases. However, it is unclear whether Lactobacillus casei can delay the development of alcohol dependence. METHODS The chronic intermittent active drinking method was used to establish a mouse alcohol dependence model. The mice were randomly divided into 4 treatment groups, as follows: (1) Control group: two bottles of distilled water alternately, 0.2 mL/d saline gavage. (2) Alcohol group: alternating water and alcohol, 0.2 mL/d saline gavage. (3) Low group: alternating water and alcohol, 0.2 mL/d 1 × 108CFU of Lactobacillus casei by gavage. (4) High group: alternating water and alcohol, 0.2 mL/d 1 × 109CFU of Lactobacillus casei by gavage. The daily water consumption (mL), alcohol consumption (mL) and body weight of each mouse were recorded. After that, pathological changes in the intestines, brain tissues and serum of the experimental animals were detected, while changes in the intestinal flora of the mice were analysed by 16S rRNA sequencing. RESULTS The Lactobacillus casei intervention did not produce a significant effect on body weight in alcohol-exposed mice (P>0.05), but significantly reduced alcohol preference in alcohol-exposed mice (P<0.05). Subsequent analyses showed that Lactobacillus casei significantly ameliorated intestinal, brain tissue, and systemic inflammatory responses in alcohol-exposed mice (P<0.05). 16S rRNA sequencing showed that alcohol-exposed mice treated with Lactobacillus casei exhibited a richer composition of intestinal microorganisms, such as f__Rikenellaceae, g__Alistipes_A_871400, and g__Bacteroides_H genera showed relative enrichment in the High group. CONCLUSION By showing that Lactobacillus casei slows down alcohol preference and alleviates gut and brain tissue inflammation in alcohol-exposed mice, our findings provide a possible strategy: Lactobacillus casei may be able to serve as a potential target for the prevention and treatment of alcohol dependence.
Collapse
Affiliation(s)
- Yangchun Li
- Mudanjiang Medical University, Mudanjiang, China
| | - Jinyue Yang
- Mudanjiang Medical University, Mudanjiang, China
| | - Lishuang Guo
- Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
23
|
Zhang Y, Song M, Fan J, Guo X, Tao S. Impact of probiotics-derived extracellular vesicles on livestock gut barrier function. J Anim Sci Biotechnol 2024; 15:149. [PMID: 39506860 PMCID: PMC11542448 DOI: 10.1186/s40104-024-01102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024] Open
Abstract
Probiotic extracellular vesicles (pEVs) are biologically active nanoparticle structures that can regulate the intestinal tract through direct or indirect mechanisms. They enhance the intestinal barrier function in livestock and poultry and help alleviate intestinal diseases. The specific effects of pEVs depend on their internal functional components, including nucleic acids, proteins, lipids, and other substances. This paper presents a narrative review of the impact of pEVs on the intestinal barrier across various segments of the intestinal tract, exploring their mechanisms of action while highlighting the limitations of current research. Investigating the mechanisms through which probiotics operate via pEVs could deepen our understanding and provide a theoretical foundation for their application in livestock production.
Collapse
Affiliation(s)
- Yuhan Zhang
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Mengzhen Song
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Jinping Fan
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Xuming Guo
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
24
|
Golbaghi N, Naeimi S, Darvishi A, Najari N, Cussotto S. Probiotics in autism spectrum disorder: Recent insights from animal models. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024; 28:2722-2737. [PMID: 38666595 DOI: 10.1177/13623613241246911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
LAY ABSTRACT Autism spectrum disorder is a neurodevelopmental disorder characterized by a wide range of behavioral alterations, including impaired social interaction and repetitive behaviors. Numerous pharmacological interventions have been developed for autism spectrum disorder, often proving ineffective and accompanied by a multitude of side effects. The gut microbiota is the reservoir of bacteria inhabiting our gastrointestinal tract. The gut microbial alterations observed in individuals with autism spectrum disorder, including elevated levels of Bacteroidetes, Firmicutes, and Proteobacteria, as well as reduced levels of Bifidobacterium, provide a basis for further investigation into the role of the gut microbiota in autism spectrum disorder. Recent preclinical studies have shown favorable outcomes with probiotic therapy, including improvements in oxidative stress, anti-inflammatory effects, regulation of neurotransmitters, and restoration of microbial balance. The aim of this review is to explore the potential of probiotics for the management and treatment of autism spectrum disorder, by investigating insights from recent studies in animals.
Collapse
Affiliation(s)
- Navid Golbaghi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Saeideh Naeimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Afra Darvishi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloofar Najari
- School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sofia Cussotto
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations (CESP), UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri Moissan, Orsay, France
| |
Collapse
|
25
|
Qiao L, Yang G, Wang P, Xu C. The potential role of mitochondria in the microbiota-gut-brain axis: Implications for brain health. Pharmacol Res 2024; 209:107434. [PMID: 39332752 DOI: 10.1016/j.phrs.2024.107434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Mitochondria are crucial organelles that regulate cellular energy metabolism, calcium homeostasis, and oxidative stress responses, playing pivotal roles in brain development and neurodegeneration. Concurrently, the gut microbiota has emerged as a key modulator of brain physiology and pathology through the microbiota-gut-brain axis. Recent evidence suggests an intricate crosstalk between the gut microbiota and mitochondrial function, mediated by microbial metabolites that can influence mitochondrial activities in the brain. This review aims to provide a comprehensive overview of the emerging role of mitochondria as critical mediators in the microbiota-gut-brain axis, shaping brain health and neurological disease pathogenesis. We discuss how gut microbial metabolites such as short-chain fatty acids, secondary bile acids, tryptophan metabolites, and trimethylamine N-oxide can traverse the blood-brain barrier and modulate mitochondrial processes including energy production, calcium regulation, mitophagy, and oxidative stress in neurons and glial cells. Additionally, we proposed targeting the mitochondria through diet, prebiotics, probiotics, or microbial metabolites as a promising potential therapeutic approach to maintain brain health by optimizing mitochondrial fitness. Overall, further investigations into how the gut microbiota and its metabolites regulate mitochondrial bioenergetics, dynamics, and stress responses will provide valuable insights into the microbiota-gut-brain axis in both health and disease states.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ge Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peng Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Department of Psychiatry, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
26
|
Félix J, Baca A, Taboada L, Álvarez-Calatayud G, De la Fuente M. Consumption of a Probiotic Blend with Vitamin D Improves Immunity, Redox, and Inflammatory State, Decreasing the Rate of Aging-A Pilot Study. Biomolecules 2024; 14:1360. [PMID: 39595538 PMCID: PMC11591724 DOI: 10.3390/biom14111360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
There is evidence of the effect of probiotic intake on the immune system. However, the effect probiotics may have on the rate of aging is unknown. The aim of this study is to determine the effect of a probiotic blend on immunity, redox state, inflammation, and the rate of aging or biological age. A group of 10 men and 14 women took, daily for 2 months, a sachet with three probiotics (Bifidobacterium animalis subsp. lactis BSO1, Lactobacillus reuteri LRE02, Lactobacillus plantarum LP14) and vitamin D. Before starting the treatment and after 2 months, peripheral blood was collected. Immune functions were assessed in isolated immune cells, and cytokine concentrations were also measured both in mononuclear cell cultures and plasma. Redox state parameters were also analyzed in whole blood cells. Finally, the Immunity Clock was applied to determine the biological age. Results show that the intake of this probiotic blend in general, in both men and women, improves immunity and decreases the oxidative and inflammatory state. In addition, it rejuvenates the biological age by 10 years on average. It can be concluded that this probiotic blend could be proposed as a good strategy to slow down the aging process, and to achieve healthy aging.
Collapse
Affiliation(s)
- Judith Félix
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (A.B.); (M.D.l.F.)
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Adriana Baca
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (A.B.); (M.D.l.F.)
| | - Luz Taboada
- General Medicine Area, Hospital HM Sanchinarro, 28040 Madrid, Spain;
| | - Guillermo Álvarez-Calatayud
- Gastroenterology and Child Nutrition Area, General University Hospital Gregorio Marañón, 28007 Madrid, Spain;
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28040 Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (A.B.); (M.D.l.F.)
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
27
|
Deng Z, Li D, Wang L, Lan J, Wang J, Ma Y. Activation of GABA BR Attenuates Intestinal Inflammation by Reducing Oxidative Stress through Modulating the TLR4/MyD88/NLRP3 Pathway and Gut Microbiota Abundance. Antioxidants (Basel) 2024; 13:1141. [PMID: 39334800 PMCID: PMC11428452 DOI: 10.3390/antiox13091141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/28/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress emerges as a prominent factor in the onset and progression of intestinal inflammation, primarily due to its critical role in damaging cells and tissues. GABAergic signaling is important in the occurrence and development of various intestinal disorders, yet its effect on oxidative stress remains unclear. We attempted to assess whether GABAergic signaling participated in the regulation of oxidative stress during enteritis. The results showed that lipopolysaccharide (LPS) significantly decreased γ-aminobutyric acid (GABA) levels in the ileal tissues of mice. Interestingly, the application of GABA significantly repressed the shedding of intestinal mucosal epithelial cells and inflammatory cell infiltration, inhibited the expressions of proinflammatory factors, including granulocyte colony-stimulating factor and granulocyte-macrophage colony stimulating factor, and enhanced the levels of anti-inflammatory cytokines interleukin (IL)-4 and IL-10, indicating that GABA could alleviate enteritis in mice. This observation was further supported by transcriptome sequencing, revealing a total of 271 differentially expressed genes, which exhibited a marked enrichment of inflammatory and immune-related pathways, alongside a prominent enhancement of GABA B receptor (GABABR) signaling following GABA administration. Effectively, Baclofen pretreatment alleviated intestinal mucosal damage in LPS-induced mice, suppressed proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor alpha expressions, and boosted total antioxidant capacity, superoxide dismutase (SOD), and glutathione (GSH) levels. Moreover, Baclofen notably enhanced the viability of LPS-stimulated IPEC-J2 cells, contracted the proinflammatory secretion factors, and reinforced SOD, GSH, and catalase levels, emphasizing the anti-inflammatory and antioxidant effects associated with GABABR activation. Mechanistically, Baclofen restrained the mRNA and protein levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3), and inducible nitric oxide synthase, while elevating nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 in both mice and IPEC-J2 cells, indicating that activating GABABR strengthened antioxidant abilities by interrupting the TLR4/MyD88/NLRP3 pathway. Furthermore, 16S rDNA analysis demonstrated that Baclofen increased the relative abundance of probiotic, particularly Lactobacillus, renowned for its antioxidant properties, while reducing the relative richness of harmful bacteria, predominantly Enterobacteriaceae, suggesting that GABABR signaling may have contributed to reversing intestinal flora imbalances to relieve oxidative stress in LPS-induced mice. Our study identified previously unappreciated roles for GABABR signaling in constricting oxidative stress to attenuate enteritis, thus offering novel insights for the treatment of intestinal inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunfei Ma
- State Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.D.); (D.L.); (L.W.); (J.L.); (J.W.)
| |
Collapse
|
28
|
Hu F, Gao Q, Zheng C, Zhang W, Yang Z, Wang S, Zhang Y, Lu T. Encapsulated lactiplantibacillus plantarum improves Alzheimer's symptoms in APP/PS1 mice. J Nanobiotechnology 2024; 22:582. [PMID: 39304919 PMCID: PMC11414319 DOI: 10.1186/s12951-024-02862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder that can result in neurotoxicity and an imbalance in gut microbiota. Probiotics have been shown to play an important role in regulating the gut microbiota, but their viability and bioactivity are often compromised as they traverse the gastrointestinal tract, thereby reducing their efficacy and limiting their clinical utility. RESULTS In this work, layer-by-layer (LbL) encapsulation technology was used to encapsulate Lactiplantibacillus plantarum (LP) to improve the above shortcomings. Studies in APPswe/PS1dE9 (APP/PS1) transgenic mice show that LbL-encapsulated LP ((CS/SP)2-LP) protects LP from gastrointestinal damage while (CS/SP)2-LP treatment It improves brain neuroinflammation and neuronal damage in AD mice, reduces Aβ deposition, improves tau protein phosphorylation levels, and restores intestinal barrier damage in AD mice. In addition, post-synaptic density protein 95 (PSD-95) expression increased in AD mice after treatment, indicating enhanced synaptic plasticity. Fecal metabolomic and microbiological analyzes showed that the disordered intestinal microbiota composition of AD mice was restored and short-chain fatty acids (SCFAs) levels were significantly increased after (CS/SP)2-LP treatment. CONCLUSION Overall, the above evidence suggests that (CS/SP)2-LP can improve AD symptoms by restoring the balance of intestinal microbiota, and (CS/SP)2-LP treatment will provide a new method to improve the symptoms of AD patients.
Collapse
Affiliation(s)
- Fangfang Hu
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qian Gao
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Caiyun Zheng
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wenhui Zhang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ziyi Yang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shihao Wang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yanni Zhang
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Tingli Lu
- Key Laboratory of Space Bioscience and Biotechnology, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| |
Collapse
|
29
|
Crocetta A, Liloia D, Costa T, Duca S, Cauda F, Manuello J. From gut to brain: unveiling probiotic effects through a neuroimaging perspective-A systematic review of randomized controlled trials. Front Nutr 2024; 11:1446854. [PMID: 39360283 PMCID: PMC11444994 DOI: 10.3389/fnut.2024.1446854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
The gut-brain axis, a bidirectional communication network between the gastrointestinal system and the brain, significantly influences mental health and behavior. Probiotics, live microorganisms conferring health benefits, have garnered attention for their potential to modulate this axis. However, their effects on brain function through gut microbiota modulation remain controversial. This systematic review examines the effects of probiotics on brain activity and functioning, focusing on randomized controlled trials using both resting-state and task-based functional magnetic resonance imaging (fMRI) methodologies. Studies investigating probiotic effects on brain activity in healthy individuals and clinical populations (i.e., major depressive disorder and irritable bowel syndrome) were identified. In healthy individuals, task-based fMRI studies indicated that probiotics modulate brain activity related to emotional regulation and cognitive processing, particularly in high-order areas such as the amygdala, precuneus, and orbitofrontal cortex. Resting-state fMRI studies revealed changes in connectivity patterns, such as increased activation in the Salience Network and reduced activity in the Default Mode Network. In clinical populations, task-based fMRI studies showed that probiotics could normalize brain function in patients with major depressive disorder and irritable bowel syndrome. Resting-state fMRI studies further suggested improved connectivity in mood-regulating networks, specifically in the subcallosal cortex, amygdala and hippocampus. Despite promising findings, methodological variability and limited sample sizes emphasize the need for rigorous, longitudinal research to clarify the beneficial effects of probiotics on the gut-brain axis and mental health.
Collapse
Affiliation(s)
- Annachiara Crocetta
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Donato Liloia
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Tommaso Costa
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | - Sergio Duca
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Franco Cauda
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | - Jordi Manuello
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Move’N’Brains Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
30
|
Lu S, Zhao Q, Guan Y, Sun Z, Li W, Guo S, Zhang A. The communication mechanism of the gut-brain axis and its effect on central nervous system diseases: A systematic review. Biomed Pharmacother 2024; 178:117207. [PMID: 39067168 DOI: 10.1016/j.biopha.2024.117207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Gut microbiota is involved in intricate and active metabolic processes the host's brain function, especially its role in immune responses, secondary metabolism, and symbiotic connections with the host. Gut microbiota can promote the production of essential metabolites, neurotransmitters, and other neuroactive chemicals that affect the development and treatment of central nervous system diseases. This article introduces the relevant pathways and manners of the communication between the brain and gut, summarizes a comprehensive overview of the current research status of key gut microbiota metabolites that affect the functions of the nervous system, revealing those adverse factors that affect typical communication between the brain-gut axis, and outlining the efforts made by researchers to alleviate these neurological diseases through targeted microbial interventions. The relevant pathways and manners of communication between the brain and gut contribute to the experimental design of new treatment plans and drug development. The factors that may cause changes in gut microbiota and affect metabolites, as well as current intervention methods are summarized, which helps improve gut microbiota brain dialogue, prevent adverse triggering factors from interfering with the gut microbiota system, and minimize neuropathological changes.
Collapse
Affiliation(s)
- Shengwen Lu
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Qiqi Zhao
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Yu Guan
- Department of Pharmaceutical Analysis, GAP Center, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Zhiwen Sun
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Wenhao Li
- School of Basic Medical Science of Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China; INTI International University, Nilai 71800, Malaysia.
| |
Collapse
|
31
|
Cocean AM, Vodnar DC. Exploring the gut-brain Axis: Potential therapeutic impact of Psychobiotics on mental health. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111073. [PMID: 38914414 DOI: 10.1016/j.pnpbp.2024.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
One of the most challenging and controversial issues in microbiome research is related to gut microbial metabolism and neuropsychological disorders. Psychobiotics affect human behavior and central nervous system processes via the gut-brain axis, involving neuronal, immune, and metabolic pathways. They have therapeutic potential in the treatment of several neurodegenerative and neurodevelopmental disorders such as depression, anxiety, autism, attention deficit hyperactivity disorder, Alzheimer's disease, Parkinson's disease, schizophrenia, Huntington's disease, anorexia nervosa, and multiple sclerosis. However, the mechanisms underlying the interaction between psychobiotics and the abovementioned diseases need further exploration. This review focuses on the relationship between gut microbiota and its impact on neurological and neurodegenerative disorders, examining the potential of psychobiotics as a preventive and therapeutic approach, summarising recent research on the gut-brain axis and the potential beneficial effects of psychobiotics, highlighting the need for further research and investigation in this area.
Collapse
Affiliation(s)
- Ana-Maria Cocean
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca, Romania.
| |
Collapse
|
32
|
Białoń MN, Górka DHNOZD, Górka MM. The brain-gut axis: communication mechanisms and the role of the microbiome as a neuroprotective factor in the development of neurodegenerative diseases: A literature overview. AIMS Neurosci 2024; 11:289-311. [PMID: 39431278 PMCID: PMC11486619 DOI: 10.3934/neuroscience.2024019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 10/22/2024] Open
Abstract
The study of the brain-gut axis and its impact on cognitive function and in the development of neurodegenerative diseases is a very timely topic of interest to researchers. This review summarizes information on the basic mechanisms of gut-brain communication. We then discuss the roles of the gut microbiome as a neuroprotective factor in neurodegeneration. The gut microbiota is extremely important in maintaining the body's homeostasis, shaping the human immune system and the proper functioning of the brain. The intestinal microflora affects the processes of neuroplasticity, synaptogenesis, and neuronal regeneration. This review aims to explain changes in the composition of the bacterial population of the intestinal microflora among patients with Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Abnormalities in gut microflora composition are also noted in stress, depression, or autism spectrum development. New observations on psychobiotic supplementation in alleviating the symptoms of neurodegenerative diseases are also presented.
Collapse
Affiliation(s)
- Mgr Natalia Białoń
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Dr Hab N O Zdr Dariusz Górka
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Mgr Mikołaj Górka
- Center for Experimental Medicine of the Silesian Medical University in Katowice, 4 Medyków St., 40-752 Katowice, Poland
| |
Collapse
|
33
|
Zhao L, Duan Y, Li Z, Li J, Li S. Unearthing the Potential Therapeutic Effects of Oxyresveratrol Based on Intrinsic Links between Pharmacological Effects: Implications for the Gut-Liver-Brain Axis. Pharmaceuticals (Basel) 2024; 17:1063. [PMID: 39204169 PMCID: PMC11359039 DOI: 10.3390/ph17081063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/03/2024] Open
Abstract
Oxyresveratrol is a stilbene compound with a simple chemical structure and various therapeutic potentials. This study summarized and analyzed the multiple pharmacological effects and mechanisms of oxyresveratrol, identifying its prominent performance in neuroprotection, hepatoprotection, and anti-inflammatory activities in the intestines. By integrating the pharmacological effects of oxyresveratrol with insights from the network pharmacology and molecular docking of its interactions with targets linked to gut-liver-brain axis disorders, it has been shown that oxyresveratrol may hold promise for the treatment of gut-liver-brain axis-related disorders. The synergistic effect between various mechanisms has inspired further research and the development of oxyresveratrol's application value.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
- College of Biology and Food Engineering, Huaihua University, Huaihua 418000, China
| | - Yan Duan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| | - Zhaoxing Li
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Juan Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| | - Shunxiang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (Y.D.); (J.L.)
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha 410208, China;
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| |
Collapse
|
34
|
Du YZ, Hu HJ, Dong QX, Guo B, Zhou Q, Guo J. The relationship between dietary live microbe intake and overactive bladder among American adults: a cross-sectional study from NHANES 2007-2018. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:120. [PMID: 39127726 DOI: 10.1186/s41043-024-00612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE The underlying mechanisms of Overactive Bladder (OAB) remain unclear. This research is designed to investigate the correlation between the intake of dietary live microorganisms and OAB. METHODS This analysis encompasses a cross-sectional study of broad population information gathered from the National Health and Nutrition Examination Surveys (NHANES) spanning the years 2007 to 2018. Participants were categorized into three groups-low, medium, and high-according to their consumption of dietary live microorganisms, as per the Sanders Dietary Active Microbiota Classification System. We utilized a weighted logistic regression model, restricted cubic spline (RCS), and subgroup analyses to investigate the relationship between dietary live microorganism intake and OAB. RESULTS This research encompassed 16,795 subjects. The incidence of OAB was reduced in the group consuming a high amount of live dietary microbes compared to the groups with low and medium intake of such microbes. After detailed adjustments for covariates, analysis revealed that participants in the high live dietary microbe group had notably reduced odds of OAB compared to those in the low live dietary microbe group (OR: 0.84, 95% CI: 0.71-0.99, p = 0.03). RCS analysis indicated a nonlinear correlation between high dietary active microbiota intake and the incidence of OAB. CONCLUSION This research emphasizes the potential advantages of a high dietary intake of active microbiota for preventing OAB. These findings support incorporating active microbiota into dietary guidelines, demonstrating their connection with a decreased incidence of OAB.
Collapse
Affiliation(s)
- Yuan-Zhuo Du
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi Province, China
| | - Hong-Ji Hu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi Province, China
| | - Qian-Xi Dong
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi Province, China
| | - Biao Guo
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi Province, China
| | - Qiang Zhou
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China.
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi Province, China.
| | - Ju Guo
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China.
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi Province, China.
| |
Collapse
|
35
|
Wu Z, Xiao C, Wang J, Zhou M, You F, Li X. 17β-estradiol in colorectal cancer: friend or foe? Cell Commun Signal 2024; 22:367. [PMID: 39030619 PMCID: PMC11264751 DOI: 10.1186/s12964-024-01745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy with higher incidence and mortality rates in men compared to women, potentially due to the effects of estrogen signaling. There is substantial evidence supporting the significant role of 17β-Estradiol (E2) in reducing CRC risk in females, although this perspective remains debated. E2 has been demonstrated to inhibit CRC cell proliferation and migration at the cellular level by enhancing DNA mismatch repair, modulating key gene expression, triggering cell cycle arrest, and reducing activity of migration factors. Furthermore, E2 contributes to promote a tumor microenvironment unfavorable for CRC growth by stimulating ERβ expression, reducing inflammatory responses, reversing immunosuppression, and altering the gut microbiome composition. Conversely, under conditions of high oxidative stress, hypoxia, and nutritional deficiencies, E2 may facilitate CRC development through GPER-mediated non-genomic signaling. E2's influence on CRC involves the genomic and non-genomic signals mediated by ERβ and GPER, respectively, leading to its dual roles in anticancer activity and carcinogenesis. This review aims to summarize the potential mechanisms by which E2 directly or indirectly impacts CRC development, providing insights into the phenomenon of sexual dimorphism in CRC and suggesting potential strategies for prevention and treatment.
Collapse
Affiliation(s)
- Zihong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiamei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Min Zhou
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, 401147, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- Oncology Teaching and Research Department of Chengdu, University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
36
|
JohnBritto JS, Di Ciaula A, Noto A, Cassano V, Sciacqua A, Khalil M, Portincasa P, Bonfrate L. Gender-specific insights into the irritable bowel syndrome pathophysiology. Focus on gut dysbiosis and permeability. Eur J Intern Med 2024; 125:10-18. [PMID: 38467533 DOI: 10.1016/j.ejim.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder involving the brain-gut interaction. IBS is characterized by persistent abdominal pain and changes in bowel habits. IBS exerts significant impacts on quality of life and imposes huge economic costs. Global epidemiological data reveal variations in IBS prevalence, both globally and between genders, necessitating comprehensive studies to uncover potential societal and cultural influences. While the exact pathophysiology of IBS remains incompletely understood, the mechanism involves a dysregulation of the brain-gut axis, leading to disturbed intestinal motility, local inflammation, altered intestinal permeability, visceral sensitivity, and gut microbiota composition. We reviewed several gender-related pathophysiological aspects of IBS pathophysiology, by focusing on gut dysbiosis and intestinal permeability. This perspective paves the way to personalized and multidimensional clinical management of individuals with IBS.
Collapse
Affiliation(s)
- Jerlin Stephy JohnBritto
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Antonino Noto
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Velia Cassano
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
37
|
Xu L, Wang S, Wu L, Cao H, Fan Y, Wang X, Yu Z, Zhou M, Gao R, Wang J. Coprococcus eutactus screened from healthy adolescent attenuates chronic restraint stress-induced depression-like changes in adolescent mice: Potential roles in the microbiome and neurotransmitter modulation. J Affect Disord 2024; 356:737-752. [PMID: 38649105 DOI: 10.1016/j.jad.2024.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
The onset of depression commonly occurs in adolescence; therefore, depressive prevention and intervention are pivotal during this period. It is becoming evident that neurotransmitter imbalance and gut microbiota dysbiosis are prominent causes of depression. However, the underlying links and mechanisms remain poorly understood. In this study, with 16S ribosomal RNA gene sequencing, genus Coprococcus markedly differentiated between the healthy and unmedicated depressive adolescents. Based on this, transplantation of Coprococcus eutactus (C.e.) was found to dramatically ameliorate the chronic restraint stress (CRS) induced depression-like changes and prevent synaptic loss and glial-stimulated neuroinflammation in mice. The Ultra-high performance liquid chromatography tandem mass spectrometry analysis (UHPLC-MS/MS) further showed that neurotoxic neurotransmitters in kynurenine pathway (KP) such as 3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid (3-HAA) decreased in mouse brains, mechanistically deciphering the transfer of the tryptophan metabolic pathway to serotonin metabolic signaling in the brain after C.e. treatment, which was also verified in the colon. Molecularly, blockage of KP activities mediated by C.e. was ascribed to the restraint of the limit-step enzymes responsible for kynurenine, 3-HK, and quinolinic acid generation. In the colon, C.e. treatment significantly recovered goblet cells and mucus secretion in CRS mice which may ascribe to the rebalance of the disordered gut microbiota, especially Akkermansia, Roseburia, Rikenella, Blautia, and Alloprevotella. Taken together, the current study reveals for the first time the beneficial effects and potential mechanisms of C.e. in ameliorating CRS-induced depression, unraveling the direct links between C.e. treatment and neurotransmitter rebalance, which may provide efficacious therapeutic avenues for adolescent depressive intervention.
Collapse
Affiliation(s)
- Liuting Xu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sizhe Wang
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Linlin Wu
- Department of Physical and Chemical Inspection, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Hui Cao
- Department of Hygienic Analysis and Detection, Nanjing Qixia District Center for Disease Control and Prevention, Nanjing, China
| | - Yichun Fan
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zheng Yu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Manfei Zhou
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rong Gao
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Jun Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
38
|
Zeng P, Zhang CZ, Fan ZX, Yang CJ, Cai WY, Huang YF, Xiang ZJ, Wu JY, Zhang J, Yang J. Effect of probiotics on children with autism spectrum disorders: a meta-analysis. Ital J Pediatr 2024; 50:120. [PMID: 38902804 PMCID: PMC11191217 DOI: 10.1186/s13052-024-01692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Researches have found that alteration of intestinal flora may be closely related to the development of autism spectrum disorder (ASD). However, whether probiotics supplementation has a protective effect on ASD remains controversial. This meta-analysis aimed to analyze the outcome of probiotics in the treatment of ASD children. METHODS The Pubmed, Cochrane Library, Web of Science and Embase were searched until Sep 2022. Randomized controlled trials (RCTs) relevant to the probiotics and placebo treatment on ASD children were screened. Quality assessment of the included RCTs was evaluated by the Cochrane collaboration's tool. The primary outcomes were ASD assessment scales, including ABC (aberrant behavior checklist) and CBCL (child behavior checklist) for evaluating the behavior improvement, SRS (social responsiveness scale) for social assessment, DQ (developmental quotient) for physical and mental development and CGI-I (clinical global impression improvement) for overall improvement. The secondary outcome was total 6-GSI (gastrointestinal severity index). RESULTS In total, 6 RCTs from 6 studies with 302 children were included in the systemic review. Total 6-GSI (MD=-0.59, 95%CI [-1.02,-0.17], P < 0.05) decreased significantly after oral administration of probiotics. Whereas, there was no statistical difference in ABC, CBCL, SRS, DQ and CGI-I between probiotics and placebo groups in ASD children. CONCLUSION Probiotics treatment could improve gastrointestinal symptoms, but there was no significant improvement in ASD.
Collapse
Affiliation(s)
- Ping Zeng
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Cheng-Zhi Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Zhi-Xing Fan
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Chao-Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Wan-Yin Cai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yi-Fan Huang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Zu-Jin Xiang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing-Yi Wu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China.
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China.
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443003, China.
- Institute of Cardiovascular Diseases, Three Gorges University, Yichang, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease and HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China.
| |
Collapse
|
39
|
Zhou D, He B, Huang Q, Li S, Nan W, Chen Q, Yu Q. Relationship between dietary live microbe intake and the prevalence of COPD in adults: a cross-sectional study of NHANES 2013-2018. BMC Pulm Med 2024; 24:225. [PMID: 38724980 PMCID: PMC11084018 DOI: 10.1186/s12890-024-03045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE To explore the potential association between dietary live microbes and the prevalence of Chronic Obstructive Pulmonary Diseases (COPD). METHODS In this cross-sectional study, data of 9791 participants aged 20 years or older in this study were collected from the National Health and Nutrition Examination Survey (NHANES) between 2013 and 2018. Participants in this study were classified into three groups according to the Sanders' dietary live microbe classification system: low, medium, and high dietary live microbe groups. COPD was defined by a combination of self-reported physician diagnoses and standardized medical status questionnaires. Logistic regression and subgroup analysis were used to assess whether dietary live microbes were associated with the risk of COPD. RESULTS Through full adjustment for confounders, participants in the high dietary live microbe group had a low prevalence of COPD in contrast to those in low dietary live microbe group (OR: 0.614, 95% CI: 0.474-0.795, and p < 0.001), but no significant association with COPD was detected in the medium and the low dietary live microbe groups. This inverse relationship between dietary live microbe intake and COPD prevalence was more inclined to occur in smokers, females, participants aged from 40 to 59 years old and non-obese participants. CONCLUSION A high dietary live microbe intake was associated with a low prevalence of COPD, and this negative correlation was detected especially in smokers, females, participants aged from 40 to 59 years old and non-obese participants.
Collapse
Affiliation(s)
- Dongbo Zhou
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Baimei He
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Siqi Li
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wenbin Nan
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qiong Chen
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiao Yu
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
40
|
Zhu A, Li P, Chu Y, Wei X, Zhao J, Luo L, Zhang T, Yan J. Causal effects of gut microbiota on the prognosis of ischemic stroke: evidence from a bidirectional two-sample Mendelian randomization study. Front Microbiol 2024; 15:1346371. [PMID: 38650876 PMCID: PMC11033378 DOI: 10.3389/fmicb.2024.1346371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Background Increasing research has implicated the possible effect of gut microbiota (GM) on the prognosis of ischemic stroke (IS). However, the precise causal relationship between GM and functional outcomes after IS remains unestablished. Methods Data on 211 GM taxa from the MiBioGen consortium and data on prognosis of IS from the Genetics of Ischemic Stroke Functional Outcome (GISCOME) network were utilized as summary-level data of exposure and outcome. Four kinds of Mendelian randomization (MR) methods were carried out to ascertain the causal effect of GM on functional outcomes following IS. A reverse MR analysis was performed on the positive taxa identified in the forward MR analysis to determine the direction of causation. In addition, we conducted a comparative MR analysis without adjusting the baseline National Institute of Health Stroke Scale (NIHSS) of post-stroke functional outcomes to enhance confidence of the results obtained in the main analysis. Results Four taxa were identified to be related to stroke prognosis in both main and comparative analyses. Specifically, genus Ruminococcaceae UCG005 and the Eubacterium oxidoreducens group showed significantly negative effects on stroke prognosis, while the genus Lachnospiraceae NK4A136 group and Lachnospiraceae UCG004 showed protective effects against stroke prognosis. The reverse MR analysis did not support a causal role of stroke prognosis in GM. No evidence of heterogeneity, horizontal pleiotropy, and outliers was found. Conclusion This MR study provided evidence that genetically predicted GM had a causal link with post-stroke outcomes. Specific gut microbiota taxa associated with IS prognosis were identified, which may be helpful to clarify the pathogenesis of ischemic stroke and making treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tao Zhang
- Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juntao Yan
- Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
41
|
Jang HJ, Lee NK, Paik HD. A Narrative Review on the Advance of Probiotics to Metabiotics. J Microbiol Biotechnol 2024; 34:487-494. [PMID: 38247208 PMCID: PMC11018519 DOI: 10.4014/jmb.2311.11023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Recently, the term metabiotics has emerged as a new concept of probiotics. This concept entails combining existing probiotic components with metabolic by-products improve specific physiological functionalities. Representative ingredients of these metabiotics include short-chain fatty acids (SCFAs), bacteriocins, polysaccharides, and peptides. The new concept is highly regarded as it complements the side effects of existing probiotics and is safe and easy to administer. Known health functions of metabiotics are mainly immune regulation, anti-inflammatory, anticancer, and brain-neurological health. Research has been actively conducted on the health benefits related to the composition of intestinal microorganisms. Among them, the focus has been on brain neurological health, which requires extensive research. This study showed that neurological disorders, such as depression, anxiety, autism spectrum disorder, Alzheimer's disease, and Parkinson's disease, can be treated and prevented according to the gut-brain axis theory by changing the intestinal microflora. In addition, various studies are being conducted on the immunomodulatory and anticancer effects of substances related to metabiotics of the microbiome. In particular, its efficacy is expected to be confirmed through human studies on various cancers. Therefore, developing various health functional effects of the next-generation probiotics such as metabiotics to prevent or treatment of various diseases is anticipated.
Collapse
Affiliation(s)
- Hye Ji Jang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
42
|
Carneiro dos Santos LA, Carvalho RDDO, Cruz Neto JPR, de Albuquerque Lemos DE, de Oliveira KÁR, Sampaio KB, de Luna Freire MO, Aburjaile FF, Azevedo VADC, de Souza EL, de Brito Alves JL. A Mix of Potentially Probiotic Limosilactobacillus fermentum Strains Alters the Gut Microbiota in a Dose- and Sex-Dependent Manner in Wistar Rats. Microorganisms 2024; 12:659. [PMID: 38674604 PMCID: PMC11052373 DOI: 10.3390/microorganisms12040659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Multi-strain Limosilactobacillus (L.) fermentum is a potential probiotic with reported immunomodulatory properties. This study aimed to evaluate the composition, richness, and diversity of the gut microbiota in male and female rats after treatment with a multi-strain of L. fermentum at different doses. Thirty rats (fifteen male and fifteen female) were allocated into a control group (CTL), a group receiving L. fermentum at a dose of 108 CFU (Lf-108), and a group receiving L. fermentum at a dose of 1010 CFU (Lf-1010) for 13 weeks. Gut microbiota and serum cytokine levels were evaluated after L. fermentum treatment. Male CTL rats had a lower relative abundance of Bifidobacteriaceae and Prevotella and a lower alpha diversity than their female CTL counterparts (p < 0.05). In addition, male CTL rats had a higher Firmicutes/Bacteroidetes (F/B) ratio than female CTL rats (p < 0.05). In female rats, the administration of L. fermentum at 108 CFU decreased the relative abundance of Bifidobacteriaceae and Anaerobiospirillum and increased Lactobacillus (p < 0.05). In male rats, the administration of L. fermentum at 1010 CFU decreased the F/B ratio and increased Lachnospiraceae and the diversity of the gut microbiota (p < 0.05). The relative abundance of Lachnospiraceae and the alpha-diversity of gut microbiota were negatively correlated with serum levels of IL1β (r = -0.44) and TNFα (r = -0.39), respectively. This study identified important changes in gut microbiota between male and female rats and showed that a lower dose of L. fermentum may have more beneficial effects on gut microbiota in females, while a higher dose may result in more beneficial effects on gut microbiota in male rats.
Collapse
Affiliation(s)
- Lucas Alves Carneiro dos Santos
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | | | - José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Deborah Emanuelle de Albuquerque Lemos
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Kataryne Árabe Rimá de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Karoliny Brito Sampaio
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Flavia Figueira Aburjaile
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (F.F.A.); (V.A.d.C.A.)
| | - Vasco Ariston de Carvalho Azevedo
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (F.F.A.); (V.A.d.C.A.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| |
Collapse
|
43
|
Wu Z, Huang Y, Zhang R, Zheng C, You F, Wang M, Xiao C, Li X. Sex differences in colorectal cancer: with a focus on sex hormone-gut microbiome axis. Cell Commun Signal 2024; 22:167. [PMID: 38454453 PMCID: PMC10921775 DOI: 10.1186/s12964-024-01549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
Sexual dimorphism has been observed in the incidence and prognosis of colorectal cancer (CRC), with men generally exhibiting a slightly higher incidence than women. Research suggests that this difference may be attributed to variations in sex steroid hormone levels and the gut microbiome. The gut microbiome in CRC shows variations in composition and function between the sexes, leading to the concept of 'microgenderome' and 'sex hormone-gut microbiome axis.' Conventional research indicates that estrogens, by promoting a more favorable gut microbiota, may reduce the risk of CRC. Conversely, androgens may have a direct pro-tumorigenic effect by increasing the proportion of opportunistic pathogens. The gut microbiota may also influence sex hormone levels by expressing specific enzymes or directly affecting gonadal function. However, this area remains controversial. This review aims to explore the differences in sex hormone in CRC incidence, the phenomenon of sexual dimorphism within the gut microbiome, and the intricate interplay of the sex hormone-gut microbiome axis in CRC. The objective is to gain a better understanding of these interactions and their potential clinical implications, as well as to introduce innovative approaches to CRC treatment.
Collapse
Affiliation(s)
- Zihong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqing Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Renyi Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
44
|
Lau LYJ, Quek SY. Probiotics: Health benefits, food application, and colonization in the human gastrointestinal tract. FOOD BIOENGINEERING 2024; 3:41-64. [DOI: 10.1002/fbe2.12078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/29/2024] [Indexed: 01/04/2025]
Abstract
AbstractProbiotics have become increasingly popular over the past two decades due to the continuously expanding scientific evidence indicating their beneficial effects on human health. Therefore, they have been applied in the food industry to produce functional food, which plays a significant role in human health and reduces disease risk. However, maintaining the viability of probiotics and targeting the successful delivery to the gastrointestinal tract remain two challenging tasks in food applications. Specifically, this paper reviews the potentially beneficial properties of probiotics, highlighting the use and challenges of probiotics in food application and the associated health benefits. Of foremost importance, this paper also explores the potential underlying molecular mechanisms of the enhanced effect of probiotics on gastrointestinal epithelial cells, including a discussion on various surface adhesion‐related proteins on the probiotic cell surface that facilitate colonization.
Collapse
Affiliation(s)
- Li Ying Jessie Lau
- Food Science, School of Chemical Sciences The University of Auckland Auckland New Zealand
| | - Siew Young Quek
- Food Science, School of Chemical Sciences The University of Auckland Auckland New Zealand
| |
Collapse
|
45
|
Zhang YW, Wu Y, Liu XF, Chen X, Su JC. Targeting the gut microbiota-related metabolites for osteoporosis: The inextricable connection of gut-bone axis. Ageing Res Rev 2024; 94:102196. [PMID: 38218463 DOI: 10.1016/j.arr.2024.102196] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Osteoporosis is a systemic skeletal disease characterized by decreased bone mass, destruction of bone microstructure, raised bone fragility, and enhanced risk of fractures. The correlation between gut microbiota and bone metabolism has gradually become a widespread research hotspot in recent years, and successive studies have revealed that the alterations of gut microbiota and its-related metabolites are related to the occurrence and progression of osteoporosis. Moreover, several emerging studies on the relationship between gut microbiota-related metabolites and bone metabolism are also underway, and extensive research evidence has indicated an inseparable connection between them. Combined with latest literatures and based on inextricable connection of gut-bone axis, this review is aimed to summarize the relation, potential mechanisms, application strategies, clinical application prospects, and existing challenges of gut microbiota and its-related metabolites on osteoporosis, thus updating the knowledge in this research field and providing certain reference for future researches.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Xiang-Fei Liu
- Department of Orthopaedics, Shanghai Zhongye Hospital, Shanghai 200941, China.
| | - Xiao Chen
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China.
| | - Jia-Can Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
46
|
Tang H, Zhang X, Luo N, Huang J, Zhu Y. Association of Dietary Live Microbes and Nondietary Prebiotic/Probiotic Intake With Cognitive Function in Older Adults: Evidence From NHANES. J Gerontol A Biol Sci Med Sci 2024; 79:glad175. [PMID: 37480582 DOI: 10.1093/gerona/glad175] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The current study aims to examine association of dietary live microbes and nondietary prebiotic/probiotic intake with cognitive function among older U.S. adults, examining heterogeneity across demographic characteristics and diseases. METHODS Participants from the National Health and Nutrition Examination Survey 2011-2014 cycles were selected and administered 3 cognitive function tests: the Consortium to Establish a Registry for Alzheimer's Disease Word Learning subtest (CERAD W-L, including immediate [CERAD-IRT] and delayed [CERAD-DRT] memory), the Animal Fluency Test (AFT), and the Digit Symbol Substitution Test (DSST). Test-specific and global cognition z-score was created. Based on their estimated dietary live microbes intake, participants were categorized into three groups: low, medium, and high. Text mining was employed to identify nondietary prebiotic/probiotic usage by examining the names and ingredients of dietary supplements or drugs. RESULTS Participants in the medium (including AFT) and high (including global cognition, AFT, DSST, and CERAD-IRT) dietary live microbes intake group had significantly higher z-score of cognitive function compared to those in the low intake group. Among participants with cardiovascular disease history, nondietary prebiotic intake was associated with higher z-score in global cognition and CERAD-DRT compared to those who did not consume prebiotic. Additionally, probiotic intake was linked to higher z-score in global cognition, AFT, and DSST, particularly in participants with diabetes mellitus or hypertension. CONCLUSIONS Our study suggests that the intake of dietary live microbes and nondietary probiotic/prebiotic was associated with better cognitive function in older adults, particularly in specific disease states.
Collapse
Affiliation(s)
- Haoxian Tang
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Xuan Zhang
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Nan Luo
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Jingtao Huang
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Yanqiao Zhu
- Department of Psychiatry, Shunde Hospital of Southern Medical University, Foshan, Guangdong, China
| |
Collapse
|
47
|
Gan Y, Chen Y, Zhong H, Liu Z, Geng J, Wang H, Wang W. Gut microbes in central nervous system development and related disorders. Front Immunol 2024; 14:1288256. [PMID: 38343438 PMCID: PMC10854220 DOI: 10.3389/fimmu.2023.1288256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024] Open
Abstract
The association between gut microbiota and central nervous system (CNS) development has garnered significant research attention in recent years. Evidence suggests bidirectional communication between the CNS and gut microbiota through the brain-gut axis. As a long and complex process, CNS development is highly susceptible to both endogenous and exogenous factors. The gut microbiota impacts the CNS by regulating neurogenesis, myelination, glial cell function, synaptic pruning, and blood-brain barrier permeability, with implication in various CNS disorders. This review outlines the relationship between gut microbiota and stages of CNS development (prenatal and postnatal), emphasizing the integral role of gut microbes. Furthermore, the review explores the implications of gut microbiota in neurodevelopmental disorders, such as autism spectrum disorder, Rett syndrome, and Angelman syndrome, offering insights into early detection, prompt intervention, and innovative treatments.
Collapse
Affiliation(s)
- Yumeng Gan
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yao Chen
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huijie Zhong
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhuo Liu
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiawei Geng
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huishan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenxue Wang
- Department of Infectious Disease and Hepatic Disease, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
48
|
Ren Y, Jia F, Li D. Ingredients, structure and reconstitution properties of instant powder foods and the potential for healthy product development: a comprehensive review. Food Funct 2024; 15:37-61. [PMID: 38059502 DOI: 10.1039/d3fo04216b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Instant foods are widely presented in powder forms across different food segments, which potentially can be formulated with functional or beneficial compounds to provide health benefits. Many reconstituted instant powder foods form colloidal suspensions with complex structures. However, designing instant powder food could be challenging due to the structural complexity and high flexibility in formulation. This review proposed a new classification method for instant powder foods according to the solubility of ingredients and the structure of the reconstituted products. Instant powder foods containing insoluble ingredients are discussed. It summarised challenges and current advances in powder treatments, reconstitution improvement, and influences on food texture and structure to facilitate product design in related industries. The characteristics and incorporation of the main ingredients and ingredients with health benefits in product development were reviewed. Different products vary significantly in the ratios of macronutrients. The macronutrients have limited solubility in water. After being reconstituted by water, the insoluble components are dispersed and swell to form colloidal dispersions with complex structures and textures. Soluble components, which dissolve in the continuous phase, may facilitate the dispersing process or influence the solution environment. The structure of reconstituted products and destabilising factors are discussed. Both particle and molecular structuring strategies have been developed to improve wettability and prevent the formation of lumps and, therefore, to improve reconstitution properties. Various types of instant food have been developed based on healthy or functional ingredients and exhibit positive effects on the prevention of non-communicable diseases and overall health. Less processed materials and by-products are often chosen to enhance the contents of dietary fibre and phenolic compounds. The enrichment of phenolic compounds, dietary fibres and/or probiotics tend to be simultaneous in plant-based products. The process of the ingredients and the formulation of products must be tailored to design the desired structure and to improve the reconstitution property.
Collapse
Affiliation(s)
- Yi Ren
- School of Public Health and Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China.
- Ningbo Yu Fang Tang Biological Science and Technology Co., Ltd, Ningbo 315012, China
| | - Fuhuai Jia
- Ningbo Yu Fang Tang Biological Science and Technology Co., Ltd, Ningbo 315012, China
| | - Duo Li
- School of Public Health and Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
49
|
Tao Y, Zhou H, Li Z, Wu H, Wu F, Miao Z, Shi H, Huang F, Wu X. TGR5 deficiency-induced anxiety and depression-like behaviors: The role of gut microbiota dysbiosis. J Affect Disord 2024; 344:219-232. [PMID: 37839469 DOI: 10.1016/j.jad.2023.10.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND AND PURPOSE Anxiety and depression have been associated with imbalances in the gut microbiota and bile acid metabolism. Takeda G protein-coupled receptor 5 (TGR5), a bile acid receptor involved in metabolism, is influenced by the gut microbiota. This study aimed to investigate the relationship between anxiety, depression, and microbiota using TGR5 knockout mice. METHODS We employed the following methods: (1) Assessment of behavioral changes, (2) Measurement of 5-HT levels and protein expression, (3) Analysis of stool samples, (4) Utilization of gene sequencing and statistical analysis to identify microbial signatures, (5) Examination of correlations between microbial signatures and 5-HT levels, and (6) Fecal microbiota transplantation experiments of TGR5-/- mice. RESULTS The deletion of TGR5 was found to result in increased anxiety- and depression-like behaviors in mice. TGR5 knockout mice exhibited significant reductions in 5-hydroxytryptamine (5-HT) levels in both serum and hippocampus, accompanied by a decrease in the expression of 5-HT1A receptor in the hippocampus. Moreover, TGR5 deficiency was associated with a decrease in the species richness of the gut microbiota. Specifically, the gut microbiota compositions of TGR5 knockout mice displayed distinct differences compared to their littermates, characterized by higher abundances of Anaeroplasma, Prevotella, Staphylococcus, Jeotgalicoccus, and Helicobacter, and a lower abundance of Bifidobacterium. Notably, a strong association between Jeotgalicoccus as well as Staphylococcus and serum 5-HT levels was observed in co-occurrence network. Furthermore, mice that received fecal microbiota transplants from TGR5-/- mice displayed anxiety and depression -like behaviors, accompanied by alterations in 5-HT levels in the hippocampus and serum. LIMITATIONS Study limitations for gut bacteria were analyzed at the genus level only. CONCLUSION TGR5 deletion in mice induces anxiety and depression-like behaviors, linked to reduced 5-HT levels in serum and the hippocampus. Gut microbiota changes play a direct role in these behaviors and serotonin alterations. This implicates TGR5 and gut bacteria in mood regulation, with potential therapeutic implications.
Collapse
Affiliation(s)
- Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Houyuan Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Zikang Li
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fanggeng Wu
- Jiangxi Tumor Hospital, Nanchang 330029, PR China
| | - Zhiguo Miao
- Jiangxi Tumor Hospital, Nanchang 330029, PR China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
50
|
Andriolo IRL, Longo B, de Melo DM, de Souza MM, Prediger RD, da Silva LM. Gastrointestinal Issues in Depression, Anxiety, and Neurodegenerative Diseases: A Systematic Review on Pathways and Clinical Targets Implications. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1371-1391. [PMID: 38500273 DOI: 10.2174/0118715273289138240306050532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Multiple illnesses commonly involve both the Central Nervous System (CNS) and the Gastrointestinal Tract (GI) simultaneously. Consistent evidence suggests that neurological disorders impair GI tract function and worsen the symptomatology and pathophysiology of digestive disorders. On the other hand, it has been proposed that early functional changes in the GI tract contribute to the genesis of several CNS illnesses. Additionally, the role played by the gut in these diseases can be seen as a paradigm for how the gut and the brain interact. METHODS We mentioned significant GI symptoms and discussed how the GI tract affects central nervous system illnesses, including depression, anxiety, Alzheimer's disease, and Parkinson's disease in this study. We also explored potential pathophysiological underpinnings and novel targets for the creation of future therapies targeted at gut-brain connections. RESULTS & DISCUSSION In this situation, modulating the gut microbiota through the administration of fecal microbiota transplants or probiotics may represent a new therapeutic option for this population, not only to treat GI problems but also behavioral problems, given the role that dysbiosis and leaky gut play in many neurological disorders. CONCLUSION Accurate diagnosis and treatment of co-existing illnesses also require coordination between psychiatrists, neurologists, gastroenterologists, and other specialties, as well as a thorough history and thorough physical examination.
Collapse
Affiliation(s)
| | - Bruna Longo
- Graduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Dayse Machado de Melo
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Márcia Maria de Souza
- Graduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Rui Daniel Prediger
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Luisa Mota da Silva
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|