1
|
Zou R, Cai J, Chen T, Mo W, Qian H, Zhu X, Zhang L. High-fat diet alters retinal lipid composition and gene expression networks in mice. BMC Biol 2025; 23:103. [PMID: 40247316 PMCID: PMC12007227 DOI: 10.1186/s12915-025-02212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND High-fat diet (HFD) was suggested to be associated with several retinal diseases, including age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR). Nevertheless, our understanding of the mechanisms governing retinal lipid metabolic homeostasis remains limited, with little attention focused on the influence of HFD on different retinal cell types. To address this gap, we established a high-fat model using mice fed with HFD for a duration of 6 months. Then, we conducted a comparative analysis of the retinal lipidome and proteome between normal diet (ND) and HFD-fed mice to explore the impacts of HFD on retinal lipid metabolism and gene expression network. Furthermore, we also investigated the impacts of HFD on retina in single-cell resolution by single-cell transcriptome sequencing. RESULTS We found that a long-term HFD significantly altered the lipid composition of the retina, with a dramatically elevated cholesterylesters (CE), phosphatidylcholine (PC), and phosphatidylglycerol (PG) level and a decreased eicosanoid level. Proteomic analysis revealed that the primary bile acid biosynthesis pathway was over-activated in HFD retinas. By using single-cell transcriptome analysis, we identified different regulation of gene expression in MG and rod cells in a high-fat environment, whereas the previously identified activation of the bile acid synthesis pathway was predominantly found in MG cells, and may be regulated by alternative pathways of bile acid synthesis, suggesting the critical roles of MG cells in retinal lipid metabolism. CONCLUSIONS Taken together, by multi-omics studies, we unveiled that HFD leading to the development of retinal diseases may be regulated by alternative pathways of bile acid synthesis, and our study will shed light on the treatment of these diseases.
Collapse
Affiliation(s)
- Rong Zou
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Jinrui Cai
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Tianyu Chen
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Wenhui Mo
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Hao Qian
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China.
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, CAS, Xining, Qinghai, 810008, China.
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, CAS, Xining, Qinghai, 810008, China.
| |
Collapse
|
2
|
Rognon GT, Liao AYA, Pasteurin RP, Soundararajan A, Pattabiraman PP. Lipids and lipid regulators in intraocular pressure homeostasis. Curr Opin Pharmacol 2025; 82:102523. [PMID: 40245644 DOI: 10.1016/j.coph.2025.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/12/2025] [Accepted: 03/13/2025] [Indexed: 04/19/2025]
Abstract
Increased intraocular pressure is the strongest correlated modifiable risk factor for developing primary open-angle glaucoma (POAG). Lipids have long been known to be a major constituent of aqueous humor. Lipid mediators, prostaglandins for example, are the first-line treatment for glaucoma. Innovative technologies have made the investigation of lipids in small quantities possible, and interest in identifying lipids as new pharmacological targets has grown in ophthalmology. There is expanding evidence to suggest that lipids and their active metabolites play a role in POAG pathophysiology, as differences between control and diseased eyes have now been demonstrated. The role of these differences is yet to be determined and is the subject of this review.
Collapse
Affiliation(s)
- Gregory T Rognon
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN, 46202-5209, USA
| | - Anna Yu-An Liao
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN, 46202-5209, USA; Carmel High School, 520 E Main St, Carmel, IN, 46032, USA
| | - Rodahina Philihina Pasteurin
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN, 46202-5209, USA
| | - Avinash Soundararajan
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN, 46202-5209, USA
| | - Padmanabhan Paranji Pattabiraman
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, IN, 46202-5209, USA; Stark Neuroscience Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indiana, 46202-5209, USA.
| |
Collapse
|
3
|
Shimizu S, Ochiai Y, Kamijima K, Takai N, Watanabe S, Aihara M. Development and characterization of a chronic high intraocular pressure model in New Zealand white rabbits for glaucoma research. Exp Eye Res 2024; 245:109973. [PMID: 38880377 DOI: 10.1016/j.exer.2024.109973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Glaucoma is a neurodegenerative disease characterized by visual field loss associated with optic nerve damage and ocular hypertension. The biological basis for the elevated intraocular pressure (IOP) is largely unknown, such that lowering the IOP is currently the only established treatment. Several animal models have been developed to elucidate the mechanism underlying the increased IOP and for use in drug discovery research, but their utility is often limited by the occurrence of severe intraocular inflammation and by technical challenges. In this study, we developed a rabbit glaucoma model that does not require experimental disease induction. Rabbits were chosen as the model because their eyeballs are similar in size to those of humans, and they are easy to breed. By crossing rabbit strains with inherited glaucoma, as indicated by obvious buphthalmos, we produced a strain that exhibits ocular hypertension. The IOP of the Ocular Hypertension (OH) rabbits was significantly higher than that of the wild type (WT; normal New Zealand white rabbits) from the age of 3 weeks to at least 22 weeks. The significantly larger corneal diameter of the OH rabbits indicated ocular enlargement, whereas there was no significant difference in corneal thickness compared with WT rabbits. Anterior segment ocular coherence tomography and gonioscopic observations revealed an open angle in the OH rabbits. Hematoxylin and eosin (HE) staining together with Masson's trichrome staining showed abnormal collagen accumulation in the angle of the OH rabbit's eyes. Furthermore, aqueous humor (AH) outflow imaging following an intravitreal injection of a fluorescent probe into the anterior chamber for tissue-section analysis revealed retention of the probe in the area of collagen deposition in the OH eyes. The OH rabbits also had a time-dependent increase in the cup/disc ratio. In conclusion, investigations using our newly developed rabbit model of open-angle ocular hypertension showed that abnormal accumulation of extracellular matrix at the angle increased AH outflow resistance in the conventional outflow pathway, leading to a high IOP. Furthermore, the OH rabbits exhibited glaucomatous optic disc cupping over time. These findings suggest the utility of the OH rabbits as a model for open-angle glaucoma (OAG).
Collapse
Affiliation(s)
- Shota Shimizu
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuichiro Ochiai
- Operation Department, Kitayama Labes Co., Ltd., Nagano, Japan
| | - Kazuki Kamijima
- Operation Department, Kitayama Labes Co., Ltd., Nagano, Japan
| | - Naofumi Takai
- Operation Department, Kitayama Labes Co., Ltd., Nagano, Japan
| | - Sumiko Watanabe
- Department of Retinal Biology and Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Mathew DJ, Sivak JM. Lipid mediators in glaucoma: Unraveling their diverse roles and untapped therapeutic potential. Prostaglandins Other Lipid Mediat 2024; 171:106815. [PMID: 38280539 DOI: 10.1016/j.prostaglandins.2024.106815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Glaucoma is a complex neurodegenerative disease characterized by optic nerve damage and visual field loss, and remains a leading cause of irreversible blindness. Elevated intraocular pressure (IOP) is a critical risk factor that requires effective management. Emerging research underscores dual roles of bioactive lipid mediators in both IOP regulation, and the modulation of neurodegeneration and neuroinflammation in glaucoma. Bioactive lipids, encompassing eicosanoids, specialized pro-resolving mediators (SPMs), sphingolipids, and endocannabinoids, have emerged as crucial players in these processes, orchestrating inflammation and diverse effects on aqueous humor dynamics and tissue remodeling. Perturbations in these lipid mediators contribute to retinal ganglion cell loss, vascular dysfunction, oxidative stress, and neuroinflammation. Glaucoma management primarily targets IOP reduction via pharmacological agents and surgical interventions, with prostaglandin analogues at the forefront. Intriguingly, additional lipid mediators offer promise in attenuating inflammation and providing neuroprotection. Here we explore these pathways to shed light on their intricate roles, and to unveil novel therapeutic avenues for glaucoma management.
Collapse
Affiliation(s)
- D J Mathew
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada
| | - J M Sivak
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada.
| |
Collapse
|
5
|
Shimizu S, Honjo M, Liu M, Aihara M. An Autotaxin-Induced Ocular Hypertension Mouse Model Reflecting Physiological Aqueous Biomarker. Invest Ophthalmol Vis Sci 2024; 65:32. [PMID: 38386333 PMCID: PMC10896239 DOI: 10.1167/iovs.65.2.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Purpose Animal models of ocular hypertension (OH) have been developed to understand the pathogenesis of glaucoma and facilitate drug discovery. However, many of these models are fraught with issues, including severe intraocular inflammation and technical challenges. Lysophosphatidic acid (LPA) is implicated in trabecular meshwork fibrosis and increased resistance of aqueous outflow, factors that contribute to high intraocular pressure (IOP) in human open-angle glaucoma. We aimed to elevate IOP by increasing expression of the LPA-producing enzyme autotaxin (ATX) in mouse eyes. Methods Tamoxifen-inducible ATX transgenic mice were developed. Tamoxifen was administered to six- to eight-week-old mice via eye drops to achieve ATX overexpression in the eye. IOP and retinal thickness were measured over time, and retinal flat-mount were evaluated to count retinal ganglion cells (RGCs) loss after three months. Results Persistent elevation of ATX expression in mouse eyes was confirmed through immunohistochemistry and LysoPLD activity measurement. ATX Tg mice exhibited significantly increased IOP for nearly two months following tamoxifen treatment, with no anterior segment changes or inflammation. Immunohistochemical analysis revealed enhanced expression of extracellular matrix near the angle after two weeks and three months of ATX induction. This correlated with reduced outflow facility, indicating that sustained ATX overexpression induces angle fibrosis, elevating IOP. Although inner retinal layer thickness remained stable, peripheral retina showed a notable reduction in RGC cell count. Conclusions These findings confirm the successful creation of an open-angle OH mouse model, in which ATX expression in the eye prompts fibrosis near the angle and maintains elevated IOP over extended periods.
Collapse
Affiliation(s)
- Shota Shimizu
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Senju Laboratory of Ocular Science, Senju Pharmaceutical Co., Ltd., Kobe, Hyogo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Mengxuan Liu
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Wang W, Wang H. Understanding the complex genetics and molecular mechanisms underlying glaucoma. Mol Aspects Med 2023; 94:101220. [PMID: 37856931 DOI: 10.1016/j.mam.2023.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. Currently the only effective treatment for glaucoma is to reduce the intraocular pressure, which can halt the progression of the disease. Highlighting the importance of identifying individuals at risk of developing glaucoma and those with early-stage glaucoma will help patients receive treatment before sight loss. However, some cases of glaucoma do not have raised intraocular pressure. In fact, glaucoma is caused by a variety of different mechanisms and has a wide range of different subtypes. Understanding other risk factors, the underlying mechanisms, and the pathology of glaucoma might lead to novel treatments and treatment of underlying diseases. In this review we present the latest research into glaucoma including the genetics and molecular basis of the disease.
Collapse
Affiliation(s)
- Weiwei Wang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital, Northwest University, Xi'an, 710004, Shaanxi Province, China.
| | - Huaizhou Wang
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|