1
|
Zhang L, Zhou J, Kong W. Extracellular matrix in vascular homeostasis and disease. Nat Rev Cardiol 2025; 22:333-353. [PMID: 39743560 DOI: 10.1038/s41569-024-01103-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 01/04/2025]
Abstract
The extracellular matrix is an essential component and constitutes a dynamic microenvironment of the vessel wall with an indispensable role in vascular homeostasis and disease. From early development through to ageing, the vascular extracellular matrix undergoes various biochemical and biomechanical alterations in response to diverse environmental cues and exerts precise regulatory control over vessel remodelling. Advances in novel technologies that enable the comprehensive evaluation of extracellular matrix components and cell-matrix interactions have led to the emergence of therapeutic strategies that specifically target this fine-tuned network. In this Review, we explore various aspects of extracellular matrix biology in vascular development, disorders and ageing, emphasizing the effect of the extracellular matrix on disease initiation and progression. Additionally, we provide an overview of the potential therapeutic implications of targeting the extracellular matrix microenvironment in vascular diseases.
Collapse
Affiliation(s)
- Lu Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| |
Collapse
|
2
|
Dasgupta S. Drug Design in the Age of Network Medicine and Systems Biology: Transcriptomics Identifies Potential Drug Targets Shared by Sarcoidosis and Pulmonary Hypertension. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025. [PMID: 40255202 DOI: 10.1089/omi.2025.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Network medicine considers the interconnectedness of human diseases and their underlying molecular substrates. In this context, sarcoidosis and pulmonary hypertension (PH) have long been thought of as distinct diseases, but there is growing evidence of shared molecular mechanisms. This study reports on common differentially expressed genes (DEGs), regulatory elements, and pathways between the two diseases. Publicly available transcriptomic datasets for sarcoidosis (GSE157671) and PH (GSE236251) were retrieved from the Gene Expression Omnibus database. DEGs were identified using GEO2R, followed by pathway enrichment and gene interaction analyses via GeneMANIA and STRING. Importantly, a total of 13 common DEGs were identified between sarcoidosis and PH, with 7 upregulated and 6 downregulated genes. The SMAD2/3 nuclear pathway was a shared enriched pathway, suggesting a role in fibrosis and immune regulation. There were also divergences between sarcoidosis and PH. For example, gene set enrichment analysis indicated significant associations of the IFN-gamma signaling pathway with sarcoidosis and the TNF-alpha signaling with PH. miRNA network analysis identified hsa-miR-34a-5p, hsa-let-7g-5p, and hsa-miR-19a-3p as key shared regulators linked to common genes in both sarcoidosis and PH. Finally, DGIdb analysis revealed potential therapeutic candidates targeting these genes in both diseases. This study contributes to the field of drug design and discovery from a network medicine standpoint. The shared molecular links uncovered between sarcoidosis and PH in this study point to several potential biomarkers and therapeutic targets. Further experimental validation and translational medical research are called for diagnostics and drugs, which can effectively and safely help the clinical management of both diseases.
Collapse
Affiliation(s)
- Sanjukta Dasgupta
- Department of Biotechnology, Center for Multidisciplinary Research & Innovations, Brainware University, Kolkata, India
| |
Collapse
|
3
|
Heinze Martinez E, Dietze N, Mewes S, Schreiber J, Feist E. [Lung involvement in connective tissue diseases]. Z Rheumatol 2025; 84:198-209. [PMID: 39982480 DOI: 10.1007/s00393-025-01635-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Connective tissue diseases as systemic autoimmune diseases are frequently associated with lung involvement. The diagnostics are often delayed by initially mild and unspecific symptoms. As lung involvement in these diseases can be chronically progressive and sometimes rapidly progressive, early and regular screening and monitoring are essential. This article focuses on typical findings and the diagnostic value of useful examination methods. Ideally, the diagnostics and treatment of lung involvement in connective tissue disease should be performed on an interdisciplinary basis in collaboration between pulmonology and rheumatology.
Collapse
Affiliation(s)
- Elena Heinze Martinez
- Universitätsklinik für Pneumologie, Otto-von-Guericke Universität Magdeburg, Magdeburg, Deutschland
| | - Nicole Dietze
- Helios Fachklinik für Rheumatologie und Klinische Immunologie, Sophie-von-Boetticher Str. 1, 39245, Vogelsang-Gommern, Deutschland
| | - Sabine Mewes
- Helios Fachklinik für Rheumatologie und Klinische Immunologie, Sophie-von-Boetticher Str. 1, 39245, Vogelsang-Gommern, Deutschland
| | - Jens Schreiber
- Universitätsklinik für Pneumologie, Otto-von-Guericke Universität Magdeburg, Magdeburg, Deutschland
| | - Eugen Feist
- Helios Fachklinik für Rheumatologie und Klinische Immunologie, Sophie-von-Boetticher Str. 1, 39245, Vogelsang-Gommern, Deutschland.
- Experimentelle Rheumatologie, Otto-von-Guericke Universität Magdeburg, Magdeburg, Deutschland.
| |
Collapse
|
4
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
5
|
Mueller MC, Blomberg R, Tanneberger AE, Davis-Hall D, Neeves KB, Magin CM. Female fibroblast activation is estrogen-mediated in sex-specific 3D-bioprinted pulmonary artery adventitia models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633670. [PMID: 39896610 PMCID: PMC11785021 DOI: 10.1101/2025.01.17.633670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Pulmonary arterial hypertension (PAH) impacts male and female patients in different ways. Female patients exhibit a greater susceptibility to disease (4:1 female-to-male ratio) but live longer after diagnosis than male patients. This complex sexual dimorphism is known as the estrogen paradox. Prior studies suggest that estrogen signaling may be pathologic in the pulmonary vasculature and protective in the heart, yet the mechanisms underlying these sex-differences in PAH remain unclear. PAH is a form of a pulmonary vascular disease that results in scarring of the small blood vessels, leading to impaired blood flow and increased blood pressure. Over time, this increase in blood pressure causes damage to the heart. Many previous studies of PAH relied on male cells or cells of undisclosed origin for in vitro modeling. Here we present a dynamic, 3D-bioprinted model that incorporates cells and circulating sex hormones from female patients to specifically study how female patients respond to changes in microenvironmental stiffness and sex hormone signaling. Poly(ethylene glycol)-alpha methacrylate (PEGαMA)-based hydrogels containing female human pulmonary artery adventitia fibroblasts (hPAAFs) from idiopathic PAH (IPAH) or control donors were 3D bioprinted to mimic pulmonary artery adventitia. These biomaterials were initially soft, like healthy blood vessels, and then stiffened using light to mimic vessel scarring in PAH. These 3D-bioprinted models showed that stiffening the microenvironment around female IPAH hPAAFs led to hPAAF activation. On both the protein and gene-expression levels, cellular activation markers significantly increased in stiffened samples and were highest in IPAH patient-derived cells. Treatment with a selective estrogen receptor modulator reduced expression hPAAF activation markers, demonstrating that hPAAF activation is a one pathologic response mediated by estrogen signaling in the vasculature, validating that drugs currently in clinical trials could be evaluated in sex-specific 3D-bioprinted pulmonary artery adventitia models.
Collapse
|
6
|
Nathan SD, Stinchon MR, Atcheson S, Simone L, Nelson M. Shining a spotlight on pulmonary hypertension associated with interstitial lung disease care: The latest advances in diagnosis and treatment. J Manag Care Spec Pharm 2025; 31:S2-S17. [PMID: 39745852 PMCID: PMC11695281 DOI: 10.18553/jmcp.2025.31.1-a.s2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Pulmonary hypertension associated with interstitial lung disease (PH-ILD) is a complex condition in which 2 consequential diseases interact and increase negative outcomes. Although the pathophysiologic mechanisms of PH-ILD are not yet well understood, the pronounced effect on functional status, supplemental oxygen requirements, health care resource utilization, and mortality that frequently accompany this diagnosis are well documented. A critical feature that complicates pathophysiologic understanding of PH-ILD is that progression of the pulmonary vascular disease does not always appear to be driven by the underlying lung disease. As PH-ILD is a progressive disease, early recognition and treatment initiation have the potential to delay the increased burden it creates. Historically, therapeutic development within pulmonary hypertension has concentrated on pulmonary arterial hypertension (PAH). However, PH-ILD and PAH are categorically distinct-belonging to distinct PH groups owing to differing pathophysiological mechanisms and therapeutic implications. PAH and PH-ILD may have numerous similarities; however, when PAH therapies have been studied in patients with PH-ILD, inconclusive efficacy (bosentan, sildenafil, tadalafil, iloprost) and at times deleterious safety findings (riociguat, ambrisentan) have been observed. Despite the paucity of evidence to support PAH therapy use in this patient population, widespread off-label use of PAH therapies arose as a result of a historical lack of PH-ILD-approved treatment. Recently, inhaled treprostinil-a prostacyclin analog-has become the first therapy approved for treatment of PH-ILD. In the phase 3 INCREASE trial, inhaled treprostinil was effective in improving 6-minute walk distance (the primary endpoint; P < 0.001) as well as N-terminal pro-B-type natriuretic peptide levels (P < 0.001). The approval of inhaled treprostinil in 2022 facilitates evidence-based therapeutic management. In addition, the 7th World Symposium on Pulmonary Hypertension has recently published an extensive summary of clinical research to date in PH-ILD. The proceedings from the 7th World Symposium on Pulmonary Hypertension provide timely recommendations for investigation of PH-ILD and a framework for assessing treatment needs. The therapeutic landscape advances are poised to transform PH-ILD care and improve outcomes for patients with PH-ILD.
Collapse
|
7
|
Li C, Liu P, Zhu H, Yang H, Zha J, Yao H, Zhang S, Huang J, Li G, Jiang G, Jiang Y, Dai A. T follicular helper cell is essential for M2 macrophage polarization and pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension. Respir Res 2024; 25:428. [PMID: 39633343 PMCID: PMC11619207 DOI: 10.1186/s12931-024-03058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Hypoxia-induced pulmonary hypertension (HPH) is a subgroup of type 3 pulmonary hypertension that may cause early right ventricular failure and eventual cardiac failure, which lacks potential therapeutic targets. Our previous research demonstrated that T follicular helper (TFH) cells that produce IL-21 were involved in HPH. However, the molecular mechanisms of TFH/IL-21-mediated pathogenesis of HPH have been elusive. Here we investigate the role of TFH cells and IL-21 in HPH. METHODS Studies were performed in C57BL/6 mice or IL-21 knockout mice exposed to chronic hypoxia to induce PH, and examined by hemodynamics. Molecular and cellular studies were performed in mouse lung and pulmonary arterial smooth muscle cells (PASMCs). M2 signature gene (Fizz1), M1 signature genes (iNos, IL-12β and MMP9), GC B cell and its marker GL-7, caspase-1, M2 macrophages, TFH cells, Bcl-6 and IL-21 level were measured. Proliferation rate of PASMCs was measured by EdU. Pyroptosis was assessed using Hoechst 33,342/PI double fluorescent staining. RESULTS In response to chronic hypoxia exposure-induced pulmonary hypertension, IL-21-/- mice or downregulation of TFH cells in WT mice developed blunted pulmonary hypertension, attenuated pulmonary vascular remodelling. Furthermore, chronic hypoxia exposure significantly increased the germinal center (GC) B cell responses, which were not present in IL-21-/- mice or downregulation of TFH cells in WT mice. Importantly, IL-21 promoted the polarization of primary alveolar macrophages toward the M2 phenotype. Consistently, significantly enhanced expression of M2 macrophage marker Fizz1 were detected in the bronchoalveolar lavage fluid of HPH mice. Moreover, alveolar macrophages that had been cultivated with IL-21 promoted PASMCs proliferation and pyroptosis in vitro, while a selective CX3CR1 antagonist, AZD8797 (AZD), significantly attenuated the proliferation and pyroptosis of the PASMCs. Finally, ECM1 knockdown promoted IL-2-STAT5 signaling and inhibited Bcl-6 signaling to inhibit TFH differentiation in HPH. CONCLUSIONS TFH/IL-21 axis amplified pulmonary vascular remodelling in HPH. This involved M2 macrophage polarization, PASMCs proliferation and pyroptosis. These data suggested that TFH/IL-21 axis may be a novel therapeutic target for the treatment of HPH.
Collapse
Affiliation(s)
- Cheng Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Pingping Liu
- Department of Emergency, Hunan Province Key Laboratory of Pediatric Emergency Medicine, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
| | - Hao Zhu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Huan Yang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Jun Zha
- Department of Respiratory and Critical Care Medicine, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Huiling Yao
- Department of General Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Shaoze Zhang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Jin Huang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Guang Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Gang Jiang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China.
| | - Yongliang Jiang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China.
| | - Aiguo Dai
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.
- Hunan Province Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Zeder K. Being on Time in Pulmonary Arterial Hypertension: Early Diagnosis in High-Risk Populations. Chest 2024; 166:916-918. [PMID: 39521539 DOI: 10.1016/j.chest.2024.07.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Katarina Zeder
- Division of Cardiovascular Medicine, School of Medicine, Baltimore, MD; University of Maryland, Institute for Health Computing, Bethesda, MD; Division of Pulmonology, Medical University of Graz, and Ludwig Boltzmann Institute for Lung Vascular Research Graz, Austria.
| |
Collapse
|
9
|
Yang J, Chen S, Chen K, Wu J, Yuan H. Exploring IRGs as a Biomarker of Pulmonary Hypertension Using Multiple Machine Learning Algorithms. Diagnostics (Basel) 2024; 14:2398. [PMID: 39518365 PMCID: PMC11545203 DOI: 10.3390/diagnostics14212398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a severe disease with poor prognosis and high mortality, lacking simple and sensitive diagnostic biomarkers in clinical practice. This study aims to identify novel diagnostic biomarkers for PAH using genomics research. METHODS We conducted a comprehensive analysis of a large transcriptome dataset, including PAH and inflammatory response genes (IRGs), integrated with 113 machine learning models to assess diagnostic potential. We developed a clinical diagnostic model based on hub genes, evaluating their effectiveness through calibration curves, clinical decision curves, and ROC curves. An animal model of PAH was also established to validate hub gene expression patterns. RESULTS Among the 113 machine learning algorithms, the Lasso + LDA model achieved the highest AUC of 0.741. Differential expression profiles of hub genes CTGF, DDR2, FGFR2, MYH10, and YAP1 were observed between the PAH and normal control groups. A diagnostic model utilizing these hub genes was developed, showing high accuracy with an AUC of 0.87. MYH10 demonstrated the most favorable diagnostic performance with an AUC of 0.8. Animal experiments confirmed the differential expression of CTGF, DDR2, FGFR2, MYH10, and YAP1 between the PAH and control groups (p < 0.05); Conclusions: We successfully established a diagnostic model for PAH using IRGs, demonstrating excellent diagnostic performance. CTGF, DDR2, FGFR2, MYH10, and YAP1 may serve as novel molecular diagnostic markers for PAH.
Collapse
Affiliation(s)
| | | | | | | | - Hui Yuan
- Department of Clinical Laboratory Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; (J.Y.); (S.C.); (K.C.); (J.W.)
| |
Collapse
|
10
|
Wang J, Li K, Hao D, Li X, Zhu Y, Yu H, Chen H. Pulmonary fibrosis: pathogenesis and therapeutic strategies. MedComm (Beijing) 2024; 5:e744. [PMID: 39314887 PMCID: PMC11417429 DOI: 10.1002/mco2.744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic and progressive lung disease characterized by extensive alterations of cellular fate and function and excessive accumulation of extracellular matrix, leading to lung tissue scarring and impaired respiratory function. Although our understanding of its pathogenesis has increased, effective treatments remain scarce, and fibrotic progression is a major cause of mortality. Recent research has identified various etiological factors, including genetic predispositions, environmental exposures, and lifestyle factors, which contribute to the onset and progression of PF. Nonetheless, the precise mechanisms by which these factors interact to drive fibrosis are not yet fully elucidated. This review thoroughly examines the diverse etiological factors, cellular and molecular mechanisms, and key signaling pathways involved in PF, such as TGF-β, WNT/β-catenin, and PI3K/Akt/mTOR. It also discusses current therapeutic strategies, including antifibrotic agents like pirfenidone and nintedanib, and explores emerging treatments targeting fibrosis and cellular senescence. Emphasizing the need for omni-target approaches to overcome the limitations of current therapies, this review integrates recent findings to enhance our understanding of PF and contribute to the development of more effective prevention and management strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Jianhai Wang
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese MedicineTianjin Institute of Respiratory DiseasesTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Kuan Li
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - De Hao
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
| | - Xue Li
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Yu Zhu
- Department of Clinical LaboratoryNankai University Affiliated Third Central HospitalTianjinChina
- Department of Clinical LaboratoryThe Third Central Hospital of TianjinTianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesArtificial Cell Engineering Technology Research Center of TianjinTianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Hongzhi Yu
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Huaiyong Chen
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese MedicineTianjin Institute of Respiratory DiseasesTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| |
Collapse
|
11
|
Gai X, Xia Q, Wang H, Bi H, Wang J, Zhao Y. Study on the mechanism of echinacoside in preventing and treating hypoxic pulmonary hypertension based on proteomic analyses. Pharmacol Res Perspect 2024; 12:e70025. [PMID: 39401152 PMCID: PMC11472809 DOI: 10.1002/prp2.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/17/2024] Open
Abstract
Hypoxic pulmonary hypertension (HPH), a chronic condition affecting the cardiopulmonary system, has high mortality. Echinacoside (ECH) is a phenylethanoid glycoside, which is used to ameliorate pulmonary vascular remodeling and pulmonary vasoconstriction in rats. Accordingly, we aimed to explore the mechanism of ECH in preventing and treating HPH. Sprague Dawley rats were housed in a hypobaric hypoxia chamber for 28 days to obtain the HPH model. The experimental rats were randomly allocated into the following several groups: normoxia group, chronic hypoxia group, and ECH group. The therapeutic results of ECH (10, 20, and 40 mg/kg) showed that ECH reduced mPAP, Hb, Hct, and RVHI in HPH rats. Then this work employed label-free quantitative proteomic analysis, western blotting, and RT-PCR to investigate the mechanism by which ECH prevents HPH. The results found that in the chronic hypoxia group, the levels of ACSL1, COL6A1, COL4A2, COL1A1, and PC increased compared to the normoxia group. However, the opposite effect was observed in the chronic hypoxia group treated with ECH. The study indicates that the administration of ECH may slow the pathological progression of HPH by suppressing the inflammatory response, inhibiting smooth muscle cell proliferation, and minimizing the deposition of extracellular matrix.
Collapse
Affiliation(s)
- Xiangyun Gai
- Department of PharmacyQinghai Minzu UniversityXiningChina
| | - Qingqing Xia
- Department of PharmacyQinghai Minzu UniversityXiningChina
| | - Hongmai Wang
- Department of PharmacyQinghai Minzu UniversityXiningChina
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety EvaluationNorthwest Institute of Plateau Biology, Chinese Academy of ScienceXiningChina
| | - Jinyu Wang
- Department of PharmacyQinghai Minzu UniversityXiningChina
| | - Yuefu Zhao
- Department of PharmacyQinghai Minzu UniversityXiningChina
| |
Collapse
|
12
|
Mutgan AC, Radic N, Valzano F, Crnkovic S, El-Merhie N, Evermann M, Hoetzenecker K, Foris V, Brcic L, Marsh LM, Tran-Lundmark K, Jandl K, Kwapiszewska G. A comprehensive map of proteoglycan expression and deposition in the pulmonary arterial wall in health and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L173-L188. [PMID: 38771138 DOI: 10.1152/ajplung.00022.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Changes in the extracellular matrix of pulmonary arteries (PAs) are a key aspect of vascular remodeling in pulmonary hypertension (PH). Yet, our understanding of the alterations affecting the proteoglycan (PG) family remains limited. We sought to investigate the expression and spatial distribution of major vascular PGs in PAs from healthy individuals and various PH groups (chronic obstructive pulmonary disease: PH-COPD, pulmonary fibrosis: PH-PF, idiopathic: IPAH). PG regulation, deposition, and synthesis were notably heightened in IPAH, followed by PH-PF, with minor alterations in PH-COPD. Single-cell analysis unveiled cell-type and disease-specific PG regulation. Agrin expression, a basement membrane PG, was increased in IPAH, with PA endothelial cells (PAECs) identified as a major source. PA smooth muscle cells (PASMCs) mainly produced large-PGs, aggrecan and versican, and small-leucine-like proteoglycan (SLRP) biglycan, whereas the major PGs produced by adventitial fibroblasts were SLRP decorin and lumican. In IPAH and PF-PH, the neointima-forming PASMC population increased the expression of all investigated large-PGs and SLRPs, except fibroblast-predominant decorin (DCN). Expression of lumican, versican, and biglycan also positively correlated with collagen 1α1/1α2 expression in PASMCs in patients with IPAH and PH-PF. We demonstrated that transforming growth factor-beta (TGF-β) regulates versican and biglycan expression, indicating their contribution to vessel fibrosis in IPAH and PF-PH. We furthermore show that certain circulating PG levels display a disease-dependent pattern, with increased decorin and lumican across all patient groups, while versican was elevated in PH-COPD and IPAH and biglycan reduced in IPAH. These findings suggest unique compartment-specific PG regulation in different forms of PH, indicating distinct pathological processes.NEW & NOTEWORTHY Idiopathic pulmonary arterial hypertension (IPAH) pulmonary arteries (PAs) displayed the greatest proteoglycan (PG) changes, with PH associated with pulmonary fibrosis (PH-PF) and PH associated with chronic obstructive pulmonary disease (PH-COPD) following. Agrin, an endothelial cell-specific PG, was solely upregulated in IPAH. Among all cells, neo-intima-forming smooth muscle cells (SMCs) displayed the most significant PG increase. Increased levels of circulating decorin, lumican, and versican, mainly derived from SMCs, and adventitial fibroblasts, may serve as systemic indicators of pulmonary remodeling, reflecting perivascular fibrosis and neointima formation.
Collapse
MESH Headings
- Humans
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Proteoglycans/metabolism
- Male
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Female
- Middle Aged
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Vascular Remodeling
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Biglycan/metabolism
- Decorin/metabolism
- Adult
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Pulmonary Fibrosis/metabolism
- Pulmonary Fibrosis/pathology
- Lumican/metabolism
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Nemanja Radic
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Slaven Crnkovic
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| | - Natalia El-Merhie
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| | - Matthias Evermann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Vasile Foris
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Leigh M Marsh
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- The Pediatric Heart Center, Skåne University Hospital, Lund, Sweden
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
13
|
Moon BF, Zhou IY, Ning Y, Chen YI, Le Fur M, Shuvaev S, Akam EA, Ma H, Solsona CM, Weigand‐Whittier J, Rotile N, Hariri LP, Drummond M, Boice AT, Zygmont SE, Sharma Y, Warburton RR, Martin GL, Blanton RM, Fanburg BL, Hill NS, Caravan P, Penumatsa KC. Simultaneous Positron Emission Tomography and Molecular Magnetic Resonance Imaging of Cardiopulmonary Fibrosis in a Mouse Model of Left Ventricular Dysfunction. J Am Heart Assoc 2024; 13:e034363. [PMID: 38979786 PMCID: PMC11292745 DOI: 10.1161/jaha.124.034363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/14/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Aging-associated left ventricular dysfunction promotes cardiopulmonary fibrogenic remodeling, Group 2 pulmonary hypertension (PH), and right ventricular failure. At the time of diagnosis, cardiac function has declined, and cardiopulmonary fibrosis has often developed. Here, we sought to develop a molecular positron emission tomography (PET)-magnetic resonance imaging (MRI) protocol to detect both cardiopulmonary fibrosis and fibrotic disease activity in a left ventricular dysfunction model. METHODS AND RESULTS Left ventricular dysfunction was induced by transverse aortic constriction (TAC) in 6-month-old senescence-accelerated prone mice, a subset of mice that received sham surgery. Three weeks after surgery, mice underwent simultaneous PET-MRI at 4.7 T. Collagen-targeted PET and fibrogenesis magnetic resonance (MR) probes were intravenously administered. PET signal was computed as myocardium- or lung-to-muscle ratio. Percent signal intensity increase and Δ lung-to-muscle ratio were computed from the pre-/postinjection magnetic resonance images. Elevated allysine in the heart (P=0.02) and lungs (P=0.17) of TAC mice corresponded to an increase in myocardial magnetic resonance imaging percent signal intensity increase (P<0.0001) and Δlung-to-muscle ratio (P<0.0001). Hydroxyproline in the heart (P<0.0001) and lungs (P<0.01) were elevated in TAC mice, which corresponded to an increase in heart (myocardium-to-muscle ratio, P=0.02) and lung (lung-to-muscle ratio, P<0.001) PET measurements. Pressure-volume loop and echocardiography demonstrated adverse left ventricular remodeling, function, and increased right ventricular systolic pressure in TAC mice. CONCLUSIONS Administration of collagen-targeted PET and allysine-targeted MR probes led to elevated PET-magnetic resonance imaging signals in the myocardium and lungs of TAC mice. The study demonstrates the potential to detect fibrosis and fibrogenesis in cardiopulmonary disease through a dual molecular PET-magnetic resonance imaging protocol.
Collapse
Affiliation(s)
- Brianna F. Moon
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Iris Y. Zhou
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Yingying Ning
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Yin‐Ching I. Chen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Mariane Le Fur
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Sergey Shuvaev
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Eman A. Akam
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Hua Ma
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | | | - Jonah Weigand‐Whittier
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Nicholas Rotile
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Lida P. Hariri
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Matthew Drummond
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Avery T. Boice
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Samantha E. Zygmont
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | - Yamini Sharma
- Pulmonary, Critical Care and Sleep Medicine, Tufts Medical CenterBostonMAUSA
| | - Rod R. Warburton
- Pulmonary, Critical Care and Sleep Medicine, Tufts Medical CenterBostonMAUSA
| | - Gregory L. Martin
- Molecular Cardiology Research Institute, Tufts Medical CenterBostonMAUSA
| | - Robert M. Blanton
- Molecular Cardiology Research Institute, Tufts Medical CenterBostonMAUSA
| | - Barry L. Fanburg
- Pulmonary, Critical Care and Sleep Medicine, Tufts Medical CenterBostonMAUSA
| | - Nicholas S. Hill
- Pulmonary, Critical Care and Sleep Medicine, Tufts Medical CenterBostonMAUSA
| | - Peter Caravan
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Institute for Innovation in Imaging, Massachusetts General HospitalBostonMAUSA
| | | |
Collapse
|
14
|
Matsui C, Tsukuura R, Sakai H, Escandón JM, Mohammad A, Yamamoto T. Evaluation of the Superficial Collecting Lymph Vessels' Vasa Vasorum in Lymphoedematous Limbs Using Video Capillaroscopy. Eur J Vasc Endovasc Surg 2024; 67:1008-1014. [PMID: 38000693 DOI: 10.1016/j.ejvs.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
OBJECTIVE The pre-collecting and collecting lymph vessels have smooth muscle cells, and sufficient perfusion is vital to maintain their function. Although the vasa vasorum of the collecting lymph vessels (VVCL) have been histologically investigated, little is known about their physiology. This study aimed to investigate the relationship between morphology and blood flow of the VVCL in lymphoedematous limbs. METHODS Medical records of lower extremity lymphoedema patients who underwent video capillaroscopy observation during supermicrosurgical lymphaticovenous anastomosis (LVA) surgery were reviewed. The collecting lymph vessels, dissected for LVA, were examined under video capillaroscopy (GOKO Bscan-ZD, GOKO Imaging Devices Co., Japan) with a magnification of 175x and 620x. Blood flow velocity of the VVCL was calculated by measuring the red blood cell movement using software (GOKO-VIP ver. 1.0.0.4, GOKO Imaging Devices Co., Japan). Based on the video capillaroscopy findings, the VVCL were grouped according to their morphology; the VVCL morphology types and blood flow velocity were then compared according to the lymphosclerosis severity grade. RESULTS Sixty-seven lymph vessels in 20 lower extremity lymphoedema patients were evaluated, including s0 in 19 (28.4%), s1 in 34 (50.7%), s2 in 10 (14.9%), and s3 in four (6.0%) lymph vessels. The VVCLs were grouped into four types: type 1 (n = 4), type 2 (n = 37), type 3 (n = 19), and type 4 (n = 7). Blood flow velocity of the VVCL ranged 0 - 189.3 μm/sec (average 26.40 μm/sec). There were statistically significant differences in VVCL morphology (p < .001) and blood flow velocity (p < .001) according to lymphosclerotic severity. CONCLUSION Vasa vasorum of the collecting lymph vessels could be grouped into four types with different characteristics. Morphological and physiological changes of the VVCL were related to sclerotic changes of the collecting lymph vessels.
Collapse
Affiliation(s)
- Chihiro Matsui
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan; Department of Plastic and Reconstructive Surgery, National Centre for Global Health and Medicine, Tokyo, Japan
| | - Reiko Tsukuura
- Department of Plastic and Reconstructive Surgery, National Centre for Global Health and Medicine, Tokyo, Japan
| | - Hayahito Sakai
- Department of Plastic and Reconstructive Surgery, National Centre for Global Health and Medicine, Tokyo, Japan
| | - Joseph M Escandón
- Division of Plastic and Reconstructive Surgery, Strong Memorial Hospital, University of Rochester Medical Centre, New York, NY, USA
| | - Arbab Mohammad
- Aarupadai Veedu Medical College and Hospital, Puducherry, India
| | - Takumi Yamamoto
- Department of Plastic and Reconstructive Surgery, National Centre for Global Health and Medicine, Tokyo, Japan.
| |
Collapse
|
15
|
Zhang H, Li M, Hu CJ, Stenmark KR. Fibroblasts in Pulmonary Hypertension: Roles and Molecular Mechanisms. Cells 2024; 13:914. [PMID: 38891046 PMCID: PMC11171669 DOI: 10.3390/cells13110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Fibroblasts, among the most prevalent and widely distributed cell types in the human body, play a crucial role in defining tissue structure. They do this by depositing and remodeling extracellular matrixes and organizing functional tissue networks, which are essential for tissue homeostasis and various human diseases. Pulmonary hypertension (PH) is a devastating syndrome with high mortality, characterized by remodeling of the pulmonary vasculature and significant cellular and structural changes within the intima, media, and adventitia layers. Most research on PH has focused on alterations in the intima (endothelial cells) and media (smooth muscle cells). However, research over the past decade has provided strong evidence of the critical role played by pulmonary artery adventitial fibroblasts in PH. These fibroblasts exhibit the earliest, most dramatic, and most sustained proliferative, apoptosis-resistant, and inflammatory responses to vascular stress. This review examines the aberrant phenotypes of PH fibroblasts and their role in the pathogenesis of PH, discusses potential molecular signaling pathways underlying these activated phenotypes, and highlights areas of research that merit further study to identify promising targets for the prevention and treatment of PH.
Collapse
Affiliation(s)
- Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cheng-Jun Hu
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
16
|
Cai L, Wang J, Yi X, Yu S, Wang C, Zhang L, Zhang X, Cheng L, Ruan W, Dong F, Su P, Shi Y. Nintedanib-loaded exosomes from adipose-derived stem cells inhibit pulmonary fibrosis induced by bleomycin. Pediatr Res 2024; 95:1543-1552. [PMID: 38245633 DOI: 10.1038/s41390-024-03024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a progressive lung disorder with a high mortality rate; its therapy remains limited due to the inefficiency of drug delivery. In this study, the system of drug delivery of nintedanib (Nin) by exosomes derived from adipose-derived stem cells (ADSCs-Exo, Exo) was developed to effectively deliver Nin to lung lesion tissue to ensure enhanced anti-fibrosis therapy. METHODS The bleomycin (BLM)-induced PF model was constructed in vivo and in vitro. The effects of Exo-Nin on BLM-induced PF and its regulatory mechanism were examined using RT-qPCR, Western blotting, immunofluorescence, and H&E staining. RESULTS We found Exo-Nin significantly improved BLM-induced PF in vivo and in vitro compared to Nin and Exo groups alone. Mechanistically, Exo-Nin alleviated fibrogenesis by suppressing endothelial-mesenchymal transition through the down-regulation of the TGF-β/Smad pathway and the attenuation of oxidative stress in vivo and in vitro. CONCLUSIONS Utilizing adipose stem cell-derived exosomes as carriers for Nin exhibited a notable enhancement in therapeutic efficacy. This improvement can be attributed to the regenerative properties of exosomes, indicating promising prospects for adipose-derived exosomes in cell-free therapies for PF. IMPACT The system of drug delivery of nintedanib (Nin) by exosomes derived from adipose-derived stem cells was developed to effectively deliver Nin to lung lesion tissue to ensure enhanced anti-fibrosis therapy. The use of adipose stem cell-derived exosomes as the carrier of Nin may increase the therapeutic effect of Nin, which can be due to the regenerative properties of the exosomes and indicate promising prospects for adipose-derived exosomes in cell-free therapies for PF.
Collapse
Affiliation(s)
- Liyun Cai
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Jie Wang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Xue Yi
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Shuwei Yu
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Chong Wang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Liyuan Zhang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Xiaoling Zhang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Lixian Cheng
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Wenwen Ruan
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Feige Dong
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Ping Su
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Ying Shi
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China.
| |
Collapse
|
17
|
Olajuyin AM, Olajuyin AK, Zhang X, Hu Q. Immunomodulatory macrophages and Treg in pulmonary hypertension. COMPARATIVE CLINICAL PATHOLOGY 2023; 33:163-173. [DOI: 10.1007/s00580-023-03540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2025]
|
18
|
Li Q, Zhang H. Bioinformatics analysis to identify potential biomarkers for the pulmonary artery hypertension associated with the basement membrane. Open Life Sci 2023; 18:20220730. [PMID: 37772261 PMCID: PMC10523280 DOI: 10.1515/biol-2022-0730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/30/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rapidly progressing cardiopulmonary disease. It is characterized by increased pulmonary artery pressure and vascular resistance. The most notable histopathological characteristic is vascular remodeling. The changes in the basement membrane (BM) are believed to be related to vascular remodeling. It is crucial to identify potential biomarkers associated with the BM in PAH, to guide its treatment. The microarray datasets GSE117261 and GSE113439 were downloaded from the Gene Expression Omnibus. Two data sets were examined to identify genes associated with the BM by analyzing gene expression changes. Next, we analyzed the relevant genes in the Kyoto Encyclopedia of Genes and Genomes using Gene Ontology and Disease Ontology annotationand conducted pathway enrichment analysis. We conducted a protein-protein interaction network analysis on the genes related to BMs and used the cell cytoHubba plug-in to identify the hub genes. Furthermore, we conducted an immune infiltration analysis and implemented a histogram model. Finally, we predicted and analyzed potential therapeutic drugs for PAH and set up a miRNA network of genetic markers. Six candidate genes related to BMs, namely Integrin Subunit Alpha V, Integrin Subunit Alpha 4, ITGA2, ITGA9, Thrombospondin 1, and Collagen Type IV Alpha 3 Chain, were identified as potential modulators of the immune process in PAH. Furthermore, ginsenoside Rh1 was found to significantly impact drug targeting based on its interactions with the six BM-related genes identified earlier. A novel biomarker related to the BM, which plays a crucial role in the development of PAH, has been identified.
Collapse
Affiliation(s)
- Qian Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming650000, China
| | - Hu Zhang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming650000, China
| |
Collapse
|