1
|
Sharma S, Kaur I, Dubey N, Goswami N, Tanwar SS. Berberine can be a Potential Therapeutic Agent in Treatment of Huntington's Disease: A Proposed Mechanistic Insight. Mol Neurobiol 2025:10.1007/s12035-025-05054-6. [PMID: 40377895 DOI: 10.1007/s12035-025-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025]
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder caused by CAG repeat expansion in the HTT gene, producing mutant huntingtin (mHTT) protein. This leads to neuronal damage through protein aggregation, transcriptional dysregulation, excitotoxicity, and mitochondrial dysfunction. mHTT impairs protein clearance and alters gene expression, energy metabolism, and synaptic function. Therapeutic strategies include enhancing mHTT degradation, gene silencing via antisense oligonucleotides and RNAi, promoting neuroprotection through BDNF signaling, and modulating neurotransmitters like glutamate and dopamine. Berberine, a natural isoquinoline alkaloid, has emerged as a promising therapeutic option for HD due to its multifaceted neuroprotective properties. Research indicates that berberine can mitigate the progression of neurodegenerative diseases, including HD, by targeting various molecular pathways. It exhibits antioxidant, anti-inflammatory, and autophagy-enhancing effects, which are crucial in reducing neuronal damage and apoptosis associated with HD. These properties make berberine a potential candidate for therapeutic intervention in HD, as demonstrated in both cellular and animal models. Berberine activates the PI3K/Akt pathway, which is vital for cell survival and neuroprotection. It reduces oxidative stress and neuroinflammation, both of which are implicated in HD pathology. Berberine enhances autophagic processes, promoting the degradation of mutant huntingtin protein, a key pathological feature of HD. In transgenic HD mouse models, berberine administration has been shown to alleviate motor dysfunction and prolong survival. It effectively reduces the accumulation of mutant huntingtin in cultured cells, suggesting a direct impact on the disease's molecular underpinnings. Berberine's safety profile, established through its use in treating other conditions, supports its potential for clinical trials in HD patients. Its ability to modulate neurotransmitter levels and engage multiple signaling pathways further underscores its therapeutic promise. While berberine shows significant potential as a therapeutic agent for HD, further research is necessary to fully elucidate its mechanisms and optimize its clinical application. The current evidence in the review paper, primarily from preclinical studies, provides a strong foundation for future investigations into berberine's efficacy and safety in human HD patients.
Collapse
Affiliation(s)
- Seema Sharma
- Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India
- Research Scholar, Department of Pharmacology, SAGE University, Indore, M.P, India
| | - Inderpreet Kaur
- Department of Pharmacy, Shivalik College of Pharmacy, Nangal, Punjab, India
| | - Naina Dubey
- Department of Pharmaceutical Sciences, SAGE University, Bhopal, M.P, India
| | - Neelima Goswami
- Department of Pharmaceutics, Sagar Institute of Research Technology and Science-Pharmacy, Bhopal, M.P, India
| | - Sampat Singh Tanwar
- Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India.
| |
Collapse
|
2
|
Beigoli S, Boskabady MH. The molecular basis of the immunomodulatory effects of natural products: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156028. [PMID: 39276685 DOI: 10.1016/j.phymed.2024.156028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/21/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Natural products (NPs) have long been recognized for their potential to modulate the immune system, offering a natural and holistic approach to enhancing immune function. In recent years, the immunomodulation effects of various natural products have attained significant attention. PURPOSE This article provides an overview of the role of natural products in immunomodulation, exploring their mechanisms of action, common types of NPs with immunomodulation properties, clinical applications, as well as considerations for their safety and efficacy. METHODS Extensive research has been conducted to compile important discoveries on the immunomodulatory properties of NPs through thorough searches of multiple databases such as PubMed, Science Direct, and Scopus up until January 2024. RESULTS By decreasing the levels of Th2 cytokines and pro-inflammatory cytokines, the results suggested that NPs have the ability to modulate the immune system. Therefore, NPs alleviate inflammation in various disorders such as asthma and cancer. Furthermore, the observed increase in CD4 cells and IFN-ɣ/IL4 levels, along with an increased IFN-c/IL4 ratio, indicates a stimulatory effect of NPs on Th1 activity in various inflammatory conditions. Therefore, NPs regulate the immune system by inhibiting T-cells and decreasing the growth of young B-cell lymphoma cells. CONCLUSION Reviewing studies indicated that NPs have the potential to serve as immunomodulatory candidates for treating disorders characterized by immune dysregulation. However, additional experimental and clinical studies are necessary before these agents can be implemented in clinical settings.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
De Rubis G, Paudel KR, Corrie L, Mehndiratta S, Patel VK, Kumbhar PS, Manjappa AS, Disouza J, Patravale V, Gupta G, Manandhar B, Rajput R, Robinson AK, Reyes RJ, Chakraborty A, Chellappan DK, Singh SK, Oliver BGG, Hansbro PM, Dua K. Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2793-2833. [PMID: 37991539 DOI: 10.1007/s00210-023-02830-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are among the leading causes of mortality worldwide. Cigarette smoking is among the main aetiologic factors for both ailments. These diseases share common pathogenetic mechanisms including inflammation, oxidative stress, and tissue remodelling. Current therapeutic approaches are limited by low efficacy and adverse effects. Consequentially, LC has a 5-year survival of < 20%, while COPD is incurable, underlining the necessity for innovative treatment strategies. Two promising emerging classes of therapy against these diseases include plant-derived molecules (phytoceuticals) and nucleic acid-based therapies. The clinical application of both is limited by issues including poor solubility, poor permeability, and, in the case of nucleic acids, susceptibility to enzymatic degradation, large size, and electrostatic charge density. Nanoparticle-based advanced drug delivery systems are currently being explored as flexible systems allowing to overcome these limitations. In this review, an updated summary of the most recent studies using nanoparticle-based advanced drug delivery systems to improve the delivery of nucleic acids and phytoceuticals for the treatment of LC and COPD is provided. This review highlights the enormous relevance of these delivery systems as tools that are set to facilitate the clinical application of novel categories of therapeutics with poor pharmacokinetic properties.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Vyoma K Patel
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Arehalli Sidramappa Manjappa
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
- Department of Pharmaceutics, Vasantidevi Patil Institute of Pharmacy, Kodoli, Kolkapur, Maharashtra, 416114, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Rashi Rajput
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Alexandra Kailie Robinson
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Ruby-Jean Reyes
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Amlan Chakraborty
- Division of Immunology, Immunity to Infection and Respiratory Medicine (DIIIRM), School of Biological Sciences I Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
4
|
Nikiema WA, Ouédraogo M, Ouédraogo WP, Fofana S, Ouédraogo BHA, Delma TE, Amadé B, Abdoulaye GM, Sawadogo AS, Ouédraogo R, Semde R. Systematic Review of Chemical Compounds with Immunomodulatory Action Isolated from African Medicinal Plants. Molecules 2024; 29:2010. [PMID: 38731500 PMCID: PMC11085867 DOI: 10.3390/molecules29092010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 05/13/2024] Open
Abstract
A robust, well-functioning immune system is the cornerstone of good health. Various factors may influence the immune system's effectiveness, potentially leading to immune system failure. This review aims to provide an overview of the structure and action of immunomodulators isolated from African medicinal plants. The research was conducted according to PRISMA guidelines. Full-text access research articles published in English up to December 2023, including plant characteristics, isolated phytochemicals, and immuno-modulatory activities, were screened. The chemical structures of the isolated compounds were generated using ChemDraw® (version 12.0.1076), and convergent and distinctive signaling pathways were highlighted. These phytochemicals with demonstrated immunostimulatory activity include alkaloids (berberine, piperine, magnoflorine), polysaccharides (pectin, glucan, acemannan, CALB-4, GMP90-1), glycosides (syringin, cordifolioside, tinocordiside, aucubin), phenolic compounds (ferulic acid, vanillic acid, eupalitin), flavonoids (curcumin, centaurein, kaempferin, luteolin, guajaverin, etc.), terpenoids (oleanolic acid, ursolic acid, betulinic acid, boswellic acids, corosolic acid, nimbidin, andrographolides). These discussed compounds exert their effects through various mechanisms, targeting the modulation of MAPKs, PI3K-Akt, and NF-kB. These mechanisms can support the traditional use of medicinal plants to treat immune-related diseases. The outcomes of this overview are to provoke structural action optimization, to orient research on particular natural chemicals for managing inflammatory, infectious diseases and cancers, or to boost vaccine immunogenicity.
Collapse
Affiliation(s)
- Wendwaoga Arsène Nikiema
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Moussa Ouédraogo
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| | - Windbedma Prisca Ouédraogo
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| | - Souleymane Fofana
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Institut des Sciences de la Santé, Université NAZI Boni, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso
| | - Boris Honoré Amadou Ouédraogo
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Talwendpanga Edwige Delma
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Belem Amadé
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Gambo Moustapha Abdoulaye
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Aimé Serge Sawadogo
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| | - Raogo Ouédraogo
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Rasmané Semde
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| |
Collapse
|
5
|
Zheng Z, Song X, Shi Y, Long X, Li J, Zhang M. Recent Advances in Biologically Active Ingredients from Natural Drugs for Sepsis Treatment. Comb Chem High Throughput Screen 2024; 27:688-700. [PMID: 37254548 DOI: 10.2174/1386207326666230529101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Sepsis refers to the dysregulated host response to infection; its incidence and mortality rates are high. It is a worldwide medical problem but there is no specific drug for it. In recent years, clinical and experimental studies have found that many monomer components of traditional Chinese medicine have certain effects on the treatment of sepsis. This paper reviews the advances in research on the active ingredients of traditional Chinese medicine involved in the treatment of sepsis in recent years according to their chemical structure; it could provide ideas and references for further research and development in Chinese materia medica for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Zheng
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Xiayinan Song
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanmei Shi
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofeng Long
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Jie Li
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Min Zhang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
6
|
Chang SI, Ryu DY. Assessment of subchronic toxicity and toxicokinetics of AG NPP709 in Sprague-Dawley rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116801. [PMID: 37330073 DOI: 10.1016/j.jep.2023.116801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hedera helix L. (HH) leaves and Coptidis rhizoma (CR) have traditionally been used to treat respiratory conditions. AG NPP709, which is formulated using extracts of both these herbs, has been developed as an expectorant and antitussive. AIM OF THE STUDY The objective was to evaluate the subchronic toxicity and toxicokinetic characteristics of AG NPP709 in laboratory rats. MATERIALS AND METHODS AG NPP709 was orally administered to rats at doses of up to 2.0 g/kg/day for a duration of 13 weeks. Various health parameters were measured throughout the treatment period. At the end of the treatment, a necropsy was conducted and additional parameters were analyzed. Toxicokinetic analyses were also performed on hederacoside C and berberine, the active components of HH leaves and CR, respectively, in the plasma of rats treated with AG NPP709. RESULTS AG NPP709-treated rats exhibited several health issues, such as reduced feed intake, altered differential white blood cell (WBC) count, increased plasma Alb/Glo ratio in females, and reduced kidney weight in males. However, these changes appeared to be incidental and fell within the typical range for healthy animals of this species. Additionally, toxicokinetic analysis of hederacoside C and berberine showed no accumulation in the plasma of rats during the repeated treatments with AG NPP709. CONCLUSIONS Our study demonstrates that AG NPP709 does not have any harmful effects on rats under experimental conditions. Based upon these findings, the no observed adverse effect level of AG NPP709 can be estimated to be 2.0 g/kg/day in rats.
Collapse
Affiliation(s)
- Soo Im Chang
- Ahn-Gook Pharmaceutical Co., Ltd., Yeongdeungpo-gu, Seoul, 07445, Republic of Korea; Research Institute for Veterinary Research, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, 08821, Republic of Korea
| | - Doug-Young Ryu
- Research Institute for Veterinary Research, College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, 08821, Republic of Korea.
| |
Collapse
|
7
|
Dhingra AK, Chopra B. Neuroprotection of Multitargeted Phytochemicals against Alzheimer: A
Desperate Need from Nature. THE NATURAL PRODUCTS JOURNAL 2023; 13. [DOI: 10.2174/2210315512666220627153553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 01/05/2025]
Abstract
Background:
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder associated
with dementia which leads to the alteration in the psychological and physiological functioning of
the individual. From antiquity, medicinal plants serve as important sources of bioactive phytochemicals
representing tremendous therapeutic potential. The unavoidable adverse effects associated with
synthetic compounds trigger the exploration of new and safer substitutes for the treatment and management
of disease conditions. Herbal medication proves to be an emerging and most promising alternative,
which is expected to be a revolutionary approach in modern medicine for disease treatment.
Objective:
Several phytochemicals like resveratrol, curcumin, apigenin, docosahexaenoic acid, epigallocatechin
gallate, and α-lipoic acid exhibit great potential in the prevention and management of AD.
Their use might be a possible remedy and lead to a safe strategy to delay the onset of AD and slow the
progression of this pervasive disorder. To determine the potential of these natural components as anti-
AD, this review focuses on the updates on clinical studies and research.
Methods:
Extensive literature survey was carried out on natural multitargeted bioactive phytochemicals
from various scientific databases like PubMed, Science Direct, Scopus, Clinicaltrails.gov, and
many reputed foundations. Current prose emphasizes the identified bioactive compounds as anti-AD,
which were reviewed with particular emphasis on their scientific impact and novelty.
Results:
These compounds diminish the pathophysiological aspects of AD; still, further studies are
required to prove the safety and efficacy of these compounds in humans.
Conclusion:
This present review might help the researchers, academicians and industrialists in drug
development as a new paradigm of drug discovery.
Collapse
Affiliation(s)
- Ashwani K. Dhingra
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| |
Collapse
|
8
|
Goel A. Current understanding and future prospects on Berberine for anticancer therapy. Chem Biol Drug Des 2023; 102:177-200. [PMID: 36905314 DOI: 10.1111/cbdd.14231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Berberine (BBR) is a potential plant metabolite and has remarkable anticancer properties. Many kinds of research are being focused on the cytotoxic activity of berberine in in vitro and in vivo studies. A variety of molecular targets which lead to the anticancer effect of berberine ranges from p-53 activation, Cyclin B expression for arresting cell cycles; protein kinase B (AKT), MAP kinase and IKB kinase for antiproliferative activity; effect on beclin-1 involved in autophagy; reduced expression of MMP-9 and MMP-2 for the inhibition of invasion and metastasis etc. Berberine also interferes with transcription factor-1 (AP-1) activity responsible for the expression of oncogenes and neoplastic transformation of the cell. It also leads to the inhibition of various enzymes which are directly or indirectly involved in carcinogenesis like N acetyl transferase, Cyclo-oxygenase-2, Telomerase and Topoisomerase. In addition to these actions, Berberine plays a role in, the regulation of reactive oxygen species and inflammatory cytokines in preventing cancer formation. Berberine anticancer properties are demonstrated due to the interaction of berberine with micro-RNA. The summarized information presented in this review article may help and lead the researchers, scientists/industry persons to use berberine as a promising candidate against cancer.
Collapse
Affiliation(s)
- Anjana Goel
- Department of Biotechnology, GLA University, Mathura, 281 46, Uttar Pradesh, India
| |
Collapse
|
9
|
Dos Santos Nascimento IJ, da Silva-Júnior EF. TNF-α Inhibitors from Natural Compounds: An Overview, CADD Approaches, and their Exploration for Anti-inflammatory Agents. Comb Chem High Throughput Screen 2022; 25:2317-2340. [PMID: 34269666 DOI: 10.2174/1386207324666210715165943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
Inflammation is a natural process that occurs in the organism in response to harmful external agents. Despite being considered beneficial, exaggerated cases can cause severe problems for the body. The main inflammatory manifestations are pain, increased temperature, edema, decreased mobility, and quality of life for affected individuals. Diseases such as arthritis, cancer, allergies, infections, arteriosclerosis, neurodegenerative diseases, and metabolic problems are mainly characterized by an exaggerated inflammatory response. Inflammation is related to two categories of substances: pro- and anti-inflammatory mediators. Among the pro-inflammatory mediators is Tumor Necrosis Factor-α (TNF-α). It is associated with immune diseases, cancer, and psychiatric disorders which increase its excretion. Thus, it becomes a target widely used in discovering new antiinflammatory drugs. In this context, secondary metabolites biosynthesized by plants have been used for thousands of years and continue to be one of the primary sources of new drug scaffolds against inflammatory diseases. To decrease costs related to the drug discovery process, Computer-Aided Drug Design (CADD) techniques are broadly explored to increase the chances of success. In this review, the main natural compounds derived from alkaloids, flavonoids, terpene, and polyphenols as promising TNF-α inhibitors will be discussed. Finally, we applied a molecular modeling protocol involving all compounds described here, suggesting that their interactions with Tyr59, Tyr119, Tyr151, Leu57, and Gly121 residues are essential for the activity. Such findings can be useful for research groups worldwide to design new anti-inflammatory TNF-α inhibitors.
Collapse
Affiliation(s)
| | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.,Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
10
|
Zhang W, Li S, Li C, Li T, Huang Y. Remodeling tumor microenvironment with natural products to overcome drug resistance. Front Immunol 2022; 13:1051998. [PMID: 36439106 PMCID: PMC9685561 DOI: 10.3389/fimmu.2022.1051998] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 09/01/2023] Open
Abstract
With cancer incidence rates continuing to increase and occurrence of resistance in drug treatment, there is a pressing demand to find safer and more effective anticancer strategy for cancer patients. Natural products, have the advantage of low toxicity and multiple action targets, are always used in the treatment of cancer prevention in early stage and cancer supplement in late stage. Tumor microenvironment is necessary for cancer cells to survive and progression, and immune activation is a vital means for the tumor microenvironment to eliminate cancer cells. A number of studies have found that various natural products could target and regulate immune cells such as T cells, macrophages, mast cells as well as inflammatory cytokines in the tumor microenvironment. Natural products tuning the tumor microenvironment via various mechanisms to activate the immune response have immeasurable potential for cancer immunotherapy. In this review, it highlights the research findings related to natural products regulating immune responses against cancer, especially reveals the possibility of utilizing natural products to remodel the tumor microenvironment to overcome drug resistance.
Collapse
Affiliation(s)
- Wanlu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang, China
| | - Chunting Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
11
|
Gong Z, Yang Q, Wang Y, Weng X, Li Y, Dong Y, Zhu X, Chen Y. Pharmacokinetic Differences of Wuji Pill Components in Normal and Chronic Visceral Hypersensitivity Irritable Bowel Syndrome Rats Attributable to Changes in Tight Junction and Transporters. Front Pharmacol 2022; 13:948678. [PMID: 35873589 PMCID: PMC9305487 DOI: 10.3389/fphar.2022.948678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
The Wuji pill, also called Wuji Wan (WJW), is an effective traditional medicine for the clinical treatment of irritable bowel syndrome (IBS). It is principally composed of Rhizoma Coptidis, Fructus Evodiae Rutaecarpae, and Radix Paeoniae Alba. There have been no reports on the pharmacokinetics of WJW on IBS. Because it is more meaningful to study pharmacokinetics in relation to specific pathological conditions, our study investigated the pharmacokinetic differences of five representative components (berberine, palmatine, evodiamine, rutaecarpine, and paeoniflorin) in normal rats and chronic visceral hypersensitivity IBS (CVH-IBS) model rats after single dose and multiple doses of WJW using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Transmission electron microscopy, immunohistochemistry, and immunofluorescence were used to explore mechanisms behind the pharmacokinetic differences in terms of tight junction proteins (Occludin and ZO-1), myosin light chain kinase (MLCK), and transporters including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and multidrug resistance associated protein 2 (MRP2) in rat colons. After a single dose, for all components except rutaecarpine, significant differences were observed between normal and model groups. Compared with normal group, T1/2 and AUC0-t of berberine and palmatine in model group increased significantly (562.5 ± 237.2 vs. 1,384.9 ± 712.4 min, 733.8 ± 67.4 vs. 1,532.4 ± 612.7 min; 5,443.0 ± 1,405.8 vs. 9,930.8 ± 2,304.5 min·ng/ml, 2,365.5 ± 410.6 vs. 3,527.0 ± 717.8 min·ng/ml), while Cl/F decreased (840.7 ± 250.8 vs. 397.3 ± 142.7 L/h/kg, 427.7 ± 89.4 vs. 288.9 ± 114.4 L/h/kg). Cmax and AUC0-t of evodiamine in model group increased significantly (1.4 ± 0.6 vs. 2.4 ± 0.7 ng/ml; 573 ± 45.3 vs. 733.9 ± 160.2 min·ng/ml), while T1/2, Tmax, Cl/F, and Vd/F had no significant difference. Tmax and AUC0-t of paeoniflorin in model group increased significantly (21.0 ± 8.2 vs. 80.0 ± 45.8 min; 15,428.9 ± 5,063.6 vs. 33,140.6 ± 5,613.9 min·ng/ml), while Cl/F decreased (110.5 ± 48.1 vs. 43.3 ± 9.5 L/h/kg). However, after multiple doses, all five components showed significant differences between normal and model groups. Moreover, these differences were related to tight junction damage and the differential expression of transporters in the colon, suggesting that dose adjustment might be required during administration of WJW in the clinical treatment of IBS.
Collapse
Affiliation(s)
- Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Dong
- Guang’An Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yu Dong, ; Xiaoxin Zhu, ; Ying Chen,
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yu Dong, ; Xiaoxin Zhu, ; Ying Chen,
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yu Dong, ; Xiaoxin Zhu, ; Ying Chen,
| |
Collapse
|
12
|
Chen F, Liu Q. Demystifying phytoconstituent-derived nanomedicines in their immunoregulatory and therapeutic roles in inflammatory diseases. Adv Drug Deliv Rev 2022; 186:114317. [PMID: 35533788 DOI: 10.1016/j.addr.2022.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2022] [Accepted: 04/30/2022] [Indexed: 11/28/2022]
Abstract
In the past decades, phytoconstituents have appeared as critical mediators for immune regulations among various diseases, both in eukaryotes and prokaryotes. These bioactive molecules, showing a broad range of biological functions, would hold tremendous promise for developing new therapeutics. The discovery of phytoconstituents' capability of functionally regulating immune cells and associating cytokines, suppressing systemic inflammation, and remodeling immunity have rapidly promoted the idea of their employment as anti-inflammatory agents. In this review, we discuss various roles of phyto-derived medicines in the field of inflammatory diseases, including chronic inflammation, autoimmune diseases, and acute inflammatory disease such as COVID-19. Nevertheless, traditional phyto-derived medicines often concurred with their clinical administration limitations, such as their lack of cell specificity, inefficient cytoplasmic delivery, and rapid clearance by the immune system. As alternatives, phyto-derived nano-approaches may provide significant benefits. Both unmodified and engineered nanocarriers present the potential to serve as phytoconstituent delivery systems to improve therapeutic physio-chemical properties and pharmacokinetic profiles. Thus, the development of phytoconstituents' nano-delivery designs, their new and perspective approaches for therapeutical applications are elaborated herein.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 216, 1550 Orleans Street, Baltimore, MD 21231, United States.
| |
Collapse
|
13
|
Niazi R, Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran, Peeri M, Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran, Azarbayjani MA, Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran. The interactive effect of berberine chloride and exercise rehabilitation on the lung tissue apoptosis and oxidative stress biomarkers in rats exposed to diazinon. PHYSIOLOGY AND PHARMACOLOGY 2022; 26:60-69. [DOI: 10.52547/phypha.26.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
|
14
|
The effect of barberry (Berberis integerrima) on lipid profile and systemic inflammation in subjects with cardiovascular risk factors: a randomized controlled trial. BMC Complement Med Ther 2022; 22:59. [PMID: 35255880 PMCID: PMC8902769 DOI: 10.1186/s12906-022-03539-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/24/2022] [Indexed: 12/30/2022] Open
Abstract
Background Despite significant advances in the management of cardiovascular disease (CVDs), there is still a large burden of CVD in the world. The inclusion of functional foods in the diet may provide beneficial effects on CVD. Purple-black barberry due to its richness in anthocyanins and berberine has shown beneficial effects on cardiometabolic factors. We investigated the effects of barberry on plasma lipids as well as inflammatory biomarkers in subjects with cardiovascular risk factors. Methods This was an 8-weeks, single-blinded, randomized controlled clinical trial that the participants were randomly assigned to a barberry (10 g/day dried barberry) or placebo group. At baseline and end of the study, plasma lipid profiles including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), small-dense LDL-C (sd-LDL-C), non-HDL-C, and TC/HDL-C, as well as inflammatory biomarkers including C-reactive protein (CRP) and interleukin-6 (IL-6), were determined. An intention-to-treat analysis was performed. Results Eighty-four participants were randomly assigned to study groups. The mean (± SD) participants' age was 54.06 ± 10.19 years. Body weight, body mass index (BMI), physical activity, and dietary intake were not different between the two groups at baseline and the end of the study. After adjusting for baseline values, we observed a significant decrease in plasma levels of TG, TC, LDL-C, sd-LDL-C, non-HDL-C, and TC/HDL-C (p < 0.001, p = 0.011, p = 0.015, p = 0.019, p = 0.004, and p = 0.039 respectively) as well as CRP (p = 0.020) in the barberry group compared to the placebo group. Conclusions Our results indicate that purple-black barberry consumption decreases plasma levels of CRP and improves lipid profile in subjects with cardiovascular risk factors. Trial registration This clinical trial was registered at ClinicalTrials.gov (NCT number: NCT04084847).
Collapse
|
15
|
Haftcheshmeh SM, Abedi M, Mashayekhi K, Mousavi MJ, Navashenaq JG, Mohammadi A, Momtazi-Borojeni AA. Berberine as a natural modulator of inflammatory signaling pathways in the immune system: Focus on NF-κB, JAK/STAT, and MAPK signaling pathways. Phytother Res 2022; 36:1216-1230. [PMID: 35142403 DOI: 10.1002/ptr.7407] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
Abstract
Three main inflammatory signaling pathways include nuclear factor-κB (NF-κB), Janus kinases/Signal transducer and activator of transcriptions (JAKs/STATs), and mitogen-activated protein kinases (MAPKs) play crucial roles in inducing, promoting, and regulating inflammatory responses in the immune system. Importantly, the breakdown of mechanisms that tightly regulate inflammatory signaling pathways can be the underlying cause of uncontrolled inflammatory responses and be associated with the generation and development of several inflammatory diseases. Hence, therapeutic strategies targeting inflammatory signaling pathways and their downstream components may promise to treat inflammatory diseases. Studies over the past two decades have provided important information on the polytrophic pharmacological and biochemical properties of berberine (BBR) as a naturally occurring compound, such as antioxidant, antitumor, antimicrobial, and antiinflammatory activates. Interestingly, the modulatory effects of BBR on inflammatory signaling cascades, which lead to the inhibition of inflammation, have been widely investigated in several in vitro and in vivo studies. For the first time, herein, this comprehensive review attempts to put together these studies and provide important insight into the modulatory effects of BBR on NF-κB, JAKs/STATs, and MAPKs signaling pathways in vitro in various types of immune cells and in vivo in several experimental inflammatory diseases. As the second achievement of this review, we also explore the therapeutic efficacy and antiinflammatory effects of BBR regarding its modulatory action.
Collapse
Affiliation(s)
- Saeed Mohammadian Haftcheshmeh
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Maliheh Abedi
- Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Kazem Mashayekhi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Javad Mousavi
- Department of Immunology and Allergy, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Qiu Y, Li M, Zhang Y, Liu Y, Zhao Y, Zhang J, Jia Q, Li J. Berberine treatment for weight gain in patients with schizophrenia by regulating leptin rather than adiponectin. Asian J Psychiatr 2022; 67:102896. [PMID: 34773803 DOI: 10.1016/j.ajp.2021.102896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/04/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Berberine could improve antipsychotic-induced weight gain in obese cell lines and animal models. This study aimed to exam the effect of berberine on weight gain in patients with schizophrenia. METHODS Each subject who met DSM-IV-TR criteria for schizophrenia had been on stable dose of a single antipsychotic for at least one month. In an 8-week randomized, double-blind, placebo-controlled study, subjects received either berberine (900 mg per day) or placebo. Anthropometric parameters, leptin and adiponectin were measured at baseline, week 4, and week 8. RESULTS A total of 65 patients were enrolled, 49 of which completed the treatment. At the 8th week, the mean weight of patients in the berberine group (N = 27) lost 1.10 kg, while in the placebo group (N = 22) gained 1.45 kg. There were significant differences in body weight (Ftime*group=10.493, P = 0.001), BMI (Ftime*group=9.344, P = 0.002) and leptin (Ftime*group=6.265, P = 0.003). Further, the change of leptin had significant positive correlations with the changes of body weight(r = 0.395, P = 0.041) and BMI(r = 0.389, P = 0.045). There was no significant difference in adverse events between the two groups (P > 0.05). CONCLUSION This study suggests that berberine is a potential weight loss and weight maintenance drug for patients with schizophrenia. The effect of berberine on weight gain may be related to the regulation of leptin, but not adiponectin.
Collapse
Affiliation(s)
- Yuying Qiu
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Meijuan Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Yonghui Zhang
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Ying Liu
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Yongping Zhao
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Jing Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiong Jia
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Jie Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
17
|
Chen H, Liu Q, Liu X, Jin J. Berberine attenuates septic cardiomyopathy by inhibiting TLR4/NF-κB signalling in rats. PHARMACEUTICAL BIOLOGY 2021; 59:121-128. [PMID: 33539718 PMCID: PMC8871679 DOI: 10.1080/13880209.2021.1877736] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT Berberine (Ber) can increase the survival rate of septic mice and inhibit inflammation, but whether it has a protective effect on septic cardiomyopathy (SCM) is unclear. OBJECTIVE To investigate whether Ber ameliorates SCM in a rat model and its potential mechanism. MATERIALS AND METHODS Male SD rats were randomly divided into three groups: control (Con, n = 6) (DD H2O, 2 mL/100 g, ig, qd × 3 d, then saline, 10 mg/kg, ip); sepsis [LPS (lipopolysaccharide), n = 18] (LPS 10 mg/kg instead of saline, ip); and berberine intervention (Ber, n = 18) (Ber, 50 mg/kg instead of DD H2O, ig, qd × 3 d, LPS instead of saline, ip). Hemodynamics, HE staining, ELISA and western blot were performed at 6, 24, and 48 h after intraperitoneal injection of LPS to evaluate the effect of berberine in septic rats. RESULT Berberine could recover myocardial injury by partially increased ± dp/dt max (1151, 445 mmHg/s) and LVEDP levels (1.49 mmHg) with LPS-induced rats, as well as an ameliorated increase of cTnT (217.53 pg/mL) in the Ber group compared with that in the LPS group (at 24 h). In addition, HE staining results showed that berberine attenuated the myocardial cell swelling induced by LPS. In contrast to the LPS group, the up-regulation of TLR4, p65 TNF-α, and IL-1β were attenuated in the Ber group. DISCUSSION AND CONCLUSIONS Berberine showed a protective effect on septic cardiomyopathy rats possibly through inhibiting the activation of TLR4/NF-κB signalling pathway. Whether it improves SCM through other mechanisms is our ongoing research.
Collapse
Affiliation(s)
- Huiqi Chen
- Department of Ultrasonography, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Qian Liu
- Department of Cardiology, The Second Affiliated Hospital, University of South, Hengyang, China
| | - Xiangqi Liu
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinlan Jin
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
- CONTACT Jinlan Jin Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, 6001 North ring road, Shenzhen, China
| |
Collapse
|
18
|
Wang L, Sheng W, Tan Z, Ren Q, Wang R, Stoika R, Liu X, Liu K, Shang X, Jin M. Treatment of Parkinson's disease in Zebrafish model with a berberine derivative capable of crossing blood brain barrier, targeting mitochondria, and convenient for bioimaging experiments. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109151. [PMID: 34343700 DOI: 10.1016/j.cbpc.2021.109151] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022]
Abstract
Berberine is a famous alkaloid extracted from Berberis plants and has been widely used as medications and functional food additives. Recent studies reveal that berberine exhibits neuroprotective activity in animal models of Parkinson's disease (PD), the second most prevalent neurodegenerative disorders all over the world. However, the actual site of anti-PD action of berberine remains largely unknown. To this end, we employed a fluorescently labeled berberine derivative BBRP to investigate the subcellular localization and blood brain barrier (BBB) permeability in a cellular model of PD and zebrafish PD model. Biological investigations revealed that BBRP retained the neuroprotective activity of berberine against PD-like symptoms in PC12 cells and zebrafish, such as protecting 6-OHDA induced cell death, relieving MPTP induced PD-like behavior and increasing dopaminergic neuron loss in zebrafish. We also found that BBRP could readily penetrate BBB and function in the brain of zebrafish suffering from PD. Subcellular localization study indicated that BBRP could rapidly and specifically accumulate in mitochondria of PC12 cells when it exerted anti-PD effect. In addition, BBRP could suppress accumulation of Pink1 protein and inhibit the overexpression of LC3 protein in 6-OHDA damaged cells. All these results suggested that the potential site of action of berberine is mitochondria in the brain under the PD condition. Therefore, the findings described herein would be useful for further development of berberine as an anti-PD drug.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, Shandong Province, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, Shandong Province, China
| | - Zhaoshun Tan
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, Shandong Province, China
| | - Qingyu Ren
- School of Psychology and mental health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, Shandong Province, China
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv 79005, Ukraine
| | - Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80303, United States of America
| | - Kechun Liu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, Shandong Province, China
| | - Xueliang Shang
- School of Psychology and mental health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, China.
| | - Meng Jin
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, Shandong Province, China.
| |
Collapse
|
19
|
Khorshidi-Sedehi S, Aryaeian N, Shahram F, Akhlaghi M, Mahmoudi M, Motevalian M, Asgari -Taee F, Hosseini A. Effects of hydroalcoholic extract of Berberis integerrima on the clinical signs, hs-CRP, TNFα, and ESR in active rheumatoid arthritis patients. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Wang L, Kong H, Jin M, Li X, Stoika R, Lin H, Liu K. Synthesis of disaccharide modified berberine derivatives and their anti-diabetic investigation in zebrafish using a fluorescence-based technology. Org Biomol Chem 2021; 18:3563-3574. [PMID: 32347284 DOI: 10.1039/d0ob00327a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Berberine is a naturally occurring isoquinoline alkaloid and has been used as an important functional food additive in China due to its various pharmacological activities. Berberine exhibits great potential for developing anti-diabetic agents against type 2 diabetes mellitus (T2DM), as it can reduce the blood glucose level in many animal models. However, the low anti-diabetic activity and poor bioavailability of berberine (below 5%) by oral administration significantly limit its practical applications. To solve these problems, this article focuses on the structural modification of berberine using some disaccharide groups, because the carbohydrate moiety has been proved to improve the bioavailability and enhance the receptor-binding affinity of drugs. Anti-diabetic investigation of the synthesized compounds was performed in a zebrafish model using a fluorescently labelled glucose analog 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-d-glucose (2-NBDG) as a glucose tracker. The results indicated that the modification of berberine with carbohydrate groups could give derivatives with improved anti-diabetic activity, in particular the diglucose modified berberine derivative 1 which could dramatically promote the uptake of 2-NBDG in both zebrafish larvae and their eyes even at very low concentrations. Furthermore, the fluorescence-based anti-diabetic investigation method in zebrafish shows great potential for anti-diabetic drug screening.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong Province, China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Wang Z, Li K, Maskey AR, Huang W, Toutov AA, Yang N, Srivastava K, Geliebter J, Tiwari R, Miao M, Li X. A small molecule compound berberine as an orally active therapeutic candidate against COVID-19 and SARS: A computational and mechanistic study. FASEB J 2021; 35:e21360. [PMID: 33749932 PMCID: PMC8250068 DOI: 10.1096/fj.202001792r] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
The novel coronavirus disease, COVID-19, has grown into a global pandemic and a major public health threat since its breakout in December 2019. To date, no specific therapeutic drug or vaccine for treating COVID-19 and SARS has been FDA approved. Previous studies suggest that berberine, an isoquinoline alkaloid, has shown various biological activities that may help against COVID-19 and SARS, including antiviral, anti-allergy and inflammation, hepatoprotection against drug- and infection-induced liver injury, as well as reducing oxidative stress. In particular, berberine has a wide range of antiviral activities such as anti-influenza, anti-hepatitis C, anti-cytomegalovirus, and anti-alphavirus. As an ingredient recommended in guidelines issued by the China National Health Commission for COVID-19 to be combined with other therapy, berberine is a promising orally administered therapeutic candidate against SARS-CoV and SARS-CoV-2. The current study comprehensively evaluates the potential therapeutic mechanisms of berberine in preventing and treating COVID-19 and SARS using computational modeling, including target mining, gene ontology enrichment, pathway analyses, protein-protein interaction analysis, and in silico molecular docking. An orally available immunotherapeutic-berberine nanomedicine, named NIT-X, has been developed by our group and has shown significantly increased oral bioavailability of berberine, increased IFN-γ production by CD8+ T cells, and inhibition of mast cell histamine release in vivo, suggesting a protective immune response. We further validated the inhibition of replication of SARS-CoV-2 in lung epithelial cells line in vitro (Calu3 cells) by berberine. Moreover, the expression of targets including ACE2, TMPRSS2, IL-1α, IL-8, IL-6, and CCL-2 in SARS-CoV-2 infected Calu3 cells were significantly suppressed by NIT-X. By supporting protective immunity while inhibiting pro-inflammatory cytokines; inhibiting viral infection and replication; inducing apoptosis; and protecting against tissue damage, berberine is a promising candidate in preventing and treating COVID-19 and SARS. Given the high oral bioavailability and safety of berberine nanomedicine, the current study may lead to the development of berberine as an orally, active therapeutic against COVID-19 and SARS.
Collapse
Affiliation(s)
- Zhen‐Zhen Wang
- Academy of Chinese Medical ScienceHenan University of Chinese MedicineZhengzhouChina
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
| | - Kun Li
- Department of PediatricsUniversity of IowaIowa CityIAUSA
| | - Anish R. Maskey
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
| | - Weihua Huang
- Department of PathologyNew York Medical CollegeValhallaNYUSA
| | | | - Nan Yang
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- General Nutraceutical TechnologyElmsfordNYUSA
| | - Kamal Srivastava
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- General Nutraceutical TechnologyElmsfordNYUSA
| | - Jan Geliebter
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- Department of OtolaryngologySchool of MedicineNew York Medical CollegeValhallaNYUSA
| | - Raj Tiwari
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- Department of OtolaryngologySchool of MedicineNew York Medical CollegeValhallaNYUSA
| | - Mingsan Miao
- Academy of Chinese Medical ScienceHenan University of Chinese MedicineZhengzhouChina
| | - Xiu‐Min Li
- Department of Microbiology & ImmunologyNew York Medical CollegeValhallaNYUSA
- Department of OtolaryngologySchool of MedicineNew York Medical CollegeValhallaNYUSA
| |
Collapse
|
22
|
Keskin M, Kaya G, Guragac Dereli FT, Belwal T. Berberine. NATURALLY OCCURRING CHEMICALS AGAINST ALZHEIMER'S DISEASE 2021:147-154. [DOI: 10.1016/b978-0-12-819212-2.00012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Berberine suppresses bone loss and inflammation in ligature-induced periodontitis through promotion of the G protein-coupled estrogen receptor-mediated inactivation of the p38MAPK/NF-κB pathway. Arch Oral Biol 2020; 122:104992. [PMID: 33338754 DOI: 10.1016/j.archoralbio.2020.104992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/04/2020] [Accepted: 11/15/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This study aimed to explore the protective actions of berberine on inflammation, and alveolar bone loss in ligature-induced periodontitis, as well as its mechanism of action METHODS: Micro-computed tomography was conducted to analyze the alveolar bone loss, and hematoxylin and eosin staining was carried out to observe the histopathological changes and inflammation status. Furthermore, enzyme linked immunosorbent assay (ELISA) was conducted to evaluate the levels of TNF-α, IL-1β, and IL-10, as well as western blots to determine the levels of GPR30 and the activity of the p38MAPK/NF-κB pathway. RESULTS Berberine distinctly suppressed alveolar bone loss and inflammation in rats exposed to ligature-induced periodontitis. As well as this, berberine significantly decreased the levels of phosphorylated p38MAPK and phosphorylated NF-κB 65 through upregulating the GRP30 protein levels, this protective effects of berberine were reversed by injection of G15, along with the upregulated activity of the p38MAPK/NF-κB pathway in rats with periodontitis. CONCLUSIONS Berberine had a clear inhibitory effect on alveolar bone loss and inflammation in rats exposed to ligature-induced periodontitis, and its putative mechanism of action was attributed to the downregulation of the activity of the P38MAPK/NF-κB pathway, mediated by the G Protein-coupled estrogen receptor.
Collapse
|
24
|
Quasi-Irreversible Inhibition of CYP2D6 by Berberine. Pharmaceutics 2020; 12:pharmaceutics12100916. [PMID: 32987920 PMCID: PMC7600264 DOI: 10.3390/pharmaceutics12100916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
In our previous study, Hwang-Ryun-Hae-Dok-Tang, which contains berberine (BBR) as a main active ingredient, inhibited cytochrome P450 (CYP) 2D6 in a quasi-irreversible manner. However, no information is available on the detailed mechanism of BBR-induced CYP2D6 inhibition. Thus, the present study aimed to characterize the inhibition mode and kinetics of BBR and its analogues against CYP2D6 using pooled human liver microsomes (HLM). BBR exhibited selective quasi-irreversible inhibition of CYP2D6 with inactivation rate constant (kinact) of 0.025 min−1, inhibition constant (KI) of 4.29 µM, and kinact/KI of 5.83 mL/min/µmol. In pooled HLM, BBR was metabolized to thalifendine (TFD), demethyleneberberine (DMB), M1 (proposed as demethylene-TFD), and to a lesser extent berberrubine (BRB), showing moderate metabolic stability with a half-life of 35.4 min and a microsomal intrinsic clearance of 7.82 µL/min/mg protein. However, unlike BBR, those metabolites (i.e., TFD, DMB, and BRB) were neither selective nor potent inhibitors of CYP2D6, based on comparison of half-maximal inhibitory concentration (IC50). Notably, TFD, but not DMB, exhibited metabolism-dependent CYP2D6 inhibition as in the case of BBR, which suggests that methylenedioxybenzene moiety of BBR may play a critical role in the quasi-irreversible inhibition. Moreover, the metabolic clearance of nebivolol (β-blocker; CYP2D6 substrate) was reduced in the presence of BBR. The present results warrant further evaluation of BBR–drug interactions in clinical situations.
Collapse
|
25
|
Yao Y, Chen H, Yan L, Wang W, Wang D. Berberine alleviates type 2 diabetic symptoms by altering gut microbiota and reducing aromatic amino acids. Biomed Pharmacother 2020; 131:110669. [PMID: 32937246 DOI: 10.1016/j.biopha.2020.110669] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Berberine (BBR), which is extracted from traditional Chinese herb, is abundant in Coptis chinensis and Berberis vulgaris, with a treatment on type 2 diabetes mellitus (T2DM). However, its oral bioavailability is poor. Therefore, the ability of BBR to regulate gut microbiota and intestinal metabolites might exist. This study aimed to investigate changes in gut microbiota and intestinal metabolites, and to reveal the potential mechanism of BBR. METHODS To observe the role of gut microbiota in the treatment of T2DM by BBR, antibiotics intervened gut microbiota was used in this study, and the therapeutic effects of BBR were evaluated. A 16S rRNA gene sequencing approach was utilized to analyze gut microbiota alterations, and UHPLC-QTOF/MS-based untargeted metabolomics analysis of colon contents was used to identity differential intestinal metabolites. Finally, serum aromatic amino acids (AAAs) were absolutely quantified using LC/MS. RESULTS Inhibition of the blood glucose levels, and improvements in glucose tolerance and serum lipid parameters were observed in the BBR treated group. Type 2 diabetic symptoms in rats in the BA group (treated with antibotics and BBR) were alleviated. However, the therapeutical effects are weaker in the BA group compared with the BBR group, indicating that BBR can be used to treat type 2 diabetic rats immediately, and modulation of gut microbiota is related to the mechanism of BBR in the treatment of T2DM. The community richness and diversity of the gut microbiota were significantly increased by BBR, and the relative abundance of Bacteroidetes was increased in the BBR group, which was accompanied by a decreased relative abundance of Proteobacteria and Verrucomicrobia at the phylum level. At the family level, a probiotic Lactobacillaceae was significantly upregulated not only in the BBR group but also in the BA group and was negatively associated with the risk of T2DM. Metabolomic analysis of colon contents identified 55 differential intestinal metabolites between the BBR group and the model group. AAAs, including tyrosine, tryptophan and phenylalanine, were obviously decreased in the BBR group not only in the colon contents but also in the serum. CONCLUSIONS These results demonstrated that BBR could alleviate symptoms in type 2 diabetic rats by affecting gut microbiota composition and reducing the concentration of AAAs.
Collapse
Affiliation(s)
- Ye Yao
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, 410008, China.
| | - Han Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, 410008, China.
| | - Lijing Yan
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, 410008, China.
| | - Wenbo Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, 410008, China.
| | - Dongsheng Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, 410008, China.
| |
Collapse
|
26
|
Ghorbani N, Sahebari M, Mahmoudi M, Rastin M, Zamani S, Zamani M. Berberine Inhibits the Gene Expression and Production of Proinflammatory Cytokines by Mononuclear Cells in Rheumatoid Arthritis and Healthy Individuals. Curr Rheumatol Rev 2020; 17:113-121. [PMID: 32895042 DOI: 10.2174/1573397116666200907111303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/13/2020] [Accepted: 06/29/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is the most prevalent autoimmune arthritis. Berberine is an alkaloid isolated from Berberis vulgaris, and its anti-inflammatory effect has been identified. METHODS Twenty newly diagnosed RA patients and 20 healthy controls participated. Peripheral mononuclear cells were prepared and stimulated with bacterial lipopolysachharide (LPS,1 μg/ml), exposed to different concentrations of berberine (10 and 50μM) and dexamethasone (10-7 M) as a reference. The toxicity of compounds was evaluated by WST-1 assay. The expression of TNF-α and IL-1β was determined by quantitative real-time PCR. Protein level of secreted TNF-α and IL-1β was measured by using ELISA. RESULTS Berberine did not have any toxic effect on cells, whereas Lipopolysaccharide (LPS) stimulation caused a noticeable rise in TNF-α and IL-1β production. Berberine markedly downregulated the expression of both TNF-α and IL-1β, and inhibited TNF-α and IL-1β secretion from LPS-stimulated PBMCs. DISCUSSION This study provided a molecular basis for anti-inflammatory effect of berberine on human mononuclear cells through the suppression of TNF-a and IL-1secretion. Our findings highlighted the significant inhibitory effect of berberine on proinflammatory responses of mononuclear cells from rheumatoid arthritis individuals, which may be responsible for antiinflammatory property of Barberry. We observed that berberine at high concentration exhibited anti-inflammatory effect in PBMCs of both healthy and patient groups by suppression of TNF-a and IL-1cytokines at both mRNA and protein levels. CONCLUSION Berberine may inhibit the gene expression and production of pro-inflammatory cytokines by mononuclear cells in rheumatoid arthritis and healthy individuals without affecting cell viability. Future studies with a larger sample size are needed to prove the idea.
Collapse
Affiliation(s)
- Niloofar Ghorbani
- Immunology Research Centre, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sahebari
- Rheumatic Diseases Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Centre, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rastin
- Immunology Research Centre, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrzad Zamani
- Immunology Research Centre, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Zamani
- Immunology Research Centre, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Li L, Chang L, Zhang X, Ning Z, Mayne J, Ye Y, Stintzi A, Liu J, Figeys D. Berberine and its structural analogs have differing effects on functional profiles of individual gut microbiomes. Gut Microbes 2020; 11:1348-1361. [PMID: 32372706 PMCID: PMC7524264 DOI: 10.1080/19490976.2020.1755413] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The understanding of the effects of compounds on the gut microbiome is limited. In particular, it is unclear whether structurally similar compounds would have similar or distinct effects on the gut microbiome. Here, we selected berberine (BBR), an isoquinoline quaternary alkaloid, and 16 structural analogs and evaluated their effects on seven individual gut microbiomes cultured in vitro. The responses of the individual microbiomes were evaluated by metaproteomic profiles and by assessing butyrate production. We show that both interindividual differences and compound treatments significantly contributed to the variance of metaproteomic profiles. BBR and eight analogs led to changes in proteins involved in microbial defense and stress responses and enrichment of proteins from Verrucomicrobia, Proteobacteria, and Bacteroidetes phyla. It also led to a decrease in proteins from the Firmicutes phylum and its Clostridiales order which correlated to decrease proteins involved in the butyrate production pathway and butyrate concentration. Three of the compounds, sanguinarine, chelerythrine, and ethoxysanguinarine, activated bacterial protective mechanisms, enriched Proteobacteria, increased opacity proteins, and markedly reduced butyrate production. Dihydroberberine had a similar function to BBR in enriching the Akkermansia genus. In addition, it showed less overall adverse impacts on the functionality of the gut microbiome, including a better maintenance of the butyrate level. Our study shows that ex vivo microbiome assay can assess differential regulating effects of compounds with subtle differences and reveals that compound analogs can have distinct effects on the microbiome.
Collapse
Affiliation(s)
- Leyuan Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Lu Chang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xu Zhang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Janice Mayne
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Yang Ye
- State Key Laboratory of Drug Research & Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Shanghai Institute of Materia Medica, University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, Shanghai, China
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada,Shanghai Institute of Materia Medica, University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, Shanghai, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Shanghai Institute of Materia Medica, University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, Shanghai, China,Jia Liu Shanghai Institute of Materia Medica, University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, China
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada,Shanghai Institute of Materia Medica, University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, Shanghai, China,Canadian Institute for Advanced Research, Toronto, Canada,CONTACT Daniel Figeys
| |
Collapse
|
28
|
Xiao L, Poudel AJ, Huang L, Wang Y, Abdalla AM, Yang G. Nanocellulose hyperfine network achieves sustained release of berberine hydrochloride solubilized with β-cyclodextrin for potential anti-infection oral administration. Int J Biol Macromol 2020; 153:633-640. [DOI: 10.1016/j.ijbiomac.2020.03.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/01/2023]
|
29
|
Lee EG, Rhee CK. The clinical efficacy of AG NPP709 (Synatura ®) in patients with chronic bronchitis type stable chronic obstructive pulmonary disease. J Thorac Dis 2020; 12:2435-2442. [PMID: 32642149 PMCID: PMC7330415 DOI: 10.21037/jtd.2020.03.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background AG NPP709 (Synatura®) has been demonstrated to be efficacious in decreasing cough and sputum in patients with acute upper respiratory infection and chronic inflammatory bronchitis. The aim of this study was to evaluate the efficacy of AG NPP709 in patients with chronic bronchitis type chronic obstructive pulmonary disease (COPD). Methods This was a prospective, open-label, single-arm clinical trial (NCT03623282). Chronic bronchitis type COPD patients aged >40 years were enrolled. The primary endpoint was improvement on the CAT scores between the baseline visit and week 12. The secondary endpoints were the effect of AG NPP709 on the pulmonary function and systemic inflammation, as indexed by CRP, fibrinogen, IL-6, TNF-α and IL-33 levels. Results Thirty patients were enrolled. All patients were male, and their mean age was 71.93±7.93 years. The mean post-bronchodilator forced expiratory volume in 1 second/forced vital capacity (FEV1/FVC) ratio was 58.63±11.40, and FEV1 (%) was 75.93±20.42. The mean total CAT score was 14.77±7.14. Of these patients, 26 were followed up after 3 months. A significant improvement was observed in the total CAT score (from 14.38±6.62 to 12.73±6.60, P=0.005). Fibrinogen level decreased significantly (P=0.013). No serious adverse events occurred. Conclusions AG NPP709 improved the quality of life, as represented by the CAT score, in patients with chronic bronchitis type COPD, and significantly reduced fibrinogen levels. These results suggest that AG NPP709 is efficacious and safe in patients with chronic bronchitis type COPD.
Collapse
Affiliation(s)
- Eung Gu Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chin Kook Rhee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
30
|
Li Y, Hsieh Y, Pan Z, Zhang L, Yu W, Wang B, Zhang J. Extraction of Alkaloids from Coptidis Rhizoma via Betaine‐Based Deep Eutectic Solvents. ChemistrySelect 2020. [DOI: 10.1002/slct.202000865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yuanbin Li
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology Shenzhen 518055 China
- Research Centre of Printed Flexible ElectronicsSchool of Materials Science and Engineering, Harbin Institute of Technology Shenzhen 518055 China
| | - Yun‐Hao Hsieh
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology Shenzhen 518055 China
- Research Centre of Printed Flexible ElectronicsSchool of Materials Science and Engineering, Harbin Institute of Technology Shenzhen 518055 China
| | - Zuchen Pan
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology Shenzhen 518055 China
- Research Centre of Printed Flexible ElectronicsSchool of Materials Science and Engineering, Harbin Institute of Technology Shenzhen 518055 China
| | - Ling Zhang
- School of ScienceHarbin Institute of Technology Shenzhen 518055 China
| | - Wen Yu
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology Shenzhen 518055 China
- Research Centre of Printed Flexible ElectronicsSchool of Materials Science and Engineering, Harbin Institute of Technology Shenzhen 518055 China
| | - Binshen Wang
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology Shenzhen 518055 China
- Research Centre of Printed Flexible ElectronicsSchool of Materials Science and Engineering, Harbin Institute of Technology Shenzhen 518055 China
- Department of Chemistry and BiotechnologyYokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology Shenzhen 518055 China
- Research Centre of Printed Flexible ElectronicsSchool of Materials Science and Engineering, Harbin Institute of Technology Shenzhen 518055 China
| |
Collapse
|
31
|
Zhou WC, Tan PF, Chen XH, Cen Y, You C, Tan L, Li H, Tian M. Berberine-Incorporated Shape Memory Fiber Applied as a Novel Surgical Suture. Front Pharmacol 2020; 10:1506. [PMID: 31998123 PMCID: PMC6962190 DOI: 10.3389/fphar.2019.01506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 02/05/2023] Open
Abstract
The surgical suture has long been used to reconnect the injured tissues to restore their structure and function. However, its utility remains challenging in many areas, such as surgical site infections and minimally invasive surgeries. Herein, we report a novel surgical suture that possesses both antibacterial activity and shape memory effect to address these issues. In detail, natural antibacterial berberine was incorporated directly into the spinning solution of shape memory polyurethane with a near body transition temperature, and then berberine-containing polyurethane (BP) fibers were prepared by a facile one-step wet-spinning method for surgical suture. The prepared BP fibers were micro-sized and characterized by their transition temperature, morphology, water contact angles, mechanical properties, in vitro shape memory effect, drug release, and antibacterial activity. The results showed that with the increasing amount of the incorporated berberine, the transition temperatures of the fibers were not significantly affected, remains at near body temperature, while the contact angles of the fibers were significantly decreased and the mechanical properties of the fibers were significantly weakened. The optimized fiber was selected to evaluate the cytotoxicity and in vivo biocompatibility before in vivo shape memory effect and wound healing capacity in a mouse skin suture-wound model was tested. Besides the shape memory effect, it was demonstrated that the fiber is capable of antibacterial activity and anti-inflammatory effect, and promoting wound healing. The mechanism of the antibacterial activity and anti-inflammatory effect of the fiber was discussed. Overall, it is expected that by the berberine added to the fiber for surgical suture, it will be more popular and extend the utility of the sutures in a wide range of clinical applications.
Collapse
Affiliation(s)
- Wen-Cheng Zhou
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Peng-Fei Tan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| | - Xing-Han Chen
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Cen
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Tan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| | - Hao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Tian
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Ma J, Chan CC, Huang WC, Kuo ML. Berberine Inhibits Pro-inflammatory Cytokine-induced IL-6 and CCL11 Production via Modulation of STAT6 Pathway in Human Bronchial Epithelial Cells. Int J Med Sci 2020; 17:1464-1473. [PMID: 32624703 PMCID: PMC7330667 DOI: 10.7150/ijms.45400] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Berberine is an isoquinoline alkaloid isolated from various Chinese herbs that has potential of anti-inflammatory, anti-lipidemic, anti-neoplastic, and anti-diabetic activity. In this study, we evaluated the anti-inflammatory efficacy of berberine on allergic airway inflammation by targeting epithelial cells. Allergic airway inflammation driven by T helper 2 (Th2)-type immunity is characterized by airway hyperresponsiveness, elevated IgE production, and eosinophilic infiltration. For eosinophil recruitment, major chemoattractant CCL11 (eotaxin-1) was secreted by lung epithelial cells. BEAS-2B cells, a human bronchial epithelial cell line, were pre-treated with berberine and then activated by IL-4 plus TNF-α. The viability of BEAS-2B cells was assessed. Expression levels of IL-6 and CCL11 were determined using ELISA and real-time PCR. The signaling pathways of MAP kinases, NF-κB, and STAT6 were analyzed by western blot. Berberine treatment (≤1 μM) didn't significantly affect the viability of BEAS-2B cells with or without IL-4 plus TNF-stimulation. Berberine significantly inhibited the secretion of IL-6 and CCL11 from pro-inflammatory cytokine-activated BEAS-2B cells. NF-κB and MAP kinase pathways were seemingly unaffected in BEAS-2B cells with berberine treatment. Significant reduction of nuclear STAT6 protein expression in activated BEAS-2B cells with berberine treatment was observed. Current study reveals that berberine has inhibitory effect in pro-inflammatory cytokine-activated BEAS-2B cells through reducing IL-6 and CCL11 production, which is possibly modulated by suppressing STAT6 signaling pathway.
Collapse
Affiliation(s)
- Jason Ma
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chi Chan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
33
|
Wang L, Yang X, Li X, Stoika R, Wang X, Lin H, Ma Y, Wang R, Liu K. Synthesis of hydrophobically modified berberine derivatives with high anticancer activity through modulation of the MAPK pathway. NEW J CHEM 2020. [DOI: 10.1039/d0nj01645d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Linoleic acid-modified berberine derivative induces apoptosis of A549 cells and affects the expression of proteins associated with the MAPK pathway.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Xueliang Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis
- Institute of Cell Biology
- National Academy of Sciences of Ukraine
- Lviv
- Ukraine
| | - Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Houwen Lin
- Research Center for Marine Drugs
- State Key Laboratory of Oncogenes and Related Genes
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yukui Ma
- Shandong Provincial Key Laboratory of Chemical Drugs
- Shandong Academy of Pharmaceutical Sciences
- 250101 Jinan
- China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| |
Collapse
|
34
|
Anti-Inflammatory and Immunomodulatory Effects of Barberry ( Berberis vulgaris) and Its Main Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6183965. [PMID: 31827685 PMCID: PMC6885761 DOI: 10.1155/2019/6183965] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/05/2019] [Indexed: 11/17/2022]
Abstract
Berberis vulgaris is a well-known herb in Iran that is widely used as a medicinal plant and a food additive. The aim of this study was to investigate the anti-inflammatory and immunomodulatory effects of Barberry and its main compounds. This narrative review was conducted by searching keywords such as B. vulgaris, Barberry, immunomodulatory, anti-inflammatory, medicinal herbs, plants, and extract, separately or combined in various databases, such as Web of Sciences, PubMed, and Scopus. According to the inclusion and exclusion criteria, just English language articles, which reported effective whole plants or herbal compounds, were included. 21 articles were reviewed in this study. In the in vivo models (mice, rats, and human cells) and in the in vitro models (some organ cells such as the spleen, kidney, blood, and brain), B. vulgaris and its main components showed anti-inflammatory effects in both models. The main mechanisms were the shift of cell immune response to Th2, T reg induction, inhibition of inflammatory cytokines (IL-1, TNF, and IFN-γ), and stimulation of IL-4 and IL-10. The induction of apoptosis in APCs and other effector cells was another important mechanism.
Collapse
|
35
|
Raju M, Kulkarni YA, Wairkar S. Therapeutic potential and recent delivery systems of berberine: A wonder molecule. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103517] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
36
|
Patel RK, Trivedi PD. Design-of-experiment approach for the development and validation of a high-performance thin-layer chromatography method for the simultaneous estimation of berberine chloride and galangin in Tinospora cordifoliaM. and Alpinia galangaL. and their herbal formulations. JPC-J PLANAR CHROMAT 2018. [DOI: 10.1556/1006.2018.31.6.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Rajendra K. Patel
- Pharmaceutical chemistry department, K.B. Institute of Pharmaceutical Education and Research, Gandhinagar, Gujarat 382023, India
| | - Priti D. Trivedi
- Pharmaceutical chemistry department, K.B. Institute of Pharmaceutical Education and Research, Gandhinagar, Gujarat 382023, India
| |
Collapse
|
37
|
Li J, Yang L, Shen R, Gong L, Tian Z, Qiu H, Shi Z, Gao L, Sun H, Zhang G. Self-nanoemulsifying system improves oral absorption and enhances anti-acute myeloid leukemia activity of berberine. J Nanobiotechnology 2018; 16:76. [PMID: 30290822 PMCID: PMC6172716 DOI: 10.1186/s12951-018-0402-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recently, we found that berberine (BBR) exerts anti-acute myeloid leukemia activity, particularly toward high-risk and relapsed/refractory acute myeloid leukemia MV4-11 cells in vitro. However, the poor water solubility and low bioavailability observed with oral BBR administration has limited its clinical use. Therefore, we design and develop a novel oil-in-water self-nanoemulsifying system for BBR (BBR SNE) to improve oral bioavailability and enhance BBR efficacy against acute myeloid leukemia by greatly improving its solubility. RESULTS This system (size 23.50 ± 1.67 nm, zeta potential - 3.35 ± 0.03 mV) was prepared with RH40 (surfactant), 1,2-propanediol (co-surfactant), squalene (oil) and BBR using low-energy emulsification methods. The system loaded BBR successfully according to thermal gravimetric, differential scanning calorimetry, and Fourier transform infrared spectroscopy analyses. The release profile results showed that BBR SNE released BBR more slowly than BBR solution. The relative oral bioavailability of this novel system in rabbits was significantly enhanced by 3.41-fold over that of BBR. Furthermore, Caco-2 cell monolayer transport studies showed that this system could help enhance permeation and prevent efflux of BBR. Importantly, mice with BBR SNE treatment had significantly longer survival time than BBR-treated mice (P < 0.001) in an MV4-11 engrafted leukemia murine model. CONCLUSIONS These studies confirmed that BBR SNE is a promising therapy for acute myeloid leukemia.
Collapse
Affiliation(s)
- Jieping Li
- Department of Hematology, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Li Yang
- Department of Hematology, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Rui Shen
- Department of Hematology, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Li Gong
- Department of Clinical Laboratory, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, 401120 People’s Republic of China
| | - Zhiqiang Tian
- Army Military Medical University of Chinese PLA, Chongqing, 400038 People’s Republic of China
| | - Huarong Qiu
- Air Force Military Medical University of Chinese PLA, Xi’an, 710000 Shanxi People’s Republic of China
| | - Zhe Shi
- Department of Hematology, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Lichen Gao
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial, Changsha Central Hospital, Changsha, 410004 Hunan People’s Republic of China
| | - Hongwu Sun
- Army Military Medical University of Chinese PLA, Chongqing, 400038 People’s Republic of China
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, 410008 Hunan People’s Republic of China
| |
Collapse
|
38
|
Wu YY, Li TM, Zang LQ, Liu B, Wang GX. Effects of berberine on tumor growth and intestinal permeability in HCT116 tumor-bearing mice using polyamines as targets. Biomed Pharmacother 2018; 107:1447-1453. [PMID: 30257361 DOI: 10.1016/j.biopha.2018.08.130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/02/2018] [Accepted: 08/24/2018] [Indexed: 01/05/2023] Open
Abstract
The prognosis of colorectal cancer (CRC) is seriously affected by high intestinal mucosal permeability accompanied by increasing tumor load. Berberine, a natural plant-derived product, can protect the intestinal mucosal barrier and suppress tumor growth, but its effects on the intestinal mucosal barrier dysfunction of CRC have not yet been evaluated. Herein, we assessed the effects of berberine on the intestinal mucosal permeability of HCT116 tumor-bearing mice and the underlying mechanism. Berberine (6.25, 12.5, 25 mg/kg) was administered to tumor-bearing mice for 3 weeks by intraperitoneal injection, and saline was given to controls and models. Compared with the control group, tumor-bearing mice had increased intestinal mucosal permeability in the third week. Meanwhile, the body weight decreased by 4%-7%, the concentration of D-lactic acid in plasma increased, and the expressions of ZO1 and Occludin were down-regulated. The intestinal mucosa was impaired. Compared with the model group, berberine inhibited tumor growth in a dose-dependent manner (6.25, 12.5, 25 mg/kg), reduced the permeability of intestinal mucosa, and alleviated intestinal mucosal damage. HPLC showed that berberine decreased the content of polyamines in tumor tissue, whereas increased that in intestinal mucosa tissue. Western blot showed that berberine inhibited the expressions of ODC, C-MYC and HIF-1α, but up-regulated those of OAZ1 and SSAT. In short, berberine may exert antitumor effects by suppressing tumor growth and elevating the intestinal mucosal permeability.
Collapse
Affiliation(s)
- Yan-Yan Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong Province, Guangzhou, China; The Fifth Affiliated Hospital of Sun Yat-Sen University
| | - Tong-Ming Li
- School of Chinese Herbology, Guangzhou University of Chinese Medicine, Guangdong Province, Guangzhou, China
| | - Lin-Quan Zang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong Province, Guangzhou, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong Province, Guangzhou, China
| | - Gui-Xiang Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong Province, Guangzhou, China.
| |
Collapse
|
39
|
Lin C, Wu G, Wang K, Onel B, Sakai S, Shao Y, Yang D. Molecular Recognition of the Hybrid-2 Human Telomeric G-Quadruplex by Epiberberine: Insights into Conversion of Telomeric G-Quadruplex Structures. Angew Chem Int Ed Engl 2018; 57:10888-10893. [PMID: 29888501 PMCID: PMC6192034 DOI: 10.1002/anie.201804667] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/29/2018] [Indexed: 02/05/2023]
Abstract
Human telomeres can form DNA G-quadruplex (G4), an attractive target for anticancer drugs. Human telomeric G4s bear inherent structure polymorphism, challenging for understanding specific recognition by ligands or proteins. Protoberberines are medicinal natural-products known to stabilize telomeric G4s and inhibit telomerase. Here we report epiberberine (EPI) specifically recognizes the hybrid-2 telomeric G4 predominant in physiologically relevant K+ solution and converts other telomeric G4 forms to hybrid-2, the first such example reported. Our NMR structure in K+ solution shows EPI binding induces extensive rearrangement of the previously disordered 5'-flanking and loop segments to form an unprecedented four-layer binding pocket specific to the hybrid-2 telomeric G4; EPI recruits the (-1) adenine to form a "quasi-triad" intercalated between the external tetrad and a T:T:A triad, capped by a T:T base pair. Our study provides structural basis for small-molecule drug design targeting the human telomeric G4.
Collapse
Affiliation(s)
- Clement Lin
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Guanhui Wu
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Kaibo Wang
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Buket Onel
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Saburo Sakai
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
- Institute of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, 237-0061, Japan
| | - Yong Shao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Danzhou Yang
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| |
Collapse
|
40
|
Ma X, Chen Z, Wang L, Wang G, Wang Z, Dong X, Wen B, Zhang Z. The Pathogenesis of Diabetes Mellitus by Oxidative Stress and Inflammation: Its Inhibition by Berberine. Front Pharmacol 2018; 9:782. [PMID: 30100874 PMCID: PMC6072898 DOI: 10.3389/fphar.2018.00782] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/27/2018] [Indexed: 12/17/2022] Open
Abstract
A substantial knowledge on the pathogenesis of diabetes mellitus (DM) by oxidative stress and inflammation is available. Berberine is a biologically active botanical that can combat oxidative stress and inflammation and thus ameliorate DM, especially type 2 DM. This article describes the potential of berberine against oxidative stress and inflammation with special emphasis on its mechanistic aspects. In diabetic animal studies, the modified levels of proinflammatory cytokines and oxidative stress markers were observed after administering berberine. In renal, fat, hepatic, pancreatic and several others tissues, berberine-mediated suppression of oxidative stress and inflammation was noted. Berberine acted against oxidative stress and inflammation through a very complex mechanism consisting of several kinases and signaling pathways involving various factors, including NF-κB (nuclear factor-κB) and AMPK (AMP-activated protein kinases). Moreover, MAPKs (mitogen-activated protein kinases) and Nrf2 (nuclear factor erythroid-2 related factor 2) also have mechanistic involvement in oxidative stress and inflammation. In spite of above advancements, the mechanistic aspects of the inhibitory role of berberine against oxidative stress and inflammation in diabetes mellitus still necessitate additional molecular studies. These studies will be useful to examine the new prospects of natural moieties against DM.
Collapse
Affiliation(s)
- Xueling Ma
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhongjun Chen
- Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| | - Le Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Gesheng Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zihui Wang
- Chaoyang Hospital, Capital Medical University, Beijing, China
| | - XiaoBo Dong
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Binyu Wen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhichen Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
41
|
Lin C, Wu G, Wang K, Onel B, Sakai S, Shao Y, Yang D. Molecular Recognition of the Hybrid-2 Human Telomeric G-Quadruplex by Epiberberine: Insights into Conversion of Telomeric G-Quadruplex Structures. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Clement Lin
- Medicinal Chemistry and Molecular Pharmacology; College of Pharmacy; Purdue Center for Cancer Research; Purdue University; West Lafayette IN 47906 USA
| | - Guanhui Wu
- Medicinal Chemistry and Molecular Pharmacology; College of Pharmacy; Purdue Center for Cancer Research; Purdue University; West Lafayette IN 47906 USA
| | - Kaibo Wang
- Medicinal Chemistry and Molecular Pharmacology; College of Pharmacy; Purdue Center for Cancer Research; Purdue University; West Lafayette IN 47906 USA
| | - Buket Onel
- Medicinal Chemistry and Molecular Pharmacology; College of Pharmacy; Purdue Center for Cancer Research; Purdue University; West Lafayette IN 47906 USA
| | - Saburo Sakai
- Medicinal Chemistry and Molecular Pharmacology; College of Pharmacy; Purdue Center for Cancer Research; Purdue University; West Lafayette IN 47906 USA
- Institute of Biogeochemistry; Japan Agency for Marine-Earth Science and Technology; Yokosuka Kanagawa 237-0061 Japan
| | - Yong Shao
- College of Chemistry and Life Sciences; Zhejiang Normal University; Jinhua 321004 China
| | - Danzhou Yang
- Medicinal Chemistry and Molecular Pharmacology; College of Pharmacy; Purdue Center for Cancer Research; Purdue University; West Lafayette IN 47906 USA
| |
Collapse
|
42
|
Oshima N, Shimizu T, Narukawa Y, Hada N, Kiuchi F. Quantitative analysis of the anti-inflammatory activity of orengedokuto II: berberine is responsible for the inhibition of NO production. J Nat Med 2018; 72:706-714. [PMID: 29671127 DOI: 10.1007/s11418-018-1209-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/22/2018] [Indexed: 12/28/2022]
Abstract
Orengedokuto is a Kampo formula that has been used for removing "heat" and "poison" to treat inflammation, hypertension, gastrointestinal disorders, and liver and cerebrovascular diseases. We report here our analysis of the anti-inflammatory effect of the component crude drugs of orengedokuto and their constituents using the inhibition of nitric oxide (NO) production in the murine macrophage-like cell line J774.1. An initial comparison of NO production inhibitory activities of the extracts of the component crude drugs and their combinations revealed that the activity could be attributed to Phellodendron Bark and Coptis Rhizome. Berberine (1), the major constituent of these crude drugs, showed potent activity (IC50 4.73 ± 1.46 μM). Quantitative analysis of 1 in the extracts of all combinations of component crude drugs revealed that the amount of 1 in each extract of the combination of Scutellaria Root with either Phellodendron Bark and/or Coptis Rhizome was lower than that in the corresponding mixtures of the extracts of the individual crude drugs and that 1 was present in the precipitates formed during the decoction process. To the contrary, the differences in the amounts of 1 were smaller in the extracts containing Gardenia Fruit. These results indicated that the constituents of Scutellaria Root precipitated with 1 and that the constituents of Gardenia Fruit dissolved the precipitates. To identify the constituents affecting the solubility of 1, we fractionated the hot-water extracts of Scutellaria Root based on solubility tests of 1 to give baicalin (2), wogonin (3) and oroxyloside (4), which formed precipitates with 1.
Collapse
Affiliation(s)
- Naohiro Oshima
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tomofumi Shimizu
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yuji Narukawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Noriyasu Hada
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Fumiyuki Kiuchi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
43
|
Kassab RB, Vasicek O, Ciz M, Lojek A, Perecko T. The effects of berberine on reactive oxygen species production in human neutrophils and in cell-free assays. Interdiscip Toxicol 2018; 10:61-65. [PMID: 30123039 PMCID: PMC6096855 DOI: 10.1515/intox-2017-0010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/20/2017] [Indexed: 11/15/2022] Open
Abstract
The health benefits of berberine have been recognized for years. Even so, its effects on human neutrophils, the first line of immune defense, have not been reported. The purpose of this study was to investigate the effects of berberine on the human neutrophil oxidative burst. Reactive oxygen species production was analyzed by luminol-enhanced chemiluminescence. The analysis was performed in spontaneous and stimulated (phorbol myristate acetate (PMA) or opsonized zymosan particles (OZP)) whole blood and isolated neutrophils in the presence or absence of berberine. The effects of berberine on oxidant production in cell-free assays were evaluated using luminescence (H2O2-peroxidase-luminol) and fluorescence (Oxygen Radical Absorbance Capacity - ORAC) techniques. Berberine decreased the production of reactive oxygen species in human whole blood and isolated neutrophils stimulated with either PMA or OZP with a different efficiency (EC50 was 69 μM and 197 μM for PMA and OZP, respectively). The effect was more pronounced in isolated neutrophils. Cell-free assays showed the antioxidant activity of berberine against peroxyl radicals and hydrogen peroxide. Based on our results, we suggest that the effects of berberine on reactive oxygen species production in human neutrophils are due to its antioxidant activity.
Collapse
Affiliation(s)
- Rami B Kassab
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v. v. i., Kralovopolska 135, 612 65 Brno, Czech Republic.,Zoology and Entomology Department, Faculty of Science, Helwan University, Ain Helwan, 11795 Cairo, Egypt
| | - Ondrej Vasicek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v. v. i., Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Milan Ciz
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v. v. i., Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Antonin Lojek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v. v. i., Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Tomas Perecko
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v. v. i., Kralovopolska 135, 612 65 Brno, Czech Republic.,Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovak Republic
| |
Collapse
|
44
|
Li YJ, Hu XB, Lu XL, Liao DH, Tang TT, Wu JY, Xiang DX. Nanoemulsion-based delivery system for enhanced oral bioavailability and caco-2 cell monolayers permeability of berberine hydrochloride. Drug Deliv 2017; 24:1868-1873. [PMID: 29191058 PMCID: PMC8240975 DOI: 10.1080/10717544.2017.1410257] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/15/2017] [Accepted: 11/23/2017] [Indexed: 02/08/2023] Open
Abstract
Berberine hydrochloride (BBH) has a variety of pharmacological activities such as antitumor, antimicrobial, anti-inflammation, and reduce irritable bowel syndrome. However, poor stability and low oral bioavailability limited its usage. Herein, an oil-in-water nanoemulsion system of BBH was developed to improve its stability and oral bioavailability. The pseudoternary phase diagrams were constructed for the determination of composition of various nanoemulsions. The nanoemulsions of BBH composed of Labrafil M 1944 CS (oil phase), RH-40 (surfactant), glycerin (co-surfactant), and water (aqueous phase). The O/W nanoemulsion of BBH showed a relative bioavailability of 440.40% compared with unencapsulated BBH and was stable in our 6-month stability study. Further, there was a significant increase in intestinal permeability of BBH as assessed by Caco-2 cell monolayers and a significant reduction in efflux of BBH by the multidrug efflux pump P-glycoprotein. This study confirmed that the nanoemulsion formulation could be used as an alternative oral formulation of BBH to improve its stability, oral bioavailability and permeability.
Collapse
Affiliation(s)
- Yong-Jiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Traditional Chinese Medicine Preparations of Hunan Province, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiong-Bin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Traditional Chinese Medicine Preparations of Hunan Province, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiu-Ling Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Traditional Chinese Medicine Preparations of Hunan Province, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - De-Hua Liao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Traditional Chinese Medicine Preparations of Hunan Province, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, Changsha, Hunan, China
| | - Tian-Tian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Jun-Yong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Traditional Chinese Medicine Preparations of Hunan Province, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Traditional Chinese Medicine Preparations of Hunan Province, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| |
Collapse
|
45
|
Lv Y, Wang J, Xu D, Liao S, Li P, Zhang Q, Yang M, Kong L. Comparative study of single/combination use of Huang-Lian-Jie-Du decoction and berberine on their protection on sepsis induced acute liver injury by NMR metabolic profiling. J Pharm Biomed Anal 2017; 145:794-804. [PMID: 28822346 DOI: 10.1016/j.jpba.2017.07.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 02/08/2023]
Abstract
Sepsis is a serious clinical disease with a high mortality rate all around the world. Liver organ dysfunction is an important sign for the severity and outcome of sepsis in patients. In this study, 1H NMR-based metabolomics approach and biochemical assays were applied to investigate the metabolic profiling for cecal ligation and puncture (CLP) induced acute liver injury, the therapeutical effect of single/combination use of Huang-Lian-Jie-Du decoction (HLJDD) and berberine, and the interaction of them. Metabolomics analysis revealed significant perturbations in livers of septic rats, which could be ameliorated by HLJDD, berberine and their combination treatment. Berberine could better rectified glycolysis and nucleic acid metabolism in the liver. HLJDD had exceptional better anti-inflammatory, antibacterial and antioxidative effects than berberine. The interaction of berberine and HLJDD could further strengthen the anti-inflammation and anti-oxidation, but with poor effect on amino acids metabolism. These findings highlighted the feasibility of the integrated NMR based metabolomics approach to understand the pathogenesis of diseases, the action mechanisms of therapy and the herb-drug interaction.
Collapse
Affiliation(s)
- Yan Lv
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Dingqiao Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Shanting Liao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Pei Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Qian Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Minghua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
46
|
Ayati SH, Fazeli B, Momtazi-Borojeni AA, Cicero AFG, Pirro M, Sahebkar A. Regulatory effects of berberine on microRNome in Cancer and other conditions. Crit Rev Oncol Hematol 2017; 116:147-158. [PMID: 28693796 DOI: 10.1016/j.critrevonc.2017.05.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/13/2017] [Accepted: 05/22/2017] [Indexed: 12/19/2022] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid found in different plant families such as Berberidaceae, Ranunculaceae, and Papaveraceae. BBR is well-known for its anti-inflammatory, lipid-modifying, anticancer, anti-diabetic, antibacterial, antiparasitic and fungicide activities. Multiple pharmacological actions of BBR stem from different molecular targets of this phytochemical. MicroRNAs (miRs) are single-stranded, evolutionary conserved, small non-coding RNA molecules with a length of 19-23 nucleotides that are involved in RNA silencing and post-transcriptional regulation of gene expression through binding to the 3'-untranslated region (3'UTR) of target mRNA. MiRs emerged as important regulatory elements in almost all biological processes like cell proliferation, apoptosis, differentiation and organogenesis, and numerous human diseases such as cancer and diabetes. BBR was shown to regulate the expression of miRs in several diseases. Here, we reviewed the target miRs of BBR and the relevance of their modulation for the potential treatment of serious human diseases like multiple myeloma, hepatocellular carcinoma, colorectal cancer, gastric cancer, ovarian cancer and glioblastoma. The role of miR regulation in the putative anti-diabetic effects of BBR is discussed, as well.
Collapse
Affiliation(s)
- Seyed Hasan Ayati
- Immunology Research Center, Department of Immunology, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Badrieh Fazeli
- Department of Biology, Faculty of Science, Isfahan University, Isfahan, Iran
| | - Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Student Research Committee, Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni 15, Bologna, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
| |
Collapse
|
47
|
Maleki SN, Aboutaleb N, Souri F. Berberine confers neuroprotection in coping with focal cerebral ischemia by targeting inflammatory cytokines. J Chem Neuroanat 2017; 87:54-59. [PMID: 28495517 PMCID: PMC5812778 DOI: 10.1016/j.jchemneu.2017.04.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/24/2017] [Accepted: 04/24/2017] [Indexed: 01/05/2023]
Abstract
Berberine reduces brain edema and infarct volume through regulation of inflammatory responses in focal cerebral ischemia. Berberine increases the expression of anti-inflammatory cytokines after ischemic stroke. Berberine contributes to recovery of motor function after focal cerebral ischemia.
Scope Existing research indicates that anti-inflammatory and antioxidant properties of berberine play major roles in coping with oxidative stress in neurodegenerative diseases, but it is not known if this isoquinoline alkaloid affects inflammatory cytokines such as interleukin 10 in focal cerebral ischemia. Methods and results Male Wistar rats (10 weeks old) were treated with 40 mg/kg concentration of berberine 1 h after focal cerebral ischemia and the anti-inflammatory properties of berberine were evaluated by immunohistochemical analysis, water content measure and behavioral tests. Evaluation of infarct volume was performed by TTC staining. Immunohistochemistry and behavioral assessment indicated recovery in treatment group compared to only ischemia group. The infarct volume decreased in treatment group compared to ischemia group. Berberine administration significantly decreased brain edema and contributed to the restoration of motor function. Moreover, berberine potently contributed to neuroprotection in motor area through downregulation of pro-inflammatory cytokines and upregulation of anti-inflammatory cytokines. Conclusions These findings confirm the validity of berberine as a potent anti-inflammatory agent in treatment of ischemic stroke.
Collapse
Affiliation(s)
- Solmaz Nasseri Maleki
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Faramarz Souri
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Fan J, Li B, Ge T, Zhang Z, Lv J, Zhao J, Wang P, Liu W, Wang X, Mlyniec K, Cui R. Berberine produces antidepressant-like effects in ovariectomized mice. Sci Rep 2017; 7:1310. [PMID: 28465511 PMCID: PMC5431015 DOI: 10.1038/s41598-017-01035-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/23/2017] [Indexed: 01/08/2023] Open
Abstract
Berberine has been reports to have antidepressant-like effects. However, it is seldom known whether berberine produces antidepressant-like effects in ovariectomized mice, which exhibit depressive-like responses. To examine the antidepressant-like effects of berberine in ovariectomized mice, behavioral tests were conducted, including the forced swimming test and the open field test. To elucidate the mechanisms, levels of BDNF, phosphorylated CREB and phosphorylated eEF2 were analyzed by western blotting, and c-Fos induction was examined by immunohistochemistry. In the forced swimming test, berberine decreased the immobility time in a dose-dependent manner, reversing the depressive-like effect observed in ovariectomized mice, and this effect was blocked by the 5-HT2 antagonist ketanserin. In addition, western blotting indicated that BDNF and peEF2 in the hippocampus, but not pCREB/CREB in the frontal cortex, were affected by berberine treatment. Furthermore, immunohistochemistry demonstrated that the reduction in c-Fos induced by ovariectomy were greater after berberine treatment. Ketanserin also antagonized the effect of berberine on the c-Fos expression. Our findings suggest that berberine exerts antidepressant-like effects in ovariectomized mice, and 5-HT2 receptor activation may be partially related to the antidepressant-like effects of the berberine by BDNF-CREB and eEF2 pathways.
Collapse
Affiliation(s)
- Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Zhuo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University 126 Xiantai Street, Nanguan District, Changchun, 13033, China
| | - Jiayin Lv
- Department of Orthopedics, China-Japan Union Hospital of Jilin University 126 Xiantai Street, Nanguan District, Changchun, 13033, China
| | - Jing Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Pu Wang
- School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Wei Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Xuefeng Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688, Krakow, Poland
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China.
| |
Collapse
|
49
|
Feng M, Zou Z, Zhou X, Hu Y, Ma H, Xiao Y, Li X, Ye X. Comparative effect of berberine and its derivative 8-cetylberberine on attenuating atherosclerosis in ApoE−/− mice. Int Immunopharmacol 2017; 43:195-202. [DOI: 10.1016/j.intimp.2016.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/10/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023]
|
50
|
Synthesis and anti-inflammatory effects of a series of novel 9-O-substituted berberine derivatives. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1787-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|