1
|
Li M, Nawa Y, Ishida S, Kanda Y, Fujita S, Fujita K. Label-free chemical imaging of cytochrome P450 activity by Raman microscopy. Commun Biol 2022; 5:778. [PMID: 35995965 PMCID: PMC9395422 DOI: 10.1038/s42003-022-03713-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/13/2022] [Indexed: 12/27/2022] Open
Abstract
Although investigating drug modulation of cytochrome P450 (CYP) activity under physiological conditions is crucial in drug development to avoid severe adverse drug reactions, the current evaluation approaches that rely on the destructive and end-point analysis can be misleading due to invasive treatments and cellular heterogeneity. Here, we propose a non-destructive and high-content method for visualizing and quantifying intracellular CYP activity under drug administration by Raman microscopy. The redox-state and spin-state sensitive Raman measurement indicated that the induced CYPs in living hepatocytes were in oxidized and low-spin state, which is related to monooxygenase function of CYP. Moreover, glycogen depletion associated with CYP induction was simultaneously observed, indicating a relevant effect on glucose metabolism. By deciphering the overall changes in the biochemical fingerprints of hepatocytes, Raman microscopy offers a non-destructive and quantitative chemical imaging method to evaluate CYP activity at the single-cell level with the potential to facilitate future drug development schemes.
Collapse
Affiliation(s)
- Menglu Li
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasunori Nawa
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Seiichi Ishida
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Division of Applied Life Science, Graduate School of Engineering, Sojo University, 4-22-1, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yasunari Kanda
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| | - Satoshi Fujita
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Katsumasa Fujita
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Feng L, Ning J, Tian X, Wang C, Yu Z, Huo X, Xie T, Zhang B, James TD, Ma X. Fluorescent probes for the detection and imaging of Cytochrome P450. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Yevtodiyenko A, Bazhin A, Khodakivskyi P, Godinat A, Budin G, Maric T, Pietramaggiori G, Scherer SS, Kunchulia M, Eppeldauer G, Polyakov SV, Francis KP, Bryan JN, Goun EA. Portable bioluminescent platform for in vivo monitoring of biological processes in non-transgenic animals. Nat Commun 2021; 12:2680. [PMID: 33976191 PMCID: PMC8113525 DOI: 10.1038/s41467-021-22892-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Bioluminescent imaging (BLI) is one of the most powerful and widely used preclinical imaging modalities. However, the current technology relies on the use of transgenic luciferase-expressing cells and animals and therefore can only be applied to a limited number of existing animal models of human disease. Here, we report the development of a “portable bioluminescent” (PBL) technology that overcomes most of the major limitations of traditional BLI. We demonstrate that the PBL method is capable of noninvasive measuring the activity of both extracellular (e.g., dipeptidyl peptidase 4) and intracellular (e.g., cytochrome P450) enzymes in vivo in non-luciferase-expressing mice. Moreover, we successfully utilize PBL technology in dogs and human cadaver, paving the way for the translation of functional BLI to the noninvasive quantification of biological processes in large animals. The PBL methodology can be easily adapted for the noninvasive monitoring of a plethora of diseases across multiple species. Bioluminescence imaging tends to rely on transgenic luciferase-expressing cells and animals. Here the authors report a portable bioluminescent system to non-invasively measure intra- and extracellular enzymes in vivo in non-transgenic animals which do not express luciferase.
Collapse
Affiliation(s)
- Aleksey Yevtodiyenko
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Chemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Arkadiy Bazhin
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Pavlo Khodakivskyi
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Chemistry, University of Missouri-Columbia, Columbia, MO, USA
| | - Aurelien Godinat
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Ghyslain Budin
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Tamara Maric
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Giorgio Pietramaggiori
- Plastic and Reconstructive Surgery, Global Plastic Surgery, Lausanne, Switzerland.,Department of Neurosciences, University of Padova, Padova, Italy
| | - Sandra S Scherer
- Plastic and Reconstructive Surgery, Global Plastic Surgery, Lausanne, Switzerland.,Department of Neurosciences, University of Padova, Padova, Italy
| | - Marina Kunchulia
- Institute of Cognitive Neurosciences, Free University of Tbilisi, Tbilisi, Georgia
| | - George Eppeldauer
- National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Sergey V Polyakov
- National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA.,Physics Department, University of Maryland, College Park, MD, USA
| | - Kevin P Francis
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, CA, USA
| | - Jeffrey N Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri-Columbia, Columbia, MO, USA
| | - Elena A Goun
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. .,Department of Chemistry, University of Missouri-Columbia, Columbia, MO, USA.
| |
Collapse
|
4
|
Ware BR, Brown GE, Soldatow VY, LeCluyse EL, Khetani SR. Long-Term Engineered Cultures of Primary Mouse Hepatocytes for Strain and Species Comparison Studies During Drug Development. Gene Expr 2019; 19:199-214. [PMID: 31340881 PMCID: PMC6827040 DOI: 10.3727/105221619x15638857793317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Testing drugs in isogenic rodent strains to satisfy regulatory requirements is insufficient for derisking organ toxicity in genetically diverse human populations; in contrast, advances in mouse genetics can help mitigate these limitations. Compared to the expensive and slower in vivo testing, in vitro cultures enable the testing of large compound libraries toward prioritizing lead compounds and selecting an animal model with human-like response to a compound. In the case of the liver, a leading cause of drug attrition, isolated primary mouse hepatocytes (PMHs) rapidly decline in function within current culture platforms, which restricts their use for assessing the effects of longer-term compound exposure. Here we addressed this challenge by fabricating mouse micropatterned cocultures (mMPCC) containing PMHs and 3T3-J2 murine embryonic fibroblasts that displayed 4 weeks of functions; mMPCCs created from either C57Bl/6J or CD-1 PMHs outperformed collagen/Matrigel™ sandwich-cultured hepatocyte monocultures by ∼143-fold, 413-fold, and 10-fold for albumin secretion, urea synthesis, and cytochrome P450 activities, respectively. Such functional longevity of mMPCCs enabled in vivo relevant comparisons across strains for CYP induction and hepatotoxicity following exposure to 14 compounds with subsequent comparison to responses in primary human hepatocytes (PHHs). In conclusion, mMPCCs display high levels of major liver functions for several weeks and can be used to assess strain- and species-specific compound effects when used in conjunction with responses in PHHs. Ultimately, mMPCCs can be used to leverage the power of mouse genetics for characterizing subpopulations sensitive to compounds, characterizing the degree of interindividual variability, and elucidating genetic determinants of severe hepatotoxicity in humans.
Collapse
Affiliation(s)
- Brenton R. Ware
- *School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- †Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Grace E. Brown
- †Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Edward L. LeCluyse
- ‡The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA
| | - Salman R. Khetani
- *School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- †Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- §Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
5
|
Rizzi N, Manni I, Vantaggiato C, Delledonne GA, Gentileschi MP, Maggi A, Piaggio G, Ciana P. In VivoImaging of Cell Proliferation for a Dynamic, Whole Body, Analysis of Undesired Drug Effects. Toxicol Sci 2015; 145:296-306. [DOI: 10.1093/toxsci/kfv056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Adams ST, Miller SC. Beyond D-luciferin: expanding the scope of bioluminescence imaging in vivo. Curr Opin Chem Biol 2014; 21:112-20. [PMID: 25078002 DOI: 10.1016/j.cbpa.2014.07.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/28/2014] [Accepted: 07/03/2014] [Indexed: 01/10/2023]
Abstract
The light-emitting chemical reaction catalyzed by the enzyme firefly luciferase is widely used for noninvasive imaging in live mice. However, photon emission from the luciferase is crucially dependent on the chemical properties of its substrate, D-luciferin. In this review, we describe recent work to replace the natural luciferase substrate with synthetic analogs that extend the scope of bioluminescence imaging.
Collapse
Affiliation(s)
- Spencer T Adams
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Stephen C Miller
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
7
|
Lee C, Ding X, Riddick DS. Downregulation of mouse hepatic CYP3A protein by 3-methylcholanthrene does not require cytochrome P450-dependent metabolism. Drug Metab Dispos 2013; 41:1782-6. [PMID: 23846873 PMCID: PMC3781373 DOI: 10.1124/dmd.113.052993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/11/2013] [Indexed: 01/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR)-dependent induction of cytochromes P450 (P450) such as CYP1A1 by 3-methylcholanthrene (MC) and related polycyclic aromatic hydrocarbons is well characterized. We reported previously that MC treatment triggers a pronounced downregulation, particularly at the protein level, of mouse hepatic Cyp3a11, a counterpart of the key human drug-metabolizing enzyme CYP3A4. To determine whether this effect of MC requires hepatic microsomal P450 activity, we studied liver Cpr-null (LCN) mice with hepatocyte-specific conditional deletion of the NADPH-cytochrome P450 oxidoreductase gene. In vehicle-treated animals, basal levels of CYP3A11 mRNA and CYP3A protein immunoreactivity were elevated by approximately 9-fold in LCN mice compared with wild-type (WT) mice, whereas CYP3A catalytic activity was profoundly compromised in LCN mice. MC treatment caused suppression of CYP3A11 mRNA, CYP3A protein immunoreactivity, and CYP3A catalytic activity in WT mice, and the MC effects at the mRNA and protein levels were maintained in LCN mice. Flavin-containing monooxygenase-3 (Fmo3) induction by MC was suggested previously to occur via an AHR-dependent mechanism requiring conversion of the parent compound to DNA-damaging reactive metabolites; however, hepatic FMO3 mRNA levels were dramatically increased by MC in both WT and LCN mice. MC did not function as a mechanism-based inactivator of CYP3A enzymes in hepatic microsomes prepared from untreated WT mice, under conditions in which 1-aminobenzotriazole caused marked NADPH-dependent loss of total P450 content and CYP3A catalytic activity. These results indicate that MC downregulates mouse hepatic CYP3A protein via a pretranslational mechanism that does not require hepatic microsomal P450-dependent activity.
Collapse
Affiliation(s)
- Chunja Lee
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (C.L., D.S.R.); and Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (X.D.)
| | | | | |
Collapse
|