1
|
Li Y, Wang F, Huang X, Zong S, Shen Y, Guo L, Cai Q, Sun T, Zhang R, Yu Z, Zhang L, Zang S, Liu J. First-trimester hemoglobin, haptoglobin genotype, and risk of gestational diabetes mellitus in a retrospective study among Chinese pregnant women. Nutr Diabetes 2024; 14:48. [PMID: 38951151 PMCID: PMC11217379 DOI: 10.1038/s41387-024-00309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND This study aimed to assess whether the Haptoglobin (Hp) genotype influences the relationship between hemoglobin (Hb) levels and the development of gestational diabetes mellitus (GDM). Additionally, it sought to evaluate the interaction and joint association of Hb levels and Hp genotype with GDM risk. METHODS This retrospective study involved 358 women with GDM and 1324 women with normal glucose tolerance (NGT). Peripheral blood leukocytes were collected from 360 individuals at 14-16 weeks' gestation for Hp genotyping. GDM was diagnosed between 24-28 weeks' gestation. Interactive moderating effect, joint analysis, and mediation analysis were performed to evaluate the crosslink of Hb levels and Hp genotype with GDM risk. RESULTS Women who developed GDM had significantly higher Hb levels throughout pregnancy compared to those with NGT. Increase first-trimester Hb concentration was associated with a progressive rise in GDM incidence, glucose levels, glycosylated hemoglobin levels, Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) values, cesarean delivery rates, and composite neonatal outcomes. Spline regression showed a significant linear association of GDM incidence with continuous first-trimester Hb level when the latter exceeded 122 g/L. Increased first-trimester Hb concentration was an independent risk factor for GDM development after adjusting for potential confounding factors in both the overall population and a matched case-control group. The Hp2-2 genotype was more prevalent among pregnant women with GDM when first-trimester Hb exceeded 122 g/L. Significant multiplicative and additive interactions were identified between Hb levels and Hp genotype for GDM risk, adjusted for age and pre-pregnancy BMI. The odds ratio (OR) for GDM development increased incrementally when stratified by Hb levels and Hp genotype. Moreover, first-trimester Hb level partially mediated the association between Hp genotype and GDM risk. CONCLUSION Increased first-trimester Hb levels were closely associated with the development of GDM and adverse pregnancy outcomes, with this association moderated by the Hp2-2 genotype.
Collapse
Affiliation(s)
- Yue Li
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, 200240, Shanghai, China
| | - Fang Wang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, 200240, Shanghai, China
| | - Xinmei Huang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, 200240, Shanghai, China
| | - Shuhang Zong
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, 200240, Shanghai, China
| | - Yi Shen
- Department of Obstetrics and Gynecology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, 200240, Shanghai, China
| | - Lina Guo
- Department of Obstetrics and Gynecology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, 200240, Shanghai, China
| | - Qiongyi Cai
- Department of Obstetrics and Gynecology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, 200240, Shanghai, China
| | - Tiange Sun
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, 200240, Shanghai, China
| | - Rui Zhang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, 200240, Shanghai, China
| | - Zhiyan Yu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, 200240, Shanghai, China
| | - Liwen Zhang
- Department of Obstetrics and Gynecology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, 200240, Shanghai, China.
| | - Shufei Zang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, 200240, Shanghai, China.
| | - Jun Liu
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, 200240, Shanghai, China.
| |
Collapse
|
2
|
Sutkowy P, Modrzejewska M, Porzych M, Woźniak A. The Current State of Knowledge Regarding the Genetic Predisposition to Sports and Its Health Implications in the Context of the Redox Balance, Especially Antioxidant Capacity. Int J Mol Sci 2024; 25:6915. [PMID: 39000024 PMCID: PMC11240945 DOI: 10.3390/ijms25136915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The significance of physical activity in sports is self-evident. However, its importance is becoming increasingly apparent in the context of public health. The constant desire to improve health and performance suggests looking at genetic predispositions. The knowledge of genes related to physical performance can be utilized initially in the training of athletes to assign them to the appropriate sport. In the field of medicine, this knowledge may be more effectively utilized in the prevention and treatment of cardiometabolic diseases. Physical exertion engages the entire organism, and at a basic physiological level, the organism's responses are primarily related to oxidant and antioxidant reactions due to intensified cellular respiration. Therefore, the modifications involve the body adjusting to the stresses, especially oxidative stress. The consequence of regular exercise is primarily an increase in antioxidant capacity. Among the genes considered, those that promote oxidative processes dominate, as they are associated with energy production during exercise. What is missing, however, is a look at the other side of the coin, which, in this case, is antioxidant processes and the genes associated with them. It has been demonstrated that antioxidant genes associated with increased physical performance do not always result in increased antioxidant capacity. Nevertheless, it seems that maintaining the oxidant-antioxidant balance is the most important thing in this regard.
Collapse
Affiliation(s)
- Paweł Sutkowy
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (P.S.); (M.M.)
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (P.S.); (M.M.)
| | - Marta Porzych
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (P.S.); (M.M.)
| |
Collapse
|
3
|
Choi EH, Suh S, Sears AE, Hołubowicz R, Kedhar SR, Browne AW, Palczewski K. Genome editing in the treatment of ocular diseases. Exp Mol Med 2023; 55:1678-1690. [PMID: 37524870 PMCID: PMC10474087 DOI: 10.1038/s12276-023-01057-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 08/02/2023] Open
Abstract
Genome-editing technologies have ushered in a new era in gene therapy, providing novel therapeutic strategies for a wide range of diseases, including both genetic and nongenetic ocular diseases. These technologies offer new hope for patients suffering from previously untreatable conditions. The unique anatomical and physiological features of the eye, including its immune-privileged status, size, and compartmentalized structure, provide an optimal environment for the application of these cutting-edge technologies. Moreover, the development of various delivery methods has facilitated the efficient and targeted administration of genome engineering tools designed to correct specific ocular tissues. Additionally, advancements in noninvasive ocular imaging techniques and electroretinography have enabled real-time monitoring of therapeutic efficacy and safety. Herein, we discuss the discovery and development of genome-editing technologies, their application to ocular diseases from the anterior segment to the posterior segment, current limitations encountered in translating these technologies into clinical practice, and ongoing research endeavors aimed at overcoming these challenges.
Collapse
Affiliation(s)
- Elliot H Choi
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Susie Suh
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Avery E Sears
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Rafał Hołubowicz
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Sanjay R Kedhar
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Andrew W Browne
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA.
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
4
|
Meegan JE, Kerchberger VE, Fortune NL, McNeil JB, Bastarache JA, Austin ED, Ware LB, Hemnes AR, Brittain EL. Transpulmonary generation of cell-free hemoglobin contributes to vascular dysfunction in pulmonary arterial hypertension via dysregulated clearance mechanisms. Pulm Circ 2023; 13:e12185. [PMID: 36743426 PMCID: PMC9841468 DOI: 10.1002/pul2.12185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Circulating cell-free hemoglobin (CFH) is elevated in pulmonary arterial hypertension (PAH) and associated with poor outcomes but the mechanisms are unknown. We hypothesized that CFH is generated from the pulmonary circulation and inadequately cleared in PAH. Transpulmonary CFH (difference between wedge and pulmonary artery positions) and lung hemoglobin α were analyzed in patients with PAH and healthy controls. Haptoglobin genotype and plasma hemoglobin processing proteins were analyzed in patients with PAH, unaffected bone morphogenetic protein receptor type II mutation carriers (UMCs), and control subjects. Transpulmonary CFH was increased in patients with PAH (p = 0.04) and correlated with pulmonary vascular resistanc (PVR) (r s = 0.75, p = 0.02) and mean pulmonary arterial pressure (mPAP) (r s = 0.78, p = 0.02). Pulmonary vascular hemoglobin α protein was increased in patients with PAH (p = 0.006), especially in occluded vessels (p = 0.04). Haptoglobin genotype did not differ between groups. Plasma haptoglobin was higher in UMCs compared with both control subjects (p = 0.03) and patients with HPAH (p < 0.0001); patients with IPAH had higher circulating haptoglobin levels than patients with HPAH (p = 0.006). Notably, circulating CFH to haptoglobin ratio was elevated in patients with HPAH compared to control subjects (p = 0.02) and UMCs (p = 0.006). Moreover, in patients with PAH, CFH: haptoglobin correlated with PVR (r s = 0.37, p = 0.0004) and mPAP (r s = 0.25, p = 0.02). Broad alterations in other plasma hemoglobin processing proteins (hemopexin, heme oxygenase-1, and sCD163) were observed. In conclusion, pulmonary vascular CFH is associated with increased PVR and mPAP in PAH and dysregulated CFH clearance may contribute to PAH pathology. Further study is needed to determine whether targeting CFH is a viable therapeutic for pulmonary vascular dysfunction in PAH.
Collapse
Affiliation(s)
- Jamie E. Meegan
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Vern Eric Kerchberger
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Niki L. Fortune
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Joel Brennan McNeil
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Julie A. Bastarache
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cell and Developmental BiologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Eric D. Austin
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Lorraine B. Ware
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Anna R. Hemnes
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Pulmonary Circulation CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Evan L. Brittain
- Vanderbilt Pulmonary Circulation CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Medicine, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
5
|
Niu Y, Xue J, Wu X, Qu M, Wang L, Liang W, Li T. Clinical Significance of Serum Haptoglobin and Protein Disulfide-Isomerase A3 in the Screening, Diagnosis, and Staging of Colorectal Cancer. Front Pharmacol 2022; 13:935500. [PMID: 35860021 PMCID: PMC9290321 DOI: 10.3389/fphar.2022.935500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022] Open
Abstract
Objective: This study aims to explore the clinical significance of haptoglobin (HP) and protein disulfide-isomerase A3 (PDIA3) in human serum in the screening, diagnosis and staging of colorectal cancer (CRC), and to provide novel screening approaches featuring high specificity, sensitivity, and accuracy for early screening and diagnosis of clinical colorectal cancer. Methods: 88, 77, and 36 blood specimens were respectively harvested from colorectal cancer patients, colorectal polyp patients, and normal subjects (the health examination) who requested medical assistance from our hospital between Oct2019 and February 2022. The serum contents of HP and PDIA3 in each sample were determined through an enzyme linked immunosorbent assay (ELISA). This step was taken to analyze the differences among different specimen groups in terms of the serum contents of HP and PDIA3, to analyze the relationships between the expression levels of HP and PDIA3 and the pathological characteristics of colorectal cancer, and to explore the critical role of HP and PDIA3 in the screening, diagnosis, and staging of colorectal cancer. Results: Serum contents of HP and PDIA3 were higher in colorectal cancer patients, with statistical differences (p < 0.05), than those in the colonic polyp patients and healthy subjects. Receiver operating characteristic (ROC) curve demonstrated that the cut-offs of HP and PDIA3 serum contents indicating colorectal cancer were 149 ug/ml and 66 ng/ml respectively. The individually and jointly tested AUCs of HP (0.802) and PDIA3 (0.727) were higher than those of serum CEA and CA199, the sensitivity and specificity of HP were 64.8 and 91.2%, the sensitivity and specificity of PDIA3 were 65.9 and 71.7%. Moreover, the contents of HP and PDIA3 increased alongside disease progression, with differences (p < 0.05). Conclusion: Our research indicated that joint testing of HP and PDIA3 was of reference value for progressive stage and reliable biological indicators of colorectal cancer screening.
Collapse
Affiliation(s)
- Yajin Niu
- Graduate School, Hebei North University, Zhangjiakou, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Ming Qu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Likun Wang
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
6
|
Siwan E, Twigg SM, Min D. Alterations of CD163 expression in the complications of diabetes: A systematic review. J Diabetes Complications 2022; 36:108150. [PMID: 35190247 DOI: 10.1016/j.jdiacomp.2022.108150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
AIMS Diabetes mellitus is a state of chronic low-grade inflammation. Scavenger receptor CD163, expressed on monocyte/macrophage cells with anti-inflammatory functions, has been observed in diabetes complications. This review aimed to systematically survey human studies published until 31st January 2022 for CD163 expression, in particular diabetes complications and additionally to investigate whether CD163 may be implicated as a biomarker of, and mediator in, the progression of diabetes complications. METHODS A systematic literature search undertaken in Scopus, Embase and Medline established 79 papers of relevance. Data extraction and assessment followed the PRISMA workflow. RESULTS Based on specific criteria, 11 studies totalling 821 participants were included in this review. CD163 was quantified in various forms including soluble, cell surface, and mRNA measures. This review found that soluble CD163 was upregulated in diabetes complications in various local body fluids and systemically in plasma or serum and therefore implicated in the progression of those complications. CD163+ cells and mRNA were variably expressed across diabetes complications. CONCLUSIONS CD163 was altered in series of diabetes complications and the circulating sCD163 has potential utility as an inflammation biomarker. The variable expression of CD163 on cell surfaces and its mRNA across different diabetes complications warrants further systematic investigation.
Collapse
Affiliation(s)
- Elisha Siwan
- Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Danqing Min
- Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Naryzny SN, Legina OK. Haptoglobin as a Biomarker. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES B, BIOMEDICAL CHEMISTRY 2021; 15:184-198. [PMID: 34422226 PMCID: PMC8365284 DOI: 10.1134/s1990750821030069] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Haptoglobin (Hp) is a glycoprotein that binds free hemoglobin (Hb) in plasma and plays a critical role in tissue protection and prevention of oxidative damage. Besides, it has some regulatory functions. Haptoglobin is an acute-phase protein, its concentration in plasma changes in pathology, and the test for its concentration is part of normal clinical practice. Haptoglobin is a conservative protein synthesized mainly in the liver and lungs and is the subject of research as a potential biomarker of many diseases, including various forms of malignant neoplasms. Haptoglobin has several unique biophysical characteristics. The human Нр gene is polymorphic, has three structural alleles that control the synthesis of three major phenotypes of haptoglobin: homozygous Нр1-1 and Нр2-2, and heterozygous Нр2-1, determined by a combination of allelic variants that are inherited. Numerous studies indicate that the phenotype of haptoglobin can be used to judge the individual predisposition of a person to various diseases. In addition, Hp undergoes various post-translational modifications (PTMs). These are structural transformations (removal of the signal peptide, cutting off the Pre-Hp precursor molecule into two subunits, α and β, limited proteolysis of α-chains, formation of disulfide bonds, multimerization), as well as chemical modifications of α-chains and glycosylation of the β-chain. Glycosylation of the β-chain of haptoglobin at four Asn sites is the most important variable PTM that regulates the structure and function of the glycoprotein. The study of modified oligosaccharides of the β-chain of Hp has become the main direction in the study of pathological processes, including malignant neoplasms. These characteristics indicate the possibility of the existence of Hp in the form of a multitude of proteoforms, probably performing different functions. This review is devoted to the description of the structural and functional diversity and the potential use of Hp as a biomarker of various pathologies.
Collapse
Affiliation(s)
- S. N. Naryzny
- Institute of Biomedical Chemistry, ul. Pogodinskaya 10, 119121 Moscow, Russia
- St-Petersburg Nuclear Physics Institute (PNPI) NRC Kurchatov Institute, Orlova Roshcha 1, 188300 Gatchina, Leningrad oblast Russia
| | - O. K. Legina
- St-Petersburg Nuclear Physics Institute (PNPI) NRC Kurchatov Institute, Orlova Roshcha 1, 188300 Gatchina, Leningrad oblast Russia
| |
Collapse
|
8
|
Abstract
Haptoglobin (Hp) is a blood plasma glycoprotein that binds free hemoglobin (Hb) and plays a critical role in tissue protection and the prevention of oxidative damage. In addition, it has a number of regulatory functions. Haptoglobin is an acute phase protein, its concentration in plasma changes in pathology, and the test for its concentration is part of normal clinical practice. Haptoglobin is a conservative protein synthesized mainly in the liver and lungs and is the subject of research as a potential biomarker of many diseases, including various forms of malignant neoplasms. Haptoglobin has several unique biophysical characteristics. Only in humans, the Hp gene is polymorphic, has three structural alleles that control the synthesis of three major phenotypes of Hp, homozygous Hp1-1 and Hp2-2, and heterozygous Hp2-1, determined by a combination of allelic variants that are inherited. Numerous studies indicate that the phenotype of haptoglobin can be used to judge the individual's predisposition to various diseases. In addition, Hp undergoes various post-translational modifications (PTMs). These are structural transformations (removal of the signal peptide, cutting of the Pre-Hp precursor molecule into two subunits, α and β, limited proteolysis of α-chains, formation of disulfide bonds, multimerization), as well as chemical modifications of α-chains and glycosylation of the β-chain. Glycosylation of the β-chain of haptoglobin at four Asn sites is the most important variable PTM that regulates the structure and function of the glycoprotein. The study of modified oligosaccharides of the Hp β-chain has become the main direction in the study of pathological processes, including malignant neoplasms. Many studies are focused on the identification of PTM and changes in the level of the α2-chain of this protein in pathology. These characteristics of Hp indicate the possibility of the existence of this protein as different proteoforms, probably with different functions. This review is devoted to the description of the structural and functional diversity of Hp and its potential use as a biomarker of various pathologies.
Collapse
Affiliation(s)
- S N Naryzhny
- Institute of Biomedical Chemistry, Moscow, Russia; Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center "Kurchatov Institute", Gatchina, Russia
| | - O K Legina
- Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center "Kurchatov Institute", Gatchina, Russia
| |
Collapse
|
9
|
Chan AY, Choi EH, Yuki I, Suzuki S, Golshani K, Chen JW, Hsu FP. Cerebral vasospasm after subarachnoid hemorrhage: Developing treatments. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
10
|
Schenk M, Reichmann R, Koelman L, Pfeiffer AFH, Rudovich NN, Aleksandrova K. Intra-individual reproducibility of galectin-1, haptoglobin, and nesfatin-1 as promising new biomarkers of immunometabolism. Metabol Open 2020; 6:100034. [PMID: 32812932 PMCID: PMC7424788 DOI: 10.1016/j.metop.2020.100034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 11/16/2022] Open
Abstract
Background Galectin-1, haptoglobin, and nesfatin-1 have recently emerged as promising biomarkers implicated in immunometabolism. However, whether single blood measurements of these analytes could be suitable for large-scale human studies has not yet been evaluated. Methods The concentrations of galectin-1, haptoglobin, and nesfatin-1 were measured over a 4-month period in 207 healthy adults with median age of 56.7 years. Biomarker intra-individual reproducibility was assessed based on calculation of intraclass correlation coefficients (ICCs) and examining Bland-Altman plots. Results The overall ICCs were excellent for nesfatin-1 (ICC: 0.89 (95% CI: 0.86, 0.92), and good for galectin-1 and haptoglobin (ICCs: 0.70 (95% CI: 0.61, 0.77) and 0.67 (95% CI: 0.57, 0.74), respectively). Bland-Altman plots supported a high level of agreement between repeated biomarker measurements. Conclusions Assay measurements of galectin-1, haptoglobin, and nesfatin-1 showed good to excellent within-subject reproducibility over a 4-month period, indicating that they may serve as feasible and reliable biomarkers for assessing metabolic inflammation in population research.
Collapse
Affiliation(s)
- Matthew Schenk
- Senior Scientist Group Nutrition, Immunity and Metabolism, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Robin Reichmann
- Senior Scientist Group Nutrition, Immunity and Metabolism, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,University of Potsdam, Institute of Nutritional Science, Potsdam, Germany
| | - Liselot Koelman
- Senior Scientist Group Nutrition, Immunity and Metabolism, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,University of Potsdam, Institute of Nutritional Science, Potsdam, Germany
| | - Andreas F H Pfeiffer
- German Centre for Diabetes Research, Germany.,Research Group Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
| | - Natalia N Rudovich
- German Centre for Diabetes Research, Germany.,Division of Endocrinology and Diabetes, Department of Internal Medicine, Spital Bülach, Bülach, Switzerland
| | - Krasimira Aleksandrova
- Senior Scientist Group Nutrition, Immunity and Metabolism, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,University of Potsdam, Institute of Nutritional Science, Potsdam, Germany
| |
Collapse
|
11
|
Pan P, Xu L, Zhang H, Liu Y, Lu X, Chen G, Tang H, Wu J. A Review of Hematoma Components Clearance Mechanism After Subarachnoid Hemorrhage. Front Neurosci 2020; 14:685. [PMID: 32733194 PMCID: PMC7358443 DOI: 10.3389/fnins.2020.00685] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a complicated clinical syndrome, which is caused by several kinds of cerebrovascular disorders, with high morbidity, disability and mortality rate. In recent years, several studies have shown that early brain injury (EBI) is an important factor leading to the poor prognosis of SAH. A major cause of EBI has been attributed that hematoma components invade into the brain parenchyma, resulting in neuronal cell death. Therefore, the clearance of hematoma components is essential in the clinical outcome of patients after SAH. Here, in the review, we provide a summary of the current known hematoma components clearance mechanisms and simultaneously propose a new hypothesis for hematoma components clearance.
Collapse
Affiliation(s)
- Pengjie Pan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Xu
- Intensive Care Unit of Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongrong Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaocheng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Wagener FADTG, Pickkers P, Peterson SJ, Immenschuh S, Abraham NG. Targeting the Heme-Heme Oxygenase System to Prevent Severe Complications Following COVID-19 Infections. Antioxidants (Basel) 2020; 9:E540. [PMID: 32575554 PMCID: PMC7346191 DOI: 10.3390/antiox9060540] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 is causing a pandemic resulting in high morbidity and mortality. COVID-19 patients suffering from acute respiratory distress syndrome (ARDS) are often critically ill and show lung injury and hemolysis. Heme is a prosthetic moiety crucial for the function of a wide variety of heme-proteins, including hemoglobin and cytochromes. However, injury-derived free heme promotes adhesion molecule expression, leukocyte recruitment, vascular permeabilization, platelet activation, complement activation, thrombosis, and fibrosis. Heme can be degraded by the anti-inflammatory enzyme heme oxygenase (HO) generating biliverdin/bilirubin, iron/ferritin, and carbon monoxide. We therefore postulate that free heme contributes to many of the inflammatory phenomena witnessed in critically ill COVID-19 patients, whilst induction of HO-1 or harnessing heme may provide protection. HO-activity not only degrades injurious heme, but its effector molecules possess also potent salutary anti-oxidative and anti-inflammatory properties. Until a vaccine against SARS-CoV-2 becomes available, we need to explore novel strategies to attenuate the pro-inflammatory, pro-thrombotic, and pro-fibrotic consequences of SARS-CoV-2 leading to morbidity and mortality. The heme-HO system represents an interesting target for novel "proof of concept" studies in the context of COVID-19.
Collapse
Affiliation(s)
- Frank A. D. T. G. Wagener
- Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525EX Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands;
| | | | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Nader G. Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
13
|
Livny A, Schnaider Beeri M, Heymann A, Moshier E, Berman Y, Mamistalov M, Shahar DR, Tsarfaty G, Leroith D, Preiss R, Soleimani L, Silverman JM, Bendlin BB, Levy A, Ravona-Springer R. Vitamin E Intake Is Associated with Lower Brain Volume in Haptoglobin 1-1 Elderly with Type 2 Diabetes. J Alzheimers Dis 2020; 74:649-658. [PMID: 32065799 DOI: 10.3233/jad-191294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUNDS The efficacy of vitamin E in prevention of diabetes-related complications differs by Haptoglobin (Hp) genotype. OBJECTIVE To examine the role of Hp genotype in the relationship of vitamin E intake with brain volume in cognitively normal elderly patients with type 2 diabetes. METHODS Brain volumes for the superior, middle, and inferior frontal gyri and for the middle temporal gyrus were generated from structural T1 MRI in 181 study participants (Hp 1-1: n = 24, Hp 2-1: n = 77, Hp 2-2: n = 80). Daily vitamin E intake was assessed using the Food Frequency Questionnaire. Analyses of covariance, controlling for demographic and cardiovascular variables was used to evaluate whether the association of daily vitamin E intake with brain volume was modified by Hp genotype. RESULTS Average age was 70.8 (SD = 4.2) with 40% females, and mean Mini-Mental State Examination score of 28.17 (SD = 1.90). A significant interaction was found between vitamin E intake and Hp genotype in inferior frontal gyrus' volume; p = 0.0108. For every 1 microgram increase in vitamin E intake, the volume of the inferior frontal gyrus decreased by 0.955% for Hp 1-1 (p = 0.0348), increased by 0.429% for Hp 2-1 (p = 0.0457), and by 0.077% for Hp 2-2 (p = 0.6318). There were no significant interactions between vitamin E intake and Hp genotype for the middle (p = 0.6011) and superior (p = 0.2025) frontal gyri or for the middle temporal gyrus (p = 0.503). CONCLUSIONS The effect of dietary vitamin E on the brain may differ by Hp genotype. Studies examining the impact of vitamin E on brain-related outcomes should consider Hp genotype.
Collapse
Affiliation(s)
- Abigail Livny
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,The Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Baruch Ivcher School of Psychology, Interdisciplinary Center, Herzliya, Israel
| | - Anthony Heymann
- Department of Family Medicine, Tel Aviv University, Tel Aviv, Israel.,Maccabi Health Services, Israel
| | - Erin Moshier
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuval Berman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Mary Mamistalov
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | | | - Galia Tsarfaty
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Derek Leroith
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Laili Soleimani
- The Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremy M Silverman
- The Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew Levy
- Rambam Medical Center, Technion, Haifa, Israel
| | - Ramit Ravona-Springer
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Psychiatric Division, Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
14
|
Chauhan K, Shandilya N. An interesting story of intravascular hemolysis but normal haptoglobin and bilirubin levels. JOURNAL OF CLINICAL SCIENCES 2020. [DOI: 10.4103/jcls.jcls_76_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
15
|
Alonso I, Matos A, Ribeiro R, Gil Â, Cardoso C, Sardinha LB, Bicho M. Mountain Cycling Ultramarathon Effects on Inflammatory and Hemoglobin Responses. Med Sci Sports Exerc 2018; 50:353-360. [PMID: 28991044 DOI: 10.1249/mss.0000000000001440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE This study aimed to analyze the cumulative physiological burden of repetitive, strenuous exercise held during mountain cycling ultramarathon on regulatory mechanisms of hemoglobin degradation. METHODS Fifty-five nonprofessional athletes (mean age, 44.8 ± 7.1 yr) participating in a 9-consecutive-day mountain cycling ultramarathon (TransPortugal) underwent anthropometric, hematological, and biochemical assessments before and immediately after the race. Participants were further stratified as completers (nine courses) or noncompleters and were divided according to the time they took to complete the race. The heme oxygenase-1 (HMOX1) functional genetic polymorphism and haptoglobin (HP) phenotypic variants were also analyzed. RESULTS Total leukocytes, neutrophil count, and monocyte count increased, whereas decreases in erythrocyte counts and hemoglobin were found between pre- and postultramarathon. Circulating haptoglobin (Hp) was increased, whereas its soluble receptor (sCD163) decreased. Athletes who completed all nine courses presented with increased leukocyte, neutrophil, and erythrocyte counts, as well as hemoglobin, red cell distribution width, total bilirubin, and total cholesterol levels. High-sensitivity C-reactive protein and Hp decreased in comparison with noncompleters. HMOX1 and HP genetic polymorphisms were associated with biochemical profile, notably with Hp levels. Analysis of covariance showed a significant effect of HP phenotype in Hp circulating levels at the end of race and on the magnitude of variation from pre- to postrace. CONCLUSIONS Present findings support a comodulatory influence of genetic- and exercise-associated factors on resulting inflammatory and hemoglobin catabolic marker Hp after highly demanding endurance exercise.
Collapse
Affiliation(s)
- Isanete Alonso
- Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisbon, PORTUGAL.,Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisbon, PORTUGAL.,Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisbon, PORTUGAL
| | - Andreia Matos
- Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisbon, PORTUGAL.,Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisbon, PORTUGAL
| | - Ricardo Ribeiro
- Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisbon, PORTUGAL.,Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisbon, PORTUGAL.,Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisbon, PORTUGAL.,Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisbon, PORTUGAL
| | - Ângela Gil
- Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisbon, PORTUGAL.,Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisbon, PORTUGAL
| | - Carlos Cardoso
- Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisbon, PORTUGAL
| | - Luís B Sardinha
- Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisbon, PORTUGAL
| | - Manuel Bicho
- Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisbon, PORTUGAL.,Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisbon, PORTUGAL
| |
Collapse
|
16
|
Rodrigues KF, Pietrani NT, Carvalho LML, Bosco AA, Sandrim VC, Ferreira CN, Gomes KB. Haptoglobin levels are influenced by Hp1-Hp2 polymorphism, obesity, inflammation, and hypertension in type 2 diabetes mellitus. ACTA ACUST UNITED AC 2018; 66:99-107. [PMID: 30528492 DOI: 10.1016/j.endinu.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is an inflammatory condition associated to obesity and increased oxidative stress. Haptoglobin (Hp) is an acute phase reactant that scavenges extracorpuscular hemoglobin from circulation and prevents heme-iron oxidative damage. OBJECTIVE To assess the association between Hp levels and Hp1-Hp2 gene polymorphism and clinical and laboratory parameters in patients with T2DM. METHODS The study sample consisted of 102 T2DM patients and 62 controls. Hp plasma levels were measured using an ELISA assay, and Hp genotyping was performed using a specific two-step allelic polymerase chain reaction. RESULTS Hp levels were higher in T2DM patients as compared to controls (p=0.005). T2DM patients with high blood pressure had higher Hp levels than patients without this comorbidity (p=0.021). Obese T2DM patients had higher Hp levels as compared to obese controls (p=0.009) and to non-obese T2DM patients (p=0.003). The Hp1-Hp1 genotype was showed to be associated to T2DM according to additive (OR=3.038, 95% CI 1.127-8.192; p=0.036) and dominant model (OR=0.320, 95% CI 0.118-0.839; p=0.010), but Hp2 allele carriers contributed with higher Hp levels in T2DM as compared to controls. Waist circumference (p=0.002), BMI (p=0.001), and IL-6 (p=0.012), and hs-CRP (p=0.001) levels positively correlated with Hp levels in the T2DM group. CONCLUSION These results suggest that Hp levels are influenced by Hp1-Hp2 polymorphism, obesity, inflammatory status, and high blood pressure in T2DM.
Collapse
Affiliation(s)
- Kathryna Fontana Rodrigues
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nathalia Teixeira Pietrani
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laura Machado Lara Carvalho
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriana Aparecida Bosco
- Instituto de Ensino e Pesquisa, Santa Casa de Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
| | - Valéria Cristina Sandrim
- Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, São Paulo, Brazil
| | | | - Karina Braga Gomes
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
17
|
Bale BF, Doneen AL, Vigerust DJ. Precision Healthcare of Type 2 Diabetic Patients Through Implementation of Haptoglobin Genotyping. Front Cardiovasc Med 2018; 5:141. [PMID: 30386783 PMCID: PMC6198642 DOI: 10.3389/fcvm.2018.00141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/24/2018] [Indexed: 12/24/2022] Open
Abstract
It is well-recognized that there is a need for medicine to migrate to a platform of delivering preventative care based on an individual's genetic make-up. The US National Research Council, the National Institute of Health and the American Heart Association all support the concept of utilizing genomic information to enhance the clinical management of patients. It is believed this type of precision healthcare will revolutionize health management. This current attitude of some of the most respected institutes in healthcare sets the stage for the utilization of the haptoglobin (Hp) genotype to guide precision management in type 2 diabetics (DM). There are three main Hp genotypes: 1-1, 2-1, 2-2. The Hp genotype has been studied extensively in (DM) and from the accumulated data it is clear that Hp should be considered in all DM patients as an additional independent cardiovascular disease (CVD) risk factor. In DM patients Hp2-2 generates five times increased risk of CVD compared to Hp1-1 and three times increased risk compared to Hp2-1. Data has also shown that carrying the Hp2-2 gene in DM compared to carrying an Hp1-1 genotype can increase the risk the microvascular complications of nephropathy and retinopathy. In addition, the Hp2-2 gene enhances post percutaneous coronary intervention (PCI) complications such as, in stent restenosis and need for additional revascularization during the first-year post PCI. Studies have demonstrated significant mitigation of CVD risk in Hp2-2 DM patients with administration of vitamin E and maintaining tight glycemic control. CVD is the leading cause of death and disability in DM as well-representing a huge financial burden. As such, evaluating the Hp genotype in DM patients can enhance the predictability and management of CVD risk.
Collapse
Affiliation(s)
- Bradley F Bale
- Washington State University Elson S. Floyd College of Medicine, Spokane, WA, United States
| | - Amy L Doneen
- Washington State University Elson S. Floyd College of Medicine, Spokane, WA, United States
| | - David J Vigerust
- Vanderbilt University School of Medicine, Nashville, TN, United States.,MyGenetx Clinical Laboratory, Franklin, TN, United States
| |
Collapse
|
18
|
Brzóska K, Bartłomiejczyk T, Sochanowicz B, Cymerman M, Grudny J, Kołakowski J, Kruszewski M, Śliwiński P, Roszkowski-Śliż K, Kapka-Skrzypczak L. Carcinogenesis-related changes in iron metabolism in chronic obstructive pulmonary disease subjects with lung cancer. Oncol Lett 2018; 16:6831-6837. [PMID: 30405827 DOI: 10.3892/ol.2018.9459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is often accompanied by lung cancer. In our previous work, it was observed that matrix metalloproteinase-3 and haptoglobin (HP) polymorphisms were potential markers of enhanced susceptibility to lung cancer development among male COPD subjects. Here, results are reported on blood serum levels of several proteins involved in iron metabolism, inflammation and the oxidative stress response compared between the same groups of subjects. The blood serum levels of tumor necrosis factor α (TNFα), transferrin, hepcidin, ferritin, soluble transferrin receptor and 8-oxo-2'-deoxyguanosine were compared, as well as total iron-binding capacity (TIBC) and ceruloplasmin ferroxidase activity in two groups of subjects: Male COPD patients (54 subjects) and male COPD patients diagnosed with lung cancer (53 subjects). Statistically significant differences were identified between the two groups in transferrin and TNFα levels, as well as in TIBC; all three parameters were lower in the group consisting of COPD patients diagnosed with lung cancer (P<0.01). It was also revealed that HP genotype 1/2 was concomitant with low transferrin blood level in subjects with COPD; this apparent dependence was absent in the COPD + cancer subjects. The results indicate a role of iron metabolism in the susceptibility to lung cancer in COPD-affected subjects. They also emphasize the importance of individual capacity for an effective response to oxidative stress during the pathogenic process as HP is a plasma protein that binds free hemoglobin and its polymorphism results in proteins with altered hemoglobin-binding capacity and different antioxidant and iron-recycling functions.
Collapse
Affiliation(s)
- Kamil Brzóska
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, 03-195 Warsaw, Poland
| | - Teresa Bartłomiejczyk
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, 03-195 Warsaw, Poland
| | - Barbara Sochanowicz
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, 03-195 Warsaw, Poland
| | - Magdalena Cymerman
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, 03-195 Warsaw, Poland
| | - Jacek Grudny
- Institute of Tuberculosis and Lung Diseases, Third Department of Lung Diseases, 01-138 Warsaw, Poland
| | - Jacek Kołakowski
- Institute of Tuberculosis and Lung Diseases, Department of Diagnosis and Treatment of Respiratory Insufficiency, 01-138 Warsaw, Poland
| | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, 03-195 Warsaw, Poland.,Institute of Rural Health, Department of Molecular Biology and Translational Research, 20-090 Lublin, Poland.,University of Information Technology and Management, Faculty of Medicine, Department of Medical Biology and Translational Research, 35-225 Rzeszów, Poland
| | - Paweł Śliwiński
- Institute of Tuberculosis and Lung Diseases, Department of Diagnosis and Treatment of Respiratory Insufficiency, 01-138 Warsaw, Poland
| | - Kazimierz Roszkowski-Śliż
- Institute of Tuberculosis and Lung Diseases, Third Department of Lung Diseases, 01-138 Warsaw, Poland
| | - Lucyna Kapka-Skrzypczak
- Institute of Rural Health, Department of Molecular Biology and Translational Research, 20-090 Lublin, Poland.,University of Information Technology and Management, Faculty of Medicine, Department of Medical Biology and Translational Research, 35-225 Rzeszów, Poland
| |
Collapse
|
19
|
Ascenzi P, Coletta M. Peroxynitrite Detoxification by Human Haptoglobin:Hemoglobin Complexes: A Comparative Study. J Phys Chem B 2018; 122:11100-11107. [DOI: 10.1021/acs.jpcb.8b05340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146 Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Via Montpellier 1, I-00133 Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126 Bari, Italy
| |
Collapse
|
20
|
Blackburn SL, Kumar PT, McBride D, Zeineddine HA, Leclerc J, Choi HA, Dash PK, Grotta J, Aronowski J, Cardenas JC, Doré S. Unique Contribution of Haptoglobin and Haptoglobin Genotype in Aneurysmal Subarachnoid Hemorrhage. Front Physiol 2018; 9:592. [PMID: 29904350 PMCID: PMC5991135 DOI: 10.3389/fphys.2018.00592] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/02/2018] [Indexed: 01/12/2023] Open
Abstract
Survivors of cerebral aneurysm rupture are at risk for significant morbidity and neurological deficits. Much of this is related to the effects of blood in the subarachnoid space which induces an inflammatory cascade with numerous downstream consequences. Recent clinical trials have not been able to reduce the toxic effects of free hemoglobin or improve clinical outcome. One reason for this may be the inability to identify patients at high risk for neurologic decline. Recently, haptoglobin genotype has been identified as a pertinent factor in diabetes, sickle cell, and cardiovascular disease, with the Hp 2-2 genotype contributing to increased complications. Haptoglobin is a protein synthesized by the liver that binds free hemoglobin following red blood cell lysis, and in doing so, prevents hemoglobin induced toxicity and facilitates clearance. Clinical studies in patients with subarachnoid hemorrhage indicate that Hp 2-2 patients may be a high-risk group for hemorrhage related complications and poor outcome. We review the relevance of haptoglobin in subarachnoid hemorrhage and discuss the effects of genotype and expression levels on the known mechanisms of early brain injury (EBI) and cerebral ischemia after aneurysm rupture. A better understanding of haptoglobin and its role in preventing hemoglobin related toxicity should lead to novel therapeutic avenues.
Collapse
Affiliation(s)
- Spiros L Blackburn
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Peeyush T Kumar
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Devin McBride
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Hussein A Zeineddine
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Jenna Leclerc
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - H Alex Choi
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - Pramod K Dash
- Department of Neurosurgery, The University of Texas Houston Health Sciences Center, Houston, TX, United States
| | - James Grotta
- Department of Neurology, The University of Texas Health Sciences Center, Houston, TX, United States
| | - Jaroslaw Aronowski
- Department of Neurology, The University of Texas Health Sciences Center, Houston, TX, United States
| | - Jessica C Cardenas
- Department of Surgery, Division of Acute Care Surgery and Center for Translational Injury Research, The University of Texas Health Science Center, Houston, TX, United States
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Psychology, Pharmaceutics, and Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL, United States
| |
Collapse
|
21
|
Nishino K, Koda S, Kataoka N, Takamatsu S, Nakano M, Ikeda S, Kamamatsu Y, Morishita K, Moriwaki K, Eguchi H, Yamamoto E, Kikkawa F, Tomita Y, Kamada Y, Miyoshi E. Establishment of an antibody specific for cancer-associated haptoglobin: a possible implication of clinical investigation. Oncotarget 2018; 9:12732-12744. [PMID: 29560105 PMCID: PMC5849169 DOI: 10.18632/oncotarget.24332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/20/2018] [Indexed: 12/13/2022] Open
Abstract
We previously found that the serum level of fucosylated haptoglobin (Fuc-Hpt) was significantly increased in pancreatic cancer patients. To delineate the mechanism underlying this increase and develop a simple detection method, we set out to generate a monoclonal antibody (mAb) specific for Fuc-Hpt. After multiple screenings by enzyme-linked immunosorbent assay (ELISA), a 10-7G mAb was identified as being highly specific for Fuc-Hpt generated in a cell line as well as for Hpt derived from a pancreatic cancer patient. As a result from affinity chromatography with 10-7G mAb, followed by lectin blot and mass spectrometry analyses, it was found that 10-7G mAb predominantly recognized both Fuc-Hpt and prohaptoglobin (proHpt), which was also fucosylated. In immunohistochemical analyses, hepatocytes surrounding metastasized cancer cells were stained by the 10-7G mAb, but neither the original cancer cells themselves nor normal hepatocytes exhibited positive staining, suggesting that metastasized cancer cells promote Fuc-Hpt production in adjacent hepatocytes. Serum level of Fuc-Hpt determined with newly developed ELISA system using the 10-7G mAb, was increased in patients of pancreatic and colorectal cancer. Interestingly, dramatic increases in Fuc-Hpt levels were observed at the stage IV of colorectal cancer. These results indicate that the 10-7G mAb developed is a promising antibody which recognizes Fuc-Hpt and could be a useful diagnostic tool for detecting liver metastasis of cancer.
Collapse
Affiliation(s)
- Kimihiro Nishino
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Sayaka Koda
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoya Kataoka
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miyako Nakano
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Shun Ikeda
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuka Kamamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Koichi Morishita
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenta Moriwaki
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Eiko Yamamoto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yasuhiko Tomita
- Department of Pathology, International University of Health and Welfare, Narita, Chiba, Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
22
|
Awadallah S, Madkour M, Hamidi RA, Alwafa EA, Hattab M, Zakkour B, Al-Matroushi A, Ahmed E, Al-Kitbi M. Plasma levels of Apolipoprotein A1 and Lecithin:Cholesterol Acyltransferase in type 2 diabetes mellitus: Correlations with haptoglobin phenotypes. Diabetes Metab Syndr 2017; 11 Suppl 2:S543-S546. [PMID: 28416369 DOI: 10.1016/j.dsx.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/05/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Previous studies have demonstrated that hemoglobin-haptoglobin (Hb-Hp) complex plays a role in developing vascular complications in type 2 diabetes mellitus (T2DM). The complexes bind with Apolipoprotein A1 (ApoA1) of high-density lipoprotein (HDL), affecting the function of Lecithin:Cholesterol Acyltransferase (LCAT), and impairing the reverse cholesterol transport mechanism (RCT). This study investigated the influence of Hp phenotypes on serum levels of ApoA1 and LCAT in patients with T2DM. METHODS The study comprised 131 T2DM patients and 111 matching healthy controls. Fasting blood glucose, HbA1C, and lipid profile were determined by chemistry autoanalyzer, LCAT and ApoA1 by ELISA, and Hp phenotypes by gel electrophoresis. RESULTS Irrespective of Hp phenotypes, fasting blood glucose, HbA1C, and lipid profile were significantly higher in patients than in controls, while HDL-cholesterol, ApoA1, and LCAT were lower. ApoA1 correlated positively with LCAT (r=0.223, p=0.024) and HDL-cholesterol (r=0.255, 0.003) in patients only. When Hp polymorphism was taken into account, the levels of LCAT and ApoA1 were significantly lower in patients with Hp2-2 than that in patients of Hp1-1 and/or Hp2-1. Correlations between ApoA1 and each of HDL-cholesterol and LCAT (r=0.239, p=0.046, and r=0.252, p=0.040, respectively) were also observed, but only in patients with Hp2-2 phenotype. CONCLUSIONS The reduced levels of LCAT and ApoA1 observed in this study support the suggestion that T2DM patients with Hp2-2 phenotype could have altered RCT mechanism and increased risk of developing cardiovascular disease.
Collapse
Affiliation(s)
- Samir Awadallah
- Department of Medical Lab Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates; Metabolic Syndrome and Related Disorders (MSRD) Research Group, Research Institute of Health and Medical Sciences, University of Sharjah, United Arab Emirates.
| | - Mohammed Madkour
- Department of Medical Lab Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates; Metabolic Syndrome and Related Disorders (MSRD) Research Group, Research Institute of Health and Medical Sciences, University of Sharjah, United Arab Emirates
| | - Reem Al Hamidi
- Department of Medical Lab Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Esraa Abo Alwafa
- Department of Medical Lab Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Maram Hattab
- Department of Medical Lab Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Buhour Zakkour
- Department of Medical Lab Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Amna Al-Matroushi
- Medical Services of the Ministry of Interior, Sharjah, United Arab Emirates
| | - Eslah Ahmed
- Medical Services of the Ministry of Interior, Sharjah, United Arab Emirates
| | - Mariam Al-Kitbi
- Medical Services of the Ministry of Interior, Sharjah, United Arab Emirates
| |
Collapse
|
23
|
Dupont L, Eide IA, Hartmann A, Christensen JH, Åsberg A, Jenssen T, Krarup H, Svensson M. Haptoglobin 2-2 Genotype, Patient, and Graft Survival in Renal Transplant Recipients. Prog Transplant 2017; 27:386-391. [PMID: 29187131 DOI: 10.1177/1526924817732020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiovascular disease is the leading cause of death in renal transplant recipients. An association between haptoglobin genotype 2-2 and cardiovascular disease has been found in patients with diabetes mellitus and liver transplant recipients. To date, the role of haptoglobin genotype after renal transplantation has not been studied. METHODS In this single-center retrospective cohort study of 1975 adult Norwegian transplant recipients, who underwent transplantation between 1999 and 2011, we estimated the risk of all-cause and cardiovascular mortality and overall and death-censored graft loss for patients with haptoglobin genotype 2-2 compared to genotype 2-1 or 1-1, after adjustment for confounders and competing risks. RESULTS We found no associations between haptoglobin genotype 2-2 and cardiovascular mortality (subdistributional hazard ratio 1.08, 95% confidence interval 0.78-1.49; P = .63). We also failed to detect any association between haptoglobin 2-2 genotype and all-cause mortality, overall graft loss, and death-censored graft loss. Similar results were found in the subpopulation of transplant recipients with diabetes. CONCLUSION In this large cohort of kidney transplant recipients, we could not demonstrate any association between haptoglobin 2-2 genotype and patient or graft survival after renal transplantation.
Collapse
Affiliation(s)
- Laust Dupont
- 1 Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
| | - Ivar Anders Eide
- 2 Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,3 Department of Nephrology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Anders Hartmann
- 2 Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,4 Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jeppe Hagstrup Christensen
- 5 Department of Nephrology, Aalborg University Hospital, Aalborg, Denmark.,6 Centre for Cardiovascular Research, Aalborg University Hospital, Aalborg, Denmark
| | - Anders Åsberg
- 2 Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,7 The Norwegian Renal Registry, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,8 Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Trond Jenssen
- 2 Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,9 Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Henrik Krarup
- 10 Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - My Svensson
- 11 Department of Nephrology, Oslo University Hospital, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
24
|
Feng C, Naik BI, Xin W, Ma JZ, Scalzo DC, Thammishetti S, Thiele RH, Zuo Z, Raphael J. Haptoglobin 2-2 Phenotype Is Associated With Increased Acute Kidney Injury After Elective Cardiac Surgery in Patients With Diabetes Mellitus. J Am Heart Assoc 2017; 6:e006565. [PMID: 28982674 PMCID: PMC5721862 DOI: 10.1161/jaha.117.006565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent studies reported an association between the 2-2 phenotype of haptoglobin (Hp 2-2) and increased cardiorenal morbidity in nonsurgical diabetic patients. Our goal was to determine whether the Hp 2-2 phenotype was associated with acute kidney injury (AKI) after elective cardiac surgery in patients with diabetes mellitus. METHODS AND RESULTS We prospectively enrolled 99 diabetic patients requiring elective cardiac surgery with cardiopulmonary bypass. Haptoglobin phenotypes were determined by gel electrophoresis. Cell-free hemoglobin, haptoglobin, and total serum bilirubin were quantified as hemolysis markers. The primary outcome was postoperative AKI, as defined by the Acute Kidney Injury Network classification. The incidence of AKI was significantly higher in Hp 2-2 patients compared with patients without this phenotype (non-Hp-2-2; 55.6% versus 27%, P<0.01). The need for renal replacement therapy was also significantly higher in the Hp 2-2 group (5 patients versus 1 patient, P=0.02). Thirty-day mortality (3 versus 0 patients, P=0.04) and 1-year mortality (5 versus 0 patients, P<0.01) were also significantly higher in patients with the Hp 2-2 phenotype. In multivariable analysis, Hp 2-2 was an independent predictor of postoperative AKI (P=0.01; odds ratio: 4.17; 95% confidence interval, 1.35-12.48). CONCLUSIONS Hp 2-2 phenotype is an independent predictor of postoperative AKI and is associated with decreased short and long-term survival after cardiac surgery in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Chenzhuo Feng
- Department of Anesthesiology, University of Virginia, Charlottesville, VA
- Department of Basic Medical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Bhiken I Naik
- Department of Anesthesiology, University of Virginia, Charlottesville, VA
| | - Wenjun Xin
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - David C Scalzo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA
| | | | - Robert H Thiele
- Department of Anesthesiology, University of Virginia, Charlottesville, VA
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA
| | - Jacob Raphael
- Department of Anesthesiology, University of Virginia, Charlottesville, VA
| |
Collapse
|
25
|
Alshiek JA, Dayan L, Asleh R, Blum S, Levy AP, Jacob G. Anti-oxidative treatment with vitamin E improves peripheral vascular function in patients with diabetes mellitus and Haptoglobin 2-2 genotype: A double-blinded cross-over study. Diabetes Res Clin Pract 2017; 131:200-207. [PMID: 28759833 DOI: 10.1016/j.diabres.2017.06.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/15/2016] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
Abstract
Vascular dysfunction in both conduit arteries and small vessels is a major contributor to the development of cardiovascular disease (CVD) in diabetes mellitus (DM). In diabetes there is a process of systemic chronic inflammation accompanied by high oxidative stress causing a subsequent decrease in vascular reactivity and negatively affect the metabolic processes responsible for functioning of the microvasculature. Vitamin E is classified as an antioxidant due to its ability to scavenge lipid radicals and terminate oxidative chain reactions. We conducted a double-blinded cross-over study with vitamin E versus placebo in individuals with type 2DM and the Hp2-2 genotype and assessed different aspects of peripheral vascular function in these patients. Twenty patients completed the study with 10 individuals in each study cohort. We were able to show significant improvement of indirect indices of vascular function following 8weeks of treatment with vitamin E. This improvement was consistent for weeks even after stopping the vitamin E treatment. We concluded that a pharmacogenomic rationale utilizing the Hp genotype might potentially provide cardiovascular benefit with vitamin E.
Collapse
Affiliation(s)
- Jonia Amer Alshiek
- Rappaport Faculty of Medicine, Technion Institute of Technology, Israel; Department of Obstetrics and Gynecology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Lior Dayan
- Institute of Pain Medicine, Department of Anesthesia and Critical Care Medicine, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; Jacob Recanati Autonomic Dysfunction Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Rabea Asleh
- Rappaport Faculty of Medicine, Technion Institute of Technology, Israel; Department of Cardiology, Rambam Medical Center, Haifa, Israel
| | - Shany Blum
- Rappaport Faculty of Medicine, Technion Institute of Technology, Israel
| | - Andrew P Levy
- Rappaport Faculty of Medicine, Technion Institute of Technology, Israel
| | - Giris Jacob
- Department of Internal Medicine, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel; Jacob Recanati Autonomic Dysfunction Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Colombo G, Clerici M, Altomare A, Rusconi F, Giustarini D, Portinaro N, Garavaglia ML, Rossi R, Dalle-Donne I, Milzani A. Thiol oxidation and di-tyrosine formation in human plasma proteins induced by inflammatory concentrations of hypochlorous acid. J Proteomics 2017; 152:22-32. [DOI: 10.1016/j.jprot.2016.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/12/2016] [Accepted: 10/19/2016] [Indexed: 02/09/2023]
|
27
|
Graves KL, Vigerust DJ. Hp: an inflammatory indicator in cardiovascular disease. Future Cardiol 2016; 12:471-81. [DOI: 10.2217/fca-2016-0008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Over the past decade significant advancement has occurred in the biological and pathological role that Hp has in cardiovascular disease. Hp is an acute-phase protein with a role in the neutralization and clearance of free heme. Iron has tremendous potential for initiating vascular oxidation, inflammation and exacerbating coronary atherosclerosis. Hp genotype has been linked as a prognostic biomarker of acute myocardial infarction, heart failure, restenosis and cardiac transplant rejection. The increased understanding of Hp as a biomarker has provided new insights into the mechanisms of inflammation after cardiac injury and support the concept that Hp is not only an important antioxidant in vascular inflammation and atherosclerosis, but also an enhancer of inflammation in cardiac transplant.
Collapse
Affiliation(s)
| | - David J Vigerust
- Vanderbilt University School of Medicine, Nashville, TN 37212, USA
- MyGenetx Clinical Laboratories, Franklin, TN 37067, USA
| |
Collapse
|
28
|
Abstract
In Brief Prospective identification of individuals with diabetes who are at greatest risk for developing complications would have considerable public health importance by allowing appropriate resources to be focused on those who would benefit most from aggressive intervention. Haptoglobin (Hp) is an acute-phase protein that is crucial for the elimination of free hemoglobin and the neutralization of oxidative damage. In the past two decades, associations have been made between polymorphisms in Hp and complications arising from diabetes. Individuals with polymorphism in Hp have been shown to have significantly higher risk of developing cardiovascular disease. This review summarizes the current literature on the role of Hp in health and disease, with a focus on diabetes.
Collapse
Affiliation(s)
| | - David J. Vigerust
- MyGenetx Clinical Laboratories, Franklin, TN
- Vanderbilt University School of Medicine, Department of Neurological Surgery, Nashville, TN
| |
Collapse
|
29
|
Mehta NU, Grijalva V, Hama S, Wagner A, Navab M, Fogelman AM, Reddy ST. Apolipoprotein E-/- Mice Lacking Hemopexin Develop Increased Atherosclerosis via Mechanisms That Include Oxidative Stress and Altered Macrophage Function. Arterioscler Thromb Vasc Biol 2016; 36:1152-63. [PMID: 27079878 DOI: 10.1161/atvbaha.115.306991] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 03/31/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE We previously reported that hemopexin (Hx), a heme scavenger, is significantly increased and associated with proinflammatory high-density lipoprotein under atherogenic conditions. Although it is established that Hx together with macrophages plays a role in mitigating oxidative damage, the role of Hx in the development of atherosclerosis is unknown. APPROACH AND RESULTS We used Hx and apoE double-knockout mice (HxE(-/-)) to determine the role of Hx in the development of atherosclerosis. HxE(-/-) mice had significantly more free heme, reactive oxygen species, and proinflammatory high-density lipoprotein in their circulation, when compared with control apoE(-/-) mice. Atherosclerotic plaque area (apoE(-/-)=9.72±2.5×10(4) μm(2) and HxE(-/-)=27.23±3.6×10(4) μm(2)) and macrophage infiltration (apoE(-/-)=38.8±5.8×10(3) μm(2) and HxE(-/-)=103.4±17.8×10(3) μm(2)) in the aortic sinus were significantly higher in the HxE(-/-) mice. Atherosclerotic lesions in the aortas were significantly higher in the HxE(-/-) mice compared with apoE(-/-) mice. Analysis of polarization revealed that macrophages from HxE(-/-) mice were more M1-like. Ex vivo studies demonstrated that HxE(-/-) macrophage cholesterol efflux capacity was significantly reduced when compared with apoE(-/-) mice. Injection of human Hx into HxE(-/-) mice reduced circulating heme levels and human Hx pretreatment of naive bone marrow cells ex vivo resulted in a shift from M1- to M2-like macrophages. CONCLUSIONS We conclude that Hx plays a novel protective role in alleviating heme-induced oxidative stress, improving inflammatory properties of high-density lipoprotein, macrophage phenotype and function, and inhibiting the development of atherosclerosis in apoE(-/-) mice.
Collapse
Affiliation(s)
- Niyati U Mehta
- From the Department of Molecular and Medical Pharmacology (N.U.M., S.T.R.) and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (N.U.M., V.G., S.H., A.W., M.N., A.M.F., S.T.R.)
| | - Victor Grijalva
- From the Department of Molecular and Medical Pharmacology (N.U.M., S.T.R.) and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (N.U.M., V.G., S.H., A.W., M.N., A.M.F., S.T.R.)
| | - Susan Hama
- From the Department of Molecular and Medical Pharmacology (N.U.M., S.T.R.) and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (N.U.M., V.G., S.H., A.W., M.N., A.M.F., S.T.R.)
| | - Alan Wagner
- From the Department of Molecular and Medical Pharmacology (N.U.M., S.T.R.) and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (N.U.M., V.G., S.H., A.W., M.N., A.M.F., S.T.R.)
| | - Mohamad Navab
- From the Department of Molecular and Medical Pharmacology (N.U.M., S.T.R.) and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (N.U.M., V.G., S.H., A.W., M.N., A.M.F., S.T.R.)
| | - Alan M Fogelman
- From the Department of Molecular and Medical Pharmacology (N.U.M., S.T.R.) and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (N.U.M., V.G., S.H., A.W., M.N., A.M.F., S.T.R.)
| | - Srinivasa T Reddy
- From the Department of Molecular and Medical Pharmacology (N.U.M., S.T.R.) and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (N.U.M., V.G., S.H., A.W., M.N., A.M.F., S.T.R.).
| |
Collapse
|
30
|
Renner W, Jahrbacher R, Marx-Neuhold E, Tischler S, Zulus B. A novel exonuclease (TaqMan) assay for rapid haptoglobin genotyping. Clin Chem Lab Med 2015; 54:781-3. [PMID: 26479343 DOI: 10.1515/cclm-2015-0586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/21/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Haptoglobin is an acute-phase binding protein that scavenges free hemoglobin. The human haptoglobin gene (HP) is polymorphic with two main alleles, haptoglobin allele 1 (Hp1) and haptoglobin allele 2 (Hp2). The smaller Hp1 allele features no duplication and consists of four exons, whereas the larger Hp2 allele, containing a 1.7 kb duplication, consists of six exons, with the fifth and sixth being highly homologous to exons 3 and 4 of Hp1. METHODS We designed an exonuclease (TaqMan) assay targeting single nucleotide differences between the homologous regions of Hp1 and Hp2. The assay contained one probe specifically binding to a site in intron 4 of Hp2, and another probe binding equally to intron 4 of Hp1 and intron 6 of Hp2. RESULTS Measurement of post-PCR fluorescence allowed unambiguous discrimination of HP genotypes. Comparison with genotypes obtained by a method based upon allele-specific primers yielded fully corresponding results. CONCLUSIONS The new HP genotyping method is fast, reliable, does not require real-time instruments and may be especially useful for high-throughput genotyping.
Collapse
|
31
|
Santos MNND. Haptoglobin: an emerging candidate for phenotypic modulation of sickle cell anemia? Rev Bras Hematol Hemoter 2015; 37:361-3. [PMID: 26670394 PMCID: PMC4678916 DOI: 10.1016/j.bjhh.2015.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 11/24/2022] Open
|
32
|
Leclerc JL, Blackburn S, Neal D, Mendez NV, Wharton JA, Waters MF, Doré S. Haptoglobin phenotype predicts the development of focal and global cerebral vasospasm and may influence outcomes after aneurysmal subarachnoid hemorrhage. Proc Natl Acad Sci U S A 2015; 112:1155-60. [PMID: 25583472 PMCID: PMC4313833 DOI: 10.1073/pnas.1412833112] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cerebral vasospasm (CV) and the resulting delayed cerebral ischemia (DCI) significantly contribute to poor outcomes following aneurysmal subarachnoid hemorrhage (aSAH). Free hemoglobin (Hb) within the subarachnoid space has been implicated in the pathogenesis of CV. Haptoglobin (Hp) binds free pro-oxidant Hb, thereby modulating its harmful effects. Humans can be of three Hp phenotypes: Hp1-1, Hp2-1, or Hp2-2. In several disease states, the Hp2-2 protein has been associated with reduced ability to protect against toxic free Hb. We hypothesized that individuals with the Hp2-2 phenotype would have more CV, DCI, mortality, and worse functional outcomes after aSAH. In a sample of 74 aSAH patients, Hp2-2 phenotype was significantly associated with increased focal moderate (P = 0.014) and severe (P = 0.008) CV and more global CV (P = 0.014) after controlling for covariates. Strong trends toward increased mortality (P = 0.079) and worse functional outcomes were seen for the Hp2-2 patients with modified Rankin scale at 6 wk (P = 0.076) and at 1 y (P = 0.051) and with Glasgow Outcome Scale Extended at discharge (P = 0.091) and at 1 y (P = 0.055). In conclusion, Hp2-2 phenotype is an independent risk factor for the development of both focal and global CV and also predicts poor functional outcomes and mortality after aSAH. Hp phenotyping may serve as a clinically useful tool in the critical care management of aSAH patients by allowing for early prediction of those patients who require increased vigilance due to their inherent genetic risk for the development of CV and resulting DCI and poor outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sylvain Doré
- Departments of Anesthesiology, Neuroscience, Neurology, Psychiatry, and Pharmaceutics, University of Florida, Gainesville, FL 32610
| |
Collapse
|
33
|
Comparative proteomic study reveals the molecular aspects of delayed ocular symptoms induced by sulfur mustard. INTERNATIONAL JOURNAL OF PROTEOMICS 2015; 2015:659241. [PMID: 25685557 PMCID: PMC4320800 DOI: 10.1155/2015/659241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/10/2014] [Indexed: 12/18/2022]
Abstract
Objective. Sulfur mustard (SM) is a highly reactive alkylating agent which produces ocular, respiratory, and skin damages. Eyes are the most sensitive organ to SM due to high intrinsic metabolic and rapid turnover rate of corneal epithelium and aqueous-mucous interfaces of the cornea and conjunctiva. Here we investigate underlying molecular mechanism of SM exposure delayed effects which is still a controversial issue after about 30 years. Materials and Methods. Following ethical approval, we have analyzed serum proteome of ten severe SM exposed male patients with delayed eye symptoms with two-dimensional electrophoresis followed by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. The western blotting was used to confirm the proteins that have been identified. Results. We have identified thirteen proteins including albumin, haptoglobin, and keratin isoforms as well as immunoglobulin kappa chain which showed upregulation while transferrin and alpha 1 antitrypsin revealed downregulation in these patients in comparison with healthy control group. Conclusions. Our results elevated participation of free iron circulatory imbalance and local matrix-metalloproteinase activity in development of delayed ocular symptoms induced by SM. It demonstrates that SM induced systemic toxicity leads to some serum protein changes that continually and gradually exacerbate the ocular surface injuries.
Collapse
|
34
|
Proteomic Analysis in Serum of Rat Hind-Limb Allograft Tolerance Induced by Immunosuppressive Therapy with Adipose-Derived Stem Cells. Plast Reconstr Surg 2014; 134:1213-1223. [DOI: 10.1097/prs.0000000000000725] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Jeney V, Balla G, Balla J. Red blood cell, hemoglobin and heme in the progression of atherosclerosis. Front Physiol 2014; 5:379. [PMID: 25324785 PMCID: PMC4183119 DOI: 10.3389/fphys.2014.00379] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/13/2014] [Indexed: 01/02/2023] Open
Abstract
For decades plaque neovascularization was considered as an innocent feature of advanced atherosclerotic lesions, but nowadays growing evidence suggest that this process triggers plaque progression and vulnerability. Neovascularization is induced mostly by hypoxia, but the involvement of oxidative stress is also established. Because of inappropriate angiogenesis, neovessels are leaky and prone to rupture, leading to the extravasation of red blood cells (RBCs) within the plaque. RBCs, in the highly oxidative environment of the atherosclerotic lesions, tend to lyse quickly. Both RBC membrane and the released hemoglobin (Hb) possess atherogenic activities. Cholesterol content of RBC membrane contributes to lipid deposition and lipid core expansion upon intraplaque hemorrhage. Cell-free Hb is prone to oxidation, and the oxidation products possess pro-oxidant and pro-inflammatory activities. Defense and adaptation mechanisms evolved to cope with the deleterious effects of cell free Hb and heme. These rely on plasma proteins haptoglobin (Hp) and hemopexin (Hx) with the ability to scavenge and eliminate free Hb and heme form the circulation. The protective strategy is completed with the cellular heme oxygenase-1/ferritin system that becomes activated when Hp and Hx fail to control free Hb and heme-mediated stress. These protective molecules have pharmacological potential in diverse pathologies including atherosclerosis.
Collapse
Affiliation(s)
- Viktória Jeney
- Department of Medicine, University of Debrecen Debrecen, Hungary ; MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences Debrecen, Hungary
| | - György Balla
- MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences Debrecen, Hungary ; Department of Pediatrics, University of Debrecen Debrecen, Hungary
| | - József Balla
- Department of Medicine, University of Debrecen Debrecen, Hungary
| |
Collapse
|
36
|
Vinchi F, Muckenthaler MU, Da Silva MC, Balla G, Balla J, Jeney V. Atherogenesis and iron: from epidemiology to cellular level. Front Pharmacol 2014; 5:94. [PMID: 24847266 PMCID: PMC4017151 DOI: 10.3389/fphar.2014.00094] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/14/2014] [Indexed: 12/12/2022] Open
Abstract
Iron accumulates in human atherosclerotic lesions but whether it is a cause or simply a downstream consequence of the atheroma formation has been an open question for decades. According to the so called "iron hypothesis," iron is believed to be detrimental for the cardiovascular system, thus promoting atherosclerosis development and progression. Iron, in its catalytically active form, can participate in the generation of reactive oxygen species and induce lipid-peroxidation, triggering endothelial activation, smooth muscle cell proliferation and macrophage activation; all of these processes are considered to be proatherogenic. On the other hand, the observation that hemochromatotic patients, affected by life-long iron overload, do not show any increased incidence of atherosclerosis is perceived as the most convincing evidence against the "iron hypothesis." Epidemiological studies and data from animal models provided conflicting evidences about the role of iron in atherogenesis. Therefore, more careful studies are needed in which issues like the source and the compartmentalization of iron will be addressed. This review article summarizes what we have learnt about iron and atherosclerosis from epidemiological studies, animal models and cellular systems and highlights the rather contributory than innocent role of iron in atherogenesis.
Collapse
Affiliation(s)
- Francesca Vinchi
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg Heidelberg, Germany ; Molecular Medicine and Partnership Unit, University of Heidelberg Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg Heidelberg, Germany ; Molecular Medicine and Partnership Unit, University of Heidelberg Heidelberg, Germany
| | - Milene C Da Silva
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg Heidelberg, Germany ; Molecular Medicine and Partnership Unit, University of Heidelberg Heidelberg, Germany
| | - György Balla
- MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences Debrecen, Hungary ; Department of Pediatrics, University of Debrecen Debrecen, Hungary
| | - József Balla
- Department of Medicine, University of Debrecen Debrecen, Hungary
| | - Viktória Jeney
- MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences Debrecen, Hungary ; Department of Medicine, University of Debrecen Debrecen, Hungary
| |
Collapse
|
37
|
Mollan TL, Jia Y, Banerjee S, Wu G, Kreulen RT, Tsai AL, Olson JS, Crumbliss AL, Alayash AI. Redox properties of human hemoglobin in complex with fractionated dimeric and polymeric human haptoglobin. Free Radic Biol Med 2014; 69:265-77. [PMID: 24486321 PMCID: PMC4104362 DOI: 10.1016/j.freeradbiomed.2014.01.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 12/30/2022]
Abstract
Haptoglobin (Hp) is an abundant and conserved plasma glycoprotein, which binds acellular adult hemoglobin (Hb) dimers with high affinity and facilitates their rapid clearance from circulation after hemolysis. Humans possess three main phenotypes of Hp, designated Hp 1-1, Hp 2-1, and Hp 2-2. These variants exhibit diverse structural configurations and have been reported to be functionally nonequivalent. We have investigated the functional and redox properties of Hb-Hp complexes prepared using commercially fractionated Hp and found that all forms exhibit similar behavior. The rate of Hb dimer binding to Hp occurs with bimolecular rate constants of ~0.9 μM(-1) s(-1), irrespective of the type of Hp assayed. Although Hp binding does accelerate the observed rate of HbO2 autoxidation by dissociating Hb tetramers into dimers, the rate observed for these bound dimers is three- to fourfold slower than that of Hb dimers free in solution. Co-incubation of ferric Hb with any form of Hp inhibits heme loss to below detectable levels. Intrinsic redox potentials (E1/2) of the ferric/ferrous pair of each Hb-Hp complex are similar, varying from +54 to +59 mV (vs NHE), and are essentially the same as reported by us previously for Hb-Hp complexes prepared from unfractionated Hp. All Hb-Hp complexes generate similar high amounts of ferryl Hb after exposure to hydrogen peroxide. Electron paramagnetic resonance data indicate that the yields of protein-based radicals during this process are approximately 4 to 5% and are unaffected by the variant of Hp assayed. These data indicate that the Hp fractions examined are equivalent to one another with respect to Hb binding and associated stability and redox properties and that this result should be taken into account in the design of phenotype-specific Hp therapeutics aimed at countering Hb-mediated vascular disease.
Collapse
Affiliation(s)
- Todd L Mollan
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20852, USA
| | - Yiping Jia
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20852, USA
| | | | - Gang Wu
- Hematology Division, Department of Internal Medicine, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | | | - Ah-Lim Tsai
- Hematology Division, Department of Internal Medicine, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | - John S Olson
- Biochemistry and Cell Biology Department, Rice University, Houston, TX 77251, USA
| | | | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20852, USA.
| |
Collapse
|
38
|
Serum Proteomic Analysis of Extracorporeal Shock Wave Therapy–Enhanced Diabetic Wound Healing in a Streptozotocin-Induced Diabetes Model. Plast Reconstr Surg 2014; 133:59-68. [DOI: 10.1097/01.prs.0000439050.08733.cf] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Affiliation(s)
- R Loch Macdonald
- Division of Neurosurgery, St. Michael's Hospital; Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre, Li Ka Shing Knowledge Institute of St. Michael's Hospital; and Department of Surgery, University of Toronto, Ontario, Canada
| |
Collapse
|
40
|
Goldenstein H, Levy NS, Lipener YT, Levy AP. Patient selection and vitamin E treatment in diabetes mellitus. Expert Rev Cardiovasc Ther 2013; 11:319-26. [PMID: 23469912 DOI: 10.1586/erc.12.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In diabetes, there is an increase in oxidative stress due to elevated glucose levels in the plasma. High glucose promotes glycosylation, of both plasma and cellular proteins, which particularly affects the endothelial-cell lining of the blood vessel wall and interferes with its normal function. Thus, diabetes mellitus patients suffer from a higher incidence of cardiovascular complications such as atherosclerosis as compared with the nondiabetic population. Haptoglobin (Hp) is a plasma protein that binds free hemoglobin and prevents heme-iron mediated oxidation. There are three different types of Hp, which differ in their antioxidant ability. Several clinical studies have shown that the Hp 2-2 genotype is associated with higher incidence of cardiovascular diseases among diabetics. Vitamin E, a low-cost, easy-to-use antioxidant, was found to decrease the risk of developing cardiovascular diseases in Hp 2-2 diabetic patients. This review summarizes several studies that show the importance of vitamin E supplementation in a specific subgroup of patients, diabetic individuals carrying the Hp 2-2 genotype.
Collapse
Affiliation(s)
- Hagit Goldenstein
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Street, Bat Galim PO 9649, Haifa, 31096, Israel.
| | | | | | | |
Collapse
|
41
|
Nakhoul F, Nakhoul N, Asleh R, Miller-Lotan R, Levy AP. Is the Hp 2-2 diabetic mouse model a good model to study diabetic nephropathy? Diabetes Res Clin Pract 2013; 100:289-297. [PMID: 23490597 DOI: 10.1016/j.diabres.2013.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 01/26/2013] [Accepted: 02/14/2013] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end stage renal disease and dialysis worldwide. Despite aggressive treatment, the number of patients on hemodialysis due to type 1 and type 2 diabetes mellitus is increasing annually. The lack of reliable animal models that mimic human disease has delayed the identification of specific factors that cause or predict DN. Different investigators around the world are testing different murine models. Validation criteria for early and advanced DN, phenotypic methods, background strain have recently been developed. Establishment of an authentic mouse model of DN will undoubtedly facilitate the understanding of the underlying genetic mechanisms that contribute to the development of DN and to study new treatments. Here we describe the characteristics of our new mouse model with type 1 diabetes mellitus and different haptoglobin genotypes that can mimic human DN.
Collapse
Affiliation(s)
- Farid Nakhoul
- Nephrology Divisions, Baruch Padeh, Poriya Medical Center, Lower Galilee, Bar-Ilan University, Galilee, Israel.
| | | | | | | | | |
Collapse
|
42
|
Natural history of the bruise: formation, elimination, and biological effects of oxidized hemoglobin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:703571. [PMID: 23766858 PMCID: PMC3671564 DOI: 10.1155/2013/703571] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/12/2013] [Indexed: 02/02/2023]
Abstract
Numerous disease states are associated with hemolysis or hemorrhage. Because red cells in the extravascular space tend to lyse quickly, hemoglobin (Hb) is released and is prone to autoxidation producing MetHb. Inorganic and organic peroxides may convert Hb and MetHb to higher oxidation states such as ferrylHb. FerrylHb is not a single chemical entity but is a mixture of globin- and porphyrin-centered radicals and covalently cross-linked Hb multimers. Oxidized Hb species are potent prooxidants caused mainly by heme release from oxidized Hb. Moreover, ferrylHb is a strong proinflammatory agonist that targets vascular endothelial cells. This proinflammatory effect of ferrylHb requires actin polymerization, is characterized by the upregulation of proinflammatory adhesion molecules, and is independent of heme release. Deleterious effects of native Hb are controlled by haptoglobin (Hp) that binds cell-free Hb avidly and facilitates its removal from circulation through the CD163 macrophage scavenger receptor-mediated endocytosis. Under circumstances of Hb oxidation, Hp can prevent heme release from MetHb, but unfortunately the Hp-mediated removal of Hb is severely compromised when Hb is structurally altered such as in ferrylHb allowing deleterious downstream reactions to occur even in the presence of Hp.
Collapse
|
43
|
Michels AJ, Hagen TM, Frei B. Human genetic variation influences vitamin C homeostasis by altering vitamin C transport and antioxidant enzyme function. Annu Rev Nutr 2013; 33:45-70. [PMID: 23642198 DOI: 10.1146/annurev-nutr-071812-161246] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
New evidence for the regulation of vitamin C homeostasis has emerged from several studies of human genetic variation. Polymorphisms in the genes encoding sodium-dependent vitamin C transport proteins are strongly associated with plasma ascorbate levels and likely impact tissue cellular vitamin C status. Furthermore, genetic variants of proteins that suppress oxidative stress or detoxify oxidatively damaged biomolecules, i.e., haptoglobin, glutathione-S-transferases, and possibly manganese superoxide dismutase, affect ascorbate levels in the human body. There also is limited evidence for a role of glucose transport proteins. In this review, we examine the extent of the variation in these genes, their impact on vitamin C status, and their potential role in altering chronic disease risk. We conclude that future epidemiological studies should take into account genetic variation in order to successfully determine the role of vitamin C nutriture or supplementation in human vitamin C status and chronic disease risk.
Collapse
|