1
|
Rosés C, Garcia-Ibañez P, Agudelo A, Viadel B, Tomás-Cobos L, Gallego E, Carvajal M, Milagro FI, Barceló A. Effects of Glucosinolate-Enriched Red Radish ( Raphanus sativus) on In Vitro Models of Intestinal Microbiota and Metabolic Syndrome-Related Functionalities. ACS OMEGA 2023; 8:23373-23388. [PMID: 37426251 PMCID: PMC10324062 DOI: 10.1021/acsomega.2c08128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/25/2023] [Indexed: 07/11/2023]
Abstract
The gut microbiota profile is determined by diet composition, and therefore this interaction is crucial for promoting specific bacterial growth and enhancing the health status. Red radish (Raphanus sativusL.) contains several secondary plant metabolites that can exert a protective effect on human health. Recent studies have shown that radish leaves have a higher content of major nutrients, minerals, and fiber than roots, and they have garnered attention as a healthy food or supplement. Therefore, the consumption of the whole plant should be considered, as its nutritional value may be of greater interest. The aim of this work is to evaluate the effects of glucosinolate (GSL)-enriched radish with elicitors on the intestinal microbiota and metabolic syndrome-related functionalities by using an in vitro dynamic gastrointestinal system and several cellular models developed to study the GSL impact on different health indicators such as blood pressure, cholesterol metabolism, insulin resistance, adipogenesis, and reactive oxygen species (ROS). The treatment with red radish had an influence on short-chain fatty acids (SCFA) production, especially on acetic and propionic acid and many butyrate-producing bacteria, suggesting that consumption of the entire red radish plant (leaves and roots) could modify the human gut microbiota profile toward a healthier one. The evaluation of the metabolic syndrome-related functionalities showed a significant decrease in the gene expression of endothelin, interleukin IL-6, and cholesterol transporter-associated biomarkers (ABCA1 and ABCG5), suggesting an improvement of three risk factors associated with metabolic syndrome. The results support the idea that the use of elicitors on red radish crops and its further consumption (the entire plant) may contribute to improving the general health status and gut microbiota profile.
Collapse
Affiliation(s)
- Carles Rosés
- Servei
de Genòmica, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Cerdanyola
del Vallés, Spain
| | - Paula Garcia-Ibañez
- Aquaporins
Group, Centro de Edafología y Biología
Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, E-30100 Murcia, Spain
- Phytochemistry
and Healthy Foods Lab, Department of Food Science Technology, Centro de Edafología y Biología Aplicada
del Segura, CEBAS-CSIC, Campus de Espinardo-25, E-30100 Murcia, Spain
| | - Agatha Agudelo
- Sakata
Seed Ibérica S.L., Pl, Poeta Vicente Gaos, 6 bajo, Valencia 46021, Spain
- Universidad
Politécnica de Valencia, UPV, Camino de Vera s/n, Valencia 46022, Spain
| | - Blanca Viadel
- AINIA,
Technology Centre, C/
Benjamin Franklin 5-11, Parque Tecnológico de Valencia, 46980 Paterna, Valenca, Spain
| | - Lidia Tomás-Cobos
- AINIA,
Technology Centre, C/
Benjamin Franklin 5-11, Parque Tecnológico de Valencia, 46980 Paterna, Valenca, Spain
| | - Elisa Gallego
- AINIA,
Technology Centre, C/
Benjamin Franklin 5-11, Parque Tecnológico de Valencia, 46980 Paterna, Valenca, Spain
| | - Micaela Carvajal
- Aquaporins
Group, Centro de Edafología y Biología
Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo - 25, E-30100 Murcia, Spain
- Phytochemistry
and Healthy Foods Lab, Department of Food Science Technology, Centro de Edafología y Biología Aplicada
del Segura, CEBAS-CSIC, Campus de Espinardo-25, E-30100 Murcia, Spain
| | - Fermín I. Milagro
- Center for
Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain
- Navarra
Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Centro
de Investigación Biomédica en Red de la Fisiopatología
de la Obesidad y Nutrición (CIBERobn), Instituto de la Salud Carlos III, 289029 Madrid, Spain
| | - Anna Barceló
- Servei
de Genòmica, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Cerdanyola
del Vallés, Spain
| |
Collapse
|
2
|
3,3′-Diindolylmethane Enhances Fluorouracil Sensitivity via Inhibition of Pyrimidine Metabolism in Colorectal Cancer. Metabolites 2022; 12:metabo12050410. [PMID: 35629914 PMCID: PMC9144298 DOI: 10.3390/metabo12050410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Chemoresistance limits treatment outcomes in colorectal cancer (CRC) patients. A dimeric metabolite of indole-3-carbinol, 3,3′-diindolylmethane (DIM) is abundant in cruciferous vegetables and has shown anticancer efficacy. The role of DIM in regulating chemosensitivity in CRC remains unknown. In this study, we demonstrated that DIM treatment inhibits the malignant progression of CRC. RNA sequencing indicated that pyrimidine synthesis genes are attenuated by DIM treatment. Stable 13C-labeled glucose tracing revealed that DIM inhibits de novo pyrimidine biosynthesis in CRC. DIM increases 5-FU cytotoxicity in CRC via regulation of the expression of pyrimidine metabolism-related genes. DIM synergizes with 5-FU to enhance its inhibitory effects on CRC both in vivo and in vitro. Our results suggest that DIM improves the therapeutic outcomes of FU-based chemotherapy in CRCs by inhibiting pyrimidine metabolism, identifying a new strategy for clinical therapy.
Collapse
|
3
|
Qin R, Zhao Q, Han B, Zhu HP, Peng C, Zhan G, Huang W. Indole-Based Small Molecules as Potential Therapeutic Agents for the Treatment of Fibrosis. Front Pharmacol 2022; 13:845892. [PMID: 35250597 PMCID: PMC8888875 DOI: 10.3389/fphar.2022.845892] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Indole alkaloids are widely distributed in nature and have been particularly studied because of their diverse biological activities, such as anti-inflammatory, anti-tumor, anti-bacterial, and anti-oxidant activities. Many kinds of indole alkaloids have been applied to clinical practice, proving that indole alkaloids are beneficial scaffolds and occupy a crucial position in the development of novel agents. Fibrosis is an end-stage pathological condition of most chronic inflammatory diseases and is characterized by excessive deposition of fibrous connective tissue components, ultimately resulting in organ dysfunction and even failure with significant morbidity and mortality. Indole alkaloids and indole derivatives can alleviate pulmonary, myocardial, renal, liver, and islet fibrosis through the suppression of inflammatory response, oxidative stress, TGF-β/Smad pathway, and other signaling pathways. Natural indole alkaloids, such as isorhynchophylline, evodiamine, conophylline, indirubin, rutaecarpine, yohimbine, and vincristine, are reportedly effective in organ fibrosis treatment. In brief, indole alkaloids with a wide range of pharmacological bioactivities are important candidate drugs for organ fibrosis treatment. The present review discusses the potential of natural indole alkaloids, semi-synthetic indole alkaloids, synthetic indole derivatives, and indole-contained metabolites in organ fibrosis treatment.
Collapse
Affiliation(s)
- Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wei Huang, ; Gu Zhan,
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wei Huang, ; Gu Zhan,
| |
Collapse
|
4
|
Gu H, Gwon MH, Kim SM, Yun JM. Dietary glucosinolates inhibit splenic inflammation in high fat/cholesterol diet-fed C57BL/6 mice. Nutr Res Pract 2021; 15:798-806. [PMID: 34858556 PMCID: PMC8601941 DOI: 10.4162/nrp.2021.15.6.798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 05/04/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND/OBJECTIVES Obesity is associated with chronic inflammation. The spleen is the largest organ of the lymphatic system and has an important role in immunity. Obesity-induced inflammatory responses are triggered by Toll-like receptor (TLR)-myeloid differentiation primary response 88 (MyD88) pathway signaling. Phenethyl isothiocyanate (PEITC) and 3,3′-diindolylmethane (DIM), major dietary glucosinolates present in cruciferous vegetables, have been reported to produce anti-inflammatory effects on various diseases. However, the effects of PEITC and DIM on the obesity-induced inflammatory response in the spleen are unclear. The purpose of this study was to examine the anti-inflammatory effects of PEITC and DIM on the spleen and their mechanism in high fat/cholesterol diet (HFCD)-fed C57BL/6 mice. MATERIALS/METHODS We established an animal model of HFCD-induced obesity using C57BL/6 mice. The mice were divided into six groups: normal diet with AIN-93G diet (CON), high fat diet (60% calories from fat) with 1% cholesterol (HFCD), HFCD with PEITC 30 mg/kg/day or 75 mg/kg/day (HFCD+P30, HFCD+P75), and HFCD with DIM 1.5 mg/kg/day or 7.5 mg/kg/day (HFCD+D1.5, HFCD+D7.5). Enzyme-linked immunosorbent assay was used to evaluate pro-inflammatory cytokine secretion. Western blot and quantitative polymerase chain reaction were used to analyze protein and mRNA levels of nuclear factor kappa B (NF-κB) p65, interleukin 6 (IL-6), cyclooxygenase 2 (COX-2), TLR2, TLR4, and MyD88 in spleen tissue. RESULTS Serum IL-6 levels were significantly higher in the HFCD group than in groups fed a HFCD with PEITC or DIM. Levels of NF-κB p65 protein and TLR2/4, MyD88, NF-κB p65, IL-6, and COX-2 mRNA were significantly higher in the HFCD group than in the CON group and were reduced by the PEITC and DIM supplements. CONCLUSIONS PEITC- and DIM-supplemented diets improved splenic inflammation by modulating the TLR2/4-MyD88 pathway in HFCD-fed mice. We suggest that dietary glucosinolates may at least partially improve obesity-induced inflammation of the spleen.
Collapse
Affiliation(s)
- HyunJi Gu
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Min-Hee Gwon
- Department of Education, Graduate School of Education, Chonnam National University, Gwangju 61186, Korea
| | - Sang-Min Kim
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
5
|
Zhou S, Jin J, Wang J, Zhang Z, Huang S, Zheng Y, Cai L. Effects of Breast Cancer Genes 1 and 2 on Cardiovascular Diseases. Curr Probl Cardiol 2021; 46:100421. [PMID: 31558344 DOI: 10.1016/j.cpcardiol.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 12/20/2022]
Abstract
Carriers of mutations of breast cancer gene 1 and/or 2 (BRCA1/2) have a higher risk of developing breast and ovarian cancers at a relatively young age. Recently, a causative role for BRCA1/2 in cardiovascular diseases has been emerging. In this review, we summarize currently available evidence obtained from studies on animal models and human BRCA1/2 mutation carriers that shows a correlation of BRCA1/2 deficiency with various cardiovascular diseases, including ischemic heart disease, atherosclerosis, and chemotherapy-linked cardiac muscle disorders. We also discuss one of the major mechanisms by which BRCA1/2 protects the heart against oxidative stress, ie mediating the activity of Nrf2 and its downstream targets that govern antioxidant signaling. More research is needed to elucidate whether the carriers of the BRCA1/2 mutations with ovarian and breast cancers have increased susceptibility to chemotherapy-induced cardiac functional impairment.
Collapse
|
6
|
Laiakis EC, McCart EA, Deziel A, Rittase WB, Bouten RM, Jha J, Wilkins WL, Day RM, Fornace AJ. Effect of 3,3'-Diindolylmethane on Pulmonary Injury Following Thoracic Irradiation in CBA Mice. HEALTH PHYSICS 2020; 119:746-757. [PMID: 32384373 PMCID: PMC8579862 DOI: 10.1097/hp.0000000000001257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The molecule 3,3'-diindolylmethane (DIM) is small, a major bioactive metabolite of indole-3 carbinol (13C), and a phytochemical compound from cruciferous vegetables released upon exposure to the gut acid environment. DIM is a proposed anti-cancer agent and was previously demonstrated to prevent radiation damage in the bone marrow and the gastrointestinal tract. Here we investigated the effect of DIM on radiation-induced injury to the lung in a murine model through untargeted metabolomics and gene expression studies of select genes. CBA mice were exposed to thoracic irradiation (17.5 Gy). Mice were treated with vehicle or DIM (250 mg kg, subcutaneous injection) on days -1 pre-irradiation through +14 post-irradiation. DIM induced a significant improvement in survival by day 150 post-irradiation. Fibrosis-related gene expression and metabolomics were examined using lung tissue from days 15, 45, 60, 90, and 120 post-irradiation. Our qRT-PCR experiments showed that DIM treatment reduced radiation-induced late expression of collagen Iα and the cell cycle checkpoint proteins p21/waf1 (CDKN1A) and p16ink (CDKN2A). Metabolomic studies of lung tissue demonstrated a significant dampening of radiation-induced changes following DIM treatment. Metabolites associated with pro-inflammatory responses and increased oxidative stress, such as fatty acids, were suppressed by DIM treatment compared to irradiated samples. Together these data suggest that DIM reduces radiation-induced sequelae in the lung.
Collapse
Affiliation(s)
- Evagelia C. Laiakis
- Department of Oncology, Georgetown University, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Oncology, Georgetown University, Washington, DC 20057, USA
| | - Elizabeth A. McCart
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Annabella Deziel
- Department of Oncology, Georgetown University, Washington, DC 20057, USA
| | - W. Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Roxane M. Bouten
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Jyoti Jha
- Current address: Rise Therapeutics, Rockville, MD 20850, USA
| | - W. Louis Wilkins
- Division of Comparative Pathology, the Armed Forces Radiobiology Research Institute/Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Albert J. Fornace
- Department of Oncology, Georgetown University, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Oncology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
7
|
Yarmohammadi F, Rezaee R, Karimi G. Natural compounds against doxorubicin-induced cardiotoxicity: A review on the involvement of Nrf2/ARE signaling pathway. Phytother Res 2020; 35:1163-1175. [PMID: 32985744 DOI: 10.1002/ptr.6882] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/01/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Cardiotoxicity is the main concern for long-term use of the doxorubicin (DOX). Reactive oxygen species (ROS) generation leads to oxidative stress that significantly contributes to the cardiac damage induced by DOX. The nuclear factor erythroid 2-related factor (Nrf2) acts as a protective player against DOX-induced myocardial oxidative stress. Several natural compounds (NCs) with anti-oxidative effects, were examined to suppress DOX cardiotoxicity such as asiatic acid, α-linolenic acid, apigenin, baicalein, β-lapachone, curdione, dioscin, ferulic acid, Ganoderma lucidum polysaccharides, genistein, ginsenoside Rg3, indole-3-carbinol, naringenin-7-O-glucoside, neferine, p-coumaric acid, pristimerin, punicalagin, quercetin, sulforaphane, and tanshinone IIA. The present article, reviews NCs that showed protective effects against DOX-induced cardiac injury through induction of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Irigenin treatment alleviates doxorubicin (DOX)-induced cardiotoxicity by suppressing apoptosis, inflammation and oxidative stress via the increase of miR-425. Biomed Pharmacother 2020; 125:109784. [PMID: 32092815 DOI: 10.1016/j.biopha.2019.109784] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 01/22/2023] Open
|
9
|
Luo Q, Yang A, Cao Q, Guan H. 3,3'-Diindolylmethane protects cardiomyocytes from LPS-induced inflammatory response and apoptosis. BMC Pharmacol Toxicol 2018; 19:71. [PMID: 30413180 PMCID: PMC6230279 DOI: 10.1186/s40360-018-0262-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/24/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND 3,3'-Diindolylmethane (DIM) has been extensively studied as a potential therapeutic drug with free radical scavenging, antioxidant and anti-angiogenic effects. However, whether DIM has similar effects on cardiomyocytes remains unknown. Here we evaluated DIM's influence on inflammation and apoptosis of H9C2 cardiomyocytes induced by LPS and to explore the possible mechanism of the effects. METHODS H9C2 cells were incubated with DIM (10, 20 and 30 μM) with or without LPS for 24 h. The cytotoxicity of DIM was detected by CCK-8. The levels of tumour necrosis factor (TNF)-α and interleukin (IL)-6 were then measured using RT-qPCR and ELISA. Cell apoptosis rate and reactive oxygen species (ROS) content after DIM treatment were measured by flow cytometry. Expressions of NFκB, P-NFκB, IκBa, P-IκBa, Bax and Bcl-2 after DIM treatment were detected by western blot. The rate of NFκB nuclear translocation after DIM treatment was determined by immunocytochemical analysis. RESULTS LPS stimulation promoted TNF-α and IL-6 mRNA expression. After treatment with various concentrations of DIM (10, 20 and 30 μM), TNF-α and IL-6 mRNA expression was clearly impaired, especially in the LPS + DIM30(μM) group. ELISA was used to measure TNF-α and IL-6 concentrations in cellular supernatant, and the result was verified to be consistent with RT-qPCR. Additionally, DIM treatment significantly blocked LPS-induced oxidative stress and inhibited LPS-induced apoptosis in H9C2 cardiomyocytes according to the results detected by flow cytometry. Moreover, compared with LPS alone, DIM significantly inhibited the LPS-induced phosphorylation of NFκB (p-NFκB) and Bax expression and increased Bcl-2 expression. CONCLUSIONS DIM may have a protective effect for H9C2 cardiomyocytes against LPS-induced inflammatory response and apoptosis. DIM may be a new insight into the treatment of septic cardiomyopathy.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060 People’s Republic of China
| | - Ankang Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060 People’s Republic of China
| | - Quan Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060 People’s Republic of China
| | - Hongjing Guan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060 People’s Republic of China
| |
Collapse
|
10
|
Dai H, Jia G, Lu M, Liang C, Wang Y, Wang H. Astragaloside IV inhibits isoprenaline‑induced cardiac fibrosis by targeting the reactive oxygen species/mitogen‑activated protein kinase signaling axis. Mol Med Rep 2017; 15:1765-1770. [PMID: 28260010 DOI: 10.3892/mmr.2017.6220] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/10/2017] [Indexed: 11/06/2022] Open
Abstract
Cardiac fibrosis is considered an important pathological mechanism in the progression of cardiac remodeling and heart failure. Astragaloside IV (AsIV) is a major active ingredient in Astragalus membranaceus. In a preliminary experiment, it was demonstrated that this naturally occurring substance exhibited cardioprotective effects via preventing cardiomyocyte hypertrophy and apoptosis. The present study aimed to investigate the effects of AsIV on β‑adrenergic receptor (β‑AR)‑mediated cardiac fibrosis, and the associated mechanism. Cell Counting Kit‑8 (CCK‑8) assay was used to examine the proliferation of rat cardiac fibroblast (CF) cultures. Collagen I secretion was detected by ELISA. Dihydroethidium was used to determine intracellular ROS levels. Western blotting was used to examine the expression level of total and phosphorylated mitogen‑activated protein kinases (MAPKs). In the present study, the effects of AsIV on β‑adrenergic receptor (β‑AR) ‑mediated cardiac fibrosis were investigated, and the associated mechanism was revealed. Isoprenaline (ISO) is a selective β‑AR agonist, and treatment with AsIV significantly inhibited (ISO)‑triggered cardiac fibroblast proliferation and type I collagen synthesis. In addition, ISO resulted in a significant elevation of reactive oxygen species (ROS) levels and phosphorylation of the three profibrotic MAPKs, namely extracellular signal‑regulated kinase, p38MAPK and c‑Jun N‑terminal kinase. AsIV effectively reversed the aforementioned ISO‑induced alterations. In addition, N‑acetylcysteine, a typical ROS scavenger, mimicked the inhibitory effects of AsIV on MAPK activation. The present study demonstrated that AsIV may inhibit ISO‑induced cardiac fibrosis by suppressing ROS‑mediated MAPK activation.
Collapse
Affiliation(s)
- Hongliang Dai
- Department of Community Health Nursing, School of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Guizhi Jia
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Meili Lu
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Chunguang Liang
- Department of Community Health Nursing, School of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yue Wang
- Department of Community Health Nursing, School of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongxin Wang
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
11
|
Yun C, Weiner JA, Chun DS, Yun J, Cook RW, Schallmo MS, Kannan AS, Mitchell SM, Freshman RD, Park C, Hsu WK, Hsu EL. Mechanistic insight into the effects of Aryl Hydrocarbon Receptor activation on osteogenic differentiation. Bone Rep 2017; 6:51-59. [PMID: 28377982 PMCID: PMC5365310 DOI: 10.1016/j.bonr.2017.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/18/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022] Open
Abstract
While inhibition of bone healing and increased rates of pseudarthrosis are known adverse outcomes associated with cigarette smoking, the underlying mechanisms by which this occurs are not well understood. Recent work has implicated the Aryl Hydrocarbon Receptor (Ahr) as one mediator of the anti-osteogenic effects of cigarette smoke (CS), which contains numerous toxic ligands for the Ahr. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) is a high-affinity Ahr ligand frequently used to evaluate Ahr pathway activation. The purpose of this study was to elucidate the downstream mechanisms of dioxin action on bone regeneration and investigate Ahr antagonism as a potential therapeutic approach to mitigate the effects of dioxin on bone. Markers of osteogenic activity and differentiation were assessed in primary rat bone marrow stromal cells (BMSC) after exposure to dioxin, Ahr antagonists, or antagonist + dioxin. Four Ahr antagonists were evaluated: α-Naphthoflavone (ANF), resveratrol (Res), 3,3′-Diindolylmethane (DIM), and luteolin (Lut). Our results demonstrate that dioxin inhibited ALP activity, migratory capacity, and matrix mineralization, whereas co-treatment with each of the antagonists mitigated these effects. Dioxin also inhibited BMSC chemotaxis, while co-treatment with several antagonists partially rescued this effect. RNA and protein expression studies found that dioxin down-regulated numerous pro-osteogenic targets, whereas co-treatment with Ahr antagonists prevented these dioxin-induced expression changes to varying degrees. Our results suggest that dioxin adversely affects bone regeneration in a myriad of ways, many of which appear to be mediated by the Ahr. Our work suggests that the Ahr should be investigated as a therapeutic target to combat the adverse effects of CS on bone healing. Dioxin, a potent Ahr ligand, inhibits osteogenic differentiation of BMSC. “Nutraceutical” Ahr antagonists found in red wine and broccoli protected against dioxin action. Targets of dioxin action included Collagens, MMPs, Phex, CXCR4/CXCL12 axis. The Ahr may in part mediate the adverse effects of cigarette smoke on osteogenic differentiation and bone healing.
Collapse
Affiliation(s)
- Chawon Yun
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Joseph A Weiner
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Danielle S Chun
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Jonghwa Yun
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Ralph W Cook
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Michael S Schallmo
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Abhishek S Kannan
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Sean M Mitchell
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Ryan D Freshman
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Christian Park
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Wellington K Hsu
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| | - Erin L Hsu
- Northwestern University Department of Orthopaedic Surgery, Chicago, IL, USA
| |
Collapse
|
12
|
Vesely R, Jelinkova P, Hegerova D, Cernei N, Kopel P, Moulick A, Richtera L, Heger Z, Adam V, Zitka O. Nanoparticles Suitable for BCAA Isolation Can Serve for Use in Magnetic Lipoplex-Based Delivery System for L, I, V, or R-rich Antimicrobial Peptides. MATERIALS 2016; 9:ma9040260. [PMID: 28773383 PMCID: PMC5502924 DOI: 10.3390/ma9040260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/14/2016] [Accepted: 03/24/2016] [Indexed: 11/16/2022]
Abstract
This paper investigates the synthesis of paramagnetic nanoparticles, which are able to bind branched chain amino acids (BCAAs)—leucine, valine, and isoleucine and, thus, serve as a tool for their isolation. Further, by this, we present an approach for encapsulation of nanoparticles into a liposome cavity resulting in a delivery system. Analyses of valine and leucine in entire complex show that 31.3% and 32.6% recoveries are reached for those amino acids. Evaluation of results shows that the success rate of delivery in Escherichia coli (E. coli) is higher in the case of BCAAs on nanoparticles entrapped in liposomes (28.7% and 34.7% for valine and leucine, respectively) when compared to nanoparticles with no liposomal envelope (18.3% and 13.7% for valine and leucine, respectively). The nanoparticles with no liposomal envelope exhibit the negative zeta potential (−9.1 ± 0.3 mV); however, their encapsulation results in a shift into positive values (range of 28.9 ± 0.4 to 33.1 ± 0.5 mV). Thus, electrostatic interactions with negatively-charged cell membranes (approx. −50 mV in the case of E. coli) leads to a better uptake of cargo. Our delivery system was finally tested with the leucine-rich antimicrobial peptide (FALALKALKKALKKLKKALKKAL) and it is shown that hemocompatibility (7.5%) and antimicrobial activity of the entire complex against E. coli, Staphylococcus aureus (S. aureus), and methicilin-resistant S. aureus (MRSA) is comparable or better than conventional penicillin antibiotics.
Collapse
Affiliation(s)
- Radek Vesely
- Department of Traumatology at the Medical Faculty, Masaryk University and Trauma Hospital of Brno, Ponavka 6, Brno CZ-662 50, Czech Republic.
| | - Pavlina Jelinkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno, University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| | - Dagmar Hegerova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno, University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno, University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno, University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| | - Amitava Moulick
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno, University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno, University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno, University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno, University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno, University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| |
Collapse
|
13
|
Walters JW, Amos D, Ray K, Santanam N. Mitochondrial redox status as a target for cardiovascular disease. Curr Opin Pharmacol 2016; 27:50-5. [PMID: 26894468 DOI: 10.1016/j.coph.2016.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 02/07/2023]
Abstract
Mitochondria are major players in cellular energetics, oxidative stress and programmed cell death. Mitochondrial dynamics regulate and integrate these functions. Mitochondrial dysfunction is involved in cardiac hypertrophy, hypertension and myocardial ischemia/reperfusion injury. Reactive oxygen species generation is modulated by the fusion-fission pathway as well as key proteins such as sirtuins that act as metabolic sensors of cellular energetics. Mitochondrial redox status has thus become a good target for therapy against cardiovascular diseases. Recently, there is an influx of studies garnered towards assessing the beneficial effects of mitochondrial targeted antioxidants, drugs modulating the fusion-fission proteins, sirtuins, and other mitochondrial processes as potential cardio-protecting agents.
Collapse
Affiliation(s)
- James W Walters
- School of Arts & Sciences, Bluefield State College, Basic Science Building B213, 219 Rock Street, Bluefield, WV 24701, USA
| | - Deborah Amos
- Department of Pharmacology, Physiology & Toxicology, Joan C Edwards School of Medicine, Marshall University, One John Marshall Dr, Huntington, WV 25755, USA
| | - Kristeena Ray
- Department of Pharmacology, Physiology & Toxicology, Joan C Edwards School of Medicine, Marshall University, One John Marshall Dr, Huntington, WV 25755, USA
| | - Nalini Santanam
- Department of Pharmacology, Physiology & Toxicology, Joan C Edwards School of Medicine, Marshall University, One John Marshall Dr, Huntington, WV 25755, USA.
| |
Collapse
|
14
|
Rosen EM, Day R, Singh VK. New approaches to radiation protection. Front Oncol 2015; 4:381. [PMID: 25653923 PMCID: PMC4299410 DOI: 10.3389/fonc.2014.00381] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/19/2014] [Indexed: 12/16/2022] Open
Abstract
Radioprotectors are compounds that protect against radiation injury when given prior to radiation exposure. Mitigators can protect against radiation injury when given after exposure but before symptoms appear. Radioprotectors and mitigators can potentially improve the outcomes of radiotherapy for cancer treatment by allowing higher doses of radiation and/or reduced damage to normal tissues. Such compounds can also potentially counteract the effects of accidental exposure to radiation or deliberate exposure (e.g., nuclear reactor meltdown, dirty bomb, or nuclear bomb explosion); hence they are called radiation countermeasures. Here, we will review the general principles of radiation injury and protection and describe selected examples of radioprotectors/mitigators ranging from small-molecules to proteins to cell-based treatments. We will emphasize agents that are in more advanced stages of development.
Collapse
Affiliation(s)
- Eliot M Rosen
- Departments of Oncology, Biochemistry and Molecular & Cellular Biology, and Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine , Washington, DC , USA
| | - Regina Day
- Department of Pharmacology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Vijay K Singh
- Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| |
Collapse
|
15
|
Wang JZ, Liu BG, Zhang Y. Pin1-based diagnostic and therapeutic strategies for breast cancer. Pharmacol Res 2014; 93:28-35. [PMID: 25553719 DOI: 10.1016/j.phrs.2014.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 01/12/2023]
Abstract
Pin1 is the only known cis-to-trans isomerase that recognizes the phosphorylated pThr/pSer-Pro motifs in many signaling molecules, playing unique roles in the pathogenesis of breast cancer. First, Pin1 is prevalently over-expressed in kinds of breast cancer cell lines and tissues, such as MDA-MB-231 cell, MCF-7 cell, Her2+, ERα+, and basal-like breast cancer subtypes. Second, Pin1 amplifies many oncogenic signaling pathways, inhibits multiple tumor suppressors, promotes the angiogenesis and metastasis of breast cancer cells, and enhances the resistance of breast cancer cells to anti-tumor medicines. Third, inhibiting Pin1 blocks most of these detrimental effects in a great number of breast cancer cell lines. These findings suggest Pin1 as a promising diagnostic biomarker as well as an efficient therapeutic target for breast cancer. It is strongly expected that a Pin1-positive subtype of breast cancers should be extremely concerned and that the therapeutic efficacy of Pin1 inhibitors on breast cancer patients should be evaluated as soon as possible. Nonetheless, Pin1-based therapeutic strategies for breast cancer still deserve some debates. Hence, we give the predictions of several important issues, such as application precondition, side effects, and personalized medication, when Pin1 inhibitors are used in the breast cancer therapy. These proposals are meaningful for the further development of Pin1-based diagnostic and therapeutic strategies in order to conquer breast cancer.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Department of Medical Technology, Affiliated Hospital, College of Medicine, Hebei University of Engineering, Handan 056002, PR China.
| | - Bao-Guo Liu
- Department of Medical Technology, Affiliated Hospital, College of Medicine, Hebei University of Engineering, Handan 056002, PR China
| | - Yong Zhang
- Department of Medical Technology, Affiliated Hospital, College of Medicine, Hebei University of Engineering, Handan 056002, PR China
| |
Collapse
|
16
|
BRCA1 mRNA levels following a 4-6-week intervention with oral 3,3'-diindolylmethane. Br J Cancer 2014; 111:1269-74. [PMID: 25025957 PMCID: PMC4183839 DOI: 10.1038/bjc.2014.391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/26/2014] [Accepted: 06/18/2014] [Indexed: 12/19/2022] Open
Abstract
Background: Haploinsufficiency may contribute to the development of breast cancer among women with a BRCA1 mutation. Thus, interventions that enhance BRCA1 expression may represent avenues for prevention. Studies have shown that 3,3′-diindolylmethane (DIM) can upregulate BRCA1 expression in breast cancer cells. This has yet to be demonstrated in vivo. Methods: We conducted a study to evaluate the ability of oral DIM to upregulate BRCA1 mRNA expression in white blood cells. A total of 18 women were enroled in the study, including 13 BRCA1 mutation carriers who received 300 mg per day of Rx Balance BioResponse DIM for 4–6 weeks (intervention group) and 5 BRCA1 mutation carriers who did not take DIM (control group). BRCA1 mRNA expression was assessed at baseline and at 4–6 weeks by real-time, quantitative PCR and the relative change in BRCA1 mRNA expression (that is, 2−ΔΔCT) was calculated. Results: The relative change in BRCA1 mRNA expression among women in the intervention group achieved borderline significance (P paired t-test=0.05). In the intervention group, BRCA1 mRNA expression increased in 10 of the participants, decreased in 2 and remained unchanged in 1 of the participants following DIM intervention (P sign test=0.02). On average, women in the intervention group experienced a 34% increase in BRCA1 mRNA expression (range −24 to 194%). There was no significant difference in the relative change in BRCA1 mRNA expression among women in the control group (P paired t-test=0.45). Conclusions: Under the tested conditions, oral DIM was associated with an increase in BRCA1 mRNA expression in women with a BRCA1 mutation. The possibility of mitigating the effect of an inherited deleterious BRCA1 mutation by increasing the physiologic expression of the gene and normalising protein levels represents a clinically important paradigm shift in the prevention strategies available to these high-risk women. Future studies with a larger sample size and higher doses of DIM are warranted.
Collapse
|
17
|
Mangiferin activates Nrf2-antioxidant response element signaling without reducing the sensitivity to etoposide of human myeloid leukemia cells in vitro. Acta Pharmacol Sin 2014; 35:257-66. [PMID: 24374812 DOI: 10.1038/aps.2013.165] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/02/2013] [Indexed: 12/17/2022]
Abstract
AIM Mangiferin is glucosylxanthone extracted from plants of the Anacardiaceae and Gentianaceae families. The aim of this study was to investigate the effects of mangiferin on Nrf2-antioxidant response element (ARE) signaling and the sensitivity to etoposide of human myeloid leukemia cells in vitro. METHODS Human HL-60 myeloid leukemia cells and mononuclear human umbilical cord blood cells (MNCs) were examined. Nrf2 protein was detected using immunofluorescence staining and Western blotting. Binding of Nrf2 to ARE was examined with electrophoretic mobility shift assay. The level of NQO1 was assessed with real-time RT-PCR and Western blotting. DCFH-DA was used to evaluate intracellular ROS level. Cell proliferation and apoptosis were analyzed using MTT and flow cytometry, respectively. RESULTS Mangiferin (50 μmol/L) significantly increased Nrf2 protein accumulation in HL-60 cells, particularly in the nucleus. Mangiferin also enhanced the binding of Nrf2 to an ARE, significantly up-regulated NQO1 expression and reduced intracellular ROS in HL60 cells. Mangiferin alone dose-dependently inhibited the proliferation of HL-60 cells. Mangiferin (50 mol/L) did not attenuate etoposide-induced cytotoxicity in HL-60 cells, and combined treatment of mangiferin with low concentration of etoposide (0.8 μg/mL) even increased the cell inhibition rate. Nor did mangiferin change the rate of etoposide-induced apoptosis in HL-60 cells. In MNCs, mangiferin significantly relieved oxidative stress, but attenuated etoposide-induced cytotoxicity. CONCLUSION Mangiferin is a novel Nrf2 activator that reduces oxidative stress and protects normal cells without reducing the sensitivity to etoposide of HL-60 leukemia cells in vitro. Mangiferin may be a potential chemotherapy adjuvant.
Collapse
|
18
|
Paltsev M, Kiselev V, Muyzhnek E, Drukh V, Kuznetsov I, Pchelintseva O. Comparative preclinical pharmacokinetics study of 3,3'-diindolylmethane formulations: is personalized treatment and targeted chemoprevention in the horizon? EPMA J 2013; 4:25. [PMID: 24325835 PMCID: PMC4029298 DOI: 10.1186/1878-5085-4-25] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/14/2013] [Indexed: 12/20/2022]
Abstract
Background 3,3′-Diindolylmethane (DIM) is known as an agent of natural origin that provides protection against different cancers due to the broad spectrum of its biological activities in vivo. However, this substance has a very poor biodistribution and absorption in animal tissues. This preclinical trial was conducted to evaluate the pharmacokinetics and bioavailability of various DIM formulations in animal model. Materials and methods The pharmacokinetic parameters of one crystalline DIM formulation and one liquid DIM formulation (oil solution) compared to non-formulated crystalline DIM (control) were tested in 200 rats. The formulations were orally administered to animals by gavage at doses of 200 mg/kg per DIM (crystalline DIM formulation and non-formulated crystalline DIM) and 0.1 mg/kg per DIM (DIM in oil solution). DIM plasma elimination was measured using HPLC method; after that, the area under the curve (AUC), relative bioavailability, and absolute bioavailability were estimated for two formulations in relation to non-formulated crystalline DIM. Results and conclusion The highest bioavailability was achieved by administering liquid DIM (oil solution), containing cod liver oil and polysorbate. The level of DIM in rat blood plasma was about fivefold higher, though the 2,000-fold lower dose was administered compared to crystalline DIM forms. The novel pharmacological DIM substance with high bioavailability may be considered as a promising targeted antitumor chemopreventive agent. It could be used to prevent breast and ovarian cancer development in patients with heterozygous inherited and sporadic BRCA1 gene mutations. Further preclinical and clinical trials are needed to prove this concept.
Collapse
Affiliation(s)
| | | | | | - Vadim Drukh
- Peoples' Friendship University of Russia, Miklukho-Maklaya St,, 6, Moscow 117198, Russia.
| | | | | |
Collapse
|
19
|
Heart remodeling induced by adjuvant trastuzumab-containing chemotherapy for breast cancer overexpressing human epidermal growth factor receptor type 2: A prospective study. Pharmacol Res 2013; 78:41-8. [DOI: 10.1016/j.phrs.2013.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 01/08/2023]
|
20
|
Heger Z, Cernei N, Kudr J, Gumulec J, Blazkova I, Zitka O, Eckschlager T, Stiborova M, Adam V, Kizek R. A novel insight into the cardiotoxicity of antineoplastic drug doxorubicin. Int J Mol Sci 2013; 14:21629-46. [PMID: 24185911 PMCID: PMC3856025 DOI: 10.3390/ijms141121629] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/26/2013] [Accepted: 10/09/2013] [Indexed: 01/04/2023] Open
Abstract
Doxorubicin is a commonly used antineoplastic agent in the treatment of many types of cancer. Little is known about the interactions of doxorubicin with cardiac biomolecules. Serious cardiotoxicity including dilated cardiomyopathy often resulting in a fatal congestive heart failure may occur as a consequence of chemotherapy with doxorubicin. The purpose of this study was to determine the effect of exposure to doxorubicin on the changes in major amino acids in tissue of cardiac muscle (proline, taurine, glutamic acid, arginine, aspartic acid, leucine, glycine, valine, alanine, isoleucine, threonine, lysine and serine). An in vitro interaction study was performed as a comparison of amino acid profiles in heart tissue before and after application of doxorubicin. We found that doxorubicin directly influences myocardial amino acid representation even at low concentrations. In addition, we performed an interaction study that resulted in the determination of breaking points for each of analyzed amino acids. Lysine, arginine, β-alanine, valine and serine were determined as the most sensitive amino acids. Additionally we compared amino acid profiles of myocardium before and after exposure to doxorubicin. The amount of amino acids after interaction with doxorubicin was significantly reduced (p = 0.05). This fact points at an ability of doxorubicin to induce changes in quantitative composition of amino acids in myocardium. Moreover, this confirms that the interactions between doxorubicin and amino acids may act as another factor most likely responsible for adverse effects of doxorubicin on myocardium.
Collapse
Affiliation(s)
- Zbynek Heger
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic, E-Mails: (Z.H.); (N.C.); (J.K.); (J.G.); (I.B.); (O.Z.); (V.A.)
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic, E-Mails: (Z.H.); (N.C.); (J.K.); (J.G.); (I.B.); (O.Z.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic
| | - Jiri Kudr
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic, E-Mails: (Z.H.); (N.C.); (J.K.); (J.G.); (I.B.); (O.Z.); (V.A.)
| | - Jaromir Gumulec
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic, E-Mails: (Z.H.); (N.C.); (J.K.); (J.G.); (I.B.); (O.Z.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Komenskeho namesti 2, Brno CZ-662 43, Czech Republic
| | - Iva Blazkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic, E-Mails: (Z.H.); (N.C.); (J.K.); (J.G.); (I.B.); (O.Z.); (V.A.)
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic, E-Mails: (Z.H.); (N.C.); (J.K.); (J.G.); (I.B.); (O.Z.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, Prague 5 CZ-15006, Czech Republic; E-Mail:
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, Prague 2 CZ-12840, Czech Republic; E-Mail:
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic, E-Mails: (Z.H.); (N.C.); (J.K.); (J.G.); (I.B.); (O.Z.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic, E-Mails: (Z.H.); (N.C.); (J.K.); (J.G.); (I.B.); (O.Z.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +420-545-133-350; Fax: +420-545-212-044
| |
Collapse
|