1
|
Das U, Basu U, Paira P. Recent trends in the design and delivery strategies of ruthenium complexes for breast cancer therapy. Dalton Trans 2024; 53:15113-15157. [PMID: 39219354 DOI: 10.1039/d4dt01482k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As the most frequent and deadly type of cancer in women, breast cancer has a high propensity to spread to the brain, bones, lymph nodes, and lungs. The discovery of cisplatin marked the beginning of the development of anticancer metal-based medications, although the drug's severe side effects have limited its usage in clinical settings. The remarkable antimetastatic and anticancer activity of different ruthenium complexes such as NAMI-A, KP1019, KP1339, etc. reported in the 1980s has bolstered the discovery of ruthenium complexes with various types of ligands for anticancer applications. The review meticulously elucidates the cytotoxic and antimetastatic potential of reported ruthenium complexes against breast cancer cells. Notably, arene-based and cyclometalated ruthenium complexes emerge as standout candidates, showcasing remarkable potency with notably low IC50 values. These findings underscore the promising therapeutic avenues offered by ruthenium-based compounds, particularly in addressing the challenges posed by conventional treatments in refractory or aggressive breast cancer subtypes. Moreover, the review comprehensively integrates a spectrum of ruthenium complexes, spanning traditional metal complexes to nano-based formulations and light-activated variants, underscoring the versatility and adaptability of ruthenium chemistry in breast cancer therapy.
Collapse
Affiliation(s)
- Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Uttara Basu
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, K K Birla Goa Campus, NH 17B Bypass Road, Goa - 403726, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| |
Collapse
|
2
|
Gobbo A, Pereira SAP, Mota FAR, Sinenko I, Glinkina K, Rocchi D, Guelfi M, Biver T, Donati C, Zacchini S, Saraiva MLMFS, Dyson PJ, Marchetti F. Anticancer potential of NSAID-derived tris(pyrazolyl)methane ligands in iron(II) sandwich complexes. Dalton Trans 2024; 53:13503-13514. [PMID: 39072444 DOI: 10.1039/d4dt00920g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Tris(pyrazolyl)methane (tpm), 2,2,2-tris(pyrazolyl)ethanol (tpmOH) and its esterification derivatives with ibuprofen and flurbiprofen (tpmIBU and tpmFLU) were used as ligands to obtain complexes of the type [Fe(tpmX)2]Cl2 (1-4). The tpmIBU and tpmFLU ligands and corresponding complexes 3 and 4 were characterized by IR and multinuclear NMR spectroscopy, and the structure of tpmIBU was elucidated by single crystal X-ray diffraction. Complexes 1-4 were also assessed for their behaviour in aqueous media (solubility in D2O, octanol/water partition coefficient, stability in physiological-like conditions). The antiproliferative activity of ligands and complexes was determined on A2780, A2780cis and A549 cancer cell lines and the non-cancerous HEK 293T and BJ cell lines. The ligands and complexes were investigated for their ability to inhibit COX-2 (cyclooxygenase) and HNE (4-hydroxynonenal) enzymes. Complexes 3 and 4 exhibited cytotoxicity that may be attributed predominantly to their bioactive fragments, while DNA binding and enhancement of ROS production do not appear to play any significant role.
Collapse
Affiliation(s)
- Alberto Gobbo
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Sarah A P Pereira
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Switzerland
| | - Fátima A R Mota
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - Irina Sinenko
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Switzerland
| | - Kseniya Glinkina
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Switzerland
| | - Dario Rocchi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Massimo Guelfi
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Tarita Biver
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| | - Chiara Donati
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences, Via F. Marzolo 5, I-35131 Padova, Italy
| | - Stefano Zacchini
- University of Bologna, Department of Industrial Chemistry "Toso Montanari", Via P. Gobetti 85, I-40129 Bologna, Italy
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Switzerland
| | - Fabio Marchetti
- University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124 Pisa, Italy.
| |
Collapse
|
3
|
Nayeem N, Sauma S, Ahad A, Rameau R, Kebadze S, Bazett M, Park BJ, Casaccia P, Prabha S, Hubbard K, Contel M. Insights into Mechanisms and Promising Triple Negative Breast Cancer Therapeutic Potential for a Water-Soluble Ruthenium Compound. ACS Pharmacol Transl Sci 2024; 7:1364-1376. [PMID: 38751641 PMCID: PMC11092013 DOI: 10.1021/acsptsci.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 05/18/2024]
Abstract
Triple negative breast cancer (TNBC) represents a subtype of breast cancer that does not express the three major prognostic receptors of human epidermal growth factor receptor 2 (HER2), progesterone (PR), and estrogen (ER). This limits treatment options and results in a high rate of mortality. We have reported previously on the efficacy of a water-soluble, cationic organometallic compound (Ru-IM) in a TNBC mouse xenograft model with impressive tumor reduction and targeted tumor drug accumulation. Ru-IM inhibits cancer hallmarks such as migration, angiogenesis, and invasion in TNBC cells by a mechanism that generates apoptotic cell death. Ru-IM displays little interaction with DNA and appears to act by a P53-independent pathway. We report here on the mitochondrial alterations caused by Ru-IM treatment and detail the inhibitory properties of Ru-IM in the PI3K/AKT/mTOR pathway in MDA-MB-231 cells. Lastly, we describe the results of an efficacy study of the TNBC xenografted mouse model with Ru-IM and Olaparib monotherapy and combinatory treatments. We find 59% tumor shrinkage with Ru-IM and 65% with the combination. Histopathological analysis confirmed no test-article-related toxicity. Immunohistochemical analysis indicated an inhibition of the angiogenic marker CD31 and increased levels of apoptotic cleaved caspase 3 marker, along with a slight inhibition of p-mTOR. Taken together, the effects of Ru-IM in vitro show similar trends and translation in vivo. Our investigation underscores the therapeutic potential of Ru-IM in addressing the challenges posed by TNBC as evidenced by its robust efficacy in inhibiting key cancer hallmarks, substantial tumor reduction, and minimal systemic toxicity.
Collapse
Affiliation(s)
- Nazia Nayeem
- Department
of Chemistry, Brooklyn College, The City
University of New York, Brooklyn, New York 11210, United States
- Brooklyn
College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
- Biology
PhD Program The Graduate Center, The City
University of New York, New York, New York 10016, United States
| | - Sami Sauma
- Biology
PhD Program The Graduate Center, The City
University of New York, New York, New York 10016, United States
- Neuroscience
Initiative, Advanced Science Research Center, New York, New York 10065, United States
- Department
of Biology, City College, The City University
of New York, New York, New York 10031, United States
| | - Afruja Ahad
- Department
of Chemistry, Brooklyn College, The City
University of New York, Brooklyn, New York 11210, United States
- Brooklyn
College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
- Biology
PhD Program The Graduate Center, The City
University of New York, New York, New York 10016, United States
- Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10031, United States
| | - Rachele Rameau
- Biology
PhD Program The Graduate Center, The City
University of New York, New York, New York 10016, United States
- Department
of Biology, City College, The City University
of New York, New York, New York 10031, United States
| | - Sophia Kebadze
- Department
of Chemistry, Brooklyn College, The City
University of New York, Brooklyn, New York 11210, United States
- Brooklyn
College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
| | - Mark Bazett
- Bold
Therapeutics Inc., Vancouver, British Columbia V6C 1E1, Canada
| | - Brian J. Park
- Bold
Therapeutics Inc., Vancouver, British Columbia V6C 1E1, Canada
| | - Patrizia Casaccia
- Neuroscience
Initiative, Advanced Science Research Center, New York, New York 10065, United States
| | - Swayam Prabha
- Fels
Cancer Institute for Personalized Medicine and Department of Cancer
and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19104, United States
- Cancer
Signaling and Tumor Microenvironment Program, Fox Chase Center, Temple University, Philadelphia, Pennsylvania 19111, United States
| | - Karen Hubbard
- Biology
PhD Program The Graduate Center, The City
University of New York, New York, New York 10016, United States
- Department
of Biology, City College, The City University
of New York, New York, New York 10031, United States
| | - Maria Contel
- Department
of Chemistry, Brooklyn College, The City
University of New York, Brooklyn, New York 11210, United States
- Brooklyn
College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
- Biology
PhD Program The Graduate Center, The City
University of New York, New York, New York 10016, United States
- Chemistry
PhD Program, The Graduate Center, The City
University of New York, New York, New York 10016, United States
- Biochemistry
PhD Program, The Graduate Center, The City
University of New York, New York, New York 10016, United States
| |
Collapse
|
4
|
Domínguez-Jurado E, Ripoll C, Lara-Sánchez A, Ocaña A, Vitórica-Yrezábal IJ, Bravo I, Alonso-Moreno C. Evaluation of heteroscorpionate ligands as scaffolds for the generation of Ruthenium(II) metallodrugs in breast cancer therapy. J Inorg Biochem 2024; 253:112486. [PMID: 38266323 DOI: 10.1016/j.jinorgbio.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
The modular synthesis of the heteroscorpionate core is explored as a tool for the rapid development of ruthenium-based therapeutic agents. Starting with a series of structurally diverse alcohol-NN ligands, a family of heteroscorpionate-based ruthenium derivatives was synthesized, characterized, and evaluated as an alternative to platinum therapy for breast cancer therapy. In vitro, the antitumoral activity of the novel derivatives was assessed in a series of breast cancer cell lines using UNICAM-1 and cisplatin as metallodrug control. Through this approach, a bimetallic heteroscorpionate-based metallodrug (RUSCO-2) was identified as the lead compound of the series with an IC50 value range as low as 3-5 μM. Notably, RUSCO-2 was found to be highly cytotoxic in TNBC cell lines, suggesting a mode of action independent of the receptor status of the cells. As a proof of concept and taking advantage of the luminescent properties of one of the complexes obtained, uptake was monitored in human breast cancer MCF7 cell lines by fluorescence lifetime imaging microscopy (FLIM) to reveal that the compound is evenly distributed in the cytoplasm and that the incorporation of the heteroscorpionate ligand protects it from aqueous processes, conversion in another entity, or the loss of the chloride group. Finally, ROS studies were conducted, lipophilicity was estimated, the chloride/water exchange was studied, and stability studies in simulated biological media were carried out to propose structure-activity relationships.
Collapse
Affiliation(s)
- Elena Domínguez-Jurado
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia de Albacete, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Ciudad Real 13071, Spain
| | - Consuelo Ripoll
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia de Albacete, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Física. Facultad de Farmacia de Albacete, Albacete 02071, Spain
| | - Agustín Lara-Sánchez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Ciudad Real 13071, Spain
| | - Alberto Ocaña
- Experimental Therapeutics Unit, Hospital clínico San Carlos, IdISSC and CIBERONC, Madrid, Spain
| | - Iñigo J Vitórica-Yrezábal
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda de Fuentenueva. s/n, 18071 Granada, Spain
| | - Iván Bravo
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia de Albacete, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Física. Facultad de Farmacia de Albacete, Albacete 02071, Spain
| | - Carlos Alonso-Moreno
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia de Albacete, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Ciudad Real 13071, Spain.
| |
Collapse
|
5
|
Ferreira T, Azevedo T, Silva J, Faustino-Rocha AI, Oliveira PA. Current views on in vivo models for breast cancer research and related drug development. Expert Opin Drug Discov 2024; 19:189-207. [PMID: 38095187 DOI: 10.1080/17460441.2023.2293152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Animal models play a crucial role in breast cancer research, in particular mice and rats, who develop mammary tumors that closely resemble their human counterparts. These models allow the study of mechanisms behind breast carcinogenesis, as well as the efficacy and safety of new, and potentially more effective and advantageous therapeutic approaches. Understanding the advantages and disadvantages of each model is crucial to select the most appropriate one for the research purpose. AREA COVERED This review provides a concise overview of the animal models available for breast cancer research, discussing the advantages and disadvantages of each one for searching new and more effective approaches to treatments for this type of cancer. EXPERT OPINION Rodent models provide valuable information on the genetic alterations of the disease, the tumor microenvironment, and allow the evaluation of the efficacy of chemotherapeutic agents. However, in vivo models have limitations, and one of them is the fact that they do not fully mimic human diseases. Choosing the most suitable model for the study purpose is crucial for the development of new therapeutic agents that provide better care for breast cancer patients.
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Tiago Azevedo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Jessica Silva
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana I Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, Évora, Portugal
- Department of Zootechnics, School of Sciences and Technology, Comprehensive Health Research Center, Évora, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Clinical Academic Center of Trás-Os-Montes and Alto Douro, University of Trás-Os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
6
|
Kavukcu S, Ensarioğlu HK, Karabıyık H, Vatansever HS, Türkmen H. Cell Death Mechanism of Organometallic Ruthenium(II) and Iridium(III) Arene Complexes on HepG2 and Vero Cells. ACS OMEGA 2023; 8:37549-37563. [PMID: 37841164 PMCID: PMC10569012 DOI: 10.1021/acsomega.3c05898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Due to side effects and toxicity associated with platinum-derived metal-based drugs, extensive research has been conducted on ruthenium (Ru) complexes. We aim to synthesize a highly oil soluble Ru(II)-p-cymene complex (Ru1) with an aliphatic chain group, a bimetallic Ru(II)-p-cymene complex (Ru2) with N,S,S triple-coordination and a bimetallic Ir(III)-pentamethylcyclopentadienyl complex (Ir1) with S,S double-coordination. Subsequently, we investigate the effects of these complexes on Vero and HepG2 cell lines, focusing on cell death mechanisms. Characterization of the complexes is performed through nuclear magnetic resonance spectroscopy (1H and 13C NMR) and Fourier-transform infrared spectroscopy. The effective doses are determined using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) (MTT) assay, applying different doses of the complexes to the two cell lines for 24 and 48 h, respectively. Immunoreactivities of Bax, Bcl2, caspase-3, RIP3, and RIPK1 are analyzed using the indirect immunoperoxidase technique. Notably, all the complexes (Ru1, Ru2, and Ir1) exhibit distinct cell death mechanisms, showing greater effectiveness than cisplatin. This study reveals the diverse mechanisms of action of Ru and Ir complexes based on different ligands. To the best of our knowledge, this study represents the first investigation of a novel RAED-type complex (Ru1) and unexpected bimetallic complexes (Ru2 and Ir1).
Collapse
Affiliation(s)
| | - Hilal Kabadayı Ensarioğlu
- Manisa
Celal Bayar University, Faculty of Medicine,
Department of Histology and Embryology, Manisa 45030, Turkey
| | - Hande Karabıyık
- Dokuz
Eylül University, Faculty of Science,
Department of Physics, Izmir 35390, Turkey
| | - Hafize Seda Vatansever
- Manisa
Celal Bayar University, Faculty of Medicine,
Department of Histology and Embryology, Manisa 45030, Turkey
- Near
East University, DESAM Institute, Mersin 10, Turkey 99138
| | - Hayati Türkmen
- Ege
University, Faculty of Science,
Department of Chemistry, Izmir 35100, Turkey
| |
Collapse
|
7
|
Pereira SAP, Romano-deGea J, Barbosa AI, Costa Lima SA, Dyson PJ, Saraiva MLMFS. Fine-tuning the cytotoxicity of ruthenium(II) arene compounds to enhance selectivity against breast cancers. Dalton Trans 2023; 52:11679-11690. [PMID: 37552495 PMCID: PMC10442743 DOI: 10.1039/d3dt02037a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
Ruthenium-based complexes have been suggested as promising anticancer drugs exhibiting reduced general toxicity compared to platinum-based drugs. In particular, Ru(η6-arene)(PTA)Cl2 (PTA = 1,3,5-triaza-7-phosphaadamantane), or RAPTA, complexes have demonstrated efficacy against breast cancer by suppressing metastasis, tumorigenicity, and inhibiting the replication of the human tumor suppressor gene BRCA1. However, RAPTA compounds have limited cytotoxicity, and therefore comparatively high doses are required. This study explores the activity of a series of RAPTA-like ruthenium(II) arene compounds against MCF-7 and MDA-MB-231 breast cancer cell lines and [Ru(η6-toluene)(PPh3)2Cl]+ was identified as a promising candidate. Notably, [Ru(η6-toluene)(PPh3)2Cl]Cl was found to be remarkably stable and highly cytotoxic, and selective to breast cancer cells. The minor groove of DNA was identified as a relevant target.
Collapse
Affiliation(s)
- Sarah A P Pereira
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Jan Romano-deGea
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Ana Isabel Barbosa
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.
| |
Collapse
|
8
|
Puiu RA, Bîrcă AC, Grumezescu V, Duta L, Oprea OC, Holban AM, Hudiță A, Gălățeanu B, Balaure PC, Grumezescu AM, Andronescu E. Multifunctional Polymeric Biodegradable and Biocompatible Coatings Based on Silver Nanoparticles: A Comparative In Vitro Study on Their Cytotoxicity towards Cancer and Normal Cell Lines of Cytostatic Drugs versus Essential-Oil-Loaded Nanoparticles and on Their Antimicrobial and Antibiofilm Activities. Pharmaceutics 2023; 15:1882. [PMID: 37514068 PMCID: PMC10385235 DOI: 10.3390/pharmaceutics15071882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
We report on a comparative in vitro study of selective cytotoxicity against MCF7 tumor cells and normal VERO cells tested on silver-based nanocoatings synthesized by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Silver nanoparticles (AgNPs) were loaded with five representative cytostatic drugs (i.e., doxorubicin, fludarabine, paclitaxel, gemcitabine, and carboplatin) and with five essential oils (EOs) (i.e., oregano, rosemary, ginger, basil, and thyme). The as-obtained coatings were characterized by X-ray diffraction, thermogravimetry coupled with differential scanning calorimetry, Fourier-transform IR spectroscopy, IR mapping, and scanning electron microscopy. A screening of the impact of the prepared nanocoatings on the MCF7 tumor and normal VERO cell lines was achieved by means of cell viability MTT and cytotoxicity LDH assays. While all nanocoatings loaded with antitumor drugs exhibited powerful cytotoxic activity against both the tumor and the normal cells, those embedded with AgNPs loaded with rosemary and thyme EOs showed remarkable and statistically significant selective cytotoxicity against the tested cancercells. The EO-loaded nanocoatings were tested for antimicrobial and antibiofilm activity against Staphylococcus aureus, Escherichia coli, and Candida albicans. For all studied pathogens, the cell viability, assessed by counting the colony-forming units after 2 and 24 h, was significantly decreased by all EO-based nanocoatings, while the best antibiofilm activity was evidenced by the nanocoatings containing ginger and thyme EOs.
Collapse
Affiliation(s)
- Rebecca Alexandra Puiu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Liviu Duta
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 077206 Bucharest, Romania
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Paul Cătălin Balaure
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
9
|
Bashir M, Mantoo IA, Arjmand F, Tabassum S, Yousuf I. An overview of advancement of organoruthenium(II) complexes as prospective anticancer agents. Coord Chem Rev 2023; 487:215169. [DOI: 10.1016/j.ccr.2023.215169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
|
10
|
Michlewska S, Maly M, Wójkowska D, Karolczak K, Skiba E, Hołota M, Kubczak M, Ortega P, Watala C, Javier de la Mata F, Bryszewska M, Ionov M. Carbosilane ruthenium metallodendrimer as alternative anti-cancer drug carrier in triple negative breast cancer mouse model: A preliminary study. Int J Pharm 2023; 636:122784. [PMID: 36858135 DOI: 10.1016/j.ijpharm.2023.122784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
The carbosilane metallodendrimer G1-[[NCPh(o-N)Ru(η6- p-cymene)Cl]Cl]4 (CRD13), based on an arene Ru(II) complex coordinated to imino-pyridine surface groups, has been conjugated with anti-cancer drugs. Ruthenium in the positively-charged dendrimer structure allows this nanoparticle to be considered as an anticancer drug carrier, made more efficient because ruthenium has anticancer properties. The ability of CRD13 to form complexes with Doxorubicin (DOX), 5-Fluorouracil (5-Fu), and Methotrexate (MTX) has been evaluated using zeta potential measurement, transmission electron microscopy (TEM) and computer simulation. The results show that it forms stable nanocomplexes with all those drugs, enhancing their effectiveness against MDA-MB-231 cancer cells. In vivo tests indicate that the CRD13/DOX system caused a decrease of tumor weight in mice with triple negative breast cancer. However, the tumors were most visibly reduced when naked dendrimers were injected.
Collapse
Affiliation(s)
- Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Poland; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland.
| | - Marek Maly
- Department of Physics, Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic
| | - Dagmara Wójkowska
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Mazowiecka st. 6/8, 92-215 Lodz, Poland
| | - Kamil Karolczak
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Mazowiecka st. 6/8, 92-215 Lodz, Poland
| | - Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Marcin Hołota
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Paula Ortega
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain; Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Spain
| | - Cezary Watala
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Mazowiecka st. 6/8, 92-215 Lodz, Poland
| | - F Javier de la Mata
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain; Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| |
Collapse
|
11
|
Albanell-Fernández M, Oltra SS, Orts-Arroyo M, Ibarrola-Villava M, Carrasco F, Jiménez-Martí E, Cervantes A, Castro I, Martínez-Lillo J, Ribas G. RUNAT-BI: A Ruthenium(III) Complex as a Selective Anti-Tumor Drug Candidate against Highly Aggressive Cancer Cell Lines. Cancers (Basel) 2022; 15:cancers15010069. [PMID: 36612065 PMCID: PMC9817854 DOI: 10.3390/cancers15010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Ruthenium compounds have demonstrated promising activity in different cancer types, overcoming several limitations of platinum-based drugs, yet their global structure-activity is still under debate. We analyzed the activity of Runat-BI, a racemic Ru(III) compound, and of one of its isomers in eight tumor cell lines of breast, colon and gastric cancer as well as in a non-tumoral control. Runat-BI was prepared with 2,2'-biimidazole and dissolved in polyethylene glycol. We performed assays of time- and dose-dependent viability, migration, proliferation, and expression of pro- and antiapoptotic genes. Moreover, we studied the growth rate and cell doubling time to correlate it with the apoptotic effect of Runat-BI. As a racemic mixture, Runat-BI caused a significant reduction in the viability and migration of three cancer cell lines from colon, gastric and breast cancer, all of which displayed fast proliferation rates. This compound also demonstrated selectivity between tumor and non-tumor lines and increased proapoptotic gene expression. However, the isolated isomer did not show any effect. Racemic Runat-BI is a potential drug candidate for treatment of highly aggressive tumors. Further studies should be addressed at evaluating the role of the other isomer, for a more precise understanding of its antitumoral potential and mechanism of action.
Collapse
Affiliation(s)
- Marta Albanell-Fernández
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, 46010 Valencia, Spain
| | - Sara S. Oltra
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, 46010 Valencia, Spain
| | - Marta Orts-Arroyo
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, University of Valencia, 46980 Valencia, Spain
| | - Maider Ibarrola-Villava
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
| | - Fany Carrasco
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
| | - Elena Jiménez-Martí
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Departament de Bioquímica i Biología Molecular, Facultat de Medicina, University of Valencia, 46010 Valencia, Spain
| | - Andrés Cervantes
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
| | - Isabel Castro
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, University of Valencia, 46980 Valencia, Spain
| | - José Martínez-Lillo
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, University of Valencia, 46980 Valencia, Spain
- Correspondence: (J.M.-L.); (G.R.); Tel.: +34-9635-44460 (J.M.-L.)
| | - Gloria Ribas
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (J.M.-L.); (G.R.); Tel.: +34-9635-44460 (J.M.-L.)
| |
Collapse
|
12
|
Akhter S, Arjmand F, Pettinari C, Tabassum S. Ru(II)( ƞ6- p-cymene) Conjugates Loaded onto Graphene Oxide: An Effective pH-Responsive Anticancer Drug Delivery System. Molecules 2022; 27:7592. [PMID: 36364418 PMCID: PMC9655566 DOI: 10.3390/molecules27217592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/04/2023] Open
Abstract
Graphene oxide-based nanodrug delivery systems are considered one of the most promising platforms to deliver therapeutic drugs at the target site. In this study, Ru(II)(ƞ6-p-cymene) complexes containing the benzothiazole ligand were covalently anchored on graphene oxide using the ultrasonication method. The nanoconjugates GO-NCD-1 and GO-NCD-2 were characterized by FT-IR, UV-visible, 1H NMR, TGA, SEM, and TEM techniques, which confirmed the successful loading of both the complexes (NCD 1 and NCD 2) on the carrier with average particle diameter sizes of 17 ± 6.9 nm and 25 ± 6.5 nm. In vitro DNA binding studies of the nanoconjugates were carried out by employing various biophysical methods to investigate the binding interaction with the therapeutic target biomolecule and to quantify the intrinsic binding constant values useful to understand their binding affinity. Our results suggest (i) high Kb and Ksv values of the graphene-loaded conjugates (ii) effective cleavage of plasmid DNA at a lower concentration of 7.5 µM and 10 µM via an oxidative pathway, and (iii) fast release of NCD 2 at an acidic pH that could have a good impact on the controlled delivery of drug. It was found that 90% of the drug was released in an acidic pH (5.8 pH) environment in 48 h, therefore suggesting pH-responsive behavior of the drug delivery system. Molecular docking, DFT studies, and cytotoxicity activity against three cancer cell lines by SRB assay were also performed.
Collapse
Affiliation(s)
- Suffora Akhter
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Claudio Pettinari
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
13
|
Pete S, Roy N, Kar B, Paira P. Construction of homo and heteronuclear Ru(II), Ir(III) and Re(I) complexes for target specific cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Kalaiarasi G, Mohamed Subarkhan M, Fathima Safwana C, Sruthi S, Sathiya Kamatchi T, Keerthana B, Ashok Kumar S. New organoruthenium(II) complexes containing N, X-donor (X = O, S) heterocyclic chelators: Synthesis, spectral characterization, in vitro cytotoxicity and apoptosis investigation. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120863] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Galassi R, Luciani L, Wang J, Vincenzetti S, Cui L, Amici A, Pucciarelli S, Marchini C. Breast Cancer Treatment: The Case of Gold(I)-Based Compounds as a Promising Class of Bioactive Molecules. Biomolecules 2022; 12:biom12010080. [PMID: 35053228 PMCID: PMC8774004 DOI: 10.3390/biom12010080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Breast cancers (BCs) may present dramatic diagnoses, both for ineffective therapies and for the limited outcomes in terms of lifespan. For these types of tumors, the search for new drugs is a primary necessity. It is widely recognized that gold compounds are highly active and extremely potent as anticancer agents against many cancer cell lines. The presence of the metal plays an essential role in the activation of the cytotoxicity of these coordination compounds, whose activity, if restricted to the ligands alone, would be non-existent. On the other hand, gold exhibits a complex biochemistry, substantially variable depending on the chemical environments around the central metal. In this review, the scientific findings of the last 6–7 years on two classes of gold(I) compounds, containing phosphane or carbene ligands, are reviewed. In addition to this class of Au(I) compounds, the recent developments in the application of Auranofin in regards to BCs are reported. Auranofin is a triethylphosphine-thiosugar compound that, being a drug approved by the FDA—therefore extensively studied—is an interesting lead gold compound and a good comparison to understand the activities of structurally related Au(I) compounds.
Collapse
Affiliation(s)
- Rossana Galassi
- Chemistry Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy;
- Correspondence: (R.G.); (C.M.)
| | - Lorenzo Luciani
- Chemistry Division, School of Science and Technology, University of Camerino, 62032 Camerino, Italy;
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Lishan Cui
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (J.W.); (S.V.); (L.C.); (A.A.); (S.P.)
- Correspondence: (R.G.); (C.M.)
| |
Collapse
|
16
|
Miachin K, Del Solar V, El Khoury E, Nayeem N, Khrystenko A, Appelt P, Neary MC, Buccella D, Contel M. Intracellular Localization Studies of the Luminescent Analogue of an Anticancer Ruthenium Iminophosphorane with High Efficacy in a Triple-Negative Breast Cancer Mouse Model. Inorg Chem 2021; 60:19152-19164. [PMID: 34846878 PMCID: PMC9912119 DOI: 10.1021/acs.inorgchem.1c02929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The potential of ruthenium(II) compounds as an alternative to platinum-based clinical anticancer agents has been unveiled after extensive research for over 2 decades. As opposed to cisplatin, ruthenium(II) compounds have distinct mechanisms of action that do not rely solely on interactions with DNA. In a previous report from our group, we described the synthesis, characterization, and biological evaluation of a cationic, water-soluble, organometallic ruthenium(II) iminophosphorane (IM) complex of p-cymene, ([(η6-p-cymene)Ru{(Ph3P═N-CO-2N-C5H4)-κ-N,O}Cl]Cl (1 or Ru-IM), that was found to be highly cytotoxic against a panel of cell lines resistant to cisplatin, including triple-negative breast cancer (TNBC) MDA-MB-231, through canonical or caspase-dependent apoptosis. Studies on a MDA-MB-231 xenograft mice model (after 28 days of treatment) afforded an excellent tumor reduction of 56%, with almost negligible systemic toxicity, and a favored ruthenium tumor accumulation compared to other organs. 1 is known to only interact weakly with DNA, but its intracellular distribution and ultimate targets remain unknown. To gain insight on potential mechanisms for this highly efficacious ruthenium compound, we have developed two luminescent analogues containing the BOPIPY fluorophore (or a modification) in the IM scaffold with the general structure of [(η6-p-cymene)Ru{(BODIPY-Ph2P═N-CO-2-NC5H4)-κ-N,O}Cl]Cl {BODIPY-Ph2P = 8-[(4-diphenylphosphino)phenyl]-4,4-dimethyl-1,3,5,7-tetramethyl-2,6-diethyl-4-bora-3a,4a-diaza-s-indacene (3a) and 4,4-difluoro-8-[4-[[2-[4-(diphenylphosphino)benzamido]ethyl]carbamoyl]phenyl]-1,3,5,7-tetramethyl,2,6-diethyl-4-bora-3a,4a-diaza-s-indacene (3b)}. We report on the synthesis, characterization, lipophilicity, stability, luminescence properties, and cell viability studies in the TNBC cell line MDA-MB-231, nonmalignant breast cells (MCF10a), and lung fibroblasts (IMR-90) of the new compounds. The ruthenium derivative 3b was studied by fluorescence confocal microscopy. These studies point to a preferential accumulation of the compound in the endoplasmic reticulum, mitochondria, and lysosomes. Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis also confirms a greater ruthenium accumulation in the cytoplasmic fraction, including endoplasmic reticulum and lysosomes, and a smaller percentage of accumulation in mitochondria and the nucleus. ICP-OES analysis of the parent compound 1 indicates that it accumulates preferentially in the mitochondria and cytoplasm. Subsequent experiments in 1-treated MDA-MB-231 cells demonstrate significant reactive oxygen species generation.
Collapse
Affiliation(s)
- Kirill Miachin
- Department of Chemistry, Brooklyn College, The City University of New York; Brooklyn, NY 11210
| | - Virginia Del Solar
- Department of Chemistry, Brooklyn College, The City University of New York; Brooklyn, NY 11210
| | - Elsy El Khoury
- Department of Chemistry, New York University; New York, NY 10003
| | - Nazia Nayeem
- Department of Chemistry, Brooklyn College, The City University of New York; Brooklyn, NY 11210
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York; Brooklyn, NY 11210
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY 10016
| | - Anton Khrystenko
- Department of Chemistry, Brooklyn College, The City University of New York; Brooklyn, NY 11210
| | - Patricia Appelt
- Department of Chemistry, Brooklyn College, The City University of New York; Brooklyn, NY 11210
- Federal University of Paraná, Centro Politécnico, 81540-990 Curitiba, PR, Brazil
| | - Michelle C. Neary
- Chemistry Department, Hunter College, The City University of New York, New York, NY 10021
| | - Daniela Buccella
- Department of Chemistry, New York University; New York, NY 10003
| | - Maria Contel
- Department of Chemistry, Brooklyn College, The City University of New York; Brooklyn, NY 11210
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York; Brooklyn, NY 11210
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY 10016
- Chemistry, The Graduate Center, The City University of New York, New York, NY 10016
- Biochemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY 10016
| |
Collapse
|
17
|
Nayeem N, Yeasmin A, Cobos SN, Younes A, Hubbard K, Contel M. Investigation of the Effects and Mechanisms of Anticancer Action of a Ru(II)-Arene Iminophosphorane Compound in Triple Negative Breast Cancer Cells. ChemMedChem 2021; 16:3280-3292. [PMID: 34329530 PMCID: PMC8571052 DOI: 10.1002/cmdc.202100325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/23/2021] [Indexed: 12/22/2022]
Abstract
Triple negative breast cancer (TNBC) is one of the breast cancers with poorer prognosis and survival rates. TNBC has a disproportionally high incidence and mortality in women of African descent. We report on the evaluation of Ru-IM (1), a water-soluble organometallic ruthenium compound, in TNBC cell lines derived from patients of European (MDA-MB-231) and African (HCC-1806) ancestry (including IC50 values, cellular and organelle uptake, cell death pathways, cell cycle, effects on migration, invasion, and angiogenesis, a preliminary proteomic analysis, and an NCI 60 cell-line panel screen). 1 was previously found highly efficacious in MDA-MB-231 cells and xenografts, with little systemic toxicity and preferential accumulation in the tumor. We observe a similar profile for this compound in the two cell lines studied, which includes high cytotoxicity, apoptotic behavior and potential antimetastatic and antiangiogenic properties. Cytokine M-CSF, involved in the PI3/AKT pathway, shows protein expression inhibition with exposure to 1. We also demonstrate a p53 independent mechanism of action.
Collapse
Affiliation(s)
- Nazia Nayeem
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology, Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
| | - Arefa Yeasmin
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
| | - Samantha N Cobos
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology, Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
| | - Ali Younes
- Department of Chemistry, Hunter College, The City University of New York, 695 Park Avenue, New York, NY, 10065, USA
| | - Karen Hubbard
- Biology, Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
- Biology Department, The City College of New York, The City University of New York, 160 Covent Avenue, New York, NY, 10031, USA
| | - Maria Contel
- Department of Chemistry and Brooklyn College Cancer Center, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology, Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, New York, NY, 10016, USA
| |
Collapse
|
18
|
Zain Aldin M, Zaragoza G, Deschamps W, Tomani JCD, Souopgui J, Delaude L. Synthesis, Characterization, and Biological Activity of Water-Soluble, Dual Anionic and Cationic Ruthenium-Arene Complexes Bearing Imidazol(in)ium-2-dithiocarboxylate Ligands. Inorg Chem 2021; 60:16769-16781. [PMID: 34669374 DOI: 10.1021/acs.inorgchem.1c02648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient synthetic protocol was devised for the preparation of five cationic ruthenium-arene complexes bearing imidazol(in)ium-2-dithiocarboxylate ligands from the [RuCl2(p-cymene)]2 dimer and 2 equiv of an NHC·CS2 zwitterion. The reactions proceeded cleanly and swiftly in dichloromethane at room temperature to afford the expected [RuCl(p-cymene)(S2C·NHC)]Cl products in quantitative yields. When the [RuCl2(p-cymene)]2 dimer was reacted with only 1 equiv of a dithiolate betaine under the same experimental conditions, a set of five bimetallic compounds with the generic formula [RuCl(p-cymene)(S2C·NHC)][RuCl3(p-cymene)] was obtained in quantitative yields. These novel, dual anionic and cationic ruthenium-arene complexes were fully characterized by various analytical techniques. NMR titrations showed that the chelation of the dithiocarboxylate ligands to afford [RuCl(p-cymene)(S2C·NHC)]+ cations was quantitative and irreversible. Conversely, the formation of the [RuCl3(p-cymene)]- anion was limited by an equilibrium, and this species readily dissociated into Cl- anions and the [RuCl2(p-cymene)]2 dimer. The position of the equilibrium was strongly influenced by the nature of the solvent and was rather insensitive to the temperature. Two monometallic and two bimetallic complexes cocrystallized with water, and their molecular structures were solved by X-ray diffraction analysis. Crystallography revealed the existence of strong interactions between the azolium ring protons of the cationic complexes and neighboring donor groups from the anions or the solvent. The various compounds under investigation were highly soluble in water. They were all strongly cytotoxic against K562 cancer cells. Furthermore, with a selectivity index of 32.1, the [RuCl(p-cymene)(S2C·SIDip)]Cl complex remarkably targeted the erythroleukemic cells vs mouse splenocytes.
Collapse
Affiliation(s)
- Mohammed Zain Aldin
- Laboratory of Catalysis, MolSys Research Unit, Institut de Chimie Organique (B6a), Université de Liège, Allée du six Août 13, 4000 Liège, Belgium
| | - Guillermo Zaragoza
- Unidade de Difracción de Raios X, RIAIDT, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - William Deschamps
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Jean-Claude Didelot Tomani
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Jacob Souopgui
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Lionel Delaude
- Laboratory of Catalysis, MolSys Research Unit, Institut de Chimie Organique (B6a), Université de Liège, Allée du six Août 13, 4000 Liège, Belgium
| |
Collapse
|
19
|
Orhan E, Dülger G, Alpay M, Öksüz N, Dülger B. Synthesis, antimicrobial and antiproliferative activities of new self-assembly benzimidazole-bridged aren ruthenium rectangles in human breast cancer cells. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Lenis-Rojas OA, Roma-Rodrigues C, Fernandes AR, Carvalho A, Cordeiro S, Guerra-Varela J, Sánchez L, Vázquez-García D, López-Torres M, Fernández A, Fernández JJ. Evaluation of the In Vitro and In Vivo Efficacy of Ruthenium Polypyridyl Compounds against Breast Cancer. Int J Mol Sci 2021; 22:ijms22168916. [PMID: 34445620 PMCID: PMC8396206 DOI: 10.3390/ijms22168916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/31/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
The clinical success of cisplatin, carboplatin, and oxaliplatin has sparked the interest of medicinal inorganic chemistry to synthesize and study compounds with non-platinum metal centers. Despite Ru(II)-polypyridyl complexes being widely studied and well established for their antitumor properties, there are not enough in vivo studies to establish the potentiality of this type of compound. Therefore, we report to the best of our knowledge the first in vivo study of Ru(II)-polypyridyl complexes against breast cancer with promising results. In order to conduct our study, we used MCF7 zebrafish xenografts and ruthenium complexes [Ru(bipy)2(C12H8N6-N,N)][CF3SO3]2Ru1 and [{Ru(bipy)2}2(μ-C12H8N6-N,N)][CF3SO3]4Ru2, which were recently developed by our group. Ru1 and Ru2 reduced the tumor size by an average of 30% without causing significant signs of lethality when administered at low doses of 1.25 mg·L-1. Moreover, the in vitro selectivity results were confirmed in vivo against MCF7 breast cancer cells. Surprisingly, this work suggests that both the mono- and the dinuclear Ru(II)-polypyridyl compounds have in vivo potential against breast cancer, since there were no significant differences between both treatments, highlighting Ru1 and Ru2 as promising chemotherapy agents in breast cancer therapy.
Collapse
Affiliation(s)
- Oscar A. Lenis-Rojas
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB, Av. da República, EAN, 2780-157 Oeiras, Portugal;
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento Ciências da Vida, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (A.C.); (S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento Ciências da Vida, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (A.C.); (S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Correspondence: (A.R.F.); (J.J.F.)
| | - Andreia Carvalho
- UCIBIO, Departamento Ciências da Vida, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (A.C.); (S.C.)
| | - Sandra Cordeiro
- UCIBIO, Departamento Ciências da Vida, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (A.C.); (S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge Guerra-Varela
- Departamento de Zoología, Genética y Antropología Física. Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (J.G.-V.); (L.S.)
| | - Laura Sánchez
- Departamento de Zoología, Genética y Antropología Física. Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (J.G.-V.); (L.S.)
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Digna Vázquez-García
- Departamento de Química, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain; (D.V.-G.); (M.L.-T.); (A.F.)
| | - Margarita López-Torres
- Departamento de Química, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain; (D.V.-G.); (M.L.-T.); (A.F.)
| | - Alberto Fernández
- Departamento de Química, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain; (D.V.-G.); (M.L.-T.); (A.F.)
| | - Jesús J. Fernández
- Departamento de Química, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain; (D.V.-G.); (M.L.-T.); (A.F.)
- Correspondence: (A.R.F.); (J.J.F.)
| |
Collapse
|
21
|
Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021; 58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.
Collapse
Affiliation(s)
- Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nenad Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Niksic H, Becic F, Koric E, Gusic I, Omeragic E, Muratovic S, Miladinovic B, Duric K. Cytotoxicity screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines. Sci Rep 2021; 11:13178. [PMID: 34162964 PMCID: PMC8222331 DOI: 10.1038/s41598-021-92679-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/09/2021] [Indexed: 12/09/2022] Open
Abstract
Among natural products, essential oils from aromatic plants have been reported to possess potent anticancer properties. In this work, we aimed to perform the cytotoxic concentration range screening and antiproliferative activity screening of chemically characterized Thymus vulgaris L. essential oil. In vivo bioassay was conducted using the brine shrimp lethality test (BSLT). In vitro evaluation of antiproliferative activity was carried out on three human tumor cell lines: breast adenocarcinoma MCF-7, lung carcinoma H460 and acute lymphoblastic leukemia MOLT-4 using MTT assay. Essential oil components thymol (36.7%), p-cymene (30.0%), γ-terpinene (9.0%) and carvacrol (3.6%) were identified by gas chromatography/mass spectrometry. Analyzed essential oil should be considered as toxic/highly toxic with LC50 60.38 µg/mL in BSLT and moderate/weakly cytotoxic with IC50 range 52.65-228.78 µg/mL in vitro, according to evaluated cytotoxic criteria. Essential oil induced a dose-dependent inhibition of cell proliferation in all tested tumor cell lines and showed different sensitivity. Dose dependent toxicity observed in bioassay as well as the in vitro assay confirmed that brine shrimp lethality test is an adequate method for preliminary toxicity testing of Thymus vulgaris L. essential oil in tumor cell lines.
Collapse
Affiliation(s)
- Haris Niksic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Fahir Becic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Emina Koric
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina.
| | - Irma Gusic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Elma Omeragic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Samija Muratovic
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| | - Bojana Miladinovic
- Faculty of Medicine, University of Nis, Dr Zoran Djindjic Boulevard 81, 18000, Niš, Serbia
| | - Kemal Duric
- Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
23
|
Balahbib A, El Omari N, Hachlafi NE, Lakhdar F, El Menyiy N, Salhi N, Mrabti HN, Bakrim S, Zengin G, Bouyahya A. Health beneficial and pharmacological properties of p-cymene. Food Chem Toxicol 2021; 153:112259. [PMID: 33984423 DOI: 10.1016/j.fct.2021.112259] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
p-cymene also known as p-cymol or p-isopropyltoluene is an alkyl-substituted aromatic compound naturally occurring in essential oils (EOs) of various aromatic plants, including the genus of Artemisia, Protium, Origanum, and Thymus. It is related to the family of terpenes, especially monocyclic monoterpenes. p-cymene is also present in several food-based plants such as carrots, orange juice, grapefruit, tangerine, raspberries and several spices. Numerous studies have demonstrated the pharmacological properties of the monoterpenes p-cymene, including antioxidant, anti-inflammatory, antiparasitic, antidiabetic, antiviral, antitumor, antibacterial, and antifungal activities. The p-cymene has also been reported to act as an analgesic, antinociceptive, immunomodulatory, vasorelaxant and neuroprotective agent. Its anticancer effects are related to some mechanisms such as the inhibition of apoptosis and cell cycle arrest. In this review, we critically highlighted the in vitro and in vivo pharmacological properties of the p-cymene molecule, providing insight into its mechanisms of action and potential applications in drug discovery. In light of this finding, in-depth in vivo studies are strongly required to validate the safety and beneficial effects of the p-cymene molecule in human healthcare and industrial applications as a potential source of drug discovery.
Collapse
Affiliation(s)
- Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, And Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, P.O.Box-2002, Imouzzer Road Fez, Morocco
| | - Fatima Lakhdar
- Department of Biology, Laboratory of Marine Biotechnology and Environment, Faculty of Sciences, ChouaibDoukkali University, BP 20, El Jadida, 24000, Morocco
| | - Naoual El Menyiy
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and of Life (SNAMOPEQ). Faculty of Sciences Dhar El Mahraz. University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Najoua Salhi
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP 6203, Rabat, Morocco
| | - Saad Bakrim
- Laboratory of Molecular Engineering, Valorization and Environment, Department of Sciences and Techniques, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Taroudant, Morocco
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, And Genomic Center of Human Pathologies, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
24
|
Nayeem N, Contel M. Exploring the Potential of Metallodrugs as Chemotherapeutics for Triple Negative Breast Cancer. Chemistry 2021; 27:8891-8917. [PMID: 33857345 DOI: 10.1002/chem.202100438] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 12/11/2022]
Abstract
This review focuses on studies of coordination and organometallic compounds as potential chemotherapeutics against triple negative breast cancer (TNBC) which has one of the poorest prognoses and worst survival rates from all breast cancer types. At present, chemotherapy is still the standard of care for TNBC since only one type of targeted therapy has been recently developed. References for metal-based compounds studied in TNBC cell lines will be listed, and those of metal-specific reviews, but a detailed overview will also be provided on compounds studied in vivo (mostly in mice models) and those compounds for which some preliminary mechanistic data was obtained (in TNBC cell lines and tumors) and/or for which bioactive ligands have been used. The main goal of this review is to highlight the most promising metal-based compounds with potential as chemotherapeutic agents in TNBC.
Collapse
Affiliation(s)
- Nazia Nayeem
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology PhD Program, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA
| | - Maria Contel
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology PhD Program, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA.,Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA.,University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, Hawaii, 96813, USA
| |
Collapse
|
25
|
Synthesis and Structural Characterization of Half-Sandwich Arene–Ruthenium(II) Complexes with Bis(imidazol-1-yl)methane, Imidazole and Benzimidazole. INORGANICS 2021. [DOI: 10.3390/inorganics9050034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mono- and binuclear arene–ruthenium(II) complexes with imidazole-containing ligands were prepared by the reaction of the ligands (L1 = bis(imidazole-1-yl)methane; ImH = 1H-Imidazole; BImH = 1H-Benzimidazole) with [(p-cym)Ru(µ-Cl)2]2 dimers. When bis(imidazole-1-yl)methane reacted with [(p-cym)Ru(µ-Cl)2]2 in methanol, a binuclear complex of the type [Ru2(L1)2(p-cym)2Cl2]Cl2 (2) with cyclic structure was synthesized, whereas by using acetonitrile as a solvent under the same reaction conditions, an unexpected C–N bond cleavage was observed, and a complex of formula [Ru(ImH)2(p-cym)Cl]Cl (1) with coordinated imidazole molecules was obtained. Another type of arene–ruthenium complex [Ru(BImH)(p-cym)Cl2] (3) was obtained by the reaction of benzimidazole and [(p-cym)Ru(µ-Cl)2]2. All compounds were characterized by spectral (FT-IR, NMR 1H, 13C) and single-crystal X-ray diffraction methods; their catalytic activity in transfer hydrogenation and the cytotoxicity against MCF-7 and HepG2 cells were evaluated.
Collapse
|
26
|
|
27
|
Mondal A, Sen U, Roy N, Muthukumar V, Sahoo SK, Bose B, Paira P. DNA targeting half sandwich Ru(II)- p-cymene-N^N complexes as cancer cell imaging and terminating agents: influence of regioisomers in cytotoxicity. Dalton Trans 2021; 50:979-997. [PMID: 33355328 DOI: 10.1039/d0dt03107k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
For diagnosing and annihilating cancer in the human body, herein, we have adopted a one pot convenient synthetic protocol to synthesize a library of half sandwich Ru(ii)-p-cymene-N^N complexes under continuous sonication and isolated their regioisomers by preparative thin layer chromatography followed by justification of stability using DFT. The present work has resulted in a library of ruthenium arene complexes and their isolated regioisomers following environmentally benign green processes and their screening of anticancer activity in terms of cytotoxicity and selectivity against cancer cell lines where [(η6-p-cymene)RuCl{2-(5,6-dichloro-1H-benzo[d]imidazole-2-yl)quinolone}] (11j) has been elicited to be significantly more potent as well as selective in Caco-2 and HeLa cell lines than the normal HEK-293 cell line compared to cisplatin and it has even shown marked cytotoxicity against the more aggressive HT-29 colorectal cancer cell line being capable of producing oxidative stress or arresting the cell cycle. Moreover, these types of Ru(ii)-arene complexes exhibited excellent binding efficacy with DNA and the compounds [(η6-p-cymene)RuCl{5-chloro-2-(6-(4-chlorophenyl)pyridin-2-yl)benzo[d]thiazole}]PF6 (8l4), [(η6-p-cymene)Ru-2-(6-(benzofuran-2-yl)pyridin-2-yl)-5-chlorobenzo[d]thiazole (8l9) and [(η6-p-cymene)RuCl{2-(6-nitro-1H-benzo[d]imidazol-2-yl)quinolone}]Cl (11f') and might be applied for cancer theranostic treatment due to their good fluorescence properties and remarkable potency.
Collapse
Affiliation(s)
- Ashaparna Mondal
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology Vellore, 632014, Tamilnadu, India.
| | - Utsav Sen
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - Nilmadhab Roy
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology Vellore, 632014, Tamilnadu, India.
| | - Venkatesan Muthukumar
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology Vellore, 632014, Tamilnadu, India.
| | - Suban Kumar Sahoo
- Department of Applied Chemistry, S.V. National Institute of Technology (SVNIT), Ichchanath, Surat, Gujrat-395 007, India.
| | - Bipasha Bose
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - Priyankar Paira
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology Vellore, 632014, Tamilnadu, India.
| |
Collapse
|
28
|
Approaches to the Synthesis of Dicarboxylic Derivatives of Bis(pyrazol-1-yl)alkanes. Molecules 2021; 26:molecules26020413. [PMID: 33466823 PMCID: PMC7829949 DOI: 10.3390/molecules26020413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Carboxylation of bis(pyrazol-1-yl)alkanes by oxalyl chloride was studied. It was found that 4,4'-dicarboxylic derivatives of substrates with electron-donating methyl groups and short linkers (from one to three methylene groups) can be prepared using this method. Longer linkers lead to significantly lower product yields, which is probably due to instability of the intermediate acid chlorides that are initially formed in the reaction with oxalyl chloride. Thus, bis(pyrazol-1-yl)methane gave only monocarboxylic derivative even with a large excess of oxalyl chloride and prolonged reaction duration. An alternative approach involves the reaction of ethyl 4-pyrazolecarboxylates with dibromoalkanes in a superbasic medium (potassium hydroxide-dimethyl sulfoxide) and is suitable for the preparation of bis(4-carboxypyrazol-1-yl)alkanes with both short and long linkers independent of substitution in positions 3 and 5 of pyrazole rings. The obtained dicarboxylic acids are interesting as potential building blocks for metal-organic frameworks.
Collapse
|
29
|
Gopalakrishnan D, Saravanan S, Merckx R, Madan Kumar A, Khamrang T, Velusamy M, Vasanth K, Sunitha S, Hoogenboom R, Maji S, Ganeshpandian M. N, N-Ru(II)- p-cymene-poly( N-vinylpyrrolidone) surface functionalized gold nanoparticles: from organoruthenium complex to nanomaterial for antiproliferative activity. Dalton Trans 2021; 50:8232-8242. [PMID: 34037018 DOI: 10.1039/d1dt00694k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organometallic Ru-arene complexes are promising as anticancer agents, but the lack of tumor uptake and poor solubility in the physiological medium impede their development. In order to deal with these challenges, we developed gold nanoparticles coated with Ru(arene)-functionalized PNVP-Py, where PNVP-Py is pyridine end-functionalized poly(N-vinylpyrrolidone). It is demonstrated that these particles exhibit higher anti-proliferative activity than the individual organometallic ruthenium(ii) complex of the type [Ru(η6-p-cymene)(NN)Cl]PF6, where NN is bis(4-methoxyphenylimino)acenaphthene, against colorectal adenocarcinoma cell lines. More specifically, a RuII(η6-p-cymene) complex containing a NN bidentate ligand has been prepared and characterized by spectral studies and X-ray crystallography. To tether the isolated complex onto the surface of the AuNPs, PNVP-Py, which contains a pyridine group at one end to coordinate to the Ru-complex and a suitable functional group at the other end to bind on the surface of the AuNPs, has been prepared and utilized to obtain the macromolecular complex [Ru(η6-p-cymene)(NN)(PNVP-Py)]Cl2. Next, stable Ru(p-cym)(NN)(PNVP-Py)@AuNPs were obtained via a ligand exchange reaction of citrate-stabilized AuNPs with a macromolecular complex by a direct 'grafting to' approach and characterized well. Despite the lower DNA cleavage activity, the nanoconjugate exhibits better cytotoxicity than the individual complex against HT-29 colorectal adenocarcinoma cells on account of its enhanced permeability across the cell membrane. The AO/EB staining assay revealed that the nanoconjugate is able to induce an apoptotic mode of cell death, which was further quantitatively evaluated by Annexin V-FITC/PI double assay. An immunofluorescence assay indicated the higher potency of the nanoconjugate to inhibit cyclin D1 gene expression that is required for cancer cell growth. To the best of our knowledge, this is the first report of the modification of an organometallic Ru(arene) complex into a Ru(arene)metallopolymer-gold nanoconjugate for the development of ruthenium-based nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Durairaj Gopalakrishnan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Chennai, TN, India.
| | - S Saravanan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Chennai, TN, India.
| | - Ronald Merckx
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, Belgium
| | - Arumugam Madan Kumar
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai - 600119, India
| | - Themmila Khamrang
- Department of Chemistry, C. I. College, Bishnupur 795126, Manipur, India
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India
| | - K Vasanth
- Division of Molecular Biology, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Chennai, TN, India
| | - S Sunitha
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai - 600119, India
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, Belgium
| | - Samarendra Maji
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Chennai, TN, India.
| | - Mani Ganeshpandian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Chennai, TN, India.
| |
Collapse
|
30
|
Pettinari C, Pettinari R, Xhaferai N, Giambastiani G, Rossin A, Bonfili L, Maria Eleuteri A, Cuccioloni M. Binuclear 3,3′,5,5′-tetramethyl-1H,H-4,4′-bipyrazole Ruthenium(II) complexes: Synthesis, characterization and biological studies. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Sudhindra P, Ajay Sharma S, Roy N, Moharana P, Paira P. Recent advances in cytotoxicity, cellular uptake and mechanism of action of ruthenium metallodrugs: A review. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Silvestri S, Cirilli I, Marcheggiani F, Dludla P, Lupidi G, Pettinari R, Marchetti F, Di Nicola C, Falcioni G, Marchini C, Orlando P, Tiano L, Amici A. Evaluation of anticancer role of a novel ruthenium(II)-based compound compared with NAMI-A and cisplatin in impairing mitochondrial functionality and promoting oxidative stress in triple negative breast cancer models. Mitochondrion 2020; 56:25-34. [PMID: 33220497 DOI: 10.1016/j.mito.2020.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/22/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023]
Abstract
Platinum-based compounds are the most widely used anticancer drugs but, their elevated toxicity and chemoresistance has stimulated the study of others, such as ruthenium-based compounds. NAMI-A and UNICAM-1 were tested in vitro, comparing the mechanisms of toxicity, in terms of mitochondrial functionality and cellular oxidative stress. UNICAM-1, showed a clear mitochondrial target and a cytotoxic dose-dependent response thanks to its ability to promote an imbalance of cellular redox status. It impaired directly mitochondrial respiratory chain, promoting mitochondrial superoxide anion production, leading to mitochondrial membrane depolarization. All these aspects, could make UNICAM-1 a valid alternative for chemotherapy treatment of breast cancer.
Collapse
Affiliation(s)
- Sonia Silvestri
- Department of Life and Environmental Sciences, DISVA-Biochemistry, Polytechnic University of Marche, 60131 Ancona, Italy; Biomedfood srl, Ex-Spinoff of Polytechnic University of Marche, 60125 Ancona, Italy
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, DISVA-Biochemistry, Polytechnic University of Marche, 60131 Ancona, Italy; School of Pharmacy, University of Camerino, Camerino, MC, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, DISVA-Biochemistry, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Phiwayinkosi Dludla
- Department of Life and Environmental Sciences, DISVA-Biochemistry, Polytechnic University of Marche, 60131 Ancona, Italy; Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, Camerino, MC, Italy
| | | | - Fabio Marchetti
- School of Sciences and Technology, University of Camerino, Camerino, MC, Italy
| | - Corrado Di Nicola
- School of Sciences and Technology, University of Camerino, Camerino, MC, Italy
| | | | - Cristina Marchini
- University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, DISVA-Biochemistry, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Luca Tiano
- Department of Life and Environmental Sciences, DISVA-Biochemistry, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Augusto Amici
- University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| |
Collapse
|
33
|
Kar B, Roy N, Pete S, Moharana P, Paira P. Ruthenium and iridium based mononuclear and multinuclear complexes: A Breakthrough of Next-Generation anticancer metallopharmaceuticals. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Andrade MA, Martins LMDRS. Novel Chemotherapeutic Agents - The Contribution of Scorpionates. Curr Med Chem 2020; 26:7452-7475. [PMID: 30215328 DOI: 10.2174/0929867325666180914104237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022]
Abstract
The development of safe and effective chemotherapeutic agents is one of the uppermost priorities and challenges of medicinal chemistry and new transition metal complexes are being continuously designed and tested as anticancer agents. Scorpionate ligands have played a great role in coordination chemistry, since their discovery by Trofimenko in the late 1960s, with significant contributions in the fields of catalysis and bioinorganic chemistry. Scorpionate metal complexes have also shown interesting anticancer properties, and herein, the most recent (last decade) and relevant scorpionate complexes reported for application in medicinal chemistry as chemotherapeutic agents are reviewed. The current progress on the anticancer properties of transition metal complexes bearing homo- or hetero- scorpionate ligands, derived from bis- or tris-(pyrazol-1-yl)-borate or -methane moieties is highlighted.
Collapse
Affiliation(s)
- Marta A Andrade
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa M D R S Martins
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
35
|
Rationally Designed Ruthenium Complexes for Breast Cancer Therapy. Molecules 2020; 25:molecules25020265. [PMID: 31936496 PMCID: PMC7024301 DOI: 10.3390/molecules25020265] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 12/11/2022] Open
Abstract
Since the discovery of the anticancer potential of ruthenium-based complexes, several species were reported as promising candidates for the treatment of breast cancer, which accounts for the greatest number of new cases in women every year worldwide. Among these ruthenium complexes, species containing bioactive ligand(s) have attracted increasing attention due to their potential multitargeting properties, leading to anticancer drug candidates with a broader range of cellular targets/modes of action. This review of the literature aims at providing an overview of the rationally designed ruthenium-based complexes that have been reported to date for which ligands were carefully selected for the treatment of hormone receptor positive breast cancers (estrogen receptor (ER+) or progesterone receptor (PR+)). In addition, this brief survey highlights some of the most successful examples of ruthenium complexes reported for the treatment of triple negative breast cancer (TNBC), a highly aggressive type of cancer, regardless of if their ligands are known to have the ability to achieve a specific biological function.
Collapse
|
36
|
Cuccioloni M, Bonfili L, Cecarini V, Nabissi M, Pettinari R, Marchetti F, Petrelli R, Cappellacci L, Angeletti M, Eleuteri AM. Exploring the Molecular Mechanisms Underlying the in vitro Anticancer Effects of Multitarget-Directed Hydrazone Ruthenium(II)-Arene Complexes. ChemMedChem 2019; 15:105-113. [PMID: 31701643 DOI: 10.1002/cmdc.201900551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/26/2019] [Indexed: 12/14/2022]
Abstract
The molecular targets and the modes of action behind the cytotoxicity of two structurally established N,O- or N,N-hydrazone ruthenium(II)-arene complexes were explored in human breast adenocarcinoma cells (MCF-7) and paralleled in non-cancerous and cisplatin-resistant counterparts (MCF-10A and MCF-7CR respectively). Both complexes, [Ru(hmb)(L1)Cl] (1, L1=4-((2-(2,4-dinitrophenyl)hydrazono)(phenyl)methyl)-3-methyl-1-phenyl-1H-pyrazol-5-olate) and [Ru(cym)(L2)Cl] (2, L2=1-((3-methyl-5-oxo-1-phenyl-1H-pyrazol-4(5H)-ylidene)(phenyl)methyl)-2-(pyridin-2-yl)hydrazin-1-ide), reversibly interact with moderate-to-high affinity with a number of molecular targets in cell-free assays, namely serum albumin, DNA, the 20S proteasome and hydroxymethylglutaryl-CoA reductase. Most interestingly, only 2 readily crosses the cell membrane and preserves its binding/modulatory ability toward the targets of interest upon rapid cellular internalization. The resulting action at multiple levels of the cancer cascade is likely the cause for the selective sensitization of tumour cells to p27-mediated apoptotic death, and for the ability of 2 to overcome the drug resistance problem.
Collapse
Affiliation(s)
- Massimiliano Cuccioloni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Riccardo Pettinari
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Fabio Marchetti
- School of Science and Technology, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Riccardo Petrelli
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Loredana Cappellacci
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| |
Collapse
|
37
|
Lai H, Zeng D, Liu C, Zhang Q, Wang X, Chen T. Selenium-containing ruthenium complex synergizes with natural killer cells to enhance immunotherapy against prostate cancer via activating TRAIL/FasL signaling. Biomaterials 2019; 219:119377. [DOI: 10.1016/j.biomaterials.2019.119377] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
|
38
|
Zhang X, Liu D, Lv F, Yu B, Shen Y, Cong H. Recent advances in ruthenium and platinum based supramolecular coordination complexes for antitumor therapy. Colloids Surf B Biointerfaces 2019; 182:110373. [DOI: 10.1016/j.colsurfb.2019.110373] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/23/2019] [Accepted: 07/15/2019] [Indexed: 11/24/2022]
|
39
|
Anticancer Activities of Thymus vulgaris L. in Experimental Breast Carcinoma in Vivo and in Vitro. Int J Mol Sci 2019; 20:ijms20071749. [PMID: 30970626 PMCID: PMC6479806 DOI: 10.3390/ijms20071749] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 12/21/2022] Open
Abstract
Naturally-occurring mixtures of phytochemicals present in plant foods are proposed to possess tumor-suppressive activities. In this work, we aimed to evaluate the antitumor effects of Thymus vulgaris L. in in vivo and in vitro mammary carcinoma models. Dried T. vulgaris (as haulm) was continuously administered at two concentrations of 0.1% and 1% in the diet in a chemically-induced rat mammary carcinomas model and a syngeneic 4T1 mouse model. After autopsy, histopathological and molecular analyses of rodent mammary carcinomas were performed. In addition, in vitro evaluations using MCF-7 and MDA-MB-231 cells were carried out. In mice, T. vulgaris at both doses reduced the volume of 4T1 tumors by 85% (0.1%) and 84% (1%) compared to the control, respectively. Moreover, treated tumors showed a substantial decrease in necrosis/tumor area ratio and mitotic activity index. In the rat model, T. vulgaris (1%) decreased the tumor frequency by 53% compared to the control. Analysis of the mechanisms of anticancer action included well-described and validated diagnostic and prognostic markers that are used in both clinical approach and preclinical research. In this regard, the analyses of treated rat carcinoma cells showed a CD44 and ALDH1A1 expression decrease and Bax expression increase. Malondialdehyde (MDA) levels and VEGFR-2 expression were decreased in rat carcinomas in both the T. vulgaris treated groups. Regarding the evaluations of epigenetic changes in rat tumors, we found a decrease in the lysine methylation status of H3K4me3 in both treated groups (H3K9m3, H4K20m3, and H4K16ac were not changed); up-regulations of miR22, miR34a, and miR210 expressions (only at higher doses); and significant reductions in the methylation status of four gene promoters—ATM serin/threonine kinase, also known as the NPAT gene (ATM); Ras-association domain family 1, isoform A (RASSF1); phosphatase and tensin homolog (PTEN); and tissue inhibitor of metalloproteinase-3 (TIMP3) (the paired-like homeodomain transcription factor (PITX2) promoter was not changed). In vitro study revealed the antiproliferative and proapoptotic effects of essential oils of T. vulgaris in MCF-7 and MDA-MB-231 cells (analyses of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS); 5-bromo-20-deoxyuridine (BrdU); cell cycle; annexin V/PI; caspase-3/7; Bcl-2; PARP; and mitochondrial membrane potential). T. vulgaris L. demonstrated significant chemopreventive and therapeutic activities against experimental breast carcinoma.
Collapse
|
40
|
Petanidis S, Kioseoglou E, Salifoglou A. Metallodrugs in Targeted Cancer Therapeutics: Aiming at Chemoresistance- related Patterns and Immunosuppressive Tumor Networks. Curr Med Chem 2019; 26:607-623. [DOI: 10.2174/0929867324666171116125908] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022]
Abstract
Tumor cell chemoresistance is a major challenge in cancer therapeutics. Major
select metal-based drugs are potent anticancer mediators yet they exhibit adverse sideeffects
and are efficient against limited types of malignancies. A need, therefore, arises
for novel metallodrugs with improved efficacy and decreased toxicity. Enhancement of
antitumor drugs based on anticancer metals is currently a very active research field, with
considerable efforts having been made toward elucidating the mechanisms of immune action
of complex metalloforms and optimizing their immunoregulatory bioactivity through
appropriate synthetic structural modification(s) and encapsulation in suitable nanocarriers,
thereby enhancing their selectivity, specificity, stability, and bioactivity. In that respect,
comprehending the molecular factors involved in drug resistance and immune response
may help us develop new approaches toward more promising chemotherapies, reducing
the rate of relapse and overcoming chemoresistance. In this review, a) molecular immunerelated
mechanisms in the tumor microenvironment, responsible for lower drug sensitivity
and tumor relapse, along with b) strategies for reversing drug resistance and targeting
immunosuppressive tumor networks, while concurrently optimizing the design of complex
metalloforms bearing anti-tumor activity, are discussed in an effort to identify and
overcome chemoresistance mechanisms for effective tumor immunotherapeutic approaches.
Collapse
Affiliation(s)
- Savvas Petanidis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Efrosini Kioseoglou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Athanasios Salifoglou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
41
|
Maroto-Diaz M, Sanz del Olmo N, Muñoz-Moreno L, Bajo AM, Carmena MJ, Gómez R, García-Gallego S, de la Mata FJ. In vitro and in vivo evaluation of first-generation carbosilane arene Ru(II)-metallodendrimers in advanced prostate cancer. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Xu L, Zhang PP, Fang XQ, Liu Y, Wang JQ, Zhou HZ, Chen ST, Chao H. A ruthenium(II) complex containing a p-cresol group induces apoptosis in human cervical carcinoma cells through endoplasmic reticulum stress and reactive oxygen species production. J Inorg Biochem 2019; 191:126-134. [DOI: 10.1016/j.jinorgbio.2018.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 10/27/2022]
|
43
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
44
|
Milutinović MM, Čanović PP, Stevanović D, Masnikosa R, Vraneš M, Tot A, Zarić MM, Simović Marković B, Misirkić Marjanović M, Vučićević L, Savić M, Jakovljević V, Trajković V, Volarević V, Kanjevac T, Rilak Simović A. Newly Synthesized Heteronuclear Ruthenium(II)/Ferrocene Complexes Suppress the Growth of Mammary Carcinoma in 4T1-Treated BALB/c Mice by Promoting Activation of Antitumor Immunity. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00604] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Milan M. Milutinović
- University of Kragujevac, Faculty of Science, R. Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
- University of Paderborn, Department of Organic Chemistry, Warburgerstraße 100, 33098 Paderborn, Germany
| | - Petar P. Čanović
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Biochemistry, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Dragana Stevanović
- University of Kragujevac, Faculty of Science, R. Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Romana Masnikosa
- University of Belgrade, Vinča Institute of Nuclear Sciences, Department of Physical Chemistry, Mike Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| | - Milan Vraneš
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Aleksandar Tot
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Milan M. Zarić
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Biochemistry, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Bojana Simović Marković
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Maja Misirkić Marjanović
- University of Belgrade, Serbia, School of Medicine, Institute of Microbiology and Immunology, Dr Subotića 1, 11000 Belgrade, Serbia
| | - Ljubica Vučićević
- University of Belgrade, Serbia, School of Medicine, Institute of Microbiology and Immunology, Dr Subotića 1, 11000 Belgrade, Serbia
| | - Maja Savić
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Pharmacy, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Vladimir Jakovljević
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Physiology, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Vladimir Trajković
- University of Belgrade, Serbia, School of Medicine, Institute of Microbiology and Immunology, Dr Subotića 1, 11000 Belgrade, Serbia
| | - Vladislav Volarević
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Tatjana Kanjevac
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Dentistry, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Ana Rilak Simović
- University of Kragujevac, Faculty of Science, R. Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| |
Collapse
|
45
|
Non-Platinum Metal Complexes as Potential Anti-Triple Negative Breast Cancer Agents. CRYSTALS 2018. [DOI: 10.3390/cryst8100369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Breast cancer (BC) is the most common cancer in women worldwide, with a mortality rate that has been forecasted to rise in the next decade. This is especially worrying for people with triple-negative BC (TNBC), because of its unresponsiveness to current therapies. Different drugs to treat TNBC have been assessed, and, although platinum chemotherapy drugs seem to offer some hope, their drawbacks have motivated extensive investigations into alternative metal-based BC therapies. This paper aims to: (i) describe the preliminary in vitro and in vivo anticancer properties of non-platinum metal-based complexes (NPMBC) against TNBC; and (ii) analyze the likely molecular targets involved in their anticancer activity.
Collapse
|
46
|
Becceneri AB, Popolin CP, Plutin AM, Maistro EL, Castellano EE, Batista AA, Cominetti MR. The trans-[Ru(PPh 3) 2(N,N-dimethyl-N'-thiophenylthioureato-k 2O,S)(bipy)]PF 6 complex has pro-apoptotic effects on triple negative breast cancer cells and presents low toxicity in vivo. J Inorg Biochem 2018; 186:70-84. [PMID: 29857173 DOI: 10.1016/j.jinorgbio.2018.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 10/16/2022]
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous subtype of breast tumors that does not exhibit the expression of estrogen and progesterone receptors, neither the amplification of the human epidermal growth factor receptor 2 (HER-2) gene. Despite all the advances in cancer treatments, the development of new anticancer drugs for TNBC tumors is still a challenge. There is an increasing interest in new agents to be used in cancer treatment. Ruthenium is a metal that has unique characteristics and important in vivo and in vitro results achieved for cancer treatment. Thus, in this work, with the aim to develop anticancer drugs, three new ruthenium complexes containing acylthiourea ligands have been synthesized and characterized: trans-[Ru(PPh3)2(N,N-dibutyl-N'-benzoylthioureato-k2O,S)(2,2'-bipyridine (bipy))]PF6(1), trans-[Ru(PPh3)2(N,N-dimethyl-N'-thiophenylthioureato-k2O,S)(bipy)]PF6(2) and trans-[Ru(PPh3)2(N,N-dimethyl-N'-benzoylthioureato-k2O,S)(bipy)]PF6(3). Then, the cytotoxicity of these three new ruthenium complexes was investigated in TNBC MDA-MB-231 and in non-tumor MCF-10A cells. Complex (2) was the most selective complex and was chosen for further studies to verify its effects on cell morphology, adhesion, migration, invasion, induction of apoptosis and DNA damage in vitro, as well as its toxicity and capacity of causing DNA damage in vivo. Complex (2) inhibited proliferation, migration, invasion, adhesion, changed morphology and induced apoptosis, DNA damage and nuclear fragmentation of TNBC cells at lower concentrations compared to non-tumor MCF-10A cells, suggesting an effective action for this complex on tumor cells. Finally, complex (2) did not induce toxicity or caused DNA damage in vivo when low doses were administered to mice.
Collapse
Affiliation(s)
- Amanda Blanque Becceneri
- Departmento de Gerontologia, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Cecília Patrícia Popolin
- Departmento de Gerontologia, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Ana Maria Plutin
- Facultad de Química, Universidad de la Habana, Zapata s/n entre G y Carlitos Aguirre, 10400 Habana, Cuba
| | - Edson Luis Maistro
- Departamento de Fonoaudiologia, Faculdade de Filosofia e Ciências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Av. Hygino Muzzi Filho, 737, Marília, SP 17525-900, Brazil
| | - Eduardo Ernesto Castellano
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970 São Carlos, SP, Brazil
| | - Alzir Azevedo Batista
- Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Márcia Regina Cominetti
- Departmento de Gerontologia, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil.
| |
Collapse
|
47
|
Gambini V, Tilio M, Maina EW, Andreani C, Bartolacci C, Wang J, Iezzi M, Ferraro S, Ramadori AT, Simon OC, Pucciarelli S, Wu G, Dou QP, Marchini C, Galassi R, Amici A. In vitro and in vivo studies of gold(I) azolate/phosphane complexes for the treatment of basal like breast cancer. Eur J Med Chem 2018; 155:418-427. [PMID: 29906688 DOI: 10.1016/j.ejmech.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023]
Abstract
Basal like breast cancer (BLBC) is a very aggressive subtype of breast cancer giving few chances of survival, against which cisplatin based therapy is a compromise among the anticancer activity, the resistance development and the severe side effects. With the aim of finding new anticancer agents alternative to cisplatin, seven gold(I) azolate/phosphane compounds were evaluated in vitro by MTT tests in human MDA-MB-231, human mammary epithelial HMLE cells overexpressing FoxQ1, and murine A17 cells as models of BLBC. Two compounds, (4,5-dichloro-1H-imidazolate-1-yl)-(triphenylphosphane)-gold(I) 1 and (4,5-dicyano-1H-imidazolate-1-yl)-(triphenylphosphane)-gold(I) 2 were found very active and chosen for an in vivo study in A17 tumors transplanted in syngeneic mice. The compounds resulted to be more active than cisplatin, less nephrotoxic and generally more tolerated by the mice. This study also provides evidence that both gold(I) complexes inhibited the 19 S proteasome-associated deubiquitinase USP14 and induced apoptosis, while compound 1's mechanism of action depends also on its ability to down-regulate key molecules governing cancer growth and progression, such as STAT3 and Cox-2.
Collapse
Affiliation(s)
- Valentina Gambini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Martina Tilio
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Eunice Wairimu Maina
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Cristina Andreani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Caterina Bartolacci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Manuela Iezzi
- Aging Research Centre, G. d'Annunzio University, Chieti, 66100, Italy
| | - Stefano Ferraro
- School of Science and Technology, Chemistry Division, University of Camerino, Camerino, I-62032, Italy
| | - Anna Teresa Ramadori
- School of Science and Technology, Chemistry Division, University of Camerino, Camerino, I-62032, Italy
| | - Oumarou Camille Simon
- School of Science and Technology, Chemistry Division, University of Camerino, Camerino, I-62032, Italy
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Q Ping Dou
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy.
| | - Rossana Galassi
- School of Science and Technology, Chemistry Division, University of Camerino, Camerino, I-62032, Italy.
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| |
Collapse
|
48
|
Bergamo A, Dyson PJ, Sava G. The mechanism of tumour cell death by metal-based anticancer drugs is not only a matter of DNA interactions. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Thota S, Rodrigues DA, Crans DC, Barreiro EJ. Ru(II) Compounds: Next-Generation Anticancer Metallotherapeutics? J Med Chem 2018; 61:5805-5821. [PMID: 29446940 DOI: 10.1021/acs.jmedchem.7b01689] [Citation(s) in RCA: 347] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal based therapeutics are a precious class of drugs in oncology research that include examples of theranostic drugs, which are active in both diagnostic, specifically imaging, and therapeutics applications. Ruthenium compounds have shown selective bioactivity and the ability to overcome the resistance that platinum-based therapeutics face, making them effective oncotherapeutic competitors in rational drug invention approaches. The development of antineoplastic ruthenium therapeutics is of particular interest because ruthenium containing complexes NAMI-A, KP1019, and KP1339 entered clinical trials and DW1/2 is in preclinical levels. The very robust, conformationally rigid organometallic Ru(II) compound DW1/2 is a protein kinase inhibitor and presents new Ru(II) compound designs as anticancer agents. Over the recent years, numerous strategies have been used to encapsulate Ru(II) derived compounds in a nanomaterial system, improving their targeting and delivery into neoplastic cells. A new photodynamic therapy based Ru(II) therapeutic, TLD-1433, has also entered clinical trials. Ru(II)-based compounds can also be photosensitizers for photodynamic therapy, which has proven to be an effective new, alternative, and noninvasive oncotherapy modality.
Collapse
Affiliation(s)
- Sreekanth Thota
- National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Fundação Oswaldo Cruz, Ministério da Saúde, Av. Brazil 4036, Prédio da Expansão, 8° Andar, Sala 814, Manguinhos , 21040-361 Rio de Janeiro , RJ , Brazil.,Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Institute of Biomedical Sciences , Federal University of Rio de Janeiro (UFRJ) , P.O. Box 68023, 21941-902 Rio de Janeiro , RJ , Brazil
| | - Daniel A Rodrigues
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Institute of Biomedical Sciences , Federal University of Rio de Janeiro (UFRJ) , P.O. Box 68023, 21941-902 Rio de Janeiro , RJ , Brazil
| | - Debbie C Crans
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Eliezer J Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Institute of Biomedical Sciences , Federal University of Rio de Janeiro (UFRJ) , P.O. Box 68023, 21941-902 Rio de Janeiro , RJ , Brazil
| |
Collapse
|
50
|
Karaca Ö, Scalcon V, Meier-Menches SM, Bonsignore R, Brouwer JMJL, Tonolo F, Folda A, Rigobello MP, Kühn FE, Casini A. Characterization of Hydrophilic Gold(I) N-Heterocyclic Carbene (NHC) Complexes as Potent TrxR Inhibitors Using Biochemical and Mass Spectrometric Approaches. Inorg Chem 2017; 56:14237-14250. [DOI: 10.1021/acs.inorgchem.7b02345] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Özden Karaca
- Molecular
Catalysis, Department of Chemistry, Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85747 Garching bei München, Germany
- School
of Chemistry, Cardiff University, Park Place, CF103AT Cardiff, U.K
| | - Valeria Scalcon
- Department
of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/b, 35121 Padova, Italy
| | | | | | - Jurriaan M. J. L. Brouwer
- Department
of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/b, 35121 Padova, Italy
- Groningen
Research Institute of Pharmacy, University of Groningen, A. Deusinglaan
1, 9713GV Groningen, The Netherlands
| | - Federica Tonolo
- Department
of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/b, 35121 Padova, Italy
| | - Alessandra Folda
- Department
of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/b, 35121 Padova, Italy
| | - Maria Pia Rigobello
- Department
of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/b, 35121 Padova, Italy
| | - Fritz E. Kühn
- Molecular
Catalysis, Department of Chemistry, Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85747 Garching bei München, Germany
| | - Angela Casini
- School
of Chemistry, Cardiff University, Park Place, CF103AT Cardiff, U.K
- Groningen
Research Institute of Pharmacy, University of Groningen, A. Deusinglaan
1, 9713GV Groningen, The Netherlands
- Institute
of Advanced Studies, Technische Universität München, Lichtenbergstraße 2a, 85747 Garching bei München, Germany
| |
Collapse
|