1
|
Maciaszek J, Zabłocka A, Rejek M, Senczyszyn A, Rudy K, Błoch M, Bubniak A, Leszynska K, Jakubczyk D, Bogudzińska B, Makszewski A, Fila-Pawłowska K, Wieczorek T, Szcześniak D, Beszłej J, Piotrowski P, Misiak B. Effects of the continuous theta-burst stimulation on the levels of peripheral blood neuroplasticity biomarkers in people with obsessive-compulsive disorder: Findings from an open-label trial. J Psychiatr Res 2025; 184:318-324. [PMID: 40086220 DOI: 10.1016/j.jpsychires.2025.02.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND There are very few studies exploring neuroplasticity impairments and neurodegeneration processes in obsessive-compulsive disorder (OCD). Additionally, the peripheral blood levels of neuroplasticity biomarkers in individuals with OCD and their associations with treatment outcomes remain largely unexplored. This study sought to compare peripheral blood levels of biomarkers reflecting neuroplasticity and neurodegenerative processes between patients with OCD and healthy controls (HCs) and to determine whether accelerated continuous theta-burst stimulation (cTBS) influences the levels of these biomarkers in OCD. METHODS TThirty-three OCD patients participated in an open-label trial of cTBS. During the treatment, serum levels of 10 biomarkers of neuroplasticity and neurodegenerative processes were assessed at three-time points. Additionally, 42 HCs were enrolled. RESULTS The cTBS treatment was associated with significant improvements in OCD and depressive symptoms. Baseline levels of all biomarkers, except myeloperoxidase (MPO), were significantly lower in OCD patients compared to HCs after adjustment for covariates and multiple testing. The levels of platelet-derived growth factor-AA increased considerably following the cTBS treatment, but they remained significantly lower than in HCs at the follow-up. In turn, the levels of MPO significantly decreased during cTBS treatment and were substantially lower one month after the cTBS stimulations compared to HCs. A reduction in MPO levels was significantly and positively correlated with a reduction of OCD and depressive symptoms. CONCLUSIONS This study suggests that neuroplasticity biomarkers are reduced in patients with OCD. cTBS treatment is associated with symptom improvement, albeit with a limited impact on peripheral blood biomarkers reflecting neuroplasticity and neurodegenerative processes.
Collapse
Affiliation(s)
- Julian Maciaszek
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Zabłocka
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Maksymilian Rejek
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Kamila Rudy
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Marta Błoch
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Katarzyna Leszynska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dominika Jakubczyk
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Bogna Bogudzińska
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Adam Makszewski
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Karolina Fila-Pawłowska
- Department of Clinical Neuroscience Faculty of Medicine Wroclaw University of Science and Technology, WUST Hoene-Wrońskiego 13c, 50-372, Wrocław, Poland
| | - Tomasz Wieczorek
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Dorota Szcześniak
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Jan Beszłej
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Patryk Piotrowski
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
2
|
Zhu L, Wang M, Li H, Luo T, Deng Z, Li J, Zheng L, Zhang B. Supplementation of 3'-Sialyllactose During the Growth Period Improves Learning and Memory Development in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24518-24529. [PMID: 39454104 DOI: 10.1021/acs.jafc.4c06106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
3'-Sialyllactose (3'-SL), a major acidic oligosaccharide found in human milk, has been investigated to improve cognitive-enhancing effects with 3 weeks old C57BL/6 mice by administering 3'-SL orally at a dose of 350 mg/kg/day for 6 weeks. Behavioral tests indicated that supplementation with 3'-SL promoted cognitive and memory development in young mice. Through interaction network and coenrichment analysis, nine differentially expressed genes (DEGs) related to memory and cognition were identified and localized in the hippocampal tissue of mice. The intervention of 3'-SL significantly increased the metabolism of sialic acid in mouse hippocampal tissue and promoted the expression of learning-related genes (p < 0.05). Notably, it increased the expression of genes associated with neural cell adhesion molecule (NCAM, p < 0.05), glutamate receptors, and fibroblast growth factor receptor (FGFR, p < 0.05). This suggests that 3'-SL may elevate polysialylated NCAM (PSA-NCAM) levels, which could subsequently interact with FGFR and glutamate receptors, thereby enhancing synaptic growth and plasticity. Additionally, 3'-SL altered the composition of the mouse intestinal microbiota. The synergistic action of gut microbiota and intestinal sialidase promoted the production of free sialic acid, providing essential nutritional elements for the development of the brain's nervous system. In conclusion, our findings provide new insights into the promoting effect of 3'-SL on cognitive development in growing mice and elucidate its molecular mechanisms.
Collapse
Affiliation(s)
- Liuying Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Minghui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| |
Collapse
|
3
|
Lin X, Ren P, Xue Z, Liu X, Cao Y, Li T, Miao H. Astrocytic GDNF ameliorates anesthesia and surgery-induced cognitive impairment by promoting hippocampal synaptic plasticity in aged mice. Neurochem Int 2024; 177:105765. [PMID: 38750960 DOI: 10.1016/j.neuint.2024.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Perioperative neurocognitive disorders (PND) are common complications after surgery in older patients. However, the specific mechanism of this condition remains unclear. Glial cell line-derived neurotrophic factor (GDNF) is an important neurotrophin that abundantly expressed throughout the brain. It can enhance synaptic plasticity and alleviate learning and memory impairments. Thus, the purpose of this study was to investigate the role of GDNF in PND and the mechanisms involved. METHODS The PND animal model was established by performing left tibial fracture surgery on 18-month-old C57BL/6 mice under sevoflurane anesthesia. Recombinant adeno-associated virus (rAAV)-GDNF or empty vectors were injected bilaterally into the hippocampal CA1 region of aged mice 3 weeks before anesthesia/surgery. The open field and fear conditioning test were used to assess the behavior changes. Golgi staining and electrophysiology were utilized to evaluate the morphological and functional alterations of neuronal synaptic plasticity. Western blot analysis was carried out to measure the proteins expression levels and immunofluorescence staining was performed to probe the cellular localization of GDNF. RESULTS Mice with surgery and anesthesia showed a significant decrease in hippocampus-dependent learning and memory, accompanied by a decline in hippocampal synaptic plasticity. Anesthesia/surgery induced a reduction of GDNF, which was colocalized with astrocytes. Overexpression of GDNF in astrocytes could ameliorate the decline in cognitive function by improving hippocampal synaptic plasticity, meanwhile astrocytic GDNF rescued the anesthesia/surgery-induced decrease in GFRα1 and NCAM. CONCLUSION The study concludes that astrocytic GDNF may improve anesthesia/surgery-induced cognitive impairment by promoting hippocampal synaptic plasticity in aged mice via the GFRα1/NCAM pathway.
Collapse
Affiliation(s)
- Xiaowan Lin
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ziyi Xue
- Department of Anesthesiology, Peking University First Hospital, Beijing, China
| | - Xiao Liu
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ying Cao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Tianzuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Huihui Miao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Nikitina MA, Bragina EY, Ivanova SA, Boyko AS, Levchuk LA, Nazarenko MS, Alifirova VM. [Association of inflammation and chronic fatigue syndrome in patients with Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:79-87. [PMID: 39435781 DOI: 10.17116/jnevro202412409179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
OBJECTIVE To study the prevalence of chronic fatigue syndrome (CFS) and association of CFS with other clinical and neuropsychological manifestations of Parkinson's disease (PD) as well as with serum inflammatory markers and genetic polymorphisms. MATERIAL AND METHODS The study included 533 patients with PD. All patients underwent clinical, neurological examination and neuropsychological testing using validated questionnaires: MoCA test, HADS, BDI-II, the Fatigue Severity Scale (FSS). Serum concentrations of inflammatory markers (slCAM-1, sVCAM-1, NCAM, CCL5, PAI-1 and MPO) were assessed in 144 patients using xMAP technology. A case-control study of CCL5 (rs2107538) and PAI-1 (rs2227631) gene polymorphisms was performed in connection with PD development and in groups differing in the presence/absence of CFS in PD. In addition, the relationship of these polymorphisms with variability in the levels of the corresponding proteins in the blood serum of patients was studied. Genotyping of CCL5 (rs2107538) and PAI-1 (rs2227631) polymorphisms was performed using real-time PCR with TaqMan probes. RESULTS CFS is common in 66.7% of patients in the PD group. In addition, non-motor symptoms (emotional-affective, cognitive, autonomic disorders and pain) were more common in patients with CFS. A strong correlation has been established between the severity of CFS assessed with FSS and serum concentrations of CCL5, sVCAM-1, NCAM and slCAM-1. In newly diagnosed patients with PD who were not taking antiparkinsonian drugs at the time of the study and had CFS, higher correlations were noted between inflammatory markers and the severity of CFS manifestations. When comparing the distribution of genotypes and alleles of CCL5 (rs2107538) and PAI-1 (rs2227631) polymorphisms, some differences were found between the groups of patients with PD and controls (p<0.05). However, these polymorphisms did not affect the variability of serum protein levels CCL5 and PAI-1, respectively, nor did they affect the development of CFS in patients with PD. CONCLUSION CFS is common in PD, and patients with PD and CFS are characterized by elevated levels of serum markers CCL5, sVCAM-1, slCAM-1 and NCAM, suggesting the importance of the inflammatory component in the development of neurodegenerative disease. In addition, the clinical course of PD in patients with CFS is aggravated by other non-motor manifestations, including emotional-affective, cognitive, autonomic disorders and pain. These results highlight the potential contribution of an inflammatory component to the development of fatigue associated with PD, starting from the earliest clinical stages of the disease.
Collapse
Affiliation(s)
- M A Nikitina
- Siberian State Medical University, Tomsk, Russia
| | - E Yu Bragina
- Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia
| | - S A Ivanova
- Siberian State Medical University, Tomsk, Russia
- Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia
| | - A S Boyko
- Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia
| | - L A Levchuk
- Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia
| | - M S Nazarenko
- Siberian State Medical University, Tomsk, Russia
- Tomsk National Research Medical Center Russian Academy of Sciences, Tomsk, Russia
| | | |
Collapse
|
5
|
Kranaster P, Blum J, Dold JEGA, Wittmann V, Leist M. Use of metabolic glycoengineering and pharmacological inhibitors to assess lipid and protein sialylation on cells. J Neurochem 2023; 164:481-498. [PMID: 36504018 DOI: 10.1111/jnc.15737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022]
Abstract
Metabolic glycoengineering (MGE) has been developed to visualize carbohydrates on live cells. The method allows the fluorescent labeling of sialic acid (Sia) sugar residues on neuronal plasma membranes. For instance, the efficiency of glycosylation along neurite membranes has been characterized as cell health measure in neurotoxicology. Using human dopaminergic neurons as model system, we asked here, whether it was possible to separately label diverse classes of biomolecules and to visualize them selectively on cells. Several approaches suggest that a large proportion of Sia rather incorporated in non-protein components of cell membranes than into glycoproteins. We made use here of deoxymannojirimycin (dMM), a non-toxic inhibitor of protein glycosylation, and of N-butyl-deoxynojirimycin (NBdNM) a well-tolerated inhibitor of lipid glycosylation, to develop a method of differential labeling of sialylated membrane lipids (lipid-Sia) or sialylated N-glycosylated proteins (protein-Sia) on live neurons. The time resolution at which Sia modification of lipids/proteins was observable was in the range of few hours. The approach was then extended to several other cell types. Using this technique of target-specific MGE, we found that in dopaminergic or sensory neurons >60% of Sia is lipid bound, and thus polysialic acid-neural cell adhesion molecule (PSA-NCAM) cannot be considered the major sialylated membrane component. Different from neurons, most Sia was bound to protein in HepG2 hepatoma cells or in neural crest cells. Thus, our method allows visualization of cell-specific sialylation processes for separate classes of membrane constituents.
Collapse
Affiliation(s)
- Petra Kranaster
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Constance, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| | - Jonathan Blum
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Constance, Germany
| | - Jeremias E G A Dold
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany.,Department of Chemistry, University of Konstanz, Constance, Germany
| | - Valentin Wittmann
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany.,Department of Chemistry, University of Konstanz, Constance, Germany
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Constance, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| |
Collapse
|
6
|
Sedwick VM, Autry AE. Anatomical and molecular features of the amygdalohippocampal transition area and its role in social and emotional behavior processes. Neurosci Biobehav Rev 2022; 142:104893. [PMID: 36179917 PMCID: PMC11106034 DOI: 10.1016/j.neubiorev.2022.104893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 02/04/2023]
Abstract
The amygdalohippocampal transition area (AHi) has emerged as a critical nucleus of sociosexual behaviors such as mating, parenting, and aggression. The AHi has been overlooked in rodent and human amygdala studies until recently. The AHi is hypothesized to play a role in metabolic and cognitive functions as well as social behaviors based on its connectivity and molecular composition. The AHi is small nucleus rich in neuropeptide and hormone receptors and is contiguous with the ventral subiculum of the hippocampus-hence its designation as a "transition area". Literature focused on the AHi can be difficult to interpret because of changing nomenclature and conflation with neighboring nuclei. Here we summarize what is currently known about AHi structure and development, connections throughout the brain, molecular composition, and functional significance. We aim to delineate current knowledge regarding the AHi, identify potential functions with supporting evidence, and ultimately make clear the importance of the AHi in sociosexual function.
Collapse
Affiliation(s)
- Victoria M Sedwick
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anita E Autry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Keshri N, Nandeesha H, Rajappa M, Menon V. Relationship Between Neural Cell Adhesion Molecule-1 and Cognitive Functioning in Schizophrenia Spectrum Disorder. Indian J Clin Biochem 2022; 37:494-498. [PMID: 36262784 PMCID: PMC9573831 DOI: 10.1007/s12291-020-00937-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Abnormal synaptic plasticity leads to cognitive impairment in schizophrenia. Markers of synaptic plasticity are known to be altered in schizophrenia, but there are limited data available about neural cell adhesion molecule-1 (NCAM-1) levels and its association with cognitive functions in schizophrenia. The objective of the study was to analyze NCAM-1 levels and its association with various cognitive domains in schizophrenia. One hundred and seventy-six schizophrenia cases and 176 controls were recruited for the study. Serum NCAM-1 levels were analysed in both the groups. Cognitive examination was performed using Addenbrooke cognitive examination-III (ACE-III) and disease severity was assessed using Positive and negative symptoms scale (PANSS). Serum NCAM-1 levels were elevated in schizophrenia cases (p = 0.006) compared to controls. NCAM-1 was positively associated with attention (r = 0.196, p = 0.009), language (r = 0.192, p = 0.011), visuospatial abilities (r = 0.207, p = 0.006) and total ACE-III score (r = 0.189, p = 0.012). We conclude that elevated levels of NCAM-1 are associated with better cognitive functioning in schizophrenia.
Collapse
Affiliation(s)
- Neha Keshri
- Department of Biochemistry and Psychiatry, JIPMER, Puducherry, 605006 India
| | | | - Medha Rajappa
- Department of Biochemistry and Psychiatry, JIPMER, Puducherry, 605006 India
| | - Vikas Menon
- Department of Biochemistry and Psychiatry, JIPMER, Puducherry, 605006 India
| |
Collapse
|
8
|
Interactions between the Polysialylated Neural Cell Adhesion Molecule and the Transient Receptor Potential Canonical Channels 1, 4, and 5 Induce Entry of Ca 2+ into Neurons. Int J Mol Sci 2022; 23:ijms231710027. [PMID: 36077460 PMCID: PMC9456277 DOI: 10.3390/ijms231710027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The neural cell adhesion molecule (NCAM) plays important functional roles in the developing and mature nervous systems. Here, we show that the transient receptor potential canonical (TRPC) ion channels TRPC1, -4, and -5 not only interact with the intracellular domains of the transmembrane isoforms NCAM140 and NCAM180, but also with the glycan polysialic acid (PSA) covalently attached to the NCAM protein backbone. NCAM antibody treatment leads to the opening of TRPC1, -4, and -5 hetero- or homomers at the plasma membrane and to the influx of Ca2+ into cultured cortical neurons and CHO cells expressing NCAM, PSA, and TRPC1 and -4 or TRPC1 and -5. NCAM-stimulated Ca2+ entry was blocked by the TRPC inhibitor Pico145 or the bacterial PSA homolog colominic acid. NCAM-stimulated Ca2+ influx was detectable neither in NCAM-deficient cortical neurons nor in TRPC1/4- or TRPC1/5-expressing CHO cells that express NCAM, but not PSA. NCAM-induced neurite outgrowth was reduced by TRPC inhibitors and a function-blocking TRPC1 antibody. A characteristic signaling feature was that extracellular signal-regulated kinase 1/2 phosphorylation was also reduced by TRPC inhibitors. Our findings indicate that the interaction of NCAM with TRPC1, -4, and -5 contributes to the NCAM-stimulated and PSA-dependent Ca2+ entry into neurons thereby influencing essential neural functions.
Collapse
|
9
|
Ubiquitous Neural Cell Adhesion Molecule (NCAM): Potential Mechanism and Valorisation in Cancer Pathophysiology, Drug Targeting and Molecular Transductions. Mol Neurobiol 2022; 59:5902-5924. [PMID: 35831555 DOI: 10.1007/s12035-022-02954-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Neural cell adhesion molecule, an integrated molecule of immunoglobulin protein superfamily involved in cell-cell adhesion, undergoes various structural modifications through numerous temporal-spatial regulations that generously alter their expressions on cell surfaces. These varied expression patterns are mostly envisioned in the morphogenesis and innervations of different human organs and systems. The considerable role of NCAM in neurite growth, brain development and etc. and its altered expression of NCAM in proliferating tumour cells and metastasis of various human melanomas clearly substantiate its appropriateness as a cell surface marker for diagnosis and potential target for several therapeutic moieties. This characteristic behaviour of NCAM is confined to its novel biochemistry, structural properties, signalling interactions and polysialylation. In particular, the characteristic expressions of NCAM are mainly attributed by its polysialylation, a post-translational modification that attaches polysialyl groups to the NCAM. The altered expression of NCAM on cell surface develops curiosity amidst pharmaceutical scientists, which drives them to understand its role of such expressions in various human melanomas and to elucidate the promising therapeutic strategies that are currently available to target NCAM appositely. Therefore, this review article is articulated with an insight on the altered expressions of NCAM, the clinical significances and the consequences of such atypical expression patterns in various human organs and systems.
Collapse
|
10
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
11
|
Lyons EL, Leone-Kabler S, Kovach AL, Thomas BF, Howlett AC. Cannabinoid receptor subtype influence on neuritogenesis in human SH-SY5Y cells. Mol Cell Neurosci 2020; 109:103566. [PMID: 33049367 DOI: 10.1016/j.mcn.2020.103566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022] Open
Abstract
Human SH-SY5Y neuroblastoma cells stably expressing exogenous CB1 (CB1XS) or CB2 (CB2XS) receptors were developed to investigate endocannabinoid signaling in the extension of neuronal projections. Expression of cannabinoid receptors did not alter proliferation rate, viability, or apoptosis relative to parental SH-SY5Y. Transcripts for endogenous cannabinoid system enzymes (diacylglycerol lipase, monoacylglycerol lipase, α/β-hydrolase domain containing proteins 6 and 12, N-acyl phosphatidylethanolamine-phospholipase D, and fatty acid amide hydrolase) were not altered by CB1 or CB2 expression. Endocannabinoid ligands 2-arachidonoylglycerol (2-AG) and anandamide were quantitated in SH-SY5Y cells, and diacylglycerol lipase inhibitor tetrahydrolipstatin decreased 2-AG abundance by 90% but did not alter anandamide abundance. M3 muscarinic agonist oxotremorine M, and inhibitors of monoacylglycerol lipase and α/β hydrolase domain containing proteins 6 &12 increased 2-AG abundance. CB1 receptor expression increased lengths of short (<30 μm) and long (>30 μm) projections, and this effect was significantly reduced by tetrahydrolipstatin, indicative of stimulation by endogenously produced 2-AG. Pertussis toxin, Gβγ inhibitor gallein, and β-arrestin inhibitor barbadin did not significantly alter long projection length in CB1XS, but significantly reduced short projections, with gallein having the greatest inhibition. The rho kinase inhibitor Y27632 increased CB1 receptor-mediated long projection extension, indicative of actin cytoskeleton involvement. CB1 receptor expression increased GAP43 and ST8SIA2 mRNA and decreased ITGA1 mRNA, whereas CB2 receptor expression increased NCAM and SYT mRNA. We propose that basal endogenous production of 2-AG provides autocrine stimulation of CB1 receptor signaling through Gi/o, Gβγ, and β-arrestin mechanisms to promote neuritogenesis, and rho kinase influences process extension.
Collapse
Affiliation(s)
- Erica L Lyons
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Sandra Leone-Kabler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Alexander L Kovach
- Discovery Sciences, RTI International, PO Box 12194, Research Triangle Park, NC 27709, USA.
| | - Brian F Thomas
- Discovery Sciences, RTI International, PO Box 12194, Research Triangle Park, NC 27709, USA.
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
12
|
Luke MPS, Brown RE, Clarke DB. Polysialylated - neural cell adhesion molecule (PSA-NCAM) promotes recovery of vision after the critical period. Mol Cell Neurosci 2020; 107:103527. [PMID: 32634575 DOI: 10.1016/j.mcn.2020.103527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 01/19/2023] Open
Abstract
Vision loss has long since been considered irreversible after a critical period; however, there is potential to restore limited vision, even in adulthood. This phenomenon is particularly pronounced following complete loss of vision in the dominant eye. Adult neural cell adhesion molecule (NCAM) knockout mice have an age-related impairment of visual acuity. The underlying cause of early deterioration in visual function remains unknown. Polysialylated (PSA) NCAM is involved in different forms of neural plasticity in the adult brain, raising the possibility that NCAM plays a role in the plasticity of the visual cortex, and therefore, in visual ability. Here, we examined whether PSA-NCAM is required for visual cortical plasticity in adult C57Bl/6J mice following deafferentation and long-term monocular deprivation. Our results show that elevated PSA in the contralateral visual cortex of the reopened eye is accompanied by changes in other markers of neural plasticity: increased brain-derived neurotrophic factor (BDNF) levels and degradation of perineuronal nets (PNNs). The removal of PSA-NCAM in the visual cortex of these mice reduced BDNF expression, decreased PNN degradation, and resulted in impaired recovery of visual acuity after optic nerve transection and chronic monocular deprivation. Collectively, our results demonstrate that PSA-NCAM is necessary for the reactivation of visual cortical plasticity and recovery of visual function in adult mice. It also offers a potential molecular target for the therapeutic treatment of cortically based visual impairments.
Collapse
Affiliation(s)
- Margaret Po-Shan Luke
- Department of Medical Neuroscience, Dalhousie University, Life Science Research Institute, 1348 Summer Street, Halifax B3H 4R2, NS, Canada.
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Life Science Centre, 1355 Oxford Street, PO Box 15000, Halifax B3H 4R2, NS, Canada.
| | - David B Clarke
- Departments of Surgery (Neurosurgery), Medical Neuroscience, and Ophthalmology & Visual Sciences, Dalhousie University, Life Science Research Institute, 1348 Summer Street, Halifax B3H 4R2, NS, Canada.
| |
Collapse
|
13
|
Angel CZ, Lynch SM, Nesbitt H, McKenna MM, Walsh CP, McKenna DJ. miR-210 is induced by hypoxia and regulates neural cell adhesion molecule in prostate cells. J Cell Physiol 2020; 235:6194-6203. [PMID: 31975433 DOI: 10.1002/jcp.29548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Hypoxia in prostate tumours has been associated with disease progression and metastasis. MicroRNAs are short noncoding RNA molecules that are important in several cell processes, but their role in hypoxic signalling is still poorly understood. miR-210 has been linked with hypoxic mechanisms, but this relationship has been poorly characterised in prostate cancer. In this report, the link between hypoxia and miR-210 in prostate cancer cells is investigated. Polymerase chain reaction analysis demonstrates that miR-210 is induced by hypoxia in prostate cancer cells using in vitro cell models and an in vivo prostate tumour xenograft model. Analysis of The Cancer Genome Atlas prostate biopsy datasets shows that miR-210 is significantly correlated with Gleason grade and other clinical markers of prostate cancer progression. Neural cell adhesion molecule (NCAM) is identified as a target of miR-210, providing a biological mechanism whereby hypoxia-induced miR-210 expression can contribute to prostate cancer. This study provides evidence that miR-210 is an important regulator of cell response to hypoxic stress and proposes that its regulation of NCAM may play an important role in the pathogenesis of prostate cancer.
Collapse
Affiliation(s)
- Charlotte Zoe Angel
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - Seodhna M Lynch
- Cancer Biology & Therapeutics Laboratory, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Heather Nesbitt
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - Michael M McKenna
- Department of Cellular Pathology, Altnagelvin Area Hospital, Western Health & Social Care Trust, Co. Derry, UK
| | - Colum P Walsh
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - Declan J McKenna
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| |
Collapse
|
14
|
Butanol Extract of Tinospora cordifolia Ameliorates Cognitive Deficits Associated with Glutamate-Induced Excitotoxicity: A Mechanistic Study Using Hippocampal Neurons. Neuromolecular Med 2019; 22:81-99. [DOI: 10.1007/s12017-019-08566-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023]
|
15
|
Zhang XL, Xu FX, Han XY. siRNA-mediated NCAM1 gene silencing suppresses oxidative stress in pre-eclampsia by inhibiting the p38MAPK signaling pathway. J Cell Biochem 2019; 120:18608-18617. [PMID: 31353686 DOI: 10.1002/jcb.28778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 02/03/2023]
Abstract
Pre-eclampsia (PE), whose pathophysiology and etiology remain undefined, represents a leading consequence of fetal and maternal mortality and morbidity. Oxidative stress (OS) is recognized to involve in this disorder. In this study, we hypothesized that neural cell adhesion molecule 1 (NCAM1) gene silencing would suppress the OS in the pregnancy complicated by PE. Initially, clinical samples were collected for determination of NCAM1 expression in placental tissues and levels of OS products in blood. To assess the regulatory mechanism of NCAM1 knockdown on OS, we used small interfering RNA (siRNA) to silence NCAM1 expression in human umbilical vein endothelial cells (HUVECs). Next, cells were treated with or without hypoxia/reoxygenation to observe the level changes of OS products and p38 mitogen-activated protein kinase (p38MAPK) pathway-related genes. Finally, an evaluation of HUVEC migration and invasion abilities was conducted by wound-healing and transwell assays. Placenta of pregnancy with PE presented significantly increased NCAM1 expression in comparison to placenta of normal pregnancy. Meanwhile, enhanced OS in blood of pregnant women with PE was observed relative to women with normal pregnancy. siRNA-mediated knockdown of NCAM1 gene could inhibit the p38MAPK signaling pathway, repress OS, and promote cell migration and invasion in HUVECs, indicating that NCAM1 inhibition could reduce the influence of PE. Importantly, blocking the p38MAPK signaling pathway reversed the inhibitory role of NCAM1 gene silencing on PE. Collectively, this study defines potential role of NCAM1 gene silencing as a therapeutic target in PE through inhibiting OS and enhancing HUVEC migration and invasion by disrupting the p38MAPK signaling pathway.
Collapse
Affiliation(s)
- Xiao-Lin Zhang
- Department of Obstetrics, Zoucheng Hospital District of Affiliated Hospital of Jining Medical University, Zoucheng, People's Republic of China
| | - Feng-Xian Xu
- Department of Obstetrics, Zoucheng Hospital District of Affiliated Hospital of Jining Medical University, Zoucheng, People's Republic of China
| | - Xiao-Yun Han
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining, People's Republic of China
| |
Collapse
|
16
|
Cross-Talk between Fibroblast Growth Factor Receptors and Other Cell Surface Proteins. Cells 2019; 8:cells8050455. [PMID: 31091809 PMCID: PMC6562592 DOI: 10.3390/cells8050455] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute signaling circuits that transmit signals across the plasma membrane, regulating pivotal cellular processes like differentiation, migration, proliferation, and apoptosis. The malfunction of FGFs/FGFRs signaling axis is observed in numerous developmental and metabolic disorders, and in various tumors. The large diversity of FGFs/FGFRs functions is attributed to a great complexity in the regulation of FGFs/FGFRs-dependent signaling cascades. The function of FGFRs is modulated at several levels, including gene expression, alternative splicing, posttranslational modifications, and protein trafficking. One of the emerging ways to adjust FGFRs activity is through formation of complexes with other integral proteins of the cell membrane. These proteins may act as coreceptors, modulating binding of FGFs to FGFRs and defining specificity of elicited cellular response. FGFRs may interact with other cell surface receptors, like G-protein-coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs). The cross-talk between various receptors modulates the strength and specificity of intracellular signaling and cell fate. At the cell surface FGFRs can assemble into large complexes involving various cell adhesion molecules (CAMs). The interplay between FGFRs and CAMs affects cell–cell interaction and motility and is especially important for development of the central nervous system. This review summarizes current stage of knowledge about the regulation of FGFRs by the plasma membrane-embedded partner proteins and highlights the importance of FGFRs-containing membrane complexes in pathological conditions, including cancer.
Collapse
|
17
|
Yang X, Zou M, Pang X, Liang S, Sun C, Wang J, Fan L, Xia W, Wu L. The association between NCAM1 levels and behavioral phenotypes in children with autism spectrum disorder. Behav Brain Res 2018; 359:234-238. [PMID: 30423390 DOI: 10.1016/j.bbr.2018.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022]
Abstract
Autism spectrum disorders (ASDs) are neuropsychiatric disorders associated with synaptic function and plasticity. Neural cell adhesion molecule (NCAM1) dysfunction impairs synapse formation, synaptic activity and plasticity. To explore the relationship between NCAM1 and ASD, a case-control study was conducted. This research included 40 ASD children and 39 healthy children aged 2-6 years old. We measured the levels of plasma NCAM1 in ASD and healthy control groups by ELISA kits. The severity and behavioral problems of autistic children were also examined. The level of plasma NCAM1 in ASD children was significantly lower than that in controls (p < 0.05). Additionally, NCAM1 levels were negatively correlated with social motivation, social communication and the total scores assessed by Social Responsiveness Scale (SRS). NCAM1 levels positively correlated with gross motor ability and developmental quotient in the ASD group. The area under the ROC curve of NCAM1 was 0.647. These results indicated that NCAM1 levels are associated with behavioral problems in children with ASD. These include phenotypes relating to social motivation, social communication, gross motor ability and developmental quotient. These results suggest that future studies exploring the function of NCAM1 in the context of etiology of ASD may be needed.
Collapse
Affiliation(s)
- Xiaolei Yang
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, 161006, China
| | - Mingyang Zou
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, 150081, China
| | - Xiuming Pang
- Department of Pediatric Cerebral Palsy Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150081, China
| | - Shuang Liang
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, 150081, China
| | - Caihong Sun
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, 150081, China
| | - Jia Wang
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, 150081, China
| | - Lili Fan
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, 150081, China
| | - Wei Xia
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, 150081, China
| | - Lijie Wu
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
18
|
Neural cell adhesion molecule-1 may be a new biomarker of coronary artery disease. Int J Cardiol 2018; 257:238-242. [DOI: 10.1016/j.ijcard.2017.12.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
|
19
|
Ren H, Xu W. Polysialylated Neural Cell Adhesion Molecule Supports Regeneration of Neurons in the Nucleus Ambiguus After Unilateral Recurrent Laryngeal Nerve Avulsion in Adult Rats. J Voice 2017; 33:52-57. [PMID: 29169663 DOI: 10.1016/j.jvoice.2017.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/07/2017] [Accepted: 10/13/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVES A correlation appears to exist between the expression of the polysialic acid neural cell adhesion molecule (PSA-NCAM) and repair in central nervous system (CNS) diseases. However, the expression of PSA-NCAM in the CNS after peripheral nerve injury remains unclear. This study aimed to evaluate the expression of PSA-NCAM in the ipsilateral nucleus ambiguus (NA) after unilateral recurrent laryngeal nerve (RLN) avulsion. MATERIALS AND METHODS The left RLN of adult Sprague Dawley rats were avulsed. The expression of PSA-NCAM, PSA-NCAM/NeuN, and PSA-NCAM/Tuj1 in the brain stem was investigated using immunohistochemistry. The results were subjected to one-way analysis of variance followed by the Tukey post hoc test for statistical analyses. RESULTS PSA-NCAM-positive and PSA-NCAM/NeuN and PSA-NCAM/Tuj1 double-labeled positive cells were observed 7 days post injury in the ipsilateral NA. PSA-NCAM/NeuN and PSA-NCAM/Tuj1 double-labeled cells were observed at 21 and 7 days post injury, respectively. PSA-NCAM/NeuN double-labeled cells were also found in the contralateral NA. CONCLUSIONS After unilateral avulsion of the RLN, the expression of PSA-NCAM in the ipsilateral NA was correlated with the proliferation and the differentiation of neural cells. PSA-NCAM expression may be used as a predictor of the initiation of repair in neural cells.
Collapse
Affiliation(s)
- Hui Ren
- Department of Otorhinolaryngology-Head Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Department of Otorhinolaryngology-Head Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wen Xu
- Department of Otorhinolaryngology-Head Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
20
|
Djordjevic A, Bursać B, Veličković N, Gligorovska L, Ignjatović D, Tomić M, Matić G. Disturbances of systemic and hippocampal insulin sensitivity in macrophage migration inhibitory factor (MIF) knockout male mice lead to behavioral changes associated with decreased PSA-NCAM levels. Horm Behav 2017; 96:95-103. [PMID: 28919555 DOI: 10.1016/j.yhbeh.2017.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine well known for its role in inflammation enhancement. However, a growing body of evidence is emerging on its role in energy metabolism in insulin sensitive tissues such as hippocampus, a brain region implicated in cognition, learning and memory. We hypothesized that genetic deletion of MIF may result in the specific behavioral changes, which may be linked tо impairments in brain or systemic insulin sensitivity by possible changes of the hippocampal synaptic plasticity. To assess memory, exploratory behavior and anxiety, three behavioral tests were applied on Mif gene-deficient (MIF-/-) and "wild type" C57BL/6J mice (WT). The parameters of systemic and hippocampal insulin sensitivity were also determined. The impact of MIF deficiency on hippocampal plasticity was evaluated by analyzing the level of synaptosomal polysialylated-neural cell adhesion molecule (PSA-NCAM) plasticity marker and mRNA levels of different neurotrophic factors. The results showed that MIF-/- mice exhibit emphasized anxiety-like behaviors, as well as impaired recognition memory, which may be hippocampus-dependent. This behavioral phenotype was associated with impaired systemic insulin sensitivity and attenuated hippocampal insulin sensitivity, characterized by increased inhibitory Ser307 phosphorylation of insulin receptor substrate 1 (IRS1). Finally, MIF-/- mice displayed a decreased hippocampal PSA-NCAM level and unchanged Bdnf, NT-3, NT-4 and Igf-1 mRNA levels. The results suggest that the lack of MIF leads to disturbances of systemic and hippocampal insulin sensitivity, which are possibly responsible for memory deficits and anxiety, most likely through decreased PSA-NCAM-mediated neuroplasticity rather than through neurotrophic factors.
Collapse
Affiliation(s)
- Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia.
| | - Biljana Bursać
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia
| | - Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia
| | - Djurdjica Ignjatović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia
| | - Mirko Tomić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia
| | - Gordana Matić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia
| |
Collapse
|
21
|
Westphal N, Theis T, Loers G, Schachner M, Kleene R. Nuclear fragments of the neural cell adhesion molecule NCAM with or without polysialic acid differentially regulate gene expression. Sci Rep 2017; 7:13631. [PMID: 29051583 PMCID: PMC5648764 DOI: 10.1038/s41598-017-14056-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/04/2017] [Indexed: 02/05/2023] Open
Abstract
The neural cell adhesion molecule (NCAM) is the major carrier of polysialic acid (PSA) which modulates NCAM functions of neural cells at the cell surface. In previous studies, we have shown that stimulation of cultured neurons with surrogate NCAM ligands leads to the generation and nuclear import of PSA-lacking and -carrying NCAM fragments. Here, we show that the nuclear import of the PSA-carrying NCAM fragment is mediated by positive cofactor 4 and cofilin, which we identified as novel PSA-binding proteins. In the nucleus, the PSA-carrying NCAM fragment interacts via PSA with PC4 and cofilin, which are involved in RNA polymerase II-dependent transcription. Microarray analysis revealed that the nuclear PSA-carrying and -lacking NCAM fragments affect expression of different genes. By qPCR and immunoblot analysis we verified that the nuclear PSA-carrying NCAM fragment increases mRNA and protein expression of nuclear receptor subfamily 2 group F member 6, whereas the PSA-lacking NCAM fragment increases mRNA and protein expression of low density lipoprotein receptor-related protein 2 and α-synuclein. Differential gene expression evoked by nuclear NCAM fragments without and with PSA indicates that PSA-carrying and -lacking NCAM play different functional roles in the nervous system.
Collapse
Affiliation(s)
- Nina Westphal
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Thomas Theis
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China.
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| |
Collapse
|
22
|
Effect of Clozapine on DNA Methylation in Peripheral Leukocytes from Patients with Treatment-Resistant Schizophrenia. Int J Mol Sci 2017; 18:ijms18030632. [PMID: 28335437 PMCID: PMC5372645 DOI: 10.3390/ijms18030632] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clozapine is an atypical antipsychotic, that is established as the treatment of choice for treatment-resistant schizophrenia (SCZ). To date, no study investigating comprehensive DNA methylation changes in SCZ patients treated with chronic clozapine has been reported. The purpose of the present study is to reveal the effects of clozapine on DNA methylation in treatment-resistant SCZ. We conducted a genome-wide DNA methylation profiling in peripheral leukocytes (485,764 CpG dinucleotides) from treatment-resistant SCZ patients treated with clozapine (n = 21) in a longitudinal study. Significant changes in DNA methylation were observed at 29,134 sites after one year of treatment with clozapine, and these genes were enriched for “cell substrate adhesion” and “cell matrix adhesion” gene ontology (GO) terms. Furthermore, DNA methylation changes in the CREBBP (CREB binding protein) gene were significantly correlated with the clinical improvements. Our findings provide insights into the action of clozapine in treatment-resistant SCZ.
Collapse
|