1
|
Chao JJ, Hu L, Mi JF, Mao GJ, Xu F, Hu L, Ouyang J, Li CY. Monitoring the level of hydrogen sulfide in arthritis and its treatment with a novel near-infrared fluorescent probe. Anal Chim Acta 2025; 1351:343898. [PMID: 40187876 DOI: 10.1016/j.aca.2025.343898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 04/07/2025]
Abstract
Hydrogen sulfide (H2S) is a physiological gaseous transmitter that plays a crucial role in maintaining the cellular redox state. Arthritis is usually accompanied by redness, swelling, pain, dysfunction and deformity of the joints, and in severe cases can lead to joint disability. Disorders of H2S level are associated with the pathological process of arthritis. In this paper, a near-infrared fluorescent probe (TX-H2S) was developed to detect the alterations in H2S levels of arthritis. TX-H2S has excellent response performance to H2S such as near-infrared emission (725 nm), large Stokes shift (125 nm) and high fluorescence enhancement (72-fold). Owing to low cytotoxicity, the probe can be employed to observe the alterations of exogenous and endogenous H2S level in HeLa and HepG2 cells. By making full use of near-infrared emission and good biocompatibility, the probe can be employed for exogenous H2S imaging in mice, and is able to track the fluctuation of H2S level during arthritis and its treatment. These make the probe have the potential to invent an efficient tool for the diagnosis of arthritic disease and its treatment.
Collapse
Affiliation(s)
- Jing-Jing Chao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Ling Hu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Jing-Fang Mi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Fen Xu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Liufang Hu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Juan Ouyang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| | - Chun-Yan Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| |
Collapse
|
2
|
Mijušković A, Wray S, Arrowsmith S. A hydrogen sulphide-releasing non-steroidal anti-inflammatory, ATB-346, significantly attenuates human myometrial contractions. Pharmacol Rep 2025; 77:287-294. [PMID: 39231921 PMCID: PMC11743401 DOI: 10.1007/s43440-024-00643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Spontaneous preterm birth is the leading cause of perinatal morbidity and mortality. Tocolytics are drugs used to inhibit uterine contractions in cases of imminent preterm birth, however, few are effective in stopping labour once initiated and all have side effects. Combination approaches involving drugs that target multiple signalling pathways that regulate contractions may increase efficacy, reduce dosage and improve tolerability. Both non-steroidal anti-inflammatory drugs (NSAIDs) and hydrogen sulphide (H2S)-releasing compounds can reduce myometrial contractions. In a novel approach we evaluated the tocolytic properties of ATB-346-a H2S-releasing derivative of the NSAID naproxen, shown clinically to reduce pain and inflammation in arthritis. METHODS Using organ baths, paired strips of human myometrium were exposed to increasing concentrations of ATB-346, or equimolar concentrations (10µM and 30µM) of the parent drug, naproxen, or the H2S-releasing moiety, 4-hydroxy-thiobenzamide (TBZ), alone. The ability of ATB-346 versus the individual components of ATB-346 to decrease ex vivo spontaneous contractions was investigated, and the potency was compared to a known H2S donor, Na2S. RESULTS Acute application of Na2S produced a concentration-dependent decrease in force amplitude and force integral (area under the curve) of contraction. ATB-346 produced a more profound decrease in contraction compared to equimolar concentrations of naproxen or TZB alone and was more potent than the equivalent concentration of Na2S. CONCLUSIONS ATB-346 exhibits potent tocolytic properties in human myometrium. These exciting results call for further exploration of ATB-346, with a view to repurposing this or similar drugs as novel therapies for delaying preterm labour.
Collapse
Affiliation(s)
- Ana Mijušković
- Harris-Wellbeing Research Centre, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Susan Wray
- Harris-Wellbeing Research Centre, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Sarah Arrowsmith
- Harris-Wellbeing Research Centre, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
3
|
Smimmo M, Casale V, Casillo GM, Mitidieri E, d'Emmanuele di Villa Bianca R, Bello I, Schettino A, Montanaro R, Brancaleone V, Indolfi C, Cirino G, Di Lorenzo A, Bucci M, Panza E, Vellecco V. Hydrogen sulfide dysfunction in metabolic syndrome-associated vascular complications involves cGMP regulation through soluble guanylyl cyclase persulfidation. Biomed Pharmacother 2024; 174:116466. [PMID: 38552439 DOI: 10.1016/j.biopha.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 05/01/2024] Open
Abstract
Here, by using in vitro and ex vivo approaches, we elucidate the impairment of the hydrogen sulfide (H2S) pathway in vascular complications associated with metabolic syndrome (MetS). In the in vitro model simulating hyperlipidemic/hyperglycemic conditions, we observe significant hallmarks of endothelial dysfunction, including eNOS/NO signaling impairment, ROS overproduction, and a reduction in CSE-derived H2S. Transitioning to an ex vivo model using db/db mice, a genetic MetS model, we identify a downregulation of CBS and CSE expression in aorta, coupled with a diminished L-cysteine-induced vasorelaxation. Molecular mechanisms of eNOS/NO signaling impairment, dissected using pharmacological and molecular approaches, indicate an altered eNOS/Cav-1 ratio, along with reduced Ach- and Iso-induced vasorelaxation and increased L-NIO-induced contraction. In vivo treatment with the H2S donor Erucin ameliorates vascular dysfunction observed in db/db mice without impacting eNOS, further highlighting a specific action on smooth muscle component rather than the endothelium. Analyzing the NO signaling pathway in db/db mice aortas, reduced cGMP levels were detected, implicating a defective sGC/cGMP signaling. In vivo Erucin administration restores cGMP content. This beneficial effect involves an increased sGC activity, due to enzyme persulfidation observed in sGC overexpressed cells, coupled with PDE5 inhibition. In conclusion, our study demonstrates a pivotal role of reduced cGMP levels in impaired vasorelaxation in a murine model of MetS involving an impairment of both H2S and NO signaling. Exogenous H2S supplementation through Erucin represents a promising alternative in MetS therapy, targeting smooth muscle cells and supporting the importance of lifestyle and nutrition in managing MetS.
Collapse
Affiliation(s)
- M Smimmo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - V Casale
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - G M Casillo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - E Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - I Bello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - A Schettino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - R Montanaro
- Department of Science, University of Basilicata, Potenza, Italy
| | - V Brancaleone
- Department of Science, University of Basilicata, Potenza, Italy
| | - C Indolfi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, Naples 80131, Italy
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - A Di Lorenzo
- Department of Pathology and Laboratory Medicine Center for Vascular Biology, Weill Cornell Medical College, Cornell University, New York, USA
| | - M Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| | - E Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - V Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Sun X, Mao C, Xie Y, Zhong Q, Zhang R, Jiang D, Song Y. Therapeutic Potential of Hydrogen Sulfide in Reproductive System Disorders. Biomolecules 2024; 14:540. [PMID: 38785947 PMCID: PMC11117696 DOI: 10.3390/biom14050540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Hydrogen sulfide (H2S), previously regarded as a toxic exhaust and atmospheric pollutant, has emerged as the third gaseous signaling molecule following nitric oxide (NO) and carbon monoxide (CO). Recent research has revealed significant biological effects of H2S in a variety of systems, such as the nervous, cardiovascular, and digestive systems. Additionally, H2S has been found to impact reproductive system function and may have therapeutic implications for reproductive disorders. This paper explores the relationship between H2S and male reproductive disorders, specifically erectile dysfunction, prostate cancer, male infertility, and testicular damage. Additionally, it examines the impact of H2S regulation on the pathophysiology of the female reproductive system, including improvements in preterm birth, endometriosis, pre-eclampsia, fetal growth restriction, unexplained recurrent spontaneous abortion, placental oxidative damage, embryo implantation, recovery of myometrium post-delivery, and ovulation. The study delves into the regulatory functions of H2S within the reproductive systems of both genders, including its impact on the NO/cGMP pathway, the activation of K+ channels, and the relaxation mechanism of the spongy smooth muscle through the ROCK pathway, aiming to broaden the scope of potential therapeutic strategies for treating reproductive system disorders in clinical settings.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China;
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| | - Ying Xie
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China;
| | - Qing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| | - Deyou Jiang
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China;
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| |
Collapse
|
5
|
Sun X, Zhang R, Zhong Q, Song Y, Feng X. Regulatory effects of hydrogen sulfide on the female reproductive system. Eur J Pharmacol 2024; 963:176265. [PMID: 38070636 DOI: 10.1016/j.ejphar.2023.176265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
Hydrogen sulfide (H2S), a colorless exhaust gas, has been traditionally considered an air pollutant. However, recent studies have revealed that H2S functions as a novel gas signaling molecule, exerting diverse biological effects on various systems, including the cardiovascular, digestive, and nervous systems. Thus, H2S is involved in various pathophysiological processes. As H2S affects reproductive function, it has potential therapeutic implications in reproductive system diseases. This review examined the role of H2S in various female reproductive organs, including the ovary, fallopian tube, vagina, uterus, and placenta. Additionally, the regulatory function of H2S in the female reproductive system has been discussed to provide useful insights for developing clinical therapeutic strategies for reproductive diseases.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China.
| | - Xiaoling Feng
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
6
|
Barna T, Szucs KF, Mirdamadi M, Gaspar R. The combined uterorelaxant effect of sildenafil and terbutalin in the rat: The potential benefit of co-administration of low doses. Heliyon 2023; 9:e22488. [PMID: 38046168 PMCID: PMC10686861 DOI: 10.1016/j.heliyon.2023.e22488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/08/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Aims Our aims were to investigate the uterus relaxant effect of sildenafil alone and co-administered with β2-mimetic terbutaline in an isolated organ bath and to perform in vivo smooth muscle electromyographic studies in pregnant rats. The modifications in uterine cAMP/cGMP levels were also detected. Main methods Contractions of non-pregnant and 5/15/18/20/22-day pregnant uterine rings were measured in an isolated organ bath system in the presence of sildenafil alone or with terbutaline. The uterine levels of cAMP and cGMP were determined by commercial ELISA assays. The in vivo efficacy of the combination was measured by smooth muscle electromyography. Key findings Sildenafil reduced uterine contractions in vitro and in vivo; additionally, terbutaline significantly increased the uterorelaxant effect of sildenafil in the lower concentration or dose ranges. Terbutaline enhanced the cGMP level increasing effect of sildenafil. Significance The co-administration of sildenafil and terbutaline could be a promising tocolytic combination to reduce maternal and foetal adverse events and increase efficacy.
Collapse
Affiliation(s)
- Tamara Barna
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Kalman F. Szucs
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Mohsen Mirdamadi
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Robert Gaspar
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Vellecco V, Esposito E, Indolfi C, Saviano A, Panza E, Bucci M, Brancaleone V, Cirino G, d'Emmanuele di Villa Bianca R, Sorrentino R, Mitidieri E. Biphasic inflammatory response induced by intra-plantar injection of L-cysteine: Role of CBS-derived H 2S and S1P/NO signaling. Biomed Pharmacother 2023; 167:115536. [PMID: 37742608 DOI: 10.1016/j.biopha.2023.115536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023] Open
Abstract
This study investigates the inflammatory response to intra-plantar injection of L-cysteine in a murine model. L-cysteine induces a two-phase response: an early phase lasting 6 h and a late phase peaking at 24 h and declining by 192 h. The early phase shows increased neutrophil accumulation at 2 h up to 24 h, followed by a reduction at 48 h. On the other hand, the late phase exhibits increased macrophage infiltration peaking at 96 h. Inhibition of cystathionine β-synthase (CBS), the first enzyme in the transsulfuration pathway, significantly reduces L-cysteine-induced edema, suggesting its dependence on CBS-derived hydrogen sulfide (H2S). Sequential formation of sphingosine-1-phosphate (S1P) preceding nitric oxide (NO) generation suggests the involvement of a CBS/S1P/NO axis in the inflammatory response. Inhibition of de novo sphingolipid biosynthesis, S1P1 receptor, and endothelial NO synthase (eNOS) attenuates L-cysteine-induced paw edema. These findings indicate a critical role of the CBS/H2S/S1P/NO signaling pathway in the development and maintenance of L-cysteine-induced inflammation. The co-presence of H2S and NO is necessary for inducing and sustaining the inflammatory response, as NaHS or L-arginine alone do not replicate the marked and prolonged inflammatory effect observed with L-cysteine. This study enhances our understanding of the complex molecular mechanisms of the interplay between NO and H2S pathways in inflammation and identifies potential therapeutic targets for inflammatory disorders.
Collapse
Affiliation(s)
- Valentina Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Erika Esposito
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Chiara Indolfi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Anella Saviano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Elisabetta Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | | | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | | | - Raffaella Sorrentino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
8
|
β3 Relaxant Effect in Human Bladder Involves Cystathionine γ-Lyase-Derived Urothelial Hydrogen Sulfide. Antioxidants (Basel) 2022; 11:antiox11081480. [PMID: 36009199 PMCID: PMC9405273 DOI: 10.3390/antiox11081480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
It is now well established that the urothelium does not act as a passive barrier but contributes to bladder homeostasis by releasing several signaling molecules in response to physiological and chemical stimuli. Here, we investigated the potential contribution of the hydrogen sulfide (H2S) pathway in regulating human urothelium function in β3 adrenoceptor-mediated relaxation. The relaxant effect of BRL 37344 (0.1–300 µM), a selective β3 adrenoceptor agonist, was evaluated in isolated human bladder strips in the presence or absence of the urothelium. The relaxant effect of BRL 37344 was significantly reduced by urothelium removal. The inhibition of cystathionine-γ-lyase (CSE), but not cystathionine-β-synthase (CBS), significantly reduced the BRL 37344 relaxing effect to the same extent as that given by urothelium removal, suggesting a role for CSE-derived H2S. β3 adrenoceptor stimulation in the human urothelium or in T24 urothelial cells markedly increased H2S and cAMP levels that were reverted by a blockade of CSE and β3 adrenoceptor antagonism. These findings demonstrate a key role for urothelium CSE-derived H2S in the β3 effect on the human bladder through the modulation of cAMP levels. Therefore, the study establishes the relevance of urothelial β3 adrenoceptors in the regulation of bladder tone, supporting the use of β3 agonists in patients affected by an overactive bladder.
Collapse
|
9
|
Montanaro R, D'Addona A, Izzo A, Ruosi C, Brancaleone V. In vitro evidence for the involvement of H 2S pathway in the effect of clodronate during inflammatory response. Sci Rep 2021; 11:14811. [PMID: 34285296 PMCID: PMC8292495 DOI: 10.1038/s41598-021-94228-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
Clodronate is a bisphosphonate agent commonly used as anti-osteoporotic drug. Throughout its use, additional anti-inflammatory and analgesic properties have been reported, although the benefits described in the literature could not solely relate to their inhibition of bone resorption. Thus, the purpose of our in vitro study is to investigate whether there are underlying mechanisms explaining the anti-inflammatory effect of clodronate and possibly involving hydrogen sulphide (H2S). Immortalised fibroblast-like synoviocyte cells (K4IM) were cultured and treated with clodronate in presence of TNF-α. Clodronate significantly modulated iNOS expression elicited by TNF-α. Inflammatory markers induced by TNF-α, including IL-1, IL-6, MCP-1 and RANTES, were also suppressed following administration of clodronate. Furthermore, the reduction in enzymatic biosynthesis of CSE-derived H2S, together with the reduction in CSE expression associated with TNF-α treatment, was reverted by clodronate, thus rescuing endogenous H2S pathway activity. Clodronate displays antinflammatory properties through the modulation of H2S pathway and cytokines levels, thus assuring the control of the inflammatory state. Although further investigation is needed to stress out how clodronate exerts its control on H2S pathway, here we showed for the first the involvement of H2S in the additive beneficial effects observed following clodronate therapy.
Collapse
Affiliation(s)
- Rosangela Montanaro
- Department of Science, University of Basilicata, Via Ateneo Lucano, 85100, Potenza, Italy
| | - Alessio D'Addona
- Humanitas Clinical and Research Center-IRCCS, Via Alessandro Manzoni 56, 20089, Rozzano, Italy.
| | - Andrea Izzo
- Department of Public Health, Section of Orthopaedics and Trauma Surgery, AOU Federico II, School of Medicine and Surgery, Federico II" of Naples, Naples, Italy
| | - Carlo Ruosi
- Department of Public Health, Section of Orthopaedics and Trauma Surgery, AOU Federico II, School of Medicine and Surgery, Federico II" of Naples, Naples, Italy
| | - Vincenzo Brancaleone
- Department of Science, University of Basilicata, Via Ateneo Lucano, 85100, Potenza, Italy.
| |
Collapse
|
10
|
Mitidieri E, Vanacore D, Turnaturi C, Sorrentino R, d’Emmanuele di Villa Bianca R. Uterine Dysfunction in Diabetic Mice: The Role of Hydrogen Sulfide. Antioxidants (Basel) 2020; 9:antiox9100917. [PMID: 32993056 PMCID: PMC7599872 DOI: 10.3390/antiox9100917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
It is well-known that the physiological uterine peristalsis, related to several phases of reproductive functions, plays a pivotal role in fertility and female reproductive health. Here, we have addressed the role of hydrogen sulfide (H2S) signaling in changes of uterine contractions driven by diabetes in non-obese diabetic (NOD) mice, a murine model of type-1 diabetes mellitus. The isolated uterus of NOD mice showed a significant reduction in spontaneous motility coupled to a generalized hypo-contractility to uterotonic agents. The levels of cyclic nucleotides, cAMP and cGMP, notoriously involved in the regulation of uterus homeostasis, were significantly elevated in NOD mouse uteri. This increase was well-correlated with the higher levels of H2S, a non-specific endogenous inhibitor of phosphodiesterases. The exposure of isolated uterus to L-cysteine (L-Cys), but not to sodium hydrogen sulfide, the exogenous source of H2S, showed a weak tocolytic effect in the uterus of NOD mice. Western blot analysis revealed a reorganization of the enzymatic expression with an upregulation of 3-mercaptopyruvate-sulfurtransferase (3-MST) coupled to a reduction in both cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) expression. In conclusion, the increased levels of cyclic nucleotides dysregulate the uterus peristalsis and contractility in diabetic mice through an increase in basal H2S synthesis suggesting a role of 3-MST.
Collapse
Affiliation(s)
- Emma Mitidieri
- Department of Pharmacy, School of Medicine, University of Naples, Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (E.M.); (D.V.); (C.T.); (R.d.d.V.B.)
| | - Domenico Vanacore
- Department of Pharmacy, School of Medicine, University of Naples, Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (E.M.); (D.V.); (C.T.); (R.d.d.V.B.)
| | - Carlotta Turnaturi
- Department of Pharmacy, School of Medicine, University of Naples, Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (E.M.); (D.V.); (C.T.); (R.d.d.V.B.)
| | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples, Federico II, Via Pansini, 5, 80131 Naples, Italy
- Interdepartmental Centre for Sexual Medicine, University of Naples, Federico II, Via Pansini 5, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-678437
| | - Roberta d’Emmanuele di Villa Bianca
- Department of Pharmacy, School of Medicine, University of Naples, Federico II, Via D. Montesano, 49, 80131 Naples, Italy; (E.M.); (D.V.); (C.T.); (R.d.d.V.B.)
- Interdepartmental Centre for Sexual Medicine, University of Naples, Federico II, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
11
|
Xu JW, Gao DD, Peng L, Qiu ZE, Ke LJ, Zhu YX, Zhang YL, Zhou WL. The gasotransmitter hydrogen sulfide inhibits transepithelial anion secretion of pregnant mouse endometrial epithelium. Nitric Oxide 2019; 90:37-46. [PMID: 31175932 DOI: 10.1016/j.niox.2019.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023]
Abstract
Endometrial epithelium exhibits a robust ion transport activity required for dynamical regulation of uterine fluid environment and thus embryo implantation. However, there still lacks a thorough understanding of the ion transport processes and regulatory mechanism in peri-implantation endometrial epithelium. As a gaseous signaling molecule or gasotransmitter, hydrogen sulfide (H2S) regulates a myriad of cellular and physiological processes in various tissues, including the modulation of ion transport proteins in epithelium. This study aimed to investigate the effects of H2S on ion transport across mouse endometrial epithelium and its possible role in embryo implantation. The existence of endogenous H2S in pregnant mouse uterus was tested by the detection of two key H2S-generating enzymes and measurement of H2S production rate in tissue homogenates. Transepithelial ion transport processes were electrophysiologically assessed in Ussing chambers on early pregnant mouse endometrial epithelial layers, demonstrating that H2S suppressed the anion secretion by blocking cystic fibrosis transmembrane conductance regulator (CFTR). H2S increased intracellular Cl- concentration ([Cl-]i) in mouse endometrial epithelial cells, which was abolished by pretreatment with the CFTR selective inhibitor CFTRinh-172. The cAMP level in mouse endometrial epithelial cells was not affected by H2S, indicating that H2S blocked CFTR in a cAMP-independent way. In vivo study showed that interference with H2S synthesis impaired embryo implantation. In conclusion, our study demonstrated that H2S inhibits the transepithelial anion secretion of early pregnant mouse endometrial epithelium via blockade of CFTR, contributing to the preparation for embryo implantation.
Collapse
Affiliation(s)
- Jia-Wen Xu
- School of Life Sciences, Sun Yat-sen University, 510006, No. 132, Waihuan Dong Road, Higher Education Mega Center, Guangzhou, China
| | - Dong-Dong Gao
- School of Life Sciences, Sun Yat-sen University, 510006, No. 132, Waihuan Dong Road, Higher Education Mega Center, Guangzhou, China
| | - Lei Peng
- School of Life Sciences, Sun Yat-sen University, 510006, No. 132, Waihuan Dong Road, Higher Education Mega Center, Guangzhou, China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, 510006, No. 132, Waihuan Dong Road, Higher Education Mega Center, Guangzhou, China
| | - Li-Jiao Ke
- School of Life Sciences, Sun Yat-sen University, 510006, No. 132, Waihuan Dong Road, Higher Education Mega Center, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, 510006, No. 132, Waihuan Dong Road, Higher Education Mega Center, Guangzhou, China
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, 510006, No. 132, Waihuan Dong Road, Higher Education Mega Center, Guangzhou, China.
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, 510006, No. 132, Waihuan Dong Road, Higher Education Mega Center, Guangzhou, China.
| |
Collapse
|
12
|
Ma X, Jiang Z, Wang Z, Zhang Z. Administration of metformin alleviates atherosclerosis by promoting H2S production via regulating CSE expression. J Cell Physiol 2019; 235:2102-2112. [PMID: 31338841 DOI: 10.1002/jcp.29112] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/20/2019] [Indexed: 12/31/2022]
Abstract
The therapeutic effect of metformin (Met) on atherosclerosis was studied here. Effects of methionine and Met on the induction of inflammatory response and H2 S expression in peritoneal macrophages were evaluated. Enzyme-linked immunosorbent assay, immunohistochemistry assay, western blot, and quantitative reverse transcription polymerase chain reaction were conducted to observe the levels of cystathionine γ-lyase (CSE), DNA methyltransferases 1 (DNMT1), DNMT3a, DNMT3b, tumor necrosis factor (TNF- α), interleukin 1b (IL-1β), and hydrogen sulfide (H 2 S). Luciferase and bisulfite sequencing assays were also utilized to evaluate the CSE promoter activity as well as the methylation status of CSE in transfected cells. Methionine significantly elevated Hcy, TNF-a, H 2 S, and IL-1β expression while decreasing the level of CSE in C57BL/6 mice. In contrary, co-treatment with Methionine and Met reduced the detrimental effect of Methionine. Homocysteine (Hcy) decreased H 2 S expression while promoting the synthesis of IL-1β and TNF-α in THP-1 and raw264.7 cells. Treatment of THP-1 and raw264.7 cells with methionine and Met reduced the activity of methionine in dose dependently. Moreover, Hcy increased the expression of DNMT and elevated the level of methylation in the CSE promoter, whereas the co-treatment with methionine and Met attenuated the effects of Hcy. Methionine significantly decreased plasma level of CSE while increasing the severity of inflammatory responses and plasma level of Hcy, which in turn suppressed H 2 S synthesis and enhanced DNA hypermethylation of CSE promoter to promote the pathogenesis of atherosclerosis. In contrary, co-treatment with methionine and Met reduced the detrimental effect of methionine.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan, China.,Department of Cardiology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan, China
| | - Zuo Wang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan, University of South China, Hengyang, Hunan, China
| | - Zhuhua Zhang
- Department of Cardiology, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Vellecco V, Armogida C, Bucci M. Hydrogen sulfide pathway and skeletal muscle: an introductory review. Br J Pharmacol 2018; 175:3090-3099. [PMID: 29767441 PMCID: PMC6031874 DOI: 10.1111/bph.14358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/18/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
The presence of the H2 S pathway in skeletal muscle (SKM) has recently been established. SKM expresses the three constitutive H2 S-generating enzymes in animals and humans, and it actively produces H2 S. The main, recognized molecular targets of H2 S, that is, potassium channels and PDEs, have been evaluated in SKM physiology in order to hypothesize a role for H2 S signalling. SKM dysfunctions, including muscular dystrophy and malignant hyperthermia, have also been evaluated as conditions in which the H2 S and transsulfuration pathways have been suggested to be involved. The intrinsic complexity of the molecular mechanisms involved in excitation-contraction (E-C) coupling together with the scarcity of preclinical models of SKM-related disorders have hampered any advances in the knowledge of SKM function. Here, we have addressed the role of the H2 S pathway in E-C coupling and the relative importance of cystathionine β-synthase, cistathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase in SKM diseases.
Collapse
Affiliation(s)
- Valentina Vellecco
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Naples, 80131, Italy
| | - Chiara Armogida
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Naples, 80131, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Naples, 80131, Italy
| |
Collapse
|
14
|
Mercaptopyruvate acts as endogenous vasodilator independently of 3-mercaptopyruvate sulfurtransferase activity. Nitric Oxide 2018; 75:53-59. [PMID: 29452248 DOI: 10.1016/j.niox.2018.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/30/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022]
Abstract
Hydrogen sulfide (H2S) is produced by the action of cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) or 3-mercaptopyruvate sulfurtransferase (3-MST). 3-MST converts 3-mercaptopyruvate (MPT) to H2S and pyruvate. H2S is recognized as an endogenous gaseous mediator with multiple regulatory roles in mammalian cells and organisms. In the present study we demonstrate that MPT, the endogenous substrate of 3-MST, acts also as endogenous H2S donor. Colorimetric, amperometric and fluorescence based assays demonstrated that MPT releases H2S in vitro in an enzyme-independent manner. A functional study was performed on aortic rings harvested from C57BL/6 (WT) or 3-MST-knockout (3-MST-/-) mice with and without endothelium. MPT relaxed mouse aortic rings in endothelium-independent manner and at the same extent in both WT and 3-MST-/- mice. N5-(1-Iminoethyl)-l-ornithine dihydrochloride (L-NIO, an inhibitor of endothelial nitric oxide synthase) as well as 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ, a soluble guanylyl cyclase inhibitor) did not affect MPT relaxant action. Conversely, hemoglobin (as H2S scavenger), as well as glybenclamide (an ATP-dependent potassium channel blocker) markedly reduced MPT-induced relaxation. The functional data clearly confirmed a non enzymatic vascular effect of MPT. In conclusion, MPT acts also as an endogenous H2S donor and not only as 3-MST substrate. MPT could, thus, be further investigated as a means to increase H2S in conditions where H2S bioavailability is reduced such as hypertension, coronary artery disease, diabetes or urogenital tract disease.
Collapse
|
15
|
d'Emmanuele di Villa Bianca R, Fusco F, Mirone V, Cirino G, Sorrentino R. The Role of the Hydrogen Sulfide Pathway in Male and Female Urogenital System in Health and Disease. Antioxid Redox Signal 2017; 27:654-668. [PMID: 28398118 DOI: 10.1089/ars.2017.7079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE The endogenous hydrogen sulfide (H2S) pathway produces an array of biological effects that vary depending on the bodily region. In addition, the H2S pathway's relevance often changes depending on a healthy or disease state. There is abundant evidence pointing to a key role for this pathway in male and female genito-urinary diseases, suggesting it as a possible target for new therapeutic approaches. Recent Advances: The tissue-specific localization of the H2S enzymes in the genito-urinary tract has allowed for a better understanding of its role in the body's pathophysiology. Indeed, in humans, cystathionine-γ-lyase (CSE) plays a major role in corpus cavernosum whereas cystathionine-β-synthase (CBS) plays a role in bladder functioning. The prostate epithelium expresses CBS and CSE, but stromal CSE only. In the uterus, up- or downregulation of CBS and CSE varies strongly depending on the female's hormonal cycle or pregnancy. CRITICAL ISSUES There is still the need to better define the male and female's sexual hormonal roles in regulating the H2S pathway, particularly in human pathological conditions. The lack of a correlation between human and animal data should be carefully considered when planning preclinical studies. The unmet need for selective enzymatic inhibitors and the different methodologies for H2S measurements still represent a critical issue in this research field. FUTURE DIRECTIONS It is feasible that the L-cysteine/H2S pathway can represent an alternative therapeutic target in genito-urinary tract disorders. The research should focus on erectile dysfunction and preeclampsia, characterized by vascular defect, as well as on bladder disorders where the urothelium is compromised. Antioxid. Redox Signal. 27, 654-668.
Collapse
Affiliation(s)
- Roberta d'Emmanuele di Villa Bianca
- 1 Department of Pharmacy, School of Medicine, University of Naples Federico II , Naples, Italy .,2 Interdepartmental Centre for Sexual Medicine, School of Medicine, University of Naples Federico II , Naples, Italy
| | - Ferdinando Fusco
- 2 Interdepartmental Centre for Sexual Medicine, School of Medicine, University of Naples Federico II , Naples, Italy .,3 Department of Neurosciences, Human Reproduction and Odontostomatology, School of Medicine, University of Naples Federico II , Naples, Italy
| | - Vincenzo Mirone
- 2 Interdepartmental Centre for Sexual Medicine, School of Medicine, University of Naples Federico II , Naples, Italy .,3 Department of Neurosciences, Human Reproduction and Odontostomatology, School of Medicine, University of Naples Federico II , Naples, Italy
| | - Giuseppe Cirino
- 1 Department of Pharmacy, School of Medicine, University of Naples Federico II , Naples, Italy .,2 Interdepartmental Centre for Sexual Medicine, School of Medicine, University of Naples Federico II , Naples, Italy
| | - Raffaella Sorrentino
- 1 Department of Pharmacy, School of Medicine, University of Naples Federico II , Naples, Italy .,2 Interdepartmental Centre for Sexual Medicine, School of Medicine, University of Naples Federico II , Naples, Italy
| |
Collapse
|
16
|
β 3 adrenergic receptor activation relaxes human corpus cavernosum and penile artery through a hydrogen sulfide/cGMP-dependent mechanism. Pharmacol Res 2017; 124:100-104. [PMID: 28760490 DOI: 10.1016/j.phrs.2017.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022]
Abstract
Erectile function is a widely accepted indicator of systemic endothelial activity since from a clinical standpoint erectile dysfunction (ED) often precedes cardiovascular events. Recently it has been described a potential role for β3 adrenoceptor in cardiovascular diseases emphasizing a possible development of new drugs. β3 adrenoceptor stimulation relaxes human corpus cavernosum (HCC) strips in cyclic guanosine monophosphate (cGMP)-dependent and endothelium/nitric oxide (NO)-independent manner. Hydrogen sulfide (H2S), along with NO, is another gaseous molecule involved in cardiovascular system and as a consequence also in penile erection. Cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE), the enzymes mainly responsible for H2S biosynthesis, are constitutively expressed in HCC. CSE rather than CBS is more abundant in human penile tissue. Herein we investigated the involvement of H2S pathway in β3 adrenoceptor-induced relaxation in HCC and penile artery. Penile artery expresses both CSE and β3 adrenoceptor. BRL37344, a β3 selective agonist, relaxed HCC strips and penile artery rings and this effect was significantly reduced by CSE inhibition. Incubation of HCC and penile artery homogenate with BRL37344 significantly increased H2S production. This effect was significantly reduced by the inhibition of either CSE or β3 adrenoceptor. Finally, the BRL37344-induced increase in cGMP was reduced by CSE inhibition in both tissues. Thus, BRL37344-induced relaxation in HCC and penile artery occurs in a H2S/cGMP-dependent manner. In conclusion, β3/H2S/cGMP pathway can act as an alternative to NO. Since about 15% of patients do not respond to phosphodiesterase-5 inhibitors, β3 agonists could represent a therapeutic alternative or a useful adjuvant therapy to treat these patients.
Collapse
|