1
|
Wirt JL, Assis Ferreira L, Jesus CHA, Woodward TJ, Oliva I, Xu Z, Crystal JD, Pepin RH, Silverman RB, Hohmann AG. Efficacy of GABA aminotransferase inactivator OV329 in models of neuropathic and inflammatory pain without tolerance or addiction. Proc Natl Acad Sci U S A 2025; 122:e2318833121. [PMID: 39793055 PMCID: PMC11725897 DOI: 10.1073/pnas.2318833121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/20/2024] [Indexed: 01/12/2025] Open
Abstract
Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects. We postulated that inhibition of GABA's degradation enzyme, GABA aminotransferase (GABA-AT), would increase endogenous GABA levels and produce analgesia. We evaluated antinociceptive efficacy of the potent GABA-AT inhibitor OV329 in rodent models of neuropathic and inflammatory pain and assessed possible side effects (i.e., reward and motor impairment). OV329 attenuated the development and maintenance of mechanical and cold hypersensitivities induced by the chemotherapeutic agent paclitaxel. Prophylactic OV329, administered systemically, normalized paclitaxel-induced increases in glutamate levels and suppressed neuropathic nociception. Intrathecal OV329 suppressed paclitaxel-induced mechanical hypersensitivity, elevating GABA, and reducing glutamate levels in the lumbar spinal cord, consistent with a spinal site of action. Furthermore, OV329 largely synergized with paclitaxel to enhance 4T1 tumor cell line cytotoxicity without altering viability of nontumor cells. OV329 also attenuated inflammation-induced mechanical hypersensitivity induced by intraplanar injection of complete Freund's adjuvant (CFA) with efficacy comparable to morphine. Unlike morphine, OV329 did not produce reward in a conditioned place preference assay in mice and was not self-administered intravenously by rats. Antinociceptive efficacy of OV329 was observed at doses that did not impair motor function or produce tolerance following chronic dosing. Thus, inhibition of GABA-AT with OV329 represents a unique therapeutic strategy to alleviate neuropathic and inflammatory pain with no apparent abuse liability, potentially producing a beneficial spectrum of pharmacological effects through enzymatic regulation.
Collapse
Affiliation(s)
- Jonah L. Wirt
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
| | - Luana Assis Ferreira
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
| | | | - Taylor J. Woodward
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
| | - Idaira Oliva
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
| | - Zhili Xu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
| | - Jonathon D. Crystal
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
| | - Robert H. Pepin
- Mass Spectrometry Facility, Department of Chemistry, Indiana University, Bloomington, IN
| | - Richard B. Silverman
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL
- Department of Pharmacology, Northwestern University, Chicago, IL 60208
| | - Andrea G. Hohmann
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
- Program in Neuroscience, Indiana University, Bloomington, IN47405
- Gill Institute for Neuroscience, Indiana University, Bloomington, IN47405
| |
Collapse
|
2
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
3
|
Zinnah KMA, Munna AN, Seol JW, Park BY, Park SY. An Antidepressant Drug Increased TRAIL Receptor-2 Expression and Sensitized Lung Cancer Cells to TRAIL-induced Apoptosis. Anticancer Agents Med Chem 2023; 23:2225-2236. [PMID: 37859313 PMCID: PMC10788920 DOI: 10.2174/0118715206262252231004110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND TRAIL has emerged as a promising therapeutic target due to its ability to selectively induce apoptosis in cancer cells while sparing normal cells. Autophagy, a highly regulated cellular recycling mechanism, is known to play a cell survival role by providing a required environment for the cell. Recent studies suggest that autophagy plays a significant role in increasing TRAIL resistance in certain cancer cells. Thus, regulating autophagy in TRAIL-mediated cancer therapy is crucial for its role in cancer treatment. OBJECTIVE Our study explored whether the antidepressant drug desipramine could enhance the ability of TRAIL to kill cancer cells by inhibiting autophagy. METHODS The effect of desipramine on TRAIL sensitivity was examined in various lung cancer cell lines. Cell viability was measured by morphological analysis, trypan blue exclusion, and crystal violet staining. Flow cytometry analysis was carried out to measure apoptosis with annexin V-PI stained cells. Western blotting, rtPCR, and immunocytochemistry were carried out to measure autophagy and death receptor expression. TEM was carried out to detect autophagy inhibition. RESULTS Desipramine treatment increased the TRAIL sensitivity in all lung cancer cell lines. Mechanistically, desipramine treatment induced death receptor expression to increase TRAIL sensitivity. This effect was confirmed when the genetic blockade of DR5 reduced the effect of desipramine in enhanced TRAIL-mediated cell death. Further investigation revealed that desipramine treatment increased the LC3 and p62 levels, indicating the inhibition of lysosomal degradation of autophagy. Notably, TRAIL, in combination with either desipramine or the autophagy inhibitor chloroquine, exhibited enhanced cytotoxicity compared to TRAIL treatment alone. CONCLUSION Our findings revealed the potential of desipramine to induce TRAIL-mediated cell death by autophagy impairment. This discovery suggests its therapeutic potential for inducing TRAIL-mediated cell death by increasing the expression of death receptors, which is caused by impairing autophagy.
Collapse
Affiliation(s)
- Kazi Mohammad Ali Zinnah
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
- Department of Animal and Fish Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Ali Newaz Munna
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Byung-Yong Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| |
Collapse
|
4
|
Sun Z, Meng P, Su C, Ji S, Gao Y, Wang H, Tian J, Li C. PCC-0105002, a novel small molecule inhibitor of PSD95-nNOS protein-protein interactions, attenuates neuropathic pain and corrects motor disorder associated with neuropathic pain model. Toxicol Appl Pharmacol 2021; 429:115698. [PMID: 34428447 DOI: 10.1016/j.taap.2021.115698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 01/11/2023]
Abstract
In view of postsynaptic density 95kDA (PSD95) tethers neuronal NO synthase (nNOS) to N-methyl-d-aspartate receptor (NMDAR), the PSD95-nNOS complex represents a therapeutic target of neuropathic pain. This study therefore sought to explore the ability of PCC-0105002, a novel PSD95-nNOS small molecule inhibitor, to alter pain sensitivity in rodent neuropathic pain models. Firstly, the IC50 of PCC-0105002 for PSD95 and NOS1 binding activity was determined using an Alpha Screen assay kit. Then, we examined the effects of PCC-0105002 in the mouse formalin test and in the rat spinal nerve ligation (SNL) model, and explored the ability of PCC-0105002 to mediate analgesia and to effect motor coordination in a rota-rod test. Moreover, the mechanisms whereby PCC-0105002 mediates analgesia was explored via western blotting, Golgi staining, and co-immunoprecipitation experiments in dorsal horn. The outcomes indicated that PCC-0105002 exhibited dose-dependent attenuation of phase II pain-associated behaviors in the formalin test. The result indicated that PCC-0105002 disrupted the PSD95-nNOS interaction with IC50 of 1.408 μM. In the SNL model, PCC-0105002 suppressed mechanical allodynia, thermal hyperalgesia, and abnormal dorsal horn wide dynamic range neuron discharge. PCC-0105002 mediated an analgesic effect comparable to that of MK-801, while it was better able to enhance motor coordination as compared with MK-801. Moreover, PCC-0105002 altered signaling downstream of NMDAR and thus functionally and structurally attenuating synaptic plasticity through respective regulation of the NR2B/GluR1/CaMKIIα and Rac1/RhoA pathways. These findings suggest that the novel PSD95-nNOS inhibitor PCC-0105002 is an effective agent for alleviating neuropathic pain, and that it produces fewer motor coordination-associated side effects than do NMDAR antagonists.
Collapse
Affiliation(s)
- Zhihong Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Ping Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Chunyu Su
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Shengmin Ji
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yonglin Gao
- School of Life Science, Yantai University, Yantai 264005, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| |
Collapse
|
5
|
Li AL, Crystal JD, Lai YY, Sajdyk TJ, Renbarger JL, Hohmann AG. An adolescent rat model of vincristine-induced peripheral neuropathy. NEUROBIOLOGY OF PAIN 2021; 10:100077. [PMID: 34841128 PMCID: PMC8605395 DOI: 10.1016/j.ynpai.2021.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022]
Abstract
Vincristine treatment in adolescent rat induces significant mechanical and cold allodynia and muscle weakness. Voluntary exercise prevents vincristine-induced peripheral neuropathy. Vincristine treatment during early adolescence produces more severe peripheral neuropathy than treatment during late adolescence. Peripheral neuropathy induced by vincristine during adolescence persists into early adulthood.
Childhood acute lymphoblastic leukemia (ALL) is a significant clinical problem that can be effectively treated with vincristine, a vinca alkaloid-based chemotherapeutic agent. However, nearly all children receiving vincristine treatment develop vincristine-induced peripheral neuropathy (VIPN). The impact of adolescent vincristine treatment across the lifespan remains poorly understood. We, consequently, developed an adolescent rodent model of VIPN which can be utilized to study possible long term consequences of vincristine treatment in the developing rat. We also evaluated the therapeutic efficacy of voluntary exercise and potential impact of obesity as a genetic risk factor in this model on the development and maintenance of VIPN. Out of all the dosing regimens we evaluated, the most potent VIPN was produced by fifteen consecutive daily intraperitoneal (i.p.) vincristine injections at 100 µg/kg/day, throughout the critical period of adolescence from postnatal day 35 to 49. With this treatment, vincristine-treated animals developed hypersensitivity to mechanical and cold stimulation of the plantar hind paw surface, which outlasted the period of vincristine treatment and resolved within two weeks following the cessation of vincristine injection. By contrast, impairment in grip strength gain was delayed by vincristine treatment, emerging shortly following the termination of vincristine dosing, and persisted into early adulthood without diminishing. Interestingly, voluntary wheel running exercise prevented the development of vincristine-induced hypersensitivities to mechanical and cold stimulation. However, Zucker fa/fa obese animals did not exhibit higher risk of developing VIPN compared to lean rats. Our studies identify sensory and motor impairments produced by vincristine in adolescent animals and support the therapeutic efficacy of voluntary exercise for suppressing VIPN in developing rats.
Collapse
Affiliation(s)
- Ai-Ling Li
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jonathon D. Crystal
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Yvonne Y. Lai
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Tammy J. Sajdyk
- Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jamie L. Renbarger
- Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Andrea G. Hohmann
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Corresponding author at: Department of Psychological and Brain Sciences, Indiana University, 1101 E 10 Street, Bloomington, IN 47405-7007, USA.
| |
Collapse
|
6
|
Alkislar I, Miller AR, Hohmann AG, Sadaka AH, Cai X, Kulkarni P, Ferris CF. Inhaled Cannabis Suppresses Chemotherapy-Induced Neuropathic Nociception by Decoupling the Raphe Nucleus: A Functional Imaging Study in Rats. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:479-489. [PMID: 33622657 DOI: 10.1016/j.bpsc.2020.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/30/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Efficacy of inhaled cannabis for treating pain is controversial. Effective treatment for chemotherapy-induced neuropathy represents an unmet medical need. We hypothesized that cannabis reduces neuropathic pain by reducing functional coupling in the raphe nuclei. METHODS We assessed the impact of inhalation of vaporized cannabis plant (containing 10.3% Δ9-tetrahydrocannabinol/0.05% cannabidiol) or placebo cannabis on brain resting-state blood oxygen level-dependent functional connectivity and pain behavior induced by paclitaxel in rats. Rats received paclitaxel to produce chemotherapy-induced peripheral neuropathy or its vehicle. Behavioral and imaging experiments were performed after neuropathy was established and stable. Images were registered to, and analyzed using, a 3D magnetic resonance imaging rat atlas providing site-specific data on more than 168 different brain areas. RESULTS Prior to vaporization, paclitaxel produced cold allodynia. Inhaled vaporized cannabis increased cold withdrawal latencies relative to prevaporization or placebo cannabis, consistent with Δ9-tetrahydrocannabinol-induced antinociception. In paclitaxel-treated rats, the midbrain serotonergic system, comprising the dorsal and median raphe, showed hyperconnectivity to cortical, brainstem, and hippocampal areas, consistent with nociceptive processing. Inhalation of vaporized cannabis uncoupled paclitaxel-induced hyperconnectivity patterns. No such changes in connectivity or cold responsiveness were observed following placebo cannabis vaporization. CONCLUSIONS Inhaled vaporized cannabis plant uncoupled brain resting-state connectivity in the raphe nuclei, normalizing paclitaxel-induced hyperconnectivity to levels observed in vehicle-treated rats. Inhaled vaporized cannabis produced antinociception in both paclitaxel- and vehicle-treated rats. Our study elucidates neural circuitry implicated in the therapeutic effects of Δ9-tetrahydrocannabinol and supports a role for functional imaging studies in animals in guiding indications for future clinical trials.
Collapse
Affiliation(s)
- Ilayda Alkislar
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts
| | - Alison R Miller
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts
| | - Andrea G Hohmann
- Psychological and Brain Sciences, Program in Neuroscience, and Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana
| | - Aymen H Sadaka
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts
| | - Xuezhu Cai
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts
| | - Praveen Kulkarni
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts
| | - Craig F Ferris
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts; Department of Psychology, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
7
|
Li C, Su C, Wang Z, Han R, Wang Y, Wang H, Tian J, Gao Y. WITHDRAWN: PCC-0105002, a novel small molecule inhibitor of PSD95-nNOS protein-protein interactions, attenuates neuropathic pain and corrects motor coordination-associated side effects in neuropathic pain model. Toxicol Appl Pharmacol 2020:115208. [PMID: 32828906 DOI: 10.1016/j.taap.2020.115208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Chunyu Su
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Zhezhe Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Rui Han
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yu Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Yonglin Gao
- School of Life Science, Yantai University, Yantai 264005, China.
| |
Collapse
|
8
|
Zarkowski PA. Relative prevalence of 10 types of pharmacodynamic interactions in psychiatric treatment. Int J Psychiatry Med 2020; 55:82-104. [PMID: 31470752 DOI: 10.1177/0091217419870669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To assess the relative prevalence and factors affecting the prescription of medication combinations with a theoretical efficacy limiting pharmacodynamic interaction, defined as two medications with opposing indications and side effects or antagonistic action at the primary receptor of mechanism of action. METHOD One hundred sixteen combinations were identified for 10 types of pharmacodynamic interactions. PubMed was searched for each combination to assess the quality of evidence either supporting clinical use or verifying reduced efficacy. Micromedex was searched to determine the presence of warnings to prescribers of reduced efficacy. The prevalence in clinical practice was determined by computer review of the Genoa Healthcare database for all prescribers at 10 participating community mental health centers. The expected prevalence was calculated as the product of the probability of each medication prescribed alone and was compared with the actual prevalence of the combination using the test of proportions. RESULTS The frequency of prescription of eight combinations met the Bonferroni corrected level of significance of p < 0.001. Four were combinations of amphetamine and D2 antagonists and each were prescribed less often than chance, p = 0.0001 consistent with epidemiological studies and multiple animal studies verifying an efficacy limiting interaction. Despite epidemiological studies indicating increased risk of accidents, alprazolam and amphetamine were prescribed more often than chance, p = 0.0001. Micromedex generated warnings for efficacy limiting interactions for five other combinations, but with no subsequent change in prescription frequency. CONCLUSIONS Neither presence of medical evidence nor warnings from Micromedex consistently affect the prescription of combinations with pharmacodynamic efficacy limiting interactions.
Collapse
Affiliation(s)
- Paul A Zarkowski
- Department of Psychiatry and Behavioral Sciences, Harborview Medical Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
10
|
Alterations in brain neurocircuitry following treatment with the chemotherapeutic agent paclitaxel in rats. NEUROBIOLOGY OF PAIN 2019; 6:100034. [PMID: 31223138 PMCID: PMC6565758 DOI: 10.1016/j.ynpai.2019.100034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/09/2019] [Accepted: 05/26/2019] [Indexed: 12/21/2022]
Abstract
Imaging the reorganization of pain neural circuitry within 8 days of chemotherapy. Using rat model of neuropathy with multimodal MRI. Showing loss of anticorrelation between prefrontal cortex and PAG. Identifying the interaction between periaqueductal gray and brainstem raphe.
Human and animal studies suggest that both traumatic nerve injury and toxic challenge with chemotherapeutic agents involves the reorganization of neural circuits in the brain. However, there have been no prospective studies, human or animal, using magnetic resonance imaging (MRI) to identify changes in brain neural circuitry that accompany the development of chemotherapy-induced neuropathic pain (i.e. within days following cessation of chemotherapy treatment and without the confound cancer). To this end, different MRI protocols were used to ascertain whether a reorganization of brain neural circuits is observed in otherwise normal rats exposed to the taxane chemotherapeutic agent paclitaxel. We conducted an imaging study to evaluate the impact of a well-established paclitaxel dosing regimen, validated to induce allodynia in control rats within eight days of treatment, on brain neural circuitry. Rats received either paclitaxel (2 mg/kg/day i.p; cumulative dose of 8 mg/kg) or its vehicle four times on alternate days (i.e. day 0, 2, 4, 6). Following the cessation of treatments (i.e. on day 8), all rats were tested for responsiveness to cold followed by diffusion weighted magnetic resonance imaging and assessment of resting state functional connectivity. Imaging data were analyzed using a 3D MRI rat with 173 segmented and annotated brain areas. Paclitaxel-treated rats were more sensitive to a cold stimulus compared to controls. Diffusion weighted imaging identified brain areas involved in the emotional and motivational response to chronic pain that were impacted by paclitaxel treatment. Affected brain regions included the prefrontal cortex, amygdala, hippocampus, hypothalamus and the striatum/nucleus accumbens. This putative reorganization of gray matter microarchitecture formed a continuum of brain areas stretching from the basal medial/lateral forebrain to the midbrain. Resting state functional connectivity showed reorganization between the periaqueductal gray, a key node in nociceptive neural circuitry, and connections to the brainstem. Our results, employing different imaging modalities to assess the central nervous system effects of chemotherapy, fit the theory that chronic pain is regulated by emotion and motivation and influences activity in the periaqueductal gray and brainstem to modulate pain perception.
Collapse
|
11
|
Zhong S, Zhou Z, Liang Y, Cheng X, Li Y, Teng W, Zhao M, Liu C, Guan M, Zhao C. Targeting strategies for chemotherapy-induced peripheral neuropathy: does gut microbiota play a role? Crit Rev Microbiol 2019; 45:369-393. [PMID: 31106639 DOI: 10.1080/1040841x.2019.1608905] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, often irreversible condition that produces severe neurological deficits. Emerging data suggest that chemotherapy also exerts detrimental effects on gut microbiota composition and intestinal permeability, contributing to dysbiosis and inflammation. Compared with other complications associated with chemotherapy, such as diarrhoea and mucositis, CIPN is of particular concern because it is the most common reason for terminating or suspending treatment. However, specific and effective curative treatment strategies are lacking. In this review, we provide an update on current preclinical and clinical understandings about the role of gut microbiota in CIPN. The gut microbiota serves as an intersection between the microbiome-gut-brain and the neuroimmune-endocrine axis, forming a complex network that can directly or indirectly affect key components involved in the manifestations of CIPN. Herein, we discuss several potential mechanisms within the context of the networks and summarize alterations in gut microbiome induced by chemotherapeutic drugs, providing great potential for researchers to target pathways associated with the gut microbiome and overcome CIPN.
Collapse
Affiliation(s)
- Shanshan Zhong
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Zhike Zhou
- Department of Geriatrics, The First Hospital of China Medical University , Shenyang , PR China
| | - Yifan Liang
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Xi Cheng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University , Shenyang , PR China
| | - Weiyu Teng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Mei Zhao
- Department of Cardiology, Shengjing Hospital of China Medical University , Shenyang , PR China
| | - Chang Liu
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Meiting Guan
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Chuansheng Zhao
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| |
Collapse
|
12
|
Brain permeant and impermeant inhibitors of fatty-acid amide hydrolase suppress the development and maintenance of paclitaxel-induced neuropathic pain without producing tolerance or physical dependence in vivo and synergize with paclitaxel to reduce tumor cell line viability in vitro. Pharmacol Res 2019; 142:267-282. [PMID: 30739035 DOI: 10.1016/j.phrs.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/22/2018] [Accepted: 02/01/2019] [Indexed: 12/19/2022]
Abstract
Activation of cannabinoid CB1 receptors suppresses pathological pain but also produces unwanted side effects, including tolerance and physical dependence. Inhibition of fatty-acid amide hydrolase (FAAH), the major enzyme catalyzing the degradation of anandamide (AEA), an endocannabinoid, and other fatty-acid amides, suppresses pain without unwanted side effects typical of direct CB1 agonists. However, FAAH inhibitors have failed to show efficacy in several clinical trials suggesting that the right partnership of FAAH inhibition and pathology has yet to be identified. We compared efficacy of chronic treatments with a centrally penetrant FAAH inhibitor (URB597), a peripherally restricted FAAH inhibitor (URB937) and an orthosteric pan-cannabinoid agonist (WIN55,212-2) in suppressing neuropathic pain induced by the chemotherapeutic agent paclitaxel. Each FAAH inhibitor suppressed the development of paclitaxel-induced neuropathic pain and reduced the maintenance of already established allodynia with sustained efficacy. Tolerance developed to the anti-allodynic efficacy of WIN55,212-2, but not to that of URB597 or URB937, in each dosing paradigm. Challenge with the CB1 antagonist rimonabant precipitated CB1-dependent withdrawal in paclitaxel-treated mice receiving WIN55,212-2 but not URB597 or URB937. When dosing with either URB597 or URB937 was restricted to the development of neuropathy, paclitaxel-induced allodynia emerged following termination of drug delivery. These observations suggest that both FAAH inhibitors were anti-allodynic rather than curative. Moreover, neither URB597 nor URB937 impeded the ability of paclitaxel to reduce breast (4T1) or ovarian (HeyA8) tumor cell line viability. In fact, URB597 and URB937 alone reduced 4T1 tumor cell line viability, albeit with low potency, and the dose matrix of each combination with paclitaxel was synergistic in reducing 4T1 and HeyA8 tumor cell line viability according to Bliss, Highest Single Agent (HSA) and Loewe additivity models. Both FAAH inhibitors synergized with paclitaxel to reduce 4T1 and HeyA8 tumor cell line viability without reducing viability of non-tumor HEK293 cells. Neither FAAH inhibitor reduced viability of non-tumor HEK293 cells in either the presence or absence of paclitaxel, suggesting that nonspecific cytotoxic effects were not produced by the same treatments. Our results suggest that FAAH inhibitors reduce paclitaxel-induced allodynia without the occurrence of CB1-dependence in vivo and may, in fact, enhance the anti-tumor actions of paclitaxel in vitro.
Collapse
|
13
|
Pinho BR, Reis SD, Hartley RC, Murphy MP, Oliveira JMA. Mitochondrial superoxide generation induces a parkinsonian phenotype in zebrafish and huntingtin aggregation in human cells. Free Radic Biol Med 2019; 130:318-327. [PMID: 30389496 PMCID: PMC6340810 DOI: 10.1016/j.freeradbiomed.2018.10.446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 01/21/2023]
Abstract
Superoxide generation by mitochondria respiratory complexes is a major source of reactive oxygen species (ROS) which are capable of initiating redox signaling and oxidative damage. Current understanding of the role of mitochondrial ROS in health and disease has been limited by the lack of experimental strategies to selectively induce mitochondrial superoxide production. The recently-developed mitochondria-targeted redox cycler MitoParaquat (MitoPQ) overcomes this limitation, and has proven effective in vitro and in Drosophila. Here we present an in vivo study of MitoPQ in the vertebrate zebrafish model in the context of Parkinson's disease (PD), and in a human cell model of Huntington's disease (HD). We show that MitoPQ is 100-fold more potent than non-targeted paraquat in both cells and in zebrafish in vivo. Treatment with MitoPQ induced a parkinsonian phenotype in zebrafish larvae, with decreased sensorimotor reflexes, spontaneous movement and brain tyrosine hydroxylase (TH) levels, without detectable effects on heart rate or atrioventricular coordination. Motor phenotypes and TH levels were partly rescued with antioxidant or monoaminergic potentiation strategies. In a HD cell model, MitoPQ promoted mutant huntingtin aggregation without increasing cell death, contrasting with the complex I inhibitor rotenone that increased death in cells expressing either wild-type or mutant huntingtin. These results show that MitoPQ is a valuable tool for cellular and in vivo studies of the role of mitochondrial superoxide generation in redox biology, and as a trigger or co-stressor to model metabolic and neurodegenerative disease phenotypes.
Collapse
Affiliation(s)
- Brígida R Pinho
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sara D Reis
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Richard C Hartley
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jorge M A Oliveira
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT London, UK.
| |
Collapse
|
14
|
Slivicki RA, Xu Z, Kulkarni PM, Pertwee RG, Mackie K, Thakur GA, Hohmann AG. Positive Allosteric Modulation of Cannabinoid Receptor Type 1 Suppresses Pathological Pain Without Producing Tolerance or Dependence. Biol Psychiatry 2018; 84:722-733. [PMID: 28823711 PMCID: PMC5758437 DOI: 10.1016/j.biopsych.2017.06.032] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/02/2017] [Accepted: 06/22/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Activation of cannabinoid CB1 receptors suppresses pathological pain but also produces unwanted central side effects. We hypothesized that a positive allosteric modulator of CB1 signaling would suppress inflammatory and neuropathic pain without producing cannabimimetic effects or physical dependence. We also asked whether a CB1 positive allosteric modulator would synergize with inhibitors of endocannabinoid deactivation and/or an orthosteric cannabinoid agonist. METHODS GAT211, a novel CB1 positive allosteric modulator, was evaluated for antinociceptive efficacy and tolerance in models of neuropathic and/or inflammatory pain. Cardinal signs of direct CB1-receptor activation were evaluated together with the propensity to induce reward or aversion and physical dependence. Comparisons were made with inhibitors of endocannabinoid deactivation (JZL184, URB597) or an orthosteric cannabinoid agonist (WIN55,212-2). All studies used 4 to 11 subjects per group. RESULTS GAT211 suppressed allodynia induced by complete Freund's adjuvant and the chemotherapeutic agent paclitaxel in wild-type but not CB1 knockout mice. GAT211 did not impede paclitaxel-induced tumor cell line toxicity. GAT211 did not produce cardinal signs of direct CB1-receptor activation in the presence or absence of pathological pain. GAT211 produced synergistic antiallodynic effects with fatty acid amide hydrolase and monoacylglycerol lipase inhibitors in paclitaxel-treated mice. Therapeutic efficacy was preserved over 19 days of chronic dosing with GAT211, but it was not preserved with the monoacylglycerol lipase inhibitor JZL184. The CB1 antagonist rimonabant precipitated withdrawal in mice treated chronically with WIN55,212-2 but not in mice treated with GAT211. GAT211 did not induce conditioned place preference or aversion. CONCLUSIONS Positive allosteric modulation of CB1-receptor signaling shows promise as a safe and effective analgesic strategy that lacks tolerance, dependence, and abuse liability.
Collapse
Affiliation(s)
- Richard A. Slivicki
- Program in Neuroscience, Center for Drug Discovery, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts,Psychological and Brain Sciences, Center for Drug Discovery, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts
| | - Zhili Xu
- Psychological and Brain Sciences, Center for Drug Discovery, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts
| | - Pushkar M. Kulkarni
- Department of Pharmaceutical Sciences, Center for Drug Discovery, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts
| | | | - Ken Mackie
- Program in Neuroscience, Center for Drug Discovery, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts,Psychological and Brain Sciences, Center for Drug Discovery, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts,Gill Center for Biomolecular Science, Bloomington, Indiana
| | - Ganesh A. Thakur
- Department of Pharmaceutical Sciences, Center for Drug Discovery, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts
| | - Andrea G. Hohmann
- Program in Neuroscience, Center for Drug Discovery, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts,Psychological and Brain Sciences, Center for Drug Discovery, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts,Gill Center for Biomolecular Science, Bloomington, Indiana
| |
Collapse
|
15
|
Targeting the Endocannabinoid System for Prevention or Treatment of Chemotherapy-Induced Neuropathic Pain: Studies in Animal Models. Pain Res Manag 2018; 2018:5234943. [PMID: 30147813 PMCID: PMC6083482 DOI: 10.1155/2018/5234943] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022]
Abstract
There is a scarcity of drugs to either prevent or properly manage chemotherapy-induced neuropathic pain (CINP). Cannabis or cannabinoids have been reported to improve pain measures in patients with neuropathic pain. For this review, a search was done in PubMed for papers that examined the expression of and/or evaluated the use of cannabinoids or drugs that prevent or treat established CINP in a CB receptor-dependent manner in animal models. Twenty-eight articles that fulfilled the inclusion and exclusion criteria established were analysed. Studies suggest there is a specific deficiency of endocannabinoids in the periphery during CINP. Inhibitors of FAAH and MGL, enzymes that degrade the endocannabinoids, CB receptor agonists, desipramine, and coadministered indomethacin plus minocycline were found to either prevent the development and/or attenuate established CINP in a CB receptor-dependent manner. The studies analysed suggest that targeting the endocannabinoid system for prevention and treatment of CINP is a plausible therapeutic option. Almost 90% of the studies on animal models of CINP analysed utilised male rodents. Taking into consideration clinical and experimental findings that show gender differences in the mechanisms involved in pain including CINP and in response to analgesics, it is imperative that future studies on CINP utilise more female models.
Collapse
|
16
|
Panoz-Brown D, Carey LM, Smith AE, Gentry M, Sluka CM, Corbin HE, Wu JE, Hohmann AG, Crystal JD. The chemotherapeutic agent paclitaxel selectively impairs reversal learning while sparing prior learning, new learning and episodic memory. Neurobiol Learn Mem 2017; 144:259-270. [PMID: 28811227 DOI: 10.1016/j.nlm.2017.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022]
Abstract
Chemotherapy is widely used to treat patients with systemic cancer. The efficacy of cancer therapies is frequently undermined by adverse side effects that have a negative impact on the quality of life of cancer survivors. Cancer patients who receive chemotherapy often experience chemotherapy-induced cognitive impairment across a variety of domains including memory, learning, and attention. In the current study, the impact of paclitaxel, a taxane derived chemotherapeutic agent, on episodic memory, prior learning, new learning, and reversal learning were evaluated in rats. Neurogenesis was quantified post-treatment in the dentate gyrus of the same rats using immunostaining for 5-Bromo-2'-deoxyuridine (BrdU) and Ki67. Paclitaxel treatment selectively impaired reversal learning while sparing episodic memory, prior learning, and new learning. Furthermore, paclitaxel-treated rats showed decreases in markers of hippocampal cell proliferation, as measured by markers of cell proliferation assessed using immunostaining for Ki67 and BrdU. This work highlights the importance of using multiple measures of learning and memory to identify the pattern of impaired and spared aspects of chemotherapy-induced cognitive impairment.
Collapse
Affiliation(s)
- Danielle Panoz-Brown
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Lawrence M Carey
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Alexandra E Smith
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Meredith Gentry
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Christina M Sluka
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Hannah E Corbin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Jie-En Wu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States.
| | - Jonathon D Crystal
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States.
| |
Collapse
|
17
|
Carey LM, Lee WH, Gutierrez T, Kulkarni PM, Thakur GA, Lai YY, Hohmann AG. Small molecule inhibitors of PSD95-nNOS protein-protein interactions suppress formalin-evoked Fos protein expression and nociceptive behavior in rats. Neuroscience 2017; 349:303-317. [PMID: 28285942 DOI: 10.1016/j.neuroscience.2017.02.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/08/2017] [Accepted: 02/27/2017] [Indexed: 11/29/2022]
Abstract
Excessive activation of NMDA receptor (NMDAR) signaling within the spinal dorsal horn contributes to central sensitization and the induction and maintenance of pathological pain states. However, direct antagonism of NMDARs produces undesirable side effects which limit their clinical use. NMDAR activation produces central sensitization, in part, by initiating a signaling cascade that activates the enzyme neuronal nitric oxide synthase (nNOS) and generates the signaling molecule nitric oxide. NMDAR-mediated activation of nNOS requires a scaffolding protein, postsynaptic density protein 95kDa (PSD95), which tethers nNOS to NMDARs. Thus, disrupting the protein-protein interaction between PSD95 and nNOS may inhibit pro-nociceptive signaling mechanisms downstream of NMDARs and suppress central sensitization while sparing unwanted side effects associated with NMDAR antagonists. We examined the impact of small molecule PSD95-nNOS protein-protein interaction inhibitors (ZL006, IC87201) on both nociceptive behavior and formalin-evoked Fos protein expression within the lumbar spinal cord of rats. Comparisons were made with ZL007, an inactive analog of ZL006, and the NMDAR antagonist MK-801. IC87201 and ZL006, but not ZL007, suppressed phase 2 of formalin-evoked pain behavior and decreased the number of formalin-induced Fos-like immunoreactive cells in spinal dorsal horn regions associated with nociceptive processing. MK-801 suppressed Fos protein expression in both dorsal and ventral horns. MK-801 produced motor ataxia in the rotarod test whereas IC87201 and ZL006 failed to do so. ZL006 but not ZL007 suppressed paclitaxel-induced mechanical and cold allodynia in a model of chemotherapy-induced neuropathic pain. Co-immunoprecipitation experiments revealed the presence of the PSD95-nNOS complex in lumbar spinal cord of paclitaxel-treated rats, although ZL006 did not reliably disrupt the complex in all subjects. The present findings validate use of putative small molecule PSD95-nNOS protein-protein interaction inhibitors as novel analgesics and demonstrate, for the first time, that these inhibitors suppress inflammation-evoked neuronal activation at the level of the spinal dorsal horn.
Collapse
Affiliation(s)
- Lawrence M Carey
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Wan-Hung Lee
- Interdisciplinary Biochemistry Program, Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, United States
| | - Tannia Gutierrez
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Pushkar M Kulkarni
- Center for Drug Discovery, and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Ganesh A Thakur
- Center for Drug Discovery, and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Yvonne Y Lai
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Anagin, Inc., Indianapolis, IN, United States
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Program in Neuroscience, Indiana University, Bloomington, IN, United States; Interdisciplinary Biochemistry Program, Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, United States; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States.
| |
Collapse
|