1
|
Hammad AM, Syaj H, Abusara OH, Khdair SI, Debas R, Hall FS. Anxiety-like behavior in rats during periods of abstinence following E-cigarette vapor and cigarette smoke exposure: Role of inflammatory cytokines and glutamate receptors. Behav Brain Res 2025; 488:115600. [PMID: 40287018 DOI: 10.1016/j.bbr.2025.115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Prolonged exposure to cigarette smoke induces changes in the glutamatergic systems as well as neuroinflammation. We examined E-cigarette vapor and cigarette smoke effects on inflammatory cytokines and metabotropic glutamate receptors. Furthermore, we investigated the behavioral changes related to E-cigarette vapor and cigarette smoke exposure through utilizing open field (OF), elevated plus maze (EPM) and light/dark (LD) tests. Male Sprague-Dawley rats were randomly assigned to three experimental groups: Control, E-cigarette, and Cigarettes groups. Exposure to either E-cigarette vapor or cigarette smoke exposure was performed for 2 hr/day, 5 days/week, for 60 days. Behavioral tests were conducted every two weeks, 24 hr after exposure, during periods of abstinence. Anxiety-like behaviors were increased following repeated periods of abstinence from E-cigarette vapor or cigarette smoke. E-cigarette vapor and cigarette smoke elevated the relative mRNA expression of nuclear factor ĸB (Nf-ĸB), interleukin 6 (Il-6), and metabolic glutamate receptor 5 (mglur5) and reduced expression of interleukin 1β (Il-1β), tumor necrosis α (Tnf-α), and metabolic glutamate receptor 2 (mglur2) in prefrontal cortex (PFC) and nucleus accumbens (NAc). Moreover, no effect was observed on nuclear factor erythroid 2 (Nrf2), metabolic glutamate receptor 1 (mglur1), or metabolic glutamate receptor 3 (mglur3) expression. E-cigarette vapor and cigarette smoke exposure can lead to abstinence-induced anxiety-like behavior partially through molecular changes in the PFC and NAc.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| | - Heba Syaj
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Osama H Abusara
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Sawsan I Khdair
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Rasha Debas
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
2
|
Rae CD, Rowlands BD, Balcar VJ. Aspartate in the Brain: A Review. Neurochem Res 2025; 50:199. [PMID: 40506607 PMCID: PMC12162812 DOI: 10.1007/s11064-025-04454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/31/2025] [Accepted: 06/03/2025] [Indexed: 06/16/2025]
Abstract
L-Aspartate (aspartic acid; C4H7NO4; 2-aminobutanedoic acid) is a non-essential α-amino acid found ubiquitously throughout the body, including in the brain. Aspartate is one of the protein-forming amino acids and the formation of tRNA-aspartate complex is catalysed by aspartyl tRNA synthetase. Free aspartate, which is the main subject of this review, plays key roles in metabolism, as an amino donor and acceptor. It contributes to the synthesis of protein, arginine and nitric oxide, asparagine, N-acetylaspartate and N-methyl-D-aspartate. Its major metabolic role in the brain is recycling reducing equivalents (protons) between the cytoplasm and mitochondrial matrix as part of the malate-aspartate shuttle. L-Aspartate's actions on synaptic receptors, as well as its possible presence in nerve terminals and synaptic vesicles, are, in principle, consistent with a role as an excitatory neurotransmitter. The evidence is far from conclusive and at times controversial. The role of D-aspartate in brain function is even less certain but, it appears that, rather than being a minor neurotransmitter, D-aspartate is more likely to be involved in fine regulation of endocrine and homeostatic processes. Much research remains to be done in this area. The diversity of its functions and chemistry make aspartate a complex molecule to investigate and measure in vivo. Perturbations of aspartate metabolism have been described in a range of neurological deficits, particularly those of white matter. Here, we examine what is known about the various roles of aspartate in brain, its metabolism, transport and compartmentation, its role as a neurotransmitter or a more general signalling molecule, and what is currently known about its role(s) in disease processes.
Collapse
Affiliation(s)
- Caroline D Rae
- Neuroscience Research Australia, Barker St, Randwick, NSW, 2031, Australia.
- School of Psychology, The University of New South Wales, Kensington, NSW, 2052, Australia.
| | - Benjamin D Rowlands
- School of Science, The University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Vladimir J Balcar
- Neuroscience Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney NSW, Sydney, NSW, Australia
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
3
|
Gan L, Ke J, Xu F, Zhou C, Li S, Chen J. Isolation, structural transformation and neuroprotective activity of abietane diterpenoids from the roots of Clerodendrum trichotomum. Fitoterapia 2025; 183:106488. [PMID: 40120983 DOI: 10.1016/j.fitote.2025.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/08/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Seven abietane diterpenoids (1-7) were isolated from the roots of Clerodendrum trichotomum, and the most abundant compounds, uncintone (1) and teuvincenone B (3), were subjected to structural modification to produce eleven derivatives (8-18). Their structures were elucidated using spectroscopic methods and quantum chemical calculations. The neuroprotective activities of these diterpenoids were assessed using HT22 cell models damaged by glutamate and acrolein. Most compounds exhibited promising neuroprotective effects against neuronal injury induced by these toxins at a concentration of 10 μM. These findings provide a promising basis for the further investigation of abietane diterpenoids as candidates in neuroprotective drug development.
Collapse
Affiliation(s)
- Lishe Gan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medicinal University, Hangzhou 311400, China; School of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianghuan Ke
- School of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan Xu
- School of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Changxin Zhou
- School of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuying Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medicinal University, Hangzhou 311400, China
| | - Jing Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medicinal University, Hangzhou 311400, China.
| |
Collapse
|
4
|
Chu Z, Chen Y, Xie D, Song C, Yang L, Qin T, Zhai Z, Cao Z, Xu Y, Sun T. Ethanol extract of Moschus attenuates glutamate-induced cytotoxicity in HT22 cells by regulating the Nrf2 and MAPK pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119879. [PMID: 40288659 DOI: 10.1016/j.jep.2025.119879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moschus is a traditional Chinese materia medica for treating central nervous system disorders. Oxidative stress is a key pathogenic mechanism of Alzheimer's disease (AD) and serves as a critical bridge linking various pathological processes of AD. Previous studies have shown that Moschus can exert neuroprotective effects by inhibiting glutamate-induced neuronal cell damage. However, its underlying mechanisms remain unclear. AIM OF THE STUDY This study aimed to evaluate the effects and potential mechanisms of the ethanol extract of Moschus (EEM) on glutamate-induced oxidative damage in HT22 cells. MATERIALS AND METHODS The components of EEM were identified using GC-MS. An oxidative toxicity cell model was established by exposing HT22 cells to glutamate. Cell viability was assessed through CCK8 and LDH assays, and the modes of cell death were evaluated using FITC-Annexin V staining and TUNEL assays. Intracellular and mitochondrial ROS levels were measured with DCFH-DA and MitoSOX Red probes. Intracellular Ca2+ levels were measured with the Fluo-4 AM fluorescent probe. Mitochondrial function was analyzed using the JC-1 fluorescent probe. Protein expression levels of Bid, Calpain-1, Bax, Bcl-2, AIF, P-ERK, ERK, P-JNK, JNK, P-P38, P38, Nrf2, HO-1, Keap1, and NQO-1 were analyzed through western blotting. The distribution of AIF and Nrf2 in the cytoplasm and nucleus was examined through immunofluorescence staining. RESULTS Using GC-MS, 18 major components were identified in EEM. EEM significantly inhibited apoptosis, reduced ROS generation, and alleviated Ca2+ overload. EEM restored mitochondrial dysfunction by regulating the expression of mitochondria-related apoptotic proteins, including the downregulation of Calpain-1 and Bax, upregulation of Bid and Bcl-2, and inhibition of AIF nuclear translocation. EEM inhibited MAPK phosphorylation while activating the Nrf2/Keap1 signaling pathway. CONCLUSIONS Our study shows that EEM protects HT22 cells from glutamate-induced damage by regulating the MAPK and Nrf2 pathways, effectively reducing oxidative stress and apoptosis. In summary, this study first demonstrates at the cellular level that EEM exerts neuroprotective effects by modulating the MAPK and Nrf2 pathways. These findings provide new insights into the mechanism of Moschus against AD and establish a foundation for its potential application in AD.
Collapse
Affiliation(s)
- Zhili Chu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yubing Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Caiyou Song
- Traditional Chinese Medicine Factory Co. Ltd, Taiji Group Chongqing, Chongqing, 402284, China
| | - Lin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhenwei Zhai
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Shen X, Zhu J, Gu Y, Lu J, Zhai W, Sun L, Wu J, Yu Z. Prognostic Role of Cuproptosis-Related Gene after Intracerebral Hemorrhage in Mice. Cell Mol Neurobiol 2025; 45:48. [PMID: 40402195 PMCID: PMC12098221 DOI: 10.1007/s10571-025-01571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
Intracerebral hemorrhage (ICH) is a highly fatal form of stroke for which there are limited effective treatments. Cuproptosis, a newly discovered type of programmed cell death, has not yet been investigated in relation to ICH. Thus, the main goal of our study was to investigate the involvement of cuproptosis-related genes (CRGs) in predicting the early outcomes of ICH. We used datasets GSE228222 and GSE200575 from the Gene Expression Omnibus (GEO) database to identify and analyze differentially expressed genes (DEGs) between ICH samples and control samples from mice. From this analysis, seven cuproptosis-related DEGs (CuDEGs) were identified: pyruvate dehydrogenase E1 component subunit alpha (Pdha1), glutaminase (Gls), dihydrolipoamide dehydrogenase (Dld), pyruvate dehydrogenase E1 component subunit beta (Pdhb), dihydrolipoamide S-acetyltransferase (Dlat), metal regulatory transcription factor 1(Mtf1), and solute carrier family 31 member 1 (Slc31a1). Pathway enrichment analysis connected these genes to metabolic pathways, while immune cell infiltration analysis revealed increased macrophages and naive CD8 T cells alongside reduced NK resting cells and CD4 T cells in ICH samples. Verification through qRT-PCR and immunohistochemistry demonstrated a lower expression of CuDEGs in ICH samples. Of particular note, Gls, a gene significantly linked to both cuproptosis and immune regulation, exhibited reduced expression, possibly reflecting a protective response to limit glutamate production and mitigate neuronal damage. In summary, Gls emerges as a promising target for improving ICH outcomes by regulating cuproptosis and immune activity. This research provides novel insights into the molecular processes involved in ICH and suggests potential therapeutic approaches.
Collapse
Affiliation(s)
- Xi Shen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiandong Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Yuhang Gu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinxin Lu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiwei Zhai
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Sun
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang Wu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Zhengquan Yu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Crocker KE, Henderson SH, Capstick RA, Whomble DL, Bender AM, Felts AS, Han C, Engers JL, Billard NB, Maurer MA, Cho HP, Rodriguez AL, Niswender CM, O’Neill J, Watson KJ, Chang S, Blobaum AL, Boutaud O, Peng W, Rook JM, Conn PJ, Lindsley CW, Temple KJ. Discovery of Thieno[3,2- b]pyridine-5-carboxamide and 2,3-Difluorobenzamide Negative Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5. ACS Med Chem Lett 2025; 16:865-874. [PMID: 40365396 PMCID: PMC12067350 DOI: 10.1021/acsmedchemlett.5c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
This Letter describes the discovery of novel mGlu5 NAMs VU6031545 and VU6024945. Starting from previously reported picolinamide compounds, a structure-activity relationship study of various core isosteres was conducted, leading to the identification of thieno[3,2-b]pyridine-5-carboxamide and 2,3-difluorobenzamide as competent core replacements. These compounds are highly potent as well as brain penetrant with an IVIVC agreement and improved oral bioavailability in rats.
Collapse
Affiliation(s)
- Katherine E. Crocker
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Scott H. Henderson
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Rory A. Capstick
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - David L. Whomble
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Aaron M. Bender
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Andrew S. Felts
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Changho Han
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Julie L. Engers
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Natasha B. Billard
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Mallory A. Maurer
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Hyekyung P. Cho
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Alice L. Rodriguez
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jordan O’Neill
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Katherine J. Watson
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Sichen Chang
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Anna L. Blobaum
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Olivier Boutaud
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Weimin Peng
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jerri M. Rook
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kayla J. Temple
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
7
|
Xu FF, Shang Y, Wei HQ, Zhang WY, Wang LX, Hu T, Zhang SQ, Li YL, Shang HH, Hou WB, Gou WF, Fan SJ, Li YL. Ursolic acid derivative UA312 ameliorates ionizing radiation-induced cardiotoxicity and neurodevelopmental toxicity in zebrafish via targeting chrna3 and grik5. Acta Pharmacol Sin 2025:10.1038/s41401-025-01564-0. [PMID: 40295836 DOI: 10.1038/s41401-025-01564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
The biological damage caused by ionizing radiation (IR) depends not only on the time and doses of exposure to tissue components but also on the developmental state of the cells. Currently, amifostine is the only radiation-protective agent used for clinical indications related to radiation therapy, but this compound has multiple drawbacks including high toxicity, short half-life and no protective effect on the nervous system. Ursolic acid (UA), a natural pentacyclic triterpenoid that exhibits multiple protective effects including anti-inflammatory, anticarcinogenic, and antioxidant effects. Due to its poor solubility and bioavailability, UA is mostly administered with liposomes. In this study we investigated the impact of UA312, an optimized derivative of UA, on radiation-induced developmental toxicity in zebrafish embryos and larvae. Embryo and larvae survival were observed at 4, 24, 48, and 72 hpf. UA312 was administered at 3 hpf, while embryos were irradiated with 6 Gy of γ-irradiation (dose rate: 0.88 Gy/min) at 4 hpf, then the embryos were moved to a fresh buffer. We determined that 40 µM of UA312 was a safe concentration for zebrafish embryos and larvae. We found that treatment with UA312 (40 µM) restored IR-induced early developmental dysplasia of the zebrafish embryos and larvae. Transcriptomic analysis revealed that exposure to IR inhibited multiple pathways related to neurodevelopment and cardiomyocyte function in zebrafish, which were validated by assessing abnormal cardiac morphology, variations in neurotransmitter levels and alterations in locomotor behavior; and that UA312 treatment ameliorated these alterations. We demonstrated that UA312 treatment significantly reversed the related signaling pathways by targeting chrna3 and grik5. In conclusion, this study identified a promising radioprotective drug, UA312, which alleviates IR-induced cardiotoxicity and neurodevelopmental toxicity in zebrafish by targeting chrna3 and grik5. UA312 may be developed as a novel radioprotective agent against acute IR damage in humans.
Collapse
Affiliation(s)
- Fei-Fei Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yue Shang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Hui-Qiang Wei
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Wei-Ying Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, 300071, China
| | - Li-Xing Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tong Hu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shu-Qin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yan-Li Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Hai-Hua Shang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Wen-Bin Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Wen-Feng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Sai-Jun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Yi-Liang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
8
|
Kachemov M, Vaibhav V, Smith C, Sundararaman N, Heath M, Pendlebury DF, Matlock A, Lau A, Morozko E, Lim RG, Reidling J, Steffan JS, Van Eyk JE, Thompson LM. Dysregulation of protein SUMOylation networks in Huntington's disease R6/2 mouse striatum. Brain 2025; 148:1212-1227. [PMID: 39391934 PMCID: PMC11969464 DOI: 10.1093/brain/awae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/13/2024] [Accepted: 09/21/2024] [Indexed: 10/12/2024] Open
Abstract
Huntington's disease is a neurodegenerative disorder caused by an expanded CAG repeat mutation in the Huntingtin (HTT) gene. The mutation impacts neuronal protein homeostasis and cortical/striatal circuitry. SUMOylation is a post-translational modification with broad cellular effects including via modification of synaptic proteins. Here, we used an optimized SUMO protein-enrichment and mass spectrometry method to identify the protein SUMOylation/SUMO interaction proteome in the context of Huntington's disease using R6/2 transgenic and non-transgenic mice. Significant changes in the enrichment of SUMOylated and SUMO-interacting proteins were observed, including those involved in presynaptic function, cytomatrix at the active zone, cytoskeleton organization and glutamatergic signalling. Mitochondrial and RNA-binding proteins also showed altered enrichment. Modified SUMO-associated pathways in Huntington's disease tissue include clathrin-mediated endocytosis signalling, synaptogenesis signalling, synaptic long-term potentiation and SNARE signalling. To evaluate how modulation of SUMOylation might influence functional measures of neuronal activity in Huntington's disease cells in vitro, we used primary neuronal cultures from R6/2 and non-transgenic mice. A receptor internalization assay for the metabotropic glutamate receptor 7 (mGLUR7), a SUMO-enriched protein in the mass spectrometry, showed decreased internalization in R6/2 neurons compared to non-transgenic neurons. SiRNA-mediated knockdown of the E3 SUMO ligase protein inhibitor of activated STAT1 (Pias1), which can SUMO modify mGLUR7, reduced this Huntington's disease phenotype. In addition, microelectrode array analysis of primary neuronal cultures indicated early hyperactivity in Huntington's disease cells, while later time points demonstrated deficits in several measurements of neuronal activity within cortical neurons. Huntington's disease phenotypes were rescued at selected time points following knockdown of Pias1. Collectively, our results provide a mouse brain SUMOome resource and show that significant alterations occur within the post-translational landscape of SUMO-protein interactions of synaptic proteins in Huntington's disease mice, suggesting that targeting of synaptic SUMO networks may provide a proteostatic systems-based therapeutic approach for Huntington's disease and other neurological disorders.
Collapse
Affiliation(s)
- Marketta Kachemov
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Vineet Vaibhav
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Charlene Smith
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92868, USA
| | - Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Marie Heath
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Devon F Pendlebury
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Andrea Matlock
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alice Lau
- Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA
| | - Eva Morozko
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Ryan G Lim
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Jack Reidling
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Joan S Steffan
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92868, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leslie M Thompson
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92868, USA
- Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
9
|
López-Merino E, Fernández-Rodrigo A, Jiang JG, Gutiérrez-Eisman S, Fernández de Sevilla D, Fernández-Medarde A, Santos E, Guerra C, Barbacid M, Esteban JA, Briz V. Different Ras isoforms regulate synaptic plasticity in opposite directions. EMBO J 2025; 44:2106-2133. [PMID: 39984756 PMCID: PMC11961722 DOI: 10.1038/s44318-025-00390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/23/2025] Open
Abstract
The small GTPase Ras is an intracellular signaling hub required for long-term potentiation (LTP) in the hippocampus and for memory formation. Genetic alterations in Ras signaling (i.e., RASopathies) are linked to cognitive disorders in humans. However, it remains unclear how Ras controls synaptic plasticity, and whether different Ras isoforms play overlapping or distinct roles in neurons. Using genetically modified mice, we show here that H-Ras (the most abundant isoform in the brain) does not promote LTP, but instead long-term depression mediated by metabotropic glutamate receptors (mGluR-LTD). Mechanistically, H-Ras is activated locally in spines during mGluR-LTD via c-Src, and is required to trigger Erk activation and de novo protein synthesis. Furthermore, H-Ras deletion impairs object recognition as well as social and spatial memory. Conversely, K-Ras is the isoform specifically required for LTP. This functional specialization correlates with a differential synaptic distribution of the two isoforms H-Ras and K-Ras, which may have important implications for RASopathies and cognitive function.
Collapse
Affiliation(s)
| | - Alba Fernández-Rodrigo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Inserm Université de Bordeaux, U1215 Neurocentre Magendie, Bordeaux, France
| | - Jessie G Jiang
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | | | | | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
- CIBERONC (Instituto de Salud Carlos III), Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
- CIBERONC (Instituto de Salud Carlos III), Madrid, Spain
| | - Carmen Guerra
- CIBERONC (Instituto de Salud Carlos III), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Mariano Barbacid
- CIBERONC (Instituto de Salud Carlos III), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - José A Esteban
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| | - Víctor Briz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
- Centro Nacional de Sanidad Ambiental (Instituto de Salud Carlos III), Majadahonda, Madrid, Spain.
| |
Collapse
|
10
|
Karsan N, Luiza Bastos A, Goadsby PJ. Glutamate as a Therapeutic Substrate in Migraine. Int J Mol Sci 2025; 26:3023. [PMID: 40243659 PMCID: PMC11988557 DOI: 10.3390/ijms26073023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Recurrent and intense headache is a well appreciated cardinal feature of migraine, a common and incapacitating neurological disorder. Often, there are associated canonical sensory abnormalities, such as light and sound sensitivity, as well as associated nausea. Given this phenotype of disordered sensory processing and, in a third of patients, the phenomenon called aura accompanying migraine attacks, it has been suggested that the pathophysiology of migraine is likely to involve glutamate, the main excitatory neurotransmitter in the central nervous system (CNS). Glutamate plays a role in nociception, central sensitization, and cortical spreading depression (CSD), three processes that are deemed important in migraine biology. With an emphasis on the therapeutic potential of targeting various glutamate receptors in migraine, this review will discuss the currently available literature and emerging findings on the role of targeting glutamatergic pathways for the treatment of migraine. A thorough literature review was carried out on the functions of both metabotropic glutamate receptors (mGluRs), and the ionotropic glutamate receptors (NMDA, AMPA, and kainate) in migraine pathogenesis. The ever-present need for new treatments, the role of glutamate in the migraine aura phenomenon, and the consequences of monogenic migraine mutations on mediating prolonged, complex, or permanent aura are all discussed, culminating in a suggestion that glutamatergic targeting may hold particular promise in the management of migraine aura. There are plausible roles for metabotropic receptors in regulating pain processing in important migraine-related brain structures, like the thalamus and trigeminal nucleus. Similarly, ionotropic receptors contribute to excitatory neurotransmission and neuronal hyperexcitability. Recent studies have shown preclinical and early clinical results for treatments targeting these receptors, but there are still significant issues with treatment response, including drug transport, side effects, and efficacy. With ongoing and emerging discoveries in the field, there is increasing promise of new migraine medications targeting glutamate receptors. For bench to bedside translation in this area, continued study of the molecular basis of migraine, receptor subtypes, and exploration of potential drug delivery methods are needed.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (A.L.B.)
| | - Alves Luiza Bastos
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (A.L.B.)
| | - Peter J. Goadsby
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (A.L.B.)
- NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, King’s College Hospital, London SE5 9RS, UK
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Begh MZA, Amin MA, Shatu MM, Sweilam SH, Puri S, Ramesh RB, Arjun UVNV, Shanmugarajan TS, Pommala N, Durairaj A, Ethiraj S, Shenbakadurai N, Ahmad I, Emran TB. Unraveling Berberine's Molecular Mechanisms in Neuroprotection Against Neurodegeneration. Chem Biodivers 2025:e202500170. [PMID: 40128128 DOI: 10.1002/cbdv.202500170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/26/2025]
Abstract
Neurodegenerative diseases (NDs) exhibit significant global public health challenges due to the lack of effective treatments. Berberine (BBR), a natural alkaloid compound in various plants, has been recognized for its potential neuroprotective properties. This review explores the current understanding of BBR's mechanisms of action and its therapeutic potential in preventing and treating NDs such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. BBR's neuroprotective properties are attributed to its multifaceted actions, including anti-inflammatory, antioxidant, antiapoptotic, and neurotrophic effects. In addition, BBR can influence many signaling pathways involved in neurodegeneration, including AMP-activated protein kinase (AMPK), nuclear factor erythroid 2-related factor 2, and brain-derived neurotrophic factor pathways. Furthermore, BBR targets vital signaling pathways, including AMPK, PI3K/Akt, and MAPK, which are essential for developing NDs. In addition, BBR's efficacy in reducing neurodegenerative pathology and improving cognitive function has been demonstrated through preclinical studies using cellular and animal models. Clinical trials demonstrating BBR's therapeutic potential in NDs have yielded promising results, but further research is needed to confirm its safety and efficacy in humans.
Collapse
Affiliation(s)
- Md Zamshed Alam Begh
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mst Maharunnasa Shatu
- Department of Botany, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Sachin Puri
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Hyderabad, India
| | - Rathod Bhagyashri Ramesh
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Hyderabad, India
| | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India
| | - Nagaveni Pommala
- S. V. U. College of Pharmaceutical Sciences, Sri Venkateswara University, Tirupati, India
| | - Akiladevi Durairaj
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India
| | - Susithra Ethiraj
- S. V. U. College of Pharmaceutical Sciences, Sri Venkateswara University, Tirupati, India
| | - Nagarajan Shenbakadurai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
12
|
Soudy M, Bars SL, Glaab E. Sex-dependent molecular landscape of Alzheimer's disease revealed by large-scale single-cell transcriptomics. Alzheimers Dement 2025; 21:e14476. [PMID: 39737748 PMCID: PMC11848167 DOI: 10.1002/alz.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/01/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD) shows significant sex differences in prevalence and clinical manifestations, but the underlying molecular mechanisms remain unclear. METHODS This study used a large-scale, single-cell transcriptomic atlas of the human prefrontal cortex to investigate sex-dependent molecular changes in AD. Our approach combined cell type-specific and sex-specific differential gene expression analysis, pathway enrichment, gene regulatory network construction, and cell-cell communication analysis to identify sex-dependent changes. RESULTS We found significant sex-specific gene expression patterns and pathway alterations in AD. Male astrocytes showed changes in cell death pathways, with RPTOR as a key regulator, while female astrocytes had alterations in Wnt signaling and cell cycle regulation. Cell-cell communication analysis uncovered sex-specific intercellular signaling patterns, with male-specific impacts on apoptosis-related signaling and female-specific alterations in Wnt and calcium signaling. DISCUSSION This study reveals sex-dependent gene expression patterns, pathway alterations, and intercellular communication changes, suggesting the need for sex-specific approaches in AD research. HIGHLIGHTS Single-cell transcriptomics reveals significant sex-specific molecular signatures in Alzheimer's disease (AD). Male astrocytes show enhanced modulation of apoptotic and cell death pathways in AD; female astrocytes exhibit distinct alterations in Wnt signaling and cell-cycle regulation. Sex-dimorphic changes in mitochondrial gene expression are observed in excitatory neurons, suggesting divergent energy metabolism profiles may contribute to AD sex differences. RPTOR is identified as a key regulator of male-specific changes in astrocytes, implicating the mechanistic target of rapamycin pathway in sex-dependent AD pathology. New cell-cell communication analyses reveal sex-specific patterns of intercellular signaling, providing insights into how cellular interactions may differentially contribute to AD pathology in males and females.
Collapse
Affiliation(s)
- Mohamed Soudy
- Biomedical Data Science GroupLuxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Sophie Le Bars
- Biomedical Data Science GroupLuxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Enrico Glaab
- Biomedical Data Science GroupLuxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgEsch‐sur‐AlzetteLuxembourg
| |
Collapse
|
13
|
Childress E, Capstick RA, Crocker KE, Ledyard ML, Bender AM, Maurer MA, Billard NB, Cho HP, Rodriguez AL, Niswender CM, Peng W, Rook JM, Chang S, Blobaum AL, Boutaud O, Thompson Gray A, Jones CK, Conn PJ, Felts AS, Lindsley CW, Temple KJ. Discovery of 4-(5-Membered)Heteroarylether-6-methylpicolinamide Negative Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5. ACS Med Chem Lett 2024; 15:2210-2219. [PMID: 39691522 PMCID: PMC11647725 DOI: 10.1021/acsmedchemlett.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024] Open
Abstract
This Letter details our efforts to develop novel, non-acetylene-containing metabotropic glutamate receptor subtype 5 (mGlu5) negative allosteric modulators (NAMs) with improved pharmacological properties. This endeavor involved replacing the ether-linked pyrimidine moiety, a metabolic liability, with various 5-membered heterocycles. From this exercise, we identified VU6043653, a highly brain penetrant and selective mGlu5 NAM which displayed moderate potency against both human and rat mGlu5. Moreover, VU6043653 has overall improved pharmacological and drug metabolism and pharmacokinetic profiles when compared to its predecessor compounds. Most notably, VU6043653 exhibits low predicted human hepatic clearance, a clean cytochrome P450 profile, and minimal inhibition of the dopamine transporter.
Collapse
Affiliation(s)
- Elizabeth
S. Childress
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Rory A. Capstick
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Katherine E. Crocker
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Miranda L. Ledyard
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Aaron M. Bender
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Mallory A. Maurer
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Natasha B. Billard
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Hyekyung P. Cho
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Alice L. Rodriguez
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Weimin Peng
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jerri M. Rook
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Sichen Chang
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Anna L. Blobaum
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Olivier Boutaud
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Analisa Thompson Gray
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Carrie K. Jones
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Andrew S. Felts
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kayla J. Temple
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
14
|
Stachowicz K. Interactions between metabotropic glutamate and CB1 receptors: implications for mood, cognition, and synaptic signaling based on data from mGluR and CB1R-targeting drugs. Pharmacol Rep 2024; 76:1286-1296. [PMID: 38941064 PMCID: PMC11582162 DOI: 10.1007/s43440-024-00612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Metabotropic glutamate receptors (mGluRs) are part of the G protein-coupled receptors (GPCRs) family. They are coupled to Gαq (group I) or Gi/o (groups II and III) proteins, which result in the generation of diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3) or the inhibition of adenylyl cyclase, respectively. mGluRs have been implicated in anxiety, depression, learning, and synaptic plasticity. Similarly, CB1 cannabinoid receptors (CB1Rs), also GPCRs, play roles in cognitive function and mood regulation through Gαi/o-mediated inhibition of adenylyl cyclase. Both mGluRs and CB1Rs exhibit surface labeling and undergo endocytosis. Given the similar cellular distribution and mechanisms of action, this review complies with fundamental data on the potential interactions and mutual regulation of mGluRs and CB1Rs in the context of depression, anxiety, and cognition, providing pioneering insights into their interplay.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| |
Collapse
|
15
|
Jamali E, Harsij A, Yarahmadi M, Bidari-Zerehpoush F, Gholinezhad Y, Eslami S, Farahzadi H, Agahi F, Fathi M, Ghafouri-Fard S, Samadian M. Impact of GRM7 gene variations on glioblastoma risk in the Iranian population. Mol Cell Probes 2024; 78:101996. [PMID: 39643066 DOI: 10.1016/j.mcp.2024.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
AIM The metabotropic glutamate receptor, GRM7 is a gene in the neurotransmitters prognostic signatures. Downregulation of this gene is associated with the progression of glioma tumors and has a negative impact on the immune response. METHODS In the present study, we aim to assess the associations between rs6782011 and rs779867 SNPs within this gene and risk of glioblastoma multiforme (GBM) in Iranian population. RESULTS There was a noteworthy difference in distribution of genotypes (P value = 0.001) and alleles (P value = 0.0002) of rs779867 between total GBM cases (n = 299) and total normal controls (n = 302). In addition, the significant difference in genotypes and alleles distribution was observed for both male and female GBM cases vs. respective normal controls. For rs6782011 variant, the significant difference in genotypes distribution was observed between male GBM cases (n = 187) vs. respective normal controls (n = 156) (P value = 0.004) and between total GBM cases (n = 299) vs. total normal controls (n = 302) (P value = 0.02). However, there was no significant difference in genotypes distribution between female GBM cases and respective normal controls (P value = 0.1). Distribution of rs6782011 alleles was not different between total GBM cases and normal controls; and between male GBM cases and male normal controls. However, there was a significant difference in alleles distribution between female GBM cases and female normal controls. CONCLUSION Taken together, the mentioned polymorphisms might affect risk of GBM in Iranian population. Future studies are needed to elaborate the underlying mechanism.
Collapse
Affiliation(s)
- Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Harsij
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Farahnaz Bidari-Zerehpoush
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hossein Farahzadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Agahi
- Student Research Committee, Department of Occupational Therapy, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Fathi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Palazzo E, Marabese I, Ricciardi F, Guida F, Luongo L, Maione S. The influence of glutamate receptors on insulin release and diabetic neuropathy. Pharmacol Ther 2024; 263:108724. [PMID: 39299577 DOI: 10.1016/j.pharmthera.2024.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Diabetes causes macrovascular and microvascular complications such as peripheral neuropathy. Glutamate regulates insulin secretion in pancreatic β-cells, and its increased activity in the central nervous system is associated with peripheral neuropathy in animal models of diabetes. One strategy to modulate glutamatergic activity consists in the pharmacological manipulation of metabotropic glutamate receptors (mGluRs), which, compared to the ionotropic receptors, allow for a fine-tuning of neurotransmission that is compatible with therapeutic interventions. mGluRs are a family of eight G-protein coupled receptors classified into three groups (I-III) based on sequence homology, transduction mechanisms, and pharmacology. Activation of group II and III or inhibition of group I represents a strategy to counteract the glutamatergic hyperactivity associated with diabetic neuropathy. In this review article, we will discuss the role of glutamate receptors in the release of insulin and the development/treatment of diabetic neuropathy, with particular emphasis on their manipulation to prevent the glutamatergic hyperactivity associated with diabetic neuropathy.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy.
| | - Ida Marabese
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Federica Ricciardi
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
17
|
Li Y, Xiao Z, Mori W, Sun J, Yamasaki T, Rong J, Fujinaga M, Chen J, Kumata K, Zhao C, Zhang Y, Collier TL, Hu K, Xie L, Zhou X, Zhang W, Song Z, Gao Y, Sun Z, Zhang K, Patel JS, Ran C, Chaudhary A, Sheffler DJ, Cosford NDP, Zhang L, Zhai C, Haider A, Yuan H, Zhang MR, Liang SH. Radiosynthesis and preclinical evaluation of a carbon-11 labeled PET ligand for imaging metabotropic glutamate receptor 7. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:306-315. [PMID: 39583907 PMCID: PMC11578812 DOI: 10.62347/puai9230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/29/2024] [Indexed: 11/26/2024]
Abstract
Metabotropic glutamate receptor 7 (mGlu7) is a G protein-coupled receptor that is preferentially found in the active zone of neurotransmitter release in the central nervous system (CNS). mGlu7 plays a vital role in memory, learning, and neuronal development, rendering it a potential target for treating epilepsy, depression, and anxiety. The development of noninvasive imaging ligands targeting mGlu7 could help elucidate the functional significance of mGlu7 and accelerate drug discovery for neurological and psychiatric disorders. In this report, a novel carbon-11 labeled positron emission tomography (PET) tracer designated [11C]18 (codenamed MG7-2109) was synthesized via 11C-methylation in 23% decay-corrected radiochemical yield (RCY). In vitro serum stability, serum protein binding, in vitro autoradiography and ex vivo biodistribution studies of [11C]18 were conducted. Preliminary PET imaging results revealed a homogeneous distribution of [11C]18 and rapid clearance in rodent brains. This study provides valuable insights into the development of mGlu7-targeted PET tracer based on an isoxazolo(5,4-c)pyridine scaffold.
Collapse
Affiliation(s)
- Yinlong Li
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Zhiwei Xiao
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Wakana Mori
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and TechnologyChiba 263-8555, Japan
| | - Jiyun Sun
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and TechnologyChiba 263-8555, Japan
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and TechnologyChiba 263-8555, Japan
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and TechnologyChiba 263-8555, Japan
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and TechnologyChiba 263-8555, Japan
| | - Thomas L Collier
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and TechnologyChiba 263-8555, Japan
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and TechnologyChiba 263-8555, Japan
| | - Xin Zhou
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Wei Zhang
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Zhendong Song
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Yabiao Gao
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Zhenkun Sun
- Department of Pharmacology and Chemical Biology, Emory University School of MedicineAtlanta, GA 30322, USA
| | - Kuo Zhang
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Jimmy S Patel
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Department of Radiation Oncology, Winship Cancer Institute of Emory UniversityAtlanta, GA 30322, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical SchoolBoston, MA 02114, USA
| | - Ahmad Chaudhary
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Douglas J Sheffler
- Cancer Molecular Therapeutics Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Prebys Medical Discovery InstituteLa Jolla, CA 92037, USA
| | - Nicholas DP Cosford
- Cancer Molecular Therapeutics Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Prebys Medical Discovery InstituteLa Jolla, CA 92037, USA
| | - Linqi Zhang
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Chuangyan Zhai
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of MedicineAtlanta, GA 30322, USA
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and TechnologyChiba 263-8555, Japan
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical SchoolBoston, MA 02114, USA
| |
Collapse
|
18
|
Castillo-Vazquez SK, Massieu L, Rincón-Heredia R, García-de la Torre P, Quiroz-Baez R, Gomez-Verjan JC, Rivero-Segura NA. Glutamatergic Neurotransmission in Aging and Neurodegenerative Diseases: A Potential Target to Improve Cognitive Impairment in Aging. Arch Med Res 2024; 55:103039. [PMID: 38981341 DOI: 10.1016/j.arcmed.2024.103039] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Aging is characterized by the decline in many of the individual's capabilities. It has been recognized that the brain undergoes structural and functional changes during aging that are occasionally associated with the development of neurodegenerative diseases. In this sense, altered glutamatergic neurotransmission, which involves the release, binding, reuptake, and degradation of glutamate (Glu) in the brain, has been widely studied in physiological and pathophysiological aging. In particular, changes in glutamatergic neurotransmission are exacerbated during neurodegenerative diseases and are associated with cognitive impairment, characterized by difficulties in memory, learning, concentration, and decision-making. Thus, in the present manuscript, we aim to highlight the relevance of glutamatergic neurotransmission during cognitive impairment to develop novel strategies to prevent, ameliorate, or delay cognitive decline. To achieve this goal, we provide a comprehensive review of the changes reported in glutamatergic neurotransmission components, such as Glu transporters and receptors during physiological aging and in the most studied neurodegenerative diseases. Finally, we describe the current therapeutic strategies developed to target glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourdes Massieu
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Paola García-de la Torre
- 4 Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City Mexico
| | - Ricardo Quiroz-Baez
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico
| | | | | |
Collapse
|
19
|
Bossi S, Daniel H, McLean H. Interplay between metabotropic glutamate type 4 and adenosine type 1 receptors modulate synaptic transmission in the cerebellar cortex. Front Pharmacol 2024; 15:1406238. [PMID: 39211784 PMCID: PMC11358600 DOI: 10.3389/fphar.2024.1406238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The synapses between parallel fibers and Purkinje cells play a pivotal role in cerebellar function. They are intricately governed by a variety of presynaptic receptors, notably by type 4 metabotropic glutamate (mGlu4) receptors and type 1 adenosine (A1) receptors both of which curtail glutamate release upon activation. Despite their pivotal role in regulating synaptic transmission within the cerebellar cortex, functional interactions between mGlu4 and A1 receptors have remained relatively unexplored. To bridge this gap, our study delves into how mGlu4 receptor activity influences A1 receptor-mediated alterations in excitatory transmission. Employing a combination of whole-cell patch clamp recordings of Purkinje cells and parallel fiber presynaptic fluorometric calcium measurements in acute rat and mouse cerebellar cortical slices, our results reveal functional interactions between these receptor types. These findings hold implications for understanding potential roles of these presynaptic receptors in neuroprotection during pathophysiological conditions characterized by elevated glutamate and adenosine levels.
Collapse
Affiliation(s)
- Simon Bossi
- *Correspondence: Simon Bossi, ; Heather McLean,
| | | | - Heather McLean
- Institut des Neurosciences (NeuroPSI) UMR9197 CNRS, Université Paris-Saclay, Saclay, France
| |
Collapse
|
20
|
Zaki-Dizaji M, Abazari MF, Razzaghi H, Shkolnikov I, Christie BR. GRM7 deficiency, from excitotoxicity and neuroinflammation to neurodegeneration: Systematic review of GRM7 deficient patients. Brain Behav Immun Health 2024; 39:100808. [PMID: 38983774 PMCID: PMC11231722 DOI: 10.1016/j.bbih.2024.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
The metabotropic glutamate receptor 7 (mGluR7) is a presynaptic G-protein-coupled glutamate receptor that modulates neurotransmitter release and synaptic plasticity at presynaptic terminals. It is encoded by GRM7, and recently variants have been identified in patients with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), developmental delay (DD), intellectual disability (ID), and brain malformations. To gain updated insights into the function of GRM7 and the phenotypic spectrum of genetic variations within this gene, we conducted a systematic review of relevant literature utilizing PubMed, Web of Science, and Scopus databases. Among the 14 articles meeting the inclusion criteria, a total of 42 patients (from 28 families) harboring confirmed mutations in the GRM7 gene have been documented. Specifically, there were 17 patients with heterozygous mutations, 20 patients with homozygous mutations, and 5 patients with compound heterozygous mutations. Common clinical features included intellectual behavioral disability, seizure/epilepsy, microcephaly, developmental delay, peripheral hypertonia and hypomyelination. Genotype-phenotype correlation was not clear and each variant had unique characteristics including gene dosage, mutant protein surface expression, and degradation pathway that result with a spectrum of phenotype manifestations through ASD or ADHD to severe DD/ID with brain malformations. Neuroinflammation may play a role in the development and/or progression of GRM7-related neurodegeneration along with excitotoxicity. The clinical and functional data presented here demonstrate that both autosomal dominant and recessive inheritance of GRM7 mutation can cause disease spectrum phenotypes through ASD or ADHD to severe DD/ID and seizure with brain malformations.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada
| | - Hossein Razzaghi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Irene Shkolnikov
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada
| |
Collapse
|
21
|
Yang Q, Zhou X, Ma T. Isoform-specific effects of neuronal inhibition of AMPK catalytic subunit on LTD impairments in a mouse model of Alzheimer's disease. Neurobiol Aging 2024; 140:116-121. [PMID: 38763076 PMCID: PMC11179164 DOI: 10.1016/j.neurobiolaging.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
Synaptic dysfunction is highly correlated with cognitive impairments in Alzheimer's disease (AD), the most common dementia syndrome in the elderly. Long-term potentiation (LTP) and long-term depression (LTD) are two primary forms of synaptic plasticity with opposite direction of synaptic efficiency change. Both LTD and LTD are considered to mediate the cellular process of learning and memory. Substantial studies demonstrate AD-associated deficiency of both LTP and LTD. Meanwhile, the molecular signaling mechanisms underlying impairment of synaptic plasticity, particularly LTD, are poorly understood. By taking advantage of the novel transgenic mouse models recently developed in our lab, here we aimed to investigate the roles of AMP-activated protein kinase (AMPK), a central molecular senor that plays a critical role in maintaining cellular energy homeostasis, in regulation of LTD phenotypes in AD. We found that brain-specific suppression of the AMPKα1 isoform (but not AMPKα2 isoform) was able to alleviate mGluR-LTD deficits in APP/PS1 AD mouse model. Moreover, suppression of either AMPKα isoform failed to alleviate AD-related NMDAR-dependent LTD deficits. Taken together with our recent studies on roles of AMPK signaling in AD pathophysiology, the data indicate isoform-specific roles of AMPK in mediating AD-associated synaptic and cognitive impairments.
Collapse
Affiliation(s)
- Qian Yang
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xueyan Zhou
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Department of Translational Neuroscience, Wake Forest University School of Medicine, USA.
| |
Collapse
|
22
|
Zhang X, Si Y, Zhang L, Wen X, Yang C, Wang L, Song L. Involvement of metabotropic glutamate receptors in regulation of immune response in the Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109709. [PMID: 38901684 DOI: 10.1016/j.fsi.2024.109709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Metabotropic glutamate receptors (mGluRs) play a pivotal role in the neuroendocrine-immune regulation. In this study, eight mGluRs were identified in the Pacific Oyster Crassostrea gigas, which were classified into three subfamilies based on genetic similarity. All CgmGluRs harbor variable numbers of PBP1 domains at the N-terminus. The sequence and structural features of CgmGluRs are highly similar to mGluRs in other species. A uniformly upregulated expression of CgmGluRs was observed during D-shaped larval stage compared to early D-shaped larval stage. The transcripts of CgmGluRs were detectable in various tissues of oyster. Different CgmGluR exhibited diverse expression patterns response against different PAMP stimulations, among which CgmGluR5 was significantly downregulated under these stimulations, reflecting its sensitivity and broad-spectrum responsiveness to microbes. Following LPS stimulation, the mRNA expression of CgmGluR5 and CgCALM1 in haemocytes was suppressed within 6 h and returned to normal levels by 12 h. Inhibition of CgmGluR5 activity resulted in a significant reduction in CgCALM1 expression after 12 h. Further KEGG enrichment analysis suggested that CgmGluR5 might modulate calcium ion homeostasis and metabolic pathways by regulating CgCALM1. This research delivers the systematic analysis of mGluR in the Pacific Oyster, offering insights into evolutionary characteristics and immunoregulatory function of mGluR in mollusks.
Collapse
Affiliation(s)
- Xueshu Zhang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yiran Si
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linfang Zhang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Wen
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
23
|
Wang K, He L, Liu X, Wu M. Sodium p-perfluorinated noneoxybenzen sulfonate (OBS) induced neurotoxicity in zebrafish through mitochondrial dysfunction. CHEMOSPHERE 2024; 362:142651. [PMID: 38901702 DOI: 10.1016/j.chemosphere.2024.142651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Sodium p-perfluorous nonenoxybenzene sulfonate (OBS)-one of the main alternatives to perfluorooctane sulfonate-has been increasingly detected in both aquatic environments and human bodies. Therefore, the pathogenic risks of OBS exposure warrant attention, especially its central nervous system toxicity mechanism under long-term exposure. In this study, the effects and mechanisms of OBS on the zebrafish brain at 40 days post exposure were examined. The results demonstrated that at 3.2 μg/L, OBS had no significant effect on the zebrafish brain, but 32 μg/L OBS caused depression or poor social behavior in zebrafish and reduced both their memory and survival ability. These changes were accompanied by histological damage and cell apoptosis. Furthermore, OBS caused the accumulation of excessive reactive oxygen species in the fish brain, leading to oxidative stress and subsequently cell apoptosis. Moreover, an imbalance of both inflammatory factors (IL-6, IL-1β, IL-10, TNF-α, and NF-κB) and neurotransmitters (GABA and Glu) led to neuroinflammation. Additionally, 32 μg/L OBS induced decreases in mitochondrial membrane potential and Na+-K+-ATPase activity, leading to both mitochondrial structural damage and the emergence of mitochondrial autophagosomes, partly explaining the neurotoxicity of OBS. These results help to analyze the target sites and molecular mechanisms of OBS neurotoxicity and provide a basis for the scientific evaluation of its health risks to humans.
Collapse
Affiliation(s)
- Kai Wang
- Plant Protection College, Shenyang Agricultural University, Shenyang, 100866, PR China.
| | - Lu He
- Plant Protection College, Shenyang Agricultural University, Shenyang, 100866, PR China
| | - Xiaoyu Liu
- Plant Protection College, Shenyang Agricultural University, Shenyang, 100866, PR China
| | - Mengfei Wu
- Plant Protection College, Shenyang Agricultural University, Shenyang, 100866, PR China
| |
Collapse
|
24
|
Zhang YL, Jia SY, Yang B, Miao J, Su C, Cui ZG, Yang LM, Guo JH. Non-linear association of liver enzymes with cognitive performance in the elderly: A cross-sectional study. PLoS One 2024; 19:e0306839. [PMID: 39042647 PMCID: PMC11265699 DOI: 10.1371/journal.pone.0306839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/23/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Although liver metabolic dysfunction has been found to potentially elevate susceptibility to cognitive impairment and dementia, there is still insufficient evidence to explore the non-linear association of liver enzymes with cognitive performance. Therefore, we aimed to elucidate the non-linear relationship between liver enzymes and cognitive performance. METHODS In this cross-sectional study, 2764 individuals aged ≥ 60 who participated in the National Health and Nutrition Survey (NHANES) between 2011 and 2014 were included. The primary data comprised liver enzyme levels (alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), AST/ALT ratio, and gamma-glutamyl transferase (GGT)), and cognitive performance was the major measured outcome. The associations were analyzed using weighted multivariate logistic regression, subgroup analysis, a generalized additive model, smooth fitting curves, and threshold effects. RESULTS The results of the fully adjusted model indicated that ALP was negatively associated with the animal fluency test (AFT) score (OR = 1.48, 95% CI: 1.11-1.98), whereas ALT demonstrated a positive association with the consortium to establish a registry for Alzheimer's disease (CERAD) test score (OR = 0.72, 95% CI: 0.53-0.97). Additionally, the AST/ALT ratio was negatively associated with the global cognitive test (OR = 2.39, 95% CI: 1.53-3.73), CERAD (OR = 2.61, 95% CI: 1.77-3.84), and digit symbol substitution test (DSST) scores (OR = 2.51, 95% CI: 1.57-4.02). GGT was also negatively associated with the AFT score (OR = 1.16, 95% CI: 1.01-1.33) in unadjusted model. A non-linear relationship was observed between liver enzymes and the risk of cognitive impairment as assessed by the global cognitive test. Specifically, when ALP > 60 U/L, 0.77 < AST/ALT < 1.76, and 25 < GGT < 94 U/L, higher liver enzyme levels were significantly associated with an elevated cognitive impairment risk, while a lower cognitive impairment risk when ALT level was > 17 U/L. CONCLUSIONS There is a non-linear relationship between liver enzymes and cognitive performance, indicating that liver enzyme levels should be maintained within a certain level to mitigate the risk of cognitive impairment.
Collapse
Affiliation(s)
- Yan-Li Zhang
- Department of Neurological Intensive Care Unit, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, Shanxi, China
| | - Shi-Ying Jia
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bo Yang
- Department of Hernia and Abdominal Wall Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhi-Gang Cui
- Department of Neurology, The Third People’s Hospital of Datong, Datong, Shanxi, China
| | - Li-Ming Yang
- Department of Neurological Intensive Care Unit, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, Shanxi, China
| | - Jun-Hong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
25
|
Ullah I, Wang X, Li H. Novel and experimental therapeutics for the management of motor and non-motor Parkinsonian symptoms. Neurol Sci 2024; 45:2979-2995. [PMID: 38388896 DOI: 10.1007/s10072-023-07278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND : Both motor and non-motor symptoms of Parkinson's disease (PD) have a substantial detrimental influence on the patient's quality of life. The most effective treatment remains oral levodopa. All currently known treatments just address the symptoms; they do not completely reverse the condition. METHODOLOGY In order to find literature on the creation of novel treatment agents and their efficacy for PD patients, we searched PubMed, Google Scholar, and other online libraries. RESULTS According to the most recent study on Parkinson's disease (PD), a great deal of work has been done in both the clinical and laboratory domains, and some current scientists have even been successful in developing novel therapies for PD patients. CONCLUSION The quality of life for PD patients has increased as a result of recent research, and numerous innovative medications are being developed for PD therapy. In the near future, we will see positive outcomes regarding PD treatment.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
26
|
Affrald R J, Narayan S. A review: oligodendrocytes in neuronal axonal conduction and methods for enhancing their performance. Int J Neurosci 2024:1-22. [PMID: 38850232 DOI: 10.1080/00207454.2024.2362200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVES This review explores the vital role of oligodendrocytes in axon myelination and efficient neuronal transmission and the impact of dysfunction resulting from neurotransmitter deficiencies related disorders. Furthermore, the review also provides insight into the potential of bionanotechnology for addressing neurodegenerative diseases by targeting oligodendrocytes. METHODS A review of literature in the field was conducted using Google scholar. Systematic searches were performed to identify relevant studies and reviews addressing the role of oligodendrocytes in neural function, the influence of neurotransmitters on oligodendrocyte differentiation, and the potential of nanotechnology-based strategies for targeted therapy of oligodendrocytes. RESULTS This review indicates the mechanisms underlying oligodendrocyte differentiation and the influence of neurotransmitters on this process. The importance of action potentials and neurotransmission in neural function and the susceptibility of damaged nerve axons to ischemic or toxic damage is provided in detail. The potential of bionanotechnology for targeting neurodegenerative diseases using nanotechnology-based strategies, including polymeric, lipid-based, inorganic, organic, and biomimetic nanoparticles, suggests better management of neurodegenerative disorders. CONCLUSION While nanotechnology-based biomaterials show promise for targeted oligodendrocyte therapy in addressing neurodegenerative disorders linked to oligodendrocyte dysfunction, encapsulating neuroprotective agents within nanoparticles offers additional advantages. Nano-based delivery systems effectively protect drugs from degradation and prolong their therapeutic effects, holding promise in overcoming the blood-brain barrier by facilitating drug transport. However, a multifaceted approach is essential to enhance oligodendrocyte differentiation, promote myelin repair, and facilitate myelin dynamics with reduced toxicity. Further research is needed to elucidate the optimal therapeutic approaches and enhance patient outcomes.
Collapse
Affiliation(s)
- Jino Affrald R
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| | - Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| |
Collapse
|
27
|
Nicosia N, Giovenzana M, Misztak P, Mingardi J, Musazzi L. Glutamate-Mediated Excitotoxicity in the Pathogenesis and Treatment of Neurodevelopmental and Adult Mental Disorders. Int J Mol Sci 2024; 25:6521. [PMID: 38928227 PMCID: PMC11203689 DOI: 10.3390/ijms25126521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the brain wherein it controls cognitive functional domains and mood. Indeed, brain areas involved in memory formation and consolidation as well as in fear and emotional processing, such as the hippocampus, prefrontal cortex, and amygdala, are predominantly glutamatergic. To ensure the physiological activity of the brain, glutamatergic transmission is finely tuned at synaptic sites. Disruption of the mechanisms responsible for glutamate homeostasis may result in the accumulation of excessive glutamate levels, which in turn leads to increased calcium levels, mitochondrial abnormalities, oxidative stress, and eventually cell atrophy and death. This condition is known as glutamate-induced excitotoxicity and is considered as a pathogenic mechanism in several diseases of the central nervous system, including neurodevelopmental, substance abuse, and psychiatric disorders. On the other hand, these disorders share neuroplasticity impairments in glutamatergic brain areas, which are accompanied by structural remodeling of glutamatergic neurons. In the current narrative review, we will summarize the role of glutamate-induced excitotoxicity in both the pathophysiology and therapeutic interventions of neurodevelopmental and adult mental diseases with a focus on autism spectrum disorders, substance abuse, and psychiatric disorders. Indeed, glutamatergic drugs are under preclinical and clinical development for the treatment of different mental diseases that share glutamatergic neuroplasticity dysfunctions. Although clinical evidence is still limited and more studies are required, the regulation of glutamate homeostasis is attracting attention as a potential crucial target for the control of brain diseases.
Collapse
Affiliation(s)
- Noemi Nicosia
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Mattia Giovenzana
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Paulina Misztak
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
| | - Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
28
|
Lopes AR, Costa Silva DG, Rodrigues NR, Kemmerich Martins I, Paganotto Leandro L, Nunes MEM, Posser T, Franco J. Investigating the impact of Psidium guajava leaf hydroalcoholic extract in improving glutamatergic toxicity-induced oxidative stress in Danio rerio larvae. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:457-470. [PMID: 38576186 DOI: 10.1080/15287394.2024.2337366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Glutamate is one of the predominant excitatory neurotransmitters released from the central nervous system; however, at high concentrations, this substance may induce excitotoxicity. This phenomenon is involved in numerous neuropathologies. At present, clinically available pharmacotherapeutic agents to counteract glutamatergic excitotoxicity are not completely effective; therefore, research to develop novel compounds is necessary. In this study, the main objective was to determine the pharmacotherapeutic potential of the hydroalcoholic extract of Psidium guajava (PG) in a model of oxidative stress-induced by exposure to glutamate utilizing Danio rerio larvae (zebrafish) as a model. Data showed that treatment with glutamate produced a significant increase in oxidative stress, chromatin damage, apoptosis, and locomotor dysfunction. All these effects were attenuated by pre-treatment with the classical antioxidant N-acetylcysteine (NAC). Treatment with PG inhibited oxidative stress responsible for cellular damage induced by glutamate. However, exposure to PG failed to prevent glutamate-initiated locomotor damage. Our findings suggest that under conditions of oxidative stress, PG can be considered as a promising candidate for treatment of glutamatergic excitotoxicity and consequent neurodegenerative diseases.
Collapse
Affiliation(s)
- Andressa Rubim Lopes
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas - Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Dennis Guilherme Costa Silva
- Programa de Pós-Graduação em Ciências Fisiológicas - Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Nathane Rosa Rodrigues
- Grupo de Pesquisa em Bioquímica e Toxicologia Compostos Bioativos - GBToxBio, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Rio Grande do Sul, Brazil
| | - Illana Kemmerich Martins
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
| | - Luana Paganotto Leandro
- Departamento de Química, Programa de Pós-Graduação em Bioquímica Toxicológica - PPGBTox, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Mauro Eugênio Medina Nunes
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
| | - Thais Posser
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
| | - Jeferson Franco
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
| |
Collapse
|
29
|
Ma F, Li Y, Zhang Y, Zhang Q, Li X, Cao Q, Ma H, Xie D, Zhang B, Yu J, Li X, Xie Q, Wan G, Guo M, Guo J, Yin J, Liu G. Effects of umami substances as taste enhancers on salt reduction in meat products: A review. Food Res Int 2024; 185:114248. [PMID: 38658067 DOI: 10.1016/j.foodres.2024.114248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Sodium is one of the essential additives in meat processing, but excessive sodium intake may increase risk of hypertension and cardiovascular disease. However, reducing salt content while preserving its preservative effect, organoleptic properties, and technological characteristics poses challenges. In this review, the mechanism of salt reduction of umami substances was introduced from the perspective of gustation-taste interaction, and the effects of the addition of traditional umami substances (amino acids, nucleotides, organic acids(OAs)) and natural umami ingredients (mushrooms, seaweeds, tomatoes, soybeans, tea, grains) on the sensory properties of the meat with reduced-salt contents were summarized. In addition, the impacts of taste enhancers on eating quality (color, sensory, textural characteristics, and water-holding capacity (WHC)), and processing quality (lipid oxidation, pH) of meat products (MP) and their related mechanisms were also discussed. Among them, natural umami ingredients exhibit distinct advantages over traditional umami substances in terms of enhancing quality and nutritional value. On the basis of salt reduction, natural umami ingredients improve the flavor, texture, WHC and antioxidant capacity. This comprehensive review may provide the food industry with a theoretical foundation for mitigating salt consumption through the utilization of umami substances and natural ingredients.
Collapse
Affiliation(s)
- Fang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yuanlv Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qian Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaoxue Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qingqing Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Haiyang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Delang Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Bingbing Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jia Yu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaojun Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guoling Wan
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
30
|
Ugale V, Deshmukh R, Lokwani D, Narayana Reddy P, Khadse S, Chaudhari P, Kulkarni PP. GluN2B subunit selective N-methyl-D-aspartate receptor ligands: Democratizing recent progress to assist the development of novel neurotherapeutics. Mol Divers 2024; 28:1765-1792. [PMID: 37266849 PMCID: PMC10234801 DOI: 10.1007/s11030-023-10656-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play essential roles in vital aspects of brain functions. NMDARs mediate clinical features of neurological diseases and thus, represent a potential therapeutic target for their treatments. Many findings implicated the GluN2B subunit of NMDARs in various neurological disorders including epilepsy, ischemic brain damage, and neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, Huntington's chorea, and amyotrophic lateral sclerosis. Although a large amount of information is growing consistently on the importance of GluN2B subunit, however, limited recent data is available on how subunit-selective ligands impact NMDAR functions, which blunts the ability to render the diagnosis or craft novel treatments tailored to patients. To bridge this gap, we have focused on and summarized recently reported GluN2B selective ligands as emerging subunit-selective antagonists and modulators of NMDAR. Herein, we have also presented an overview of the structure-function relationship for potential GluN2B/NMDAR ligands with their binding sites and connection to CNS functionalities. Understanding of design rules and roles of GluN2B selective compounds will provide the link to medicinal chemists and neuroscientists to explore novel neurotherapeutic strategies against dysfunctions of glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Vinod Ugale
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India.
- Bioprospecting Group, Agharkar Research Institute, Pune, Maharashtra, India.
| | - Rutuja Deshmukh
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Deepak Lokwani
- Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - P Narayana Reddy
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, India
| | - Saurabh Khadse
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Prashant Chaudhari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Prasad P Kulkarni
- Bioprospecting Group, Agharkar Research Institute, Pune, Maharashtra, India.
| |
Collapse
|
31
|
Doppler CEJ, Seger A, Farrher E, Régio Brambilla C, Hensel L, Filss CP, Hellmich M, Gogishvili A, Shah NJ, Lerche CW, Neumaier B, Langen KJ, Fink GR, Sommerauer M. Glutamate Signaling in Patients With Parkinson Disease With REM Sleep Behavior Disorder. Neurology 2024; 102:e209271. [PMID: 38630966 DOI: 10.1212/wnl.0000000000209271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Clinical heterogeneity of patients with Parkinson disease (PD) is well recognized. PD with REM sleep behavior disorder (RBD) is a more malignant phenotype with faster motor progression and higher nonmotor symptom burden. However, the neural mechanisms underlying this clinical divergence concerning imbalances in neurotransmitter systems remain elusive. METHODS Combining magnetic resonance (MR) spectroscopy and [11C]ABP688 PET on a PET/MR hybrid system, we simultaneously investigated two different mechanisms of glutamate signaling in patients with PD. Patients were grouped according to their RBD status in overnight video-polysomnography and compared with age-matched and sex-matched healthy control (HC) participants. Total volumes of distribution (VT) of [11C]ABP688 were estimated with metabolite-corrected plasma concentrations during steady-state conditions between 45 and 60 minutes of the scan following a bolus-infusion protocol. Glutamate, glutamine, and glutathione levels were investigated with single-voxel stimulated echo acquisition mode MR spectroscopy of the left basal ganglia. RESULTS We measured globally elevated VT of [11C]ABP688 in 16 patients with PD and RBD compared with 17 patients without RBD and 15 HC participants (F(2,45) = 5.579, p = 0.007). Conversely, glutamatergic metabolites did not differ between groups and did not correlate with the regional VT of [11C]ABP688. VT of [11C]ABP688 correlated with the amount of REM sleep without atonia (F(1,42) = 5.600, p = 0.023) and with dopaminergic treatment response in patients with PD (F(1,30) = 5.823, p = 0.022). DISCUSSION Our results suggest that patients with PD and RBD exhibit altered glutamatergic signaling indicated by higher VT of [11C]ABP688 despite unaffected glutamate levels. The imbalance of glutamate receptors and MR spectroscopy glutamate metabolite levels indicates a novel mechanism contributing to the heterogeneity of PD and warrants further investigation of drugs targeting mGluR5.
Collapse
Affiliation(s)
- Christopher E J Doppler
- From the Cognitive Neuroscience (C.E.J.D., A.S., L.H., G.R.F., M.S.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich; Department of Neurology (C.E.J.D., A.S., L.H., G.R.F., M.S.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Köln; Institute of Neuroscience and Medicine (INM-4) (E.F., C.R.B., A.G., N.J.S., C.W.L., K.-J.L.), Forschungszentrum Jülich; Department of Nuclear Medicine (C.P.F., K.-J.L.), RWTH University Hospital, Aachen; Institute of Medical Statistics and Computational Biology (M.H.), Faculty of Medicine and University Hospital of Cologne, University of Cologne; Faculty of Medicine (A.G.), RWTH Aachen University, Germany; Engineering Physics Department (A.G.), Georgian Technical University, Tbilisi, Georgia; Institute of Neuroscience and Medicine (INM-11) (N.J.S.), Molecular Neuroscience and Neuroimaging, JARA, Forschungszentrum Jülich; JARA-BRAIN-Translational Medicine (N.J.S.), Aachen; Department of Neurology (N.J.S.), RWTH Aachen University; and Institute of Neuroscience and Medicine (INM-5) (B.N.), Forschungszentrum Jülich, Germany
| | - Aline Seger
- From the Cognitive Neuroscience (C.E.J.D., A.S., L.H., G.R.F., M.S.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich; Department of Neurology (C.E.J.D., A.S., L.H., G.R.F., M.S.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Köln; Institute of Neuroscience and Medicine (INM-4) (E.F., C.R.B., A.G., N.J.S., C.W.L., K.-J.L.), Forschungszentrum Jülich; Department of Nuclear Medicine (C.P.F., K.-J.L.), RWTH University Hospital, Aachen; Institute of Medical Statistics and Computational Biology (M.H.), Faculty of Medicine and University Hospital of Cologne, University of Cologne; Faculty of Medicine (A.G.), RWTH Aachen University, Germany; Engineering Physics Department (A.G.), Georgian Technical University, Tbilisi, Georgia; Institute of Neuroscience and Medicine (INM-11) (N.J.S.), Molecular Neuroscience and Neuroimaging, JARA, Forschungszentrum Jülich; JARA-BRAIN-Translational Medicine (N.J.S.), Aachen; Department of Neurology (N.J.S.), RWTH Aachen University; and Institute of Neuroscience and Medicine (INM-5) (B.N.), Forschungszentrum Jülich, Germany
| | - Ezequiel Farrher
- From the Cognitive Neuroscience (C.E.J.D., A.S., L.H., G.R.F., M.S.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich; Department of Neurology (C.E.J.D., A.S., L.H., G.R.F., M.S.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Köln; Institute of Neuroscience and Medicine (INM-4) (E.F., C.R.B., A.G., N.J.S., C.W.L., K.-J.L.), Forschungszentrum Jülich; Department of Nuclear Medicine (C.P.F., K.-J.L.), RWTH University Hospital, Aachen; Institute of Medical Statistics and Computational Biology (M.H.), Faculty of Medicine and University Hospital of Cologne, University of Cologne; Faculty of Medicine (A.G.), RWTH Aachen University, Germany; Engineering Physics Department (A.G.), Georgian Technical University, Tbilisi, Georgia; Institute of Neuroscience and Medicine (INM-11) (N.J.S.), Molecular Neuroscience and Neuroimaging, JARA, Forschungszentrum Jülich; JARA-BRAIN-Translational Medicine (N.J.S.), Aachen; Department of Neurology (N.J.S.), RWTH Aachen University; and Institute of Neuroscience and Medicine (INM-5) (B.N.), Forschungszentrum Jülich, Germany
| | - Cláudia Régio Brambilla
- From the Cognitive Neuroscience (C.E.J.D., A.S., L.H., G.R.F., M.S.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich; Department of Neurology (C.E.J.D., A.S., L.H., G.R.F., M.S.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Köln; Institute of Neuroscience and Medicine (INM-4) (E.F., C.R.B., A.G., N.J.S., C.W.L., K.-J.L.), Forschungszentrum Jülich; Department of Nuclear Medicine (C.P.F., K.-J.L.), RWTH University Hospital, Aachen; Institute of Medical Statistics and Computational Biology (M.H.), Faculty of Medicine and University Hospital of Cologne, University of Cologne; Faculty of Medicine (A.G.), RWTH Aachen University, Germany; Engineering Physics Department (A.G.), Georgian Technical University, Tbilisi, Georgia; Institute of Neuroscience and Medicine (INM-11) (N.J.S.), Molecular Neuroscience and Neuroimaging, JARA, Forschungszentrum Jülich; JARA-BRAIN-Translational Medicine (N.J.S.), Aachen; Department of Neurology (N.J.S.), RWTH Aachen University; and Institute of Neuroscience and Medicine (INM-5) (B.N.), Forschungszentrum Jülich, Germany
| | - Lukas Hensel
- From the Cognitive Neuroscience (C.E.J.D., A.S., L.H., G.R.F., M.S.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich; Department of Neurology (C.E.J.D., A.S., L.H., G.R.F., M.S.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Köln; Institute of Neuroscience and Medicine (INM-4) (E.F., C.R.B., A.G., N.J.S., C.W.L., K.-J.L.), Forschungszentrum Jülich; Department of Nuclear Medicine (C.P.F., K.-J.L.), RWTH University Hospital, Aachen; Institute of Medical Statistics and Computational Biology (M.H.), Faculty of Medicine and University Hospital of Cologne, University of Cologne; Faculty of Medicine (A.G.), RWTH Aachen University, Germany; Engineering Physics Department (A.G.), Georgian Technical University, Tbilisi, Georgia; Institute of Neuroscience and Medicine (INM-11) (N.J.S.), Molecular Neuroscience and Neuroimaging, JARA, Forschungszentrum Jülich; JARA-BRAIN-Translational Medicine (N.J.S.), Aachen; Department of Neurology (N.J.S.), RWTH Aachen University; and Institute of Neuroscience and Medicine (INM-5) (B.N.), Forschungszentrum Jülich, Germany
| | - Christian P Filss
- From the Cognitive Neuroscience (C.E.J.D., A.S., L.H., G.R.F., M.S.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich; Department of Neurology (C.E.J.D., A.S., L.H., G.R.F., M.S.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Köln; Institute of Neuroscience and Medicine (INM-4) (E.F., C.R.B., A.G., N.J.S., C.W.L., K.-J.L.), Forschungszentrum Jülich; Department of Nuclear Medicine (C.P.F., K.-J.L.), RWTH University Hospital, Aachen; Institute of Medical Statistics and Computational Biology (M.H.), Faculty of Medicine and University Hospital of Cologne, University of Cologne; Faculty of Medicine (A.G.), RWTH Aachen University, Germany; Engineering Physics Department (A.G.), Georgian Technical University, Tbilisi, Georgia; Institute of Neuroscience and Medicine (INM-11) (N.J.S.), Molecular Neuroscience and Neuroimaging, JARA, Forschungszentrum Jülich; JARA-BRAIN-Translational Medicine (N.J.S.), Aachen; Department of Neurology (N.J.S.), RWTH Aachen University; and Institute of Neuroscience and Medicine (INM-5) (B.N.), Forschungszentrum Jülich, Germany
| | - Martin Hellmich
- From the Cognitive Neuroscience (C.E.J.D., A.S., L.H., G.R.F., M.S.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich; Department of Neurology (C.E.J.D., A.S., L.H., G.R.F., M.S.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Köln; Institute of Neuroscience and Medicine (INM-4) (E.F., C.R.B., A.G., N.J.S., C.W.L., K.-J.L.), Forschungszentrum Jülich; Department of Nuclear Medicine (C.P.F., K.-J.L.), RWTH University Hospital, Aachen; Institute of Medical Statistics and Computational Biology (M.H.), Faculty of Medicine and University Hospital of Cologne, University of Cologne; Faculty of Medicine (A.G.), RWTH Aachen University, Germany; Engineering Physics Department (A.G.), Georgian Technical University, Tbilisi, Georgia; Institute of Neuroscience and Medicine (INM-11) (N.J.S.), Molecular Neuroscience and Neuroimaging, JARA, Forschungszentrum Jülich; JARA-BRAIN-Translational Medicine (N.J.S.), Aachen; Department of Neurology (N.J.S.), RWTH Aachen University; and Institute of Neuroscience and Medicine (INM-5) (B.N.), Forschungszentrum Jülich, Germany
| | - Ana Gogishvili
- From the Cognitive Neuroscience (C.E.J.D., A.S., L.H., G.R.F., M.S.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich; Department of Neurology (C.E.J.D., A.S., L.H., G.R.F., M.S.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Köln; Institute of Neuroscience and Medicine (INM-4) (E.F., C.R.B., A.G., N.J.S., C.W.L., K.-J.L.), Forschungszentrum Jülich; Department of Nuclear Medicine (C.P.F., K.-J.L.), RWTH University Hospital, Aachen; Institute of Medical Statistics and Computational Biology (M.H.), Faculty of Medicine and University Hospital of Cologne, University of Cologne; Faculty of Medicine (A.G.), RWTH Aachen University, Germany; Engineering Physics Department (A.G.), Georgian Technical University, Tbilisi, Georgia; Institute of Neuroscience and Medicine (INM-11) (N.J.S.), Molecular Neuroscience and Neuroimaging, JARA, Forschungszentrum Jülich; JARA-BRAIN-Translational Medicine (N.J.S.), Aachen; Department of Neurology (N.J.S.), RWTH Aachen University; and Institute of Neuroscience and Medicine (INM-5) (B.N.), Forschungszentrum Jülich, Germany
| | - N Jon Shah
- From the Cognitive Neuroscience (C.E.J.D., A.S., L.H., G.R.F., M.S.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich; Department of Neurology (C.E.J.D., A.S., L.H., G.R.F., M.S.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Köln; Institute of Neuroscience and Medicine (INM-4) (E.F., C.R.B., A.G., N.J.S., C.W.L., K.-J.L.), Forschungszentrum Jülich; Department of Nuclear Medicine (C.P.F., K.-J.L.), RWTH University Hospital, Aachen; Institute of Medical Statistics and Computational Biology (M.H.), Faculty of Medicine and University Hospital of Cologne, University of Cologne; Faculty of Medicine (A.G.), RWTH Aachen University, Germany; Engineering Physics Department (A.G.), Georgian Technical University, Tbilisi, Georgia; Institute of Neuroscience and Medicine (INM-11) (N.J.S.), Molecular Neuroscience and Neuroimaging, JARA, Forschungszentrum Jülich; JARA-BRAIN-Translational Medicine (N.J.S.), Aachen; Department of Neurology (N.J.S.), RWTH Aachen University; and Institute of Neuroscience and Medicine (INM-5) (B.N.), Forschungszentrum Jülich, Germany
| | - Christoph W Lerche
- From the Cognitive Neuroscience (C.E.J.D., A.S., L.H., G.R.F., M.S.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich; Department of Neurology (C.E.J.D., A.S., L.H., G.R.F., M.S.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Köln; Institute of Neuroscience and Medicine (INM-4) (E.F., C.R.B., A.G., N.J.S., C.W.L., K.-J.L.), Forschungszentrum Jülich; Department of Nuclear Medicine (C.P.F., K.-J.L.), RWTH University Hospital, Aachen; Institute of Medical Statistics and Computational Biology (M.H.), Faculty of Medicine and University Hospital of Cologne, University of Cologne; Faculty of Medicine (A.G.), RWTH Aachen University, Germany; Engineering Physics Department (A.G.), Georgian Technical University, Tbilisi, Georgia; Institute of Neuroscience and Medicine (INM-11) (N.J.S.), Molecular Neuroscience and Neuroimaging, JARA, Forschungszentrum Jülich; JARA-BRAIN-Translational Medicine (N.J.S.), Aachen; Department of Neurology (N.J.S.), RWTH Aachen University; and Institute of Neuroscience and Medicine (INM-5) (B.N.), Forschungszentrum Jülich, Germany
| | - Bernd Neumaier
- From the Cognitive Neuroscience (C.E.J.D., A.S., L.H., G.R.F., M.S.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich; Department of Neurology (C.E.J.D., A.S., L.H., G.R.F., M.S.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Köln; Institute of Neuroscience and Medicine (INM-4) (E.F., C.R.B., A.G., N.J.S., C.W.L., K.-J.L.), Forschungszentrum Jülich; Department of Nuclear Medicine (C.P.F., K.-J.L.), RWTH University Hospital, Aachen; Institute of Medical Statistics and Computational Biology (M.H.), Faculty of Medicine and University Hospital of Cologne, University of Cologne; Faculty of Medicine (A.G.), RWTH Aachen University, Germany; Engineering Physics Department (A.G.), Georgian Technical University, Tbilisi, Georgia; Institute of Neuroscience and Medicine (INM-11) (N.J.S.), Molecular Neuroscience and Neuroimaging, JARA, Forschungszentrum Jülich; JARA-BRAIN-Translational Medicine (N.J.S.), Aachen; Department of Neurology (N.J.S.), RWTH Aachen University; and Institute of Neuroscience and Medicine (INM-5) (B.N.), Forschungszentrum Jülich, Germany
| | - Karl-Josef Langen
- From the Cognitive Neuroscience (C.E.J.D., A.S., L.H., G.R.F., M.S.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich; Department of Neurology (C.E.J.D., A.S., L.H., G.R.F., M.S.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Köln; Institute of Neuroscience and Medicine (INM-4) (E.F., C.R.B., A.G., N.J.S., C.W.L., K.-J.L.), Forschungszentrum Jülich; Department of Nuclear Medicine (C.P.F., K.-J.L.), RWTH University Hospital, Aachen; Institute of Medical Statistics and Computational Biology (M.H.), Faculty of Medicine and University Hospital of Cologne, University of Cologne; Faculty of Medicine (A.G.), RWTH Aachen University, Germany; Engineering Physics Department (A.G.), Georgian Technical University, Tbilisi, Georgia; Institute of Neuroscience and Medicine (INM-11) (N.J.S.), Molecular Neuroscience and Neuroimaging, JARA, Forschungszentrum Jülich; JARA-BRAIN-Translational Medicine (N.J.S.), Aachen; Department of Neurology (N.J.S.), RWTH Aachen University; and Institute of Neuroscience and Medicine (INM-5) (B.N.), Forschungszentrum Jülich, Germany
| | - Gereon R Fink
- From the Cognitive Neuroscience (C.E.J.D., A.S., L.H., G.R.F., M.S.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich; Department of Neurology (C.E.J.D., A.S., L.H., G.R.F., M.S.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Köln; Institute of Neuroscience and Medicine (INM-4) (E.F., C.R.B., A.G., N.J.S., C.W.L., K.-J.L.), Forschungszentrum Jülich; Department of Nuclear Medicine (C.P.F., K.-J.L.), RWTH University Hospital, Aachen; Institute of Medical Statistics and Computational Biology (M.H.), Faculty of Medicine and University Hospital of Cologne, University of Cologne; Faculty of Medicine (A.G.), RWTH Aachen University, Germany; Engineering Physics Department (A.G.), Georgian Technical University, Tbilisi, Georgia; Institute of Neuroscience and Medicine (INM-11) (N.J.S.), Molecular Neuroscience and Neuroimaging, JARA, Forschungszentrum Jülich; JARA-BRAIN-Translational Medicine (N.J.S.), Aachen; Department of Neurology (N.J.S.), RWTH Aachen University; and Institute of Neuroscience and Medicine (INM-5) (B.N.), Forschungszentrum Jülich, Germany
| | - Michael Sommerauer
- From the Cognitive Neuroscience (C.E.J.D., A.S., L.H., G.R.F., M.S.), Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich; Department of Neurology (C.E.J.D., A.S., L.H., G.R.F., M.S.), Faculty of Medicine and University Hospital Cologne, University of Cologne, Köln; Institute of Neuroscience and Medicine (INM-4) (E.F., C.R.B., A.G., N.J.S., C.W.L., K.-J.L.), Forschungszentrum Jülich; Department of Nuclear Medicine (C.P.F., K.-J.L.), RWTH University Hospital, Aachen; Institute of Medical Statistics and Computational Biology (M.H.), Faculty of Medicine and University Hospital of Cologne, University of Cologne; Faculty of Medicine (A.G.), RWTH Aachen University, Germany; Engineering Physics Department (A.G.), Georgian Technical University, Tbilisi, Georgia; Institute of Neuroscience and Medicine (INM-11) (N.J.S.), Molecular Neuroscience and Neuroimaging, JARA, Forschungszentrum Jülich; JARA-BRAIN-Translational Medicine (N.J.S.), Aachen; Department of Neurology (N.J.S.), RWTH Aachen University; and Institute of Neuroscience and Medicine (INM-5) (B.N.), Forschungszentrum Jülich, Germany
| |
Collapse
|
32
|
Wong W, Sari Y. Effects of Hydrocodone Overdose and Ceftriaxone on Astrocytic Glutamate Transporters and Glutamate Receptors, and Associated Signaling in Nucleus Accumbens as well as Locomotor Activity in C57/BL Mice. Brain Sci 2024; 14:361. [PMID: 38672013 PMCID: PMC11048659 DOI: 10.3390/brainsci14040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic opioid treatments dysregulate the glutamatergic system, inducing a hyperglutamatergic state in mesocorticolimbic brain regions. This study investigated the effects of exposure to hydrocodone overdose on locomotor activity, expression of target proteins related to the glutamatergic system, signaling kinases, and neuroinflammatory factors in the nucleus accumbens. The locomotor activity of mice was measured using the Comprehensive Laboratory Animal Monitoring System (CLAMS). CLAMS data showed that exposure to hydrocodone overdose increased locomotion activity in mice. This study tested ceftriaxone, known to upregulate major glutamate transporter 1 (GLT-1), in mice exposed to an overdose of hydrocodone. Thus, ceftriaxone normalized hydrocodone-induced hyperlocomotion activity in mice. Furthermore, exposure to hydrocodone overdose downregulated GLT-1, cystine/glutamate antiporter (xCT), and extracellular signal-regulated kinase activity (p-ERK/ERK) expression in the nucleus accumbens. However, exposure to an overdose of hydrocodone increased metabotropic glutamate receptor 5 (mGluR5), neuronal nitric oxide synthase activity (p-nNOS/nNOS), and receptor for advanced glycation end products (RAGE) expression in the nucleus accumbens. Importantly, ceftriaxone treatment attenuated hydrocodone-induced upregulation of mGluR5, p-nNOS/nNOS, and RAGE, as well as hydrocodone-induced downregulation of GLT-1, xCT, and p-ERK/ERK expression. These data demonstrated that exposure to hydrocodone overdose can cause dysregulation of the glutamatergic system, neuroinflammation, hyperlocomotion activity, and the potential therapeutic role of ceftriaxone in attenuating these effects.
Collapse
Affiliation(s)
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|
33
|
Wang J, Tan S, Zhang Y, Xu J, Li Y, Cheng Q, Ding C, Liu X, Chang J. Set7/9 aggravates ischemic brain injury via enhancing glutamine metabolism in a blocking Sirt5 manner. Cell Death Differ 2024; 31:511-523. [PMID: 38365969 PMCID: PMC11043079 DOI: 10.1038/s41418-024-01264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
The aberrant expression of methyltransferase Set7/9 plays a role in various diseases. However, the contribution of Set7/9 in ischemic stroke remains unclear. Here, we show ischemic injury results in a rapid elevation of Set7/9, which is accompanied by the downregulation of Sirt5, a deacetylase reported to protect against injury. Proteomic analysis identifies the decrease of chromobox homolog 1 (Cbx1) in knockdown Set7/9 neurons. Mechanistically, Set7/9 promotes the binding of Cbx1 to H3K9me2/3 and forms a transcription repressor complex at the Sirt5 promoter, ultimately repressing Sirt5 transcription. Thus, the deacetylation of Sirt5 substrate, glutaminase, which catalyzes the hydrolysis of glutamine to glutamate and ammonia, is decreased, promoting glutaminase expression and triggering excitotoxicity. Blocking Set7/9 eliminates H3K9me2/3 from the Sirt5 promoter and normalizes Sirt5 expression and Set7/9 knockout efficiently ameliorates brain ischemic injury by reducing the accumulation of ammonia and glutamate in a Sirt5-dependent manner. Collectively, the Set7/9-Sirt5 axis may be a promising epigenetic therapeutic target.
Collapse
Affiliation(s)
- Jinghuan Wang
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Subei Tan
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 201203, China
| | - Yuyu Zhang
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Jie Xu
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Yuhui Li
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Qianwen Cheng
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 201203, China.
| | - Xinhua Liu
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Jun Chang
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
34
|
Nájera-Maldonado JM, Salazar R, Alvarez-Fitz P, Acevedo-Quiroz M, Flores-Alfaro E, Hernández-Sotelo D, Espinoza-Rojo M, Ramírez M. Phenolic Compounds of Therapeutic Interest in Neuroprotection. J Xenobiot 2024; 14:227-246. [PMID: 38390994 PMCID: PMC10885129 DOI: 10.3390/jox14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
The number of elderly people is projected to double in the next 50 years worldwide, resulting in an increased prevalence of neurodegenerative diseases. Aging causes changes in brain tissue homeostasis, thus contributing to the development of neurodegenerative disorders. Current treatments are not entirely effective, so alternative treatments or adjuvant agents are being actively sought. Antioxidant properties of phenolic compounds are of particular interest for neurodegenerative diseases whose psychopathological mechanisms strongly rely on oxidative stress at the brain level. Moreover, phenolic compounds display other advantages such as the permeability of the blood-brain barrier (BBB) and the interesting molecular mechanisms that we reviewed in this work. We began by briefly outlining the physiopathology of neurodegenerative diseases to understand the mechanisms that result in irreversible brain damage, then we provided an overall classification of the phenolic compounds that would be addressed later. We reviewed in vitro and in vivo studies, as well as some clinical trials in which neuroprotective mechanisms were demonstrated in models of different neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), ischemia, and traumatic brain injury (TBI).
Collapse
Affiliation(s)
| | - Ricardo Salazar
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Patricia Alvarez-Fitz
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Macdiel Acevedo-Quiroz
- National Technological Institute of Mexico, Technological/IT Institute of Zacatepec, Zacatepec 62780, Mexico
| | - Eugenia Flores-Alfaro
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Daniel Hernández-Sotelo
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mónica Espinoza-Rojo
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mónica Ramírez
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| |
Collapse
|
35
|
Huang L, Xiao W, Wang Y, Li J, Gong J, Tu E, Long L, Xiao B, Yan X, Wan L. Metabotropic glutamate receptors (mGluRs) in epileptogenesis: an update on abnormal mGluRs signaling and its therapeutic implications. Neural Regen Res 2024; 19:360-368. [PMID: 37488891 PMCID: PMC10503602 DOI: 10.4103/1673-5374.379018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by high morbidity, high recurrence, and drug resistance. Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy. Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity. Dysregulated mGluR signaling has been associated with various neurological disorders, and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy. In this review, we first introduce the three groups of mGluRs and their associated signaling pathways. Then, we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis. In addition, strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized. We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Yan Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Juan Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children’s Hospital, Changsha, Hunan Province, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| |
Collapse
|
36
|
Elmeseiny OSA, Müller HK. A molecular perspective on mGluR5 regulation in the antidepressant effect of ketamine. Pharmacol Res 2024; 200:107081. [PMID: 38278430 DOI: 10.1016/j.phrs.2024.107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Ketamine, a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist, has received much attention for its rapid antidepressant effects. A single administration of ketamine elicits rapid and sustained antidepressant effects in both humans and animals. Current efforts are focused on uncovering molecular mechanisms responsible for ketamine's antidepressant activity. Ketamine primarily acts via the glutamatergic pathway, and increasing evidence suggests that ketamine induces synaptic and structural plasticity through increased translation and release of neurotrophic factors, activation of mammalian target of rapamycin (mTOR), and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR)-mediated synaptic potentiation. However, the initial events triggering activation of intracellular signaling cascades and the mechanisms responsible for the sustained antidepressant effects of ketamine remain poorly understood. Over the last few years, it has become apparent that in addition to the fast actions of the ligand-gated AMPARs and NMDARs, metabotropic glutamate receptors (mGluRs), and particularly mGluR5, may also play a role in the antidepressant action of ketamine. Although research on mGluR5 in relation to the beneficial actions of ketamine is still in its infancy, a careful evaluation of the existing literature can identify converging trends and provide new interpretations. Here, we review the current literature on mGluR5 regulation in response to ketamine from a molecular perspective and propose a possible mechanism linking NMDAR inhibition to mGluR5 modulation.
Collapse
Affiliation(s)
- Ola Sobhy A Elmeseiny
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
37
|
Aghamiri H, Jafari-Sabet M, Hoormand M. Ameliorative Effect of Cannabidiol on Topiramate-Induced Memory Loss: The Role of Hippocampal and Prefrontal Cortical NMDA Receptors and CREB/BDNF Signaling Pathways in Rats. Neurochem Res 2024; 49:363-378. [PMID: 37814133 DOI: 10.1007/s11064-023-04041-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Cannabidiol (CBD) is a promising neurological agent with potential beneficial effects on memory and cognitive function. The combination of CBD and topiramate in the treatment of some neurological diseases has been of great interest. Since Topiramate-induced memory loss is a major drawback of its clinical application and the overall effect of the combination of CBD and topiramate on memory is still unclear, here we investigated the effect of CBD on topiramate-induced memory loss and the underlying molecular mechanisms. A one trial step-through inhibitory test was used to evaluate memory consolidation in rats. Moreover, the role of N-methyl-D-aspartate receptors (NMDARs) in the combination of CBD and topiramate in memory consolidation was evaluated through the intra-CA1 administration of MK-801 and NMDA. Western blot analysis was used to evaluate variations in brain-derived neurotrophic factor (BDNF) and phosphorylated cyclic AMP response element-binding protein (pCREB)/CREB ratio in the prefrontal cortex (PFC) and hippocampus (HPC). While the intraperitoneal (i.p.) administration of topiramate (50, 75, and 100 mg/kg) significantly reduced inhibitory time latency, the i.p. administration of CBD (20 and 40 mg/kg) could effectively reverse these effects. Similarly, the sub-effective doses of NMDA plus CBD (10 mg/kg) could improve the topiramate-induced memory loss along with an enhancement in BDNF and pCREB expression in the PFC and HPC. Contrarily, the administration of sub-effective doses of the NMDAR antagonist (MK-801) diminished the protective effects of CBD (20 mg/kg) on topiramate-induced memory loss associated with decreased BDNF and pCREB levels in the PFC and HPC. These findings suggest that CBD can improve topiramate-induced memory impairment, partially by the NMDARs of the PFC and HPC, possibly regulated by the CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Helia Aghamiri
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahmood Hoormand
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
de Lima IBQ, Cardozo PL, Fahel JS, Lacerda JPS, Miranda AS, Teixeira AL, Ribeiro FM. Blockade of mGluR5 in astrocytes derived from human iPSCs modulates astrocytic function and increases phagocytosis. Front Immunol 2023; 14:1283331. [PMID: 38146365 PMCID: PMC10749358 DOI: 10.3389/fimmu.2023.1283331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/23/2023] [Indexed: 12/27/2023] Open
Abstract
TNF-α is essential for induction and maintenance of inflammatory responses and its dysregulation is associated with susceptibility to various pathogens that infect the central nervous system. Activation of both microglia and astrocytes leads to TNF-α production, which in turn triggers further activation of these cells. Astrocytes have been implicated in the pathophysiology of a wide range of neurodegenerative diseases with either harmful or protective roles, as these cells are capable of secreting several inflammatory factors and also promote synapse elimination and remodeling. These responses are possible because they sense their surroundings via several receptors, including the metabotropic glutamate receptor 5 (mGluR5). Under neuroinflammatory conditions, mGluR5 activation in astrocytes can be neuroprotective or have the opposite effect. In the current study, we investigated the role of mGluR5 in hiPSC-derived astrocytes subjected to pro-inflammatory stimulation by recombinant TNF-α (rTNF-α). Our results show that mGluR5 blockade by CTEP decreases the secreted levels of pro-inflammatory cytokines (IL-6 and IL-8) following short rTNF-α stimulation, although this effect subsides with time. Additionally, CTEP enhances synaptoneurosome phagocytosis by astrocytes in both non-stimulated and rTNF-α-stimulated conditions, indicating that mGluR5 blockade alone is enough to drive synaptic material engulfment. Finally, mGluR5 antagonism as well as rTNF-α stimulation augment the expression of the reactivity marker SERPINA3 and reduces the expression of synaptogenic molecules. Altogether, these data suggest a complex role for mGluR5 in human astrocytes, since its blockade may have beneficial and detrimental effects under inflammatory conditions.
Collapse
Affiliation(s)
- Izabella B. Q. de Lima
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo L. Cardozo
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Julia S. Fahel
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana P. S. Lacerda
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aline S. Miranda
- Department of Morphology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antônio L. Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Fabiola M. Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
39
|
Cheng L, Xia F, Li Z, Shen C, Yang Z, Hou H, Sun S, Feng Y, Yong X, Tian X, Qin H, Yan W, Shao Z. Structure, function and drug discovery of GPCR signaling. MOLECULAR BIOMEDICINE 2023; 4:46. [PMID: 38047990 PMCID: PMC10695916 DOI: 10.1186/s43556-023-00156-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are versatile and vital proteins involved in a wide array of physiological processes and responses, such as sensory perception (e.g., vision, taste, and smell), immune response, hormone regulation, and neurotransmission. Their diverse and essential roles in the body make them a significant focus for pharmaceutical research and drug development. Currently, approximately 35% of marketed drugs directly target GPCRs, underscoring their prominence as therapeutic targets. Recent advances in structural biology have substantially deepened our understanding of GPCR activation mechanisms and interactions with G-protein and arrestin signaling pathways. This review offers an in-depth exploration of both traditional and recent methods in GPCR structure analysis. It presents structure-based insights into ligand recognition and receptor activation mechanisms and delves deeper into the mechanisms of canonical and noncanonical signaling pathways downstream of GPCRs. Furthermore, it highlights recent advancements in GPCR-related drug discovery and development. Particular emphasis is placed on GPCR selective drugs, allosteric and biased signaling, polyphamarcology, and antibody drugs. Our goal is to provide researchers with a thorough and updated understanding of GPCR structure determination, signaling pathway investigation, and drug development. This foundation aims to propel forward-thinking therapeutic approaches that target GPCRs, drawing upon the latest insights into GPCR ligand selectivity, activation, and biased signaling mechanisms.
Collapse
Affiliation(s)
- Lin Cheng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyan Li
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenglong Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhiqian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hanlin Hou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Suyue Sun
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuying Feng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xihao Yong
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongxi Qin
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu, 610212, China.
| |
Collapse
|
40
|
Tsugiyama LE, Macedo Moraes RC, Cavalcante Moraes YA, Francis-Oliveira J. Promising new pharmacological targets for depression: The search for efficacy. Drug Discov Today 2023; 28:103804. [PMID: 37865307 DOI: 10.1016/j.drudis.2023.103804] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Pharmacological treatment of major depressive disorder (MDD) still relies on the use of serotonergic drugs, despite their limited efficacy. A few mechanistically new drugs have been developed in recent years, but many fail in clinical trials. Several hypotheses have been proposed to explain MDD pathophysiology, indicating that physiological processes such as neuroplasticity, circadian rhythms, and metabolism are potential targets. Here, we review the current state of pharmacological treatments for MDD, as well as the preclinical and clinical evidence for an antidepressant effect of molecules that target non-serotonergic systems. We offer some insights into the challenges facing the development of new antidepressant drugs, and the prospect of finding more effectiveness for each target discussed.
Collapse
Affiliation(s)
- Lucila Emiko Tsugiyama
- Kansai Medical University, Graduate School of Medicine, iPS Cell Applied Medicine, Hirakata, Osaka, Japan
| | - Ruan Carlos Macedo Moraes
- University of Alabama at Birmingham, Department of Psychiatry and Behavioral Neurobiology, Birmingham, AL, USA; Biomedical Sciences Institute, Department of Human Physiology, Sao Paulo University, Sao Paulo, Brazil
| | | | - Jose Francis-Oliveira
- University of Alabama at Birmingham, Department of Psychiatry and Behavioral Neurobiology, Birmingham, AL, USA; Biomedical Sciences Institute, Department of Human Physiology, Sao Paulo University, Sao Paulo, Brazil.
| |
Collapse
|
41
|
Rabeh N, Hajjar B, Maraka JO, Sammanasunathan AF, Khan M, Alkhaaldi SMI, Mansour S, Almheiri RT, Hamdan H, Abd-Elrahman KS. Targeting mGluR group III for the treatment of neurodegenerative diseases. Biomed Pharmacother 2023; 168:115733. [PMID: 37862967 DOI: 10.1016/j.biopha.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
Glutamate, an excitatory neurotransmitter, is essential for neuronal function, and it acts on ionotropic or metabotropic glutamate receptors (mGluRs). A disturbance in glutamatergic signaling is a hallmark of many neurodegenerative diseases. Developing disease-modifying treatments for neurodegenerative diseases targeting glutamate receptors is a promising avenue. The understudied group III mGluR 4, 6-8 are commonly found in the presynaptic membrane, and their activation inhibits glutamate release. Thus, targeted mGluRs therapies could aid in treating neurodegenerative diseases. This review describes group III mGluRs and their pharmacological ligands in the context of amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's diseases. Attempts to evaluate the efficacy of these drugs in clinical trials are also discussed. Despite a growing list of group III mGluR-specific pharmacological ligands, research on the use of these drugs in neurodegenerative diseases is limited, except for Parkinson's disease. Future efforts should focus on delineating the contribution of group III mGluR to neurodegeneration and developing novel ligands with superior efficacy and a favorable side effect profile for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nadia Rabeh
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Baraa Hajjar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Jude O Maraka
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Ashwin F Sammanasunathan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Mohammed Khan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Samy Mansour
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Rashed T Almheiri
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pharmacology and Therapeutics, College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| |
Collapse
|
42
|
Ankul SS, Chandran L, Anuragh S, Kaliappan I, Rushendran R, Vellapandian C. A systematic review of the neuropathology and memory decline induced by monosodium glutamate in the Alzheimer's disease-like animal model. Front Pharmacol 2023; 14:1283440. [PMID: 37942488 PMCID: PMC10627830 DOI: 10.3389/fphar.2023.1283440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
This systematic review analyzes monosodium glutamate (MSG) in the Alzheimer's disease-like condition to enhance translational research. Our review seeks to understand how MSG affects the brain and causes degenerative disorders. Due to significant preclinical data linking glutamate toxicity to Alzheimer's disease and the lack of a comprehensive review or meta-analysis, we initiated a study on MSG's potential link. We searched PubMed, ScienceDirect, ProQuest, DOAJ, and Scopus for animal research and English language papers without time constraints. This study used the PRISMA-P framework and PICO technique to collect population, intervention or exposure, comparison, and result data. It was registered in PROSPERO as CRD42022371502. MSG affected mice's exploratory behaviors and short-term working memory. The brain, hippocampus, and cerebellar tissue demonstrated neuronal injury-related histological and histomorphometric changes. A total of 70% of MSG-treated mice had poor nesting behavior. The treated mice also had more hyperphosphorylated tau protein in their cortical and hippocampus neurons. Glutamate and glutamine levels in the brain increased with MSG, and dose-dependent mixed horizontal locomotor, grooming, and anxiety responses reduced. MSG treatment significantly decreased phospho-CREB protein levels, supporting the idea that neurons were harmed, despite the increased CREB mRNA expression. High MSG doses drastically lower brain tissue and serum serotonin levels. In conclusion, MSG showed AD-like pathology, neuronal atrophy, and short-term memory impairment. Further research with a longer time span and deeper behavioral characterization is needed. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier [CRD42022371502].
Collapse
Affiliation(s)
- Singh S. Ankul
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Lakshmi Chandran
- Department of Pharmacy Practice, SRM College of Pharmacy, SRMIST, Tamil Nadu, India
| | - Singh Anuragh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Ilango Kaliappan
- Department of Pharmaceutical Chemistry, School of Pharmacy, Hindustan Institute of Technology and Science, Tamil Nadu, India
| | - Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Tamil Nadu, India
| |
Collapse
|
43
|
Cools R, Kerkhofs K, Leitao RCF, Bormans G. Preclinical Evaluation of Novel PET Probes for Dementia. Semin Nucl Med 2023; 53:599-629. [PMID: 37149435 DOI: 10.1053/j.semnuclmed.2023.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The development of novel PET imaging agents that selectively bind specific dementia-related targets can contribute significantly to accurate, differential and early diagnosis of dementia causing diseases and support the development of therapeutic agents. Consequently, in recent years there has been a growing body of literature describing the development and evaluation of potential new promising PET tracers for dementia. This review article provides a comprehensive overview of novel dementia PET probes under development, classified by their target, and pinpoints their preclinical evaluation pathway, typically involving in silico, in vitro and ex/in vivo evaluation. Specific target-associated challenges and pitfalls, requiring extensive and well-designed preclinical experimental evaluation assays to enable successful clinical translation and avoid shortcomings observed for previously developed 'well-established' dementia PET tracers are highlighted in this review.
Collapse
Affiliation(s)
- Romy Cools
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kobe Kerkhofs
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; NURA, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Renan C F Leitao
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
44
|
Xu C, Chen S, Chen X, Ho KH, Park C, Yoo H, Lee SH, Park H. Altered exocytosis of inhibitory synaptic vesicles at single presynaptic terminals of cultured striatal neurons in a knock-in mouse model of Huntington's disease. Front Mol Neurosci 2023; 16:1175522. [PMID: 37664244 PMCID: PMC10470468 DOI: 10.3389/fnmol.2023.1175522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Huntington's disease (HD) is a progressive dominantly inherited neurodegenerative disease caused by the expansion of a cytosine-adenine-guanine (CAG) trinucleotide repeat in the huntingtin gene, which encodes the mutant huntingtin protein containing an expanded polyglutamine tract. One of neuropathologic hallmarks of HD is selective degeneration in the striatum. Mechanisms underlying selective neurodegeneration in the striatum of HD remain elusive. Neurodegeneration is suggested to be preceded by abnormal synaptic transmission at the early stage of HD. However, how mutant huntingtin protein affects synaptic vesicle exocytosis at single presynaptic terminals of HD striatal neurons is poorly understood. Here, we measured synaptic vesicle exocytosis at single presynaptic terminals of cultured striatal neurons (mainly inhibitory neurons) in a knock-in mouse model of HD (zQ175) during electrical field stimulation using real-time imaging of FM 1-43 (a lipophilic dye). We found a significant decrease in bouton density and exocytosis of synaptic vesicles at single presynaptic terminals in cultured striatal neurons. Real-time imaging of VGAT-CypHer5E (a pH sensitive dye conjugated to an antibody against vesicular GABA transporter (VGAT)) for inhibitory synaptic vesicles revealed a reduction in bouton density and exocytosis of inhibitory synaptic vesicles at single presynaptic terminals of HD striatal neurons. Thus, our results suggest that the mutant huntingtin protein decreases bouton density and exocytosis of inhibitory synaptic vesicles at single presynaptic terminals of striatal neurons, causing impaired inhibitory synaptic transmission, eventually leading to the neurodegeneration in the striatum of HD.
Collapse
Affiliation(s)
- Chen Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Sidong Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Xingxiang Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Ka Hei Ho
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Chungwon Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Hong Kong Center for Construction Robotics (InnoHK-HKCRC), Hong Kong Science Park, Sha Tin, Hong Kong SAR, China
| | - Hanna Yoo
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Suk-Ho Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| |
Collapse
|
45
|
Perkins JJ, McQuade P, Bungard CJ, Diamond TL, Gantert LT, Gotter AL, Hanney B, Hills ID, Hurzy DM, Joshi A, Kern JT, Schlegel KAS, Manikowski JJ, Meng Z, O’Brien JA, Roecker AJ, Smith SM, Uslaner JM, Hostetler E, Meissner RS. Discovery of [ 11C]MK-8056: A Selective PET Imaging Agent for the Study of mGluR 2 Negative Allosteric Modulators. ACS Med Chem Lett 2023; 14:986-992. [PMID: 37465306 PMCID: PMC10351059 DOI: 10.1021/acsmedchemlett.3c00175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023] Open
Abstract
Modification of potent, selective metabotropic glutamate receptor 2 negative allosteric modulator (mGluR2 NAM) led to a series of analogues with excellent binding affinity, lipophilicity, and suitable physicochemical properties for a PET tracer with convenient chemical handles for incorporation of a 11C or 18F radiolabel. [11C]MK-8056 was synthesized and evaluated in vivo and demonstrated appropriate affinity, selectivity, and physicochemical properties to be used as a positron emission tomography tracer for mGluR2.
Collapse
Affiliation(s)
- James J. Perkins
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Paul McQuade
- Translational
Imaging, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Christopher J. Bungard
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Tracy L. Diamond
- Pharmacology, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Liza T. Gantert
- Translational
Imaging, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Anthony L. Gotter
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Barbara Hanney
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Ivory D. Hills
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Danielle M. Hurzy
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Aniket Joshi
- Translational
Imaging, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Jonathan T. Kern
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Kelly-Ann S. Schlegel
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Jesse J. Manikowski
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Zhaoyang Meng
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Julie A. O’Brien
- Pharmacology, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Anthony J. Roecker
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Sean M. Smith
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Jason M. Uslaner
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Eric Hostetler
- Translational
Imaging, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Robert S. Meissner
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| |
Collapse
|
46
|
Horino-Shimizu A, Moriyama K, Mori T, Kohyama K, Nishito Y, Sakuma H. Lipocalin-2 production by astrocytes in response to high concentrations of glutamate. Brain Res 2023; 1815:148463. [PMID: 37328088 DOI: 10.1016/j.brainres.2023.148463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
AIMS Glutamate-induced excitotoxicity is mainly mediated by neuronal NMDA receptors; however, it is unclear how astrocytes are involved in this phenomenon. This study aimed to explore the effects of excess glutamate on astrocytes both in vitro and in vivo. METHODS We used astrocyte-enriched cultures (AECs), in which microglia were removed from mixed glial cultures, to investigate the effects of extracellular glutamate on these cells by microarray, quantitative PCR, ELISA, and immunostaining. We also examined the production of lipocalin-2 (Lcn2) by immunohistochemistry in the brains of mice after status epilepticus induced by pilocarpine and by ELISA in the cerebrospinal fluid (CSF) of patients characterised by status epilepticus. RESULTS Microarray analysis identified Lcn2 as a factor upregulated in AECs by excess glutamate; glutamate addition increased Lcn2 in the cytoplasm of astrocytes and AECs released Lcn2 in a concentration-dependent manner. Lcn2 production was reduced by chemical inhibition of metabotropic glutamate receptor 3 or siRNA knockdown. Furthermore, Lcn2 was increased in the astrocytes of a status epilepticus mouse model and in the CSF of human patients. CONCLUSION These results indicate that astrocytes stimulate Lcn2 production via metabotropic glutamate receptor 3 in response to high concentrations of glutamate.
Collapse
Affiliation(s)
- Asako Horino-Shimizu
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Division of Pediatric Neurology, Course of Molecular and Cellular Medicine, Niigata University Faculty of Medicine, Graduate School of Medical and Dental Science, Niigata, Japan
| | - Kengo Moriyama
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Mori
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kuniko Kohyama
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroshi Sakuma
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Division of Pediatric Neurology, Course of Molecular and Cellular Medicine, Niigata University Faculty of Medicine, Graduate School of Medical and Dental Science, Niigata, Japan.
| |
Collapse
|
47
|
Lecat-Guillet N, Quast RB, Liu H, Bourrier E, Møller TC, Rovira X, Soldevila S, Lamarque L, Trinquet E, Liu J, Pin JP, Rondard P, Margeat E. Concerted conformational changes control metabotropic glutamate receptor activity. SCIENCE ADVANCES 2023; 9:eadf1378. [PMID: 37267369 PMCID: PMC10413646 DOI: 10.1126/sciadv.adf1378] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 04/27/2023] [Indexed: 06/04/2023]
Abstract
Allosteric modulators bear great potential to fine-tune neurotransmitter action. Promising targets are metabotropic glutamate (mGlu) receptors, which are associated with numerous brain diseases. Orthosteric and allosteric ligands act in synergy to control the activity of these multidomain dimeric GPCRs. Here, we analyzed the effect of such molecules on the concerted conformational changes of full-length mGlu2 at the single-molecule level. We first established FRET sensors through genetic code expansion combined with click chemistry to monitor conformational changes on live cells. We then used single-molecule FRET and show that orthosteric agonist binding leads to the stabilization of most of the glutamate binding domains in their closed state, while the reorientation of the dimer into the active state remains partial. Allosteric modulators, interacting with the transmembrane domain, are required to stabilize the fully reoriented active dimer. These results illustrate how concerted conformational changes within multidomain proteins control their activity, and how these are modulated by allosteric ligands.
Collapse
Affiliation(s)
- Nathalie Lecat-Guillet
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Robert B. Quast
- Centre de Biologie Structurale (CBS), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Hongkang Liu
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
- Key Laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | | | - Thor C. Møller
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Xavier Rovira
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | | | | | - Eric Trinquet
- PerkinElmer Cisbio, Parc Marcel Boiteux, 30200 Codolet, France
| | - Jianfeng Liu
- Key Laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), Univ. Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
48
|
Pershina EV, Chernomorets IY, Fedorov DA, Arkhipov VI. Pharmacological Modulation of Excitotoxicity through the Combined Use of NMDA Receptor Inhibition and Group III mGlu Activation Reduces TMT-Induced Neurodegeneration in the Rat Hippocampus. Int J Mol Sci 2023; 24:ijms24098249. [PMID: 37175959 PMCID: PMC10179112 DOI: 10.3390/ijms24098249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
We studied the neuroprotective properties of the non-competitive NMDA receptor antagonist memantine, in combination with a positive allosteric modulator of metabotropic glutamate receptors of Group III, VU 0422288. The treatment was started 48 h after the injection of neurotoxic agent trimethyltin (TMT) at 7.5 mg/kg. Three weeks after TMT injection, functional and morphological changes in a rat hippocampus were evaluated, including the expression level of genes characterizing glutamate transmission and neuroinflammation, animal behavior, and hippocampal cell morphology. Significant neuronal cell death occurred in the CA3 and CA4 regions, and to a lesser extent, in the CA1 and CA2 regions. The death of neurons in the CA1 field was significantly reduced in animals with a combined use of memantine and VU 0422288. In the hippocampus of these animals, the level of expression of genes characterizing glutamatergic synaptic transmission (Grin2b, Gria1, EAAT2) did not differ from the level in control animals, as well as the expression of genes characterizing neuroinflammation (IL1b, TGF beta 1, Aif1, and GFAP). However, the expression of genes characterizing neuroinflammation was markedly increased in the hippocampus of animals treated with memantine or VU 0422288 alone after TMT. The results of immunohistochemical studies confirmed a significant activation of microglia in the hippocampus three weeks after TMT injection. In contrast to the hilus, microglia in the CA1 region had an increase in rod-like cells. Moreover, in the CA1 field of the hippocampus of the animals of the MEM + VU group, the amount of such microglia was close to the control. Thus, the short-term modulation of glutamatergic synaptic transmission by memantine and subsequent activation of Group III mGluR significantly affected the dynamics of neurodegeneration in the hippocampus.
Collapse
Affiliation(s)
- Ekaterina V Pershina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Irina Yu Chernomorets
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Dmitry A Fedorov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Vladimir I Arkhipov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
49
|
Xue S, Shen T, Li M, Leng B, Yao R, Gao Y, Sun H, Li Z, Zhang J. Neuronal glutamate transporters are associated with cognitive impairment in obstructive sleep apnea patients without dementia. Neurosci Lett 2023; 802:137168. [PMID: 36894020 DOI: 10.1016/j.neulet.2023.137168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/30/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023]
Abstract
Increasing evidence supports a link between obstructive sleep apnea (OSA) and cognition, and the mechanism is complex and still not well understood. We analyzed the relationship between the glutamate transporters and cognitive impairment in OSA. For this study 317 subjects without dementia, including 64 healthy controls (HCs), 140 OSA patients with mild cognitive impairment (MCI) and 113 OSA patients without cognitive impairment were assessed. All participants who completed polysomnography, cognition and white matter hyperintensity (WMH) volume were used. Plasma neuron-derived exosomes (NDEs) excitatory amino acid transporter 2 (EAAT2) and vesicular glutamate transporter 1 (VGLUT1) proteins were measured by ELISA kits. After 1 year of continuous positive airway pressure (CPAP) treatment, we analyzed plasma NDEs EAAT2 level and cognition changes. Plasma NDEs EAAT2 level was significantly higher in OSA patients than in HCs. Higher plasma NDEs EAAT2 level were significantly associated with cognitive impairment than normal cognition in OSA patients. Plasma NDEs EAAT2 level was inversely associated with the total Montreal Cognitive Assessment (MoCA) scores, visuo-executive function, naming, attention, language, abstraction, delayed recall and orientation. One year after CPAP treatment, plasma NDEs EAAT2 level (P = 0.019) was significantly lower, while MoCA scores (P = 0.013) were significantly increased compared with baseline. Upregulation of neuronal glutamate transporters at baseline may reflect a self-compensatory mechanism to prevent further neuronal damage, while plasma NDEs EAAT2 level was decreased after one year of CPAP therapy, which may be due to the loss of astrocytes and neurons.
Collapse
Affiliation(s)
- Song Xue
- Weifang Medical University, Weifang, Shandong, China; Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Tengqun Shen
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Mengfan Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Bing Leng
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Ran Yao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Yanling Gao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Hairong Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Zhenguang Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China.
| |
Collapse
|
50
|
Zhang YY, Ren KD, Luo XJ, Peng J. COVID-19-induced neurological symptoms: focus on the role of metal ions. Inflammopharmacology 2023; 31:611-631. [PMID: 36892679 PMCID: PMC9996599 DOI: 10.1007/s10787-023-01176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
Neurological symptoms are prevalent in both the acute and post-acute phases of coronavirus disease 2019 (COVID-19), and they are becoming a major concern for the prognosis of COVID-19 patients. Accumulation evidence has suggested that metal ion disorders occur in the central nervous system (CNS) of COVID-19 patients. Metal ions participate in the development, metabolism, redox and neurotransmitter transmission in the CNS and are tightly regulated by metal ion channels. COVID-19 infection causes neurological metal disorders and metal ion channels abnormal switching, subsequently resulting in neuroinflammation, oxidative stress, excitotoxicity, neuronal cell death, and eventually eliciting a series of COVID-19-induced neurological symptoms. Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for mitigating COVID-19-induced neurological symptoms. This review provides a summary for the latest advances in research related to the physiological and pathophysiological functions of metal ions and metal ion channels, as well as their role in COVID-19-induced neurological symptoms. In addition, currently available modulators of metal ions and their channels are also discussed. Collectively, the current work offers a few recommendations according to published reports and in-depth reflections to ameliorate COVID-19-induced neurological symptoms. Further studies need to focus on the crosstalk and interactions between different metal ions and their channels. Simultaneous pharmacological intervention of two or more metal signaling pathway disorders may provide clinical advantages in treating COVID-19-induced neurological symptoms.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|