1
|
Chen J, He Z, Xu W, Kang Y, Zhu F, Tang H, Wang J, Zhong F. Human umbilical cord mesenchymal stem cells restore chemotherapy-induced premature ovarian failure by inhibiting ferroptosis in vitro ovarian culture system. Reprod Biol Endocrinol 2024; 22:137. [PMID: 39511578 PMCID: PMC11542367 DOI: 10.1186/s12958-024-01310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have shown potential in repairing chemotherapy-induced premature ovarian failure (POF). However, challenges such as stem cell loss and immune phagocytosis post-transplantation hinder their application. Due to easy and safe handling, in vitro ovarian culture is widely available for drug screening, pathophysiological research, and in vitro fertilization. MSCs could exhibit therapeutic capacity for ovarian injury, and avoid stem cell loss and immune phagocytosis in vitro tissue culture system. Therefore, this study utilizes an in vitro ovarian culture system to investigate the reparative potential of human umbilical cord mesenchymal stem cells (hUCMSCs) and their mechanism. METHODS In this study, a chemotherapy-induced POF model was established by introducing cisplatin in vitro ovarian culture system. The reparative effects of hUCMSCs on damaged ovarian tissue were validated through Transwell chambers. Tissue histology examination, immunohistochemical staining, Western blotting, and RT-PCR were employed to evaluate the expression effects of hUCMSCs on ferroptosis and fibrosis-related genes during the process of repairing cisplatin-induced POF. RESULTS Cisplatin was found to activate ovarian follicles in vitro POF model. Transcriptomic sequencing analysis revealed that cisplatin could activate genes associated with ferroptosis. hUCMSCs alleviated cisplatin-induced POF by suppressing the expression of ferroptosis. Moreover, inhibiting ferroptosis by hUCMSCs also ameliorated ovarian hormone levels and reduced the expression of fibrosis-related factors α-SMA and COL-I in the ovaries. CONCLUSIONS This study confirms that cisplatin-induced ovarian damage via ferroptosis in vitro POF model, and hUCMSCs repair ovarian injury by inhibiting the ferroptosis pathway and suppressing fibrosis. This research contributes to evaluating the effectiveness of hUCMSCs in treating chemotherapy-induced POF by inhibiting ferroptosis in an in vitro ovarian culture system and provides a potential therapeutic strategy for chemotherapy-induced POF.
Collapse
Affiliation(s)
- Jiaqi Chen
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Zhuoying He
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Wenjuan Xu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Yumiao Kang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Fengyu Zhu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Heng Tang
- Wanbei Coal Electric Group General Hospital, Suzhou, Anhui Province, 234011, China.
| | - Jianye Wang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China.
| | - Fei Zhong
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China.
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui, 230022, China.
| |
Collapse
|
2
|
Elia N, Prinelli F, Peli V, Conti S, Barilani M, Mei C, Castaldi S, Lazzari L. Public attitudes toward the use of human induced pluripotent stem cells: insights from an Italian adult population. Front Public Health 2024; 12:1491257. [PMID: 39568604 PMCID: PMC11576450 DOI: 10.3389/fpubh.2024.1491257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Human induced pluripotent stem cells (hiPSCs), derived from reprogrammed adult somatic cells, hold significant promise for disease modelling, personalized medicine, drug discovery, and regenerative therapies. Public awareness and understanding of hiPSCs are crucial for advancing research in this field. However, limited data exists on the general population's knowledge and attitudes toward their use. Methods This study aimed to assess the awareness and perceptions of hiPSCs among Italian adults through a web-based survey conducted via the EUSurvey platform, using a snowball sampling approach. The survey included demographic information and mandatory questions on knowledge, awareness, and concerns regarding hiPSC technology, with responses collected on a 3-point scale. Statistical analysis was performed using chi-squared tests, with significance set at p ≤ 0.05. Results Out of 1874 respondents, the majority were aged 18-35 years (40.5%), female (63.4%), and university-educated (67.2%). Among those familiar with hiPSCs (54.1%, n = 1,201), 95.3% expressed willingness to donate blood samples for hiPSC generation to treat individuals with incurable diseases. Concerns about current research and therapeutic applications were low (less than 20%), but nearly half of the respondents were hesitant or opposed to the use of hiPSCs in animal experiments and their commercialization by pharmaceutical companies. Increased skepticism was observed in older, less educated, religious individuals, and those who were not blood donors. Overall, the Italian public shows strong support for hiPSC-based therapies, though reservations exist around specific ethical and economic issues. Discussion These findings underscore the importance of addressing public concerns through targeted educational campaigns, not only in Italy but globally, to foster a more informed and supportive environment for advancing stem cell research and its clinical applications worldwide. Similar studies have been conducted in Japan, the United States, and Sweden, but there remains a need for all countries to engage with their citizens to better understand how stem cell research is perceived locally. Such engagement is crucial for guiding international strategies in personalized medicine and regenerative therapies, ensuring that emerging technologies are met with both ethical integrity and public trust.
Collapse
Affiliation(s)
- Noemi Elia
- Unit of Cell and Gene Therapy, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Prinelli
- Epidemiology and Public Health Unit, Institute of Biomedical Technologies - National Research Council, Segrate (MI), Italy
| | - Valeria Peli
- Unit of Cell and Gene Therapy, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Conti
- Epidemiology and Public Health Unit, Institute of Biomedical Technologies - National Research Council, Segrate (MI), Italy
| | - Mario Barilani
- Unit of Cell and Gene Therapy, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cecilia Mei
- Unit of Cell and Gene Therapy, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Silvana Castaldi
- Quality Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Lorenza Lazzari
- Unit of Cell and Gene Therapy, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
3
|
Etayo-Escanilla M, Campillo N, Ávila-Fernández P, Baena JM, Chato-Astrain J, Campos F, Sánchez-Porras D, García-García ÓD, Carriel V. Comparison of Printable Biomaterials for Use in Neural Tissue Engineering: An In Vitro Characterization and In Vivo Biocompatibility Assessment. Polymers (Basel) 2024; 16:1426. [PMID: 38794619 PMCID: PMC11125121 DOI: 10.3390/polym16101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Nervous system traumatic injuries are prevalent in our society, with a significant socioeconomic impact. Due to the highly complex structure of the neural tissue, the treatment of these injuries is still a challenge. Recently, 3D printing has emerged as a promising alternative for producing biomimetic scaffolds, which can lead to the restoration of neural tissue function. The objective of this work was to compare different biomaterials for generating 3D-printed scaffolds for use in neural tissue engineering. For this purpose, four thermoplastic biomaterials, ((polylactic acid) (PLA), polycaprolactone (PCL), Filaflex (FF) (assessed here for the first time for biomedical purposes), and Flexdym (FD)) and gelatin methacrylate (GelMA) hydrogel were subjected to printability and mechanical tests, in vitro cell-biomaterial interaction analyses, and in vivo biocompatibility assessment. The thermoplastics showed superior printing results in terms of resolution and shape fidelity, whereas FD and GelMA revealed great viscoelastic properties. GelMA demonstrated a greater cell viability index after 7 days of in vitro cell culture. Moreover, all groups displayed connective tissue encapsulation, with some inflammatory cells around the scaffolds after 10 days of in vivo implantation. Future studies will determine the usefulness and in vivo therapeutic efficacy of novel neural substitutes based on the use of these 3D-printed scaffolds.
Collapse
Affiliation(s)
- Miguel Etayo-Escanilla
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, 18012 Granada, Spain
| | - Noelia Campillo
- REGEMAT 3D, Avenida Del Conocimiento 41, A-111, 18016 Granada, Spain (J.M.B.)
- BRECA Health Care S.L., Avenida Del Conocimiento 41, 18016 Granada, Spain
| | - Paula Ávila-Fernández
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - José Manuel Baena
- REGEMAT 3D, Avenida Del Conocimiento 41, A-111, 18016 Granada, Spain (J.M.B.)
- BRECA Health Care S.L., Avenida Del Conocimiento 41, 18016 Granada, Spain
| | - Jesús Chato-Astrain
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Fernando Campos
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - David Sánchez-Porras
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Óscar Darío García-García
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Víctor Carriel
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
4
|
Yun C, Kim SH, Kim KM, Yang MH, Byun MR, Kim JH, Kwon D, Pham HTM, Kim HS, Kim JH, Jung YS. Advantages of Using 3D Spheroid Culture Systems in Toxicological and Pharmacological Assessment for Osteogenesis Research. Int J Mol Sci 2024; 25:2512. [PMID: 38473760 DOI: 10.3390/ijms25052512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Bone differentiation is crucial for skeletal development and maintenance. Its dysfunction can cause various pathological conditions such as rickets, osteoporosis, osteogenesis imperfecta, or Paget's disease. Although traditional two-dimensional cell culture systems have contributed significantly to our understanding of bone biology, they fail to replicate the intricate biotic environment of bone tissue. Three-dimensional (3D) spheroid cell cultures have gained widespread popularity for addressing bone defects. This review highlights the advantages of employing 3D culture systems to investigate bone differentiation. It highlights their capacity to mimic the complex in vivo environment and crucial cellular interactions pivotal to bone homeostasis. The exploration of 3D culture models in bone research offers enhanced physiological relevance, improved predictive capabilities, and reduced reliance on animal models, which have contributed to the advancement of safer and more effective strategies for drug development. Studies have highlighted the transformative potential of 3D culture systems for expanding our understanding of bone biology and developing targeted therapeutic interventions for bone-related disorders. This review explores how 3D culture systems have demonstrated promise in unraveling the intricate mechanisms governing bone homeostasis and responses to pharmacological agents.
Collapse
Affiliation(s)
- Chawon Yun
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Sou Hyun Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Mok Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Min Hye Yang
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Mi Ran Byun
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Joung-Hee Kim
- Department of Medical Beauty Care, Dongguk University Wise, Gyeongju 38066, Republic of Korea
| | - Doyoung Kwon
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Huyen T M Pham
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyo-Sop Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
5
|
Qu S, Xu R, Yi G, Li Z, Zhang H, Qi S, Huang G. Patient-derived organoids in human cancer: a platform for fundamental research and precision medicine. MOLECULAR BIOMEDICINE 2024; 5:6. [PMID: 38342791 PMCID: PMC10859360 DOI: 10.1186/s43556-023-00165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/08/2023] [Indexed: 02/13/2024] Open
Abstract
Cancer is associated with a high degree of heterogeneity, encompassing both inter- and intra-tumor heterogeneity, along with considerable variability in clinical response to common treatments across patients. Conventional models for tumor research, such as in vitro cell cultures and in vivo animal models, demonstrate significant limitations that fall short of satisfying the research requisites. Patient-derived tumor organoids, which recapitulate the structures, specific functions, molecular characteristics, genomics alterations and expression profiles of primary tumors. They have been efficaciously implemented in illness portrayal, mechanism exploration, high-throughput drug screening and assessment, discovery of innovative therapeutic targets and potential compounds, and customized treatment regimen for cancer patients. In contrast to conventional models, tumor organoids offer an intuitive, dependable, and efficient in vitro research model by conserving the phenotypic, genetic diversity, and mutational attributes of the originating tumor. Nevertheless, the organoid technology also confronts the bottlenecks and challenges, such as how to comprehensively reflect intra-tumor heterogeneity, tumor microenvironment, tumor angiogenesis, reduce research costs, and establish standardized construction processes while retaining reliability. This review extensively examines the use of tumor organoid techniques in fundamental research and precision medicine. It emphasizes the importance of patient-derived tumor organoid biobanks for drug development, screening, safety evaluation, and personalized medicine. Additionally, it evaluates the application of organoid technology as an experimental tumor model to better understand the molecular mechanisms of tumor. The intent of this review is to explicate the significance of tumor organoids in cancer research and to present new avenues for the future of tumor research.
Collapse
Affiliation(s)
- Shanqiang Qu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Rongyang Xu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- The First Clinical Medical College of Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Huayang Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
6
|
Aazmi A, Zhang D, Mazzaglia C, Yu M, Wang Z, Yang H, Huang YYS, Ma L. Biofabrication methods for reconstructing extracellular matrix mimetics. Bioact Mater 2024; 31:475-496. [PMID: 37719085 PMCID: PMC10500422 DOI: 10.1016/j.bioactmat.2023.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
In the human body, almost all cells interact with extracellular matrices (ECMs), which have tissue and organ-specific compositions and architectures. These ECMs not only function as cellular scaffolds, providing structural support, but also play a crucial role in dynamically regulating various cellular functions. This comprehensive review delves into the examination of biofabrication strategies used to develop bioactive materials that accurately mimic one or more biophysical and biochemical properties of ECMs. We discuss the potential integration of these ECM-mimics into a range of physiological and pathological in vitro models, enhancing our understanding of cellular behavior and tissue organization. Lastly, we propose future research directions for ECM-mimics in the context of tissue engineering and organ-on-a-chip applications, offering potential advancements in therapeutic approaches and improved patient outcomes.
Collapse
Affiliation(s)
- Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Corrado Mazzaglia
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
7
|
Calabretta MM, Michelini E. Current advances in the use of bioluminescence assays for drug discovery: an update of the last ten years. Expert Opin Drug Discov 2024; 19:85-95. [PMID: 37814480 DOI: 10.1080/17460441.2023.2266989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Bioluminescence is a well-established optical detection technique widely used in several bioanalytical applications, including high-throughput and high-content screenings. Thanks to advances in synthetic biology techniques and deep learning, a wide portfolio of luciferases is now available with tuned emission wavelengths, kinetics, and high stability. These luciferases can be implemented in the drug discovery and development pipeline, allowing high sensitivity and multiplexing capability. AREAS COVERED This review summarizes the latest advancements of bioluminescent systems as toolsets in drug discovery programs for in vitro applications. Particular attention is paid to the most advanced bioluminescence-based technologies for drug screening over the past 10 years (from 2013 to 2023) such as cell-free assays, cell-based assays based on genetically modified cells, bioluminescence resonance energy transfer, and protein complementation assays in 2D and 3D cell models. EXPERT OPINION The availability of tuned bioluminescent proteins with improved emission and stability properties is vital for the development of bioluminescence assays for drug discovery, spanning from reporter gene technology to protein-protein techniques. Further studies, combining machine learning with synthetic biology, will be necessary to obtain new tools for sustainable and highly predictive bioluminescent drug discovery platforms.
Collapse
Affiliation(s)
- Maria Maddalena Calabretta
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), IRCCS St. Orsola Hospital, Bologna, Italy
| | - Elisa Michelini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Center for Applied Biomedical Research (CRBA), IRCCS St. Orsola Hospital, Bologna, Italy
- Health Sciences and Technologies Interdepartmental Center for Industrial Research (HSTICIR), University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Hague JP, Andrews AE, Dickinson H. High-throughput design of cultured tissue moulds using a biophysical model: optimising cell alignment. Phys Biol 2023; 20:066006. [PMID: 37899639 DOI: 10.1088/1478-3975/ad0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023]
Abstract
The technique presented here identifies tethered mould designs, optimised for growing cultured tissue with very highly-aligned cells. It is based on a microscopic biophysical model for polarised cellular hydrogels. There is an unmet need for tools to assist mould and scaffold designs for the growth of cultured tissues with bespoke cell organisations, that can be used in applications such as regenerative medicine, drug screening and cultured meat. High-throughput biophysical calculations were made for a wide variety of computer-generated moulds, with cell-matrix interactions and tissue-scale forces simulated using a contractile network dipole orientation model. Elongated moulds with central broadening and one of the following tethering strategies are found to lead to highly-aligned cells: (1) tethers placed within the bilateral protrusions resulting from an indentation on the short edge, to guide alignment (2) tethers placed within a single vertex to shrink the available space for misalignment. As such, proof-of-concept has been shown for mould and tethered scaffold design based on a recently developed biophysical model. The approach is applicable to a broad range of cell types that align in tissues and is extensible for 3D scaffolds.
Collapse
Affiliation(s)
- James P Hague
- School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Allison E Andrews
- School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Hugh Dickinson
- School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| |
Collapse
|
9
|
Andrews AE, Dickinson H, Hague JP. Rapid prediction of lab-grown tissue properties using deep learning. Phys Biol 2023; 20:066005. [PMID: 37793414 DOI: 10.1088/1478-3975/ad0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
The interactions between cells and the extracellular matrix are vital for the self-organisation of tissues. In this paper we present proof-of-concept to use machine learning tools to predict the role of this mechanobiology in the self-organisation of cell-laden hydrogels grown in tethered moulds. We develop a process for the automated generation of mould designs with and without key symmetries. We create a large training set withN = 6400 cases by running detailed biophysical simulations of cell-matrix interactions using the contractile network dipole orientation model for the self-organisation of cellular hydrogels within these moulds. These are used to train an implementation of thepix2pixdeep learning model, with an additional 100 cases that were unseen in the training of the neural network for review and testing of the trained model. Comparison between the predictions of the machine learning technique and the reserved predictions from the biophysical algorithm show that the machine learning algorithm makes excellent predictions. The machine learning algorithm is significantly faster than the biophysical method, opening the possibility of very high throughput rational design of moulds for pharmaceutical testing, regenerative medicine and fundamental studies of biology. Future extensions for scaffolds and 3D bioprinting will open additional applications.
Collapse
Affiliation(s)
- Allison E Andrews
- School of Physical Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom
| | - Hugh Dickinson
- School of Physical Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom
| | - James P Hague
- School of Physical Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom
| |
Collapse
|
10
|
Sanchez‐Rubio A, Jayawarna V, Maxwell E, Dalby MJ, Salmeron‐Sanchez M. Keeping It Organized: Multicompartment Constructs to Mimic Tissue Heterogeneity. Adv Healthc Mater 2023; 12:e2202110. [PMID: 36938891 PMCID: PMC11469230 DOI: 10.1002/adhm.202202110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/17/2023] [Indexed: 03/21/2023]
Abstract
Tissue engineering aims at replicating tissues and organs to develop applications in vivo and in vitro. In vivo, by engineering artificial constructs using functional materials and cells to provide both physiological form and function. In vitro, by engineering three-dimensional (3D) models to support drug discovery and enable understanding of fundamental biology. 3D culture constructs mimic cell-cell and cell-matrix interactions and use biomaterials seeking to increase the resemblance of engineered tissues with its in vivo homologues. Native tissues, however, include complex architectures, with compartmentalized regions of different properties containing different types of cells that can be captured by multicompartment constructs. Recent advances in fabrication technologies, such as micropatterning, microfluidics or 3D bioprinting, have enabled compartmentalized structures with defined compositions and properties that are essential in creating 3D cell-laden multiphasic complex architectures. This review focuses on advances in engineered multicompartment constructs that mimic tissue heterogeneity. It includes multiphasic 3D implantable scaffolds and in vitro models, including systems that incorporate different regions emulating in vivo tissues, highlighting the emergence and relevance of 3D bioprinting in the future of biological research and medicine.
Collapse
Affiliation(s)
| | - Vineetha Jayawarna
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | - Emily Maxwell
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | - Matthew J. Dalby
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | | |
Collapse
|
11
|
Wu C, Sun J, Yin B. Research on Integrated 3D Printing of Microfluidic Chips. MICROMACHINES 2023; 14:1302. [PMID: 37512613 PMCID: PMC10383598 DOI: 10.3390/mi14071302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023]
Abstract
Microfluidic chips have the advantages of miniaturization, integration, and portability, and are widely used in the early diagnosis of major diseases, personalized medical treatment, environmental detection, health quarantine, and other fields. The existing microfluidic chip manufacturing process is difficult to operate because of complex three-dimensional channels, complicated manufacturing steps, limited printing materials, the difficulty of operating the bonding process, and the need to purchase expensive new equipment. In this paper, an integrated molding method for microfluidic chips that integrates 3D printing and polymer dissolution technology is proposed. First, the channel mold of poly(vinyl alcohol) (PVA) or high impact polystyrene (HIPS) is dissolved to complete the manufacturing of the microfluidic chip channel. The integrated 3D-forming method of microfluidic chips proposed in this paper can manufacture microchannels inside the microfluidic chip, avoid the bonding process, and eliminate the need for rapid alignment of microchannels, material modification, and other operations, thus improving the stability of the process. Finally, by comparing the microchannels made by PVA and HIPS, it is concluded that the quality of the microchannels made by HIPS is obviously better than that made by PVA. This paper provides a new idea for the fabrication of microfluidic chips and the application of HIPS.
Collapse
Affiliation(s)
- Chuang Wu
- School of mechanical engineering, Yangzhou University, No. 196 West Huang Road, Yangzhou 225127, China
- Nantong Fuleda Vehicle Accessory Component Co., Ltd., Nantong 226005, China
- Jiangsu Tongshun Power Technology Co., Ltd., Nantong 226302, China
| | - Jiju Sun
- School of mechanical engineering, Yangzhou University, No. 196 West Huang Road, Yangzhou 225127, China
| | - Binfeng Yin
- School of mechanical engineering, Yangzhou University, No. 196 West Huang Road, Yangzhou 225127, China
| |
Collapse
|
12
|
Mei Y, Wu D, Berg J, Tolksdorf B, Roehrs V, Kurreck A, Hiller T, Kurreck J. Generation of a Perfusable 3D Lung Cancer Model by Digital Light Processing. Int J Mol Sci 2023; 24:ijms24076071. [PMID: 37047045 PMCID: PMC10094257 DOI: 10.3390/ijms24076071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Lung cancer still has one of the highest morbidity and mortality rates among all types of cancer. Its incidence continues to increase, especially in developing countries. Although the medical field has witnessed the development of targeted therapies, new treatment options need to be developed urgently. For the discovery of new drugs, human cancer models are required to study drug efficiency in a relevant setting. Here, we report the generation of a non-small cell lung cancer model with a perfusion system. The bioprinted model was produced by digital light processing (DLP). This technique has the advantage of including simulated human blood vessels, and its simple assembly and maintenance allow for easy testing of drug candidates. In a proof-of-concept study, we applied gemcitabine and determined the IC50 values in the 3D models and 2D monolayer cultures and compared the response of the model under static and dynamic cultivation by perfusion. As the drug must penetrate the hydrogel to reach the cells, the IC50 value was three orders of magnitude higher for bioprinted constructs than for 2D cell cultures. Compared to static cultivation, the viability of cells in the bioprinted 3D model was significantly increased by approximately 60% in the perfusion system. Dynamic cultivation also enhanced the cytotoxicity of the tested drug, and the drug-mediated apoptosis was increased with a fourfold higher fraction of cells with a signal for the apoptosis marker caspase-3 and a sixfold higher fraction of cells positive for PARP-1. Altogether, this easily reproducible cancer model can be used for initial testing of the cytotoxicity of new anticancer substances. For subsequent in-depth characterization of candidate drugs, further improvements will be necessary, such as the generation of a multi-cell type lung cancer model and the lining of vascular structures with endothelial cells.
Collapse
Affiliation(s)
- Yikun Mei
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Dongwei Wu
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Johanna Berg
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Beatrice Tolksdorf
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Viola Roehrs
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Anke Kurreck
- BioNukleo GmbH, Ackerstr. 76, 13355 Berlin, Germany
| | - Thomas Hiller
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- PRAMOMOLECULAR GmbH, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, TIB 4/3-2, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
13
|
Mierke CT. Physical and biological advances in endothelial cell-based engineered co-culture model systems. Semin Cell Dev Biol 2023; 147:58-69. [PMID: 36732105 DOI: 10.1016/j.semcdb.2023.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Scientific knowledge in the field of cell biology and mechanobiology heavily leans on cell-based in vitro experiments and models that favor the examination and comprehension of certain biological processes and occurrences across a variety of environments. Cell culture assays are an invaluable instrument for a vast spectrum of biomedical and biophysical investigations. The quality of experimental models in terms of simplicity, reproducibility, and combinability with other methods, and in particular the scale at which they depict cell fate in native tissues, is critical to advancing the knowledge of the comprehension of cell-cell and cell-matrix interactions in tissues and organs. Typically, in vitro models are centered on the experimental tinkering of mammalian cells, most often cultured as monolayers on planar, two-dimensional (2D) materials. Notwithstanding the significant advances and numerous findings that have been accomplished with flat biology models, their usefulness for generating further new biological understanding is constrained because the simple 2D setting does not reproduce the physiological response of cells in natural living tissues. In addition, the co-culture systems in a 2D stetting weakly mirror their natural environment of tissues and organs. Significant advances in 3D cell biology and matrix engineering have resulted in the creation and establishment of a new type of cell culture shapes that more accurately represents the in vivo microenvironment and allows cells and their interactions to be analyzed in a biomimetic approach. Contemporary biomedical and biophysical science has novel advances in technology that permit the design of more challenging and resilient in vitro models for tissue engineering, with a particular focus on scaffold- or hydrogel-based formats, organotypic cultures, and organs-on-chips, which cover the purposes of co-cultures. Even these complex systems must be kept as simplified as possible in order to grasp a particular section of physiology too very precisely. In particular, it is highly appreciated that they bridge the space between conventional animal research and human (patho)physiology. In this review, the recent progress in 3D biomimetic culturation is presented with a special focus on co-cultures, with an emphasis on the technological building blocks and endothelium-based co-culture models in cancer research that are available for the development of more physiologically relevant in vitro models of human tissues under normal and diseased conditions. Through applications and samples of various physiological and disease models, it is possible to identify the frontiers and future engagement issues that will have to be tackled to integrate synthetic biomimetic culture systems far more successfully into biomedical and biophysical investigations.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, Leipzig, Germany.
| |
Collapse
|
14
|
Feng JJ, Hedtrich S. A similarity scaling approach for organ-on-chip devices. LAB ON A CHIP 2022; 22:3663-3667. [PMID: 36070239 DOI: 10.1039/d2lc00641c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organ-on-chip devices (OoCs) provide more nuanced insights into (patho)physiological processes of the human body than static tissue models, and are currently the most promising approach to emulating human (patho)physiology in vitro. OoC designs vary greatly and questions remain as to how to maximize biomimicry and clinical translatability of the in vitro findings. Scaling is critical, yet has largely been ad hoc, consisting in matching one or a few variables between the OoC and the target organ. This has limited the predictive value of OoCs. Here, we propose a systematic approach based on the principle of similitude widely used in the physical sciences, and present three case studies from the recent literature to demonstrate how the approach works. A lung-on-a-chip and a liver-on-a-chip both satisfied important similarity criteria, and therefore yielded results that were in good agreement with clinical data. A gut-liver system failed to satisfy a key criterion of kinematic similarity, and yielded unphysiological pharmacokinetic responses in vitro. The similarity scaling approach promises to improve markedly the design and operation of organ- and human-on-chip devices.
Collapse
Affiliation(s)
- James J Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Sarah Hedtrich
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Germany
- Center of Biological Design, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
15
|
Bonassera M, Clews E, BéruBé K. Transparency in Non-Technical Project Summaries to Promote the Three Rs in Respiratory Disease Research. Altern Lab Anim 2022; 50:349-364. [DOI: 10.1177/02611929221121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Non-Technical Project Summaries (NTS) are legal documents that were first introduced by the Directive 2010/63/EU to enhance transparency within scientific animal experimentation. Researchers intending to conduct biological research on animal models must fulfil the NTS requirements by outlining their proposed use of animals and how they plan to implement the Three Rs (replacement, reduction and refinement of animal use) in their experiments. This study outlines a novel systematic analysis approach that enables the assessment of NTS transparency based on the accuracy of reporting of certain Three Rs-specific information. This potentially customisable strategy could help toward the development of practical guidelines for use by Animal Welfare and Ethical Review Bodies (AWERBs) in establishments conducting animal research, in the process of scrutinising NTS during their pre-submission review of proposed licence applications. This could help to identify gaps in reporting of Three Rs-specific information relating to the planned animal experiments, which represents a remarkable step toward achieving greater openness in scientific communication. This study supports the concept that NTS transparency can promote the implementation of non-animal alternatives in fields where this is currently lacking, such as respiratory disease research. Although NTS were originally conceived as informative documents for a lay audience, we can conclude that data in NTS can be successfully used as a basis for systematic analysis. By reviewing the NTS, the experimental limitations of the currently available replacement strategies can also be highlighted, potentially pinpointing where there is a need for future method development.
Collapse
Affiliation(s)
| | - Esther Clews
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Kelly BéruBé
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
16
|
Tarricone G, Carmagnola I, Chiono V. Tissue-Engineered Models of the Human Brain: State-of-the-Art Analysis and Challenges. J Funct Biomater 2022; 13:146. [PMID: 36135581 PMCID: PMC9501967 DOI: 10.3390/jfb13030146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Neurological disorders affect billions of people across the world, making the discovery of effective treatments an important challenge. The evaluation of drug efficacy is further complicated because of the lack of in vitro models able to reproduce the complexity of the human brain structure and functions. Some limitations of 2D preclinical models of the human brain have been overcome by the use of 3D cultures such as cell spheroids, organoids and organs-on-chip. However, one of the most promising approaches for mimicking not only cell structure, but also brain architecture, is currently represented by tissue-engineered brain models. Both conventional (particularly electrospinning and salt leaching) and unconventional (particularly bioprinting) techniques have been exploited, making use of natural polymers or combinations between natural and synthetic polymers. Moreover, the use of induced pluripotent stem cells (iPSCs) has allowed the co-culture of different human brain cells (neurons, astrocytes, oligodendrocytes, microglia), helping towards approaching the central nervous system complexity. In this review article, we explain the importance of in vitro brain modeling, and present the main in vitro brain models developed to date, with a special focus on the most recent advancements in tissue-engineered brain models making use of iPSCs. Finally, we critically discuss achievements, main challenges and future perspectives.
Collapse
Affiliation(s)
- Giulia Tarricone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| |
Collapse
|
17
|
Xu W, Wu C, Zhu X, Wu J, Zhang Z, Wei Z, Cao Y, Zhou P, Wang J. UC-MSCs promote frozen-thawed ovaries angiogenesis via activation of the Wnt/β-catenin pathway in vitro ovarian culture system. Stem Cell Res Ther 2022; 13:296. [PMID: 35841074 PMCID: PMC9284710 DOI: 10.1186/s13287-022-02989-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/07/2022] [Indexed: 12/01/2022] Open
Abstract
Background Ovarian tissue cryopreservation and transplantation are novel therapeutic approaches for fertility preservation. However, follicle loss caused by ischemic and hypoxic damage is one of the issues after frozen-thawed ovarian tissue transplantation. Promoting angiogenesis in grafts is the key to restore cryopreserved ovarian function. Mesenchymal stem cells (MSCs) have been reported to facilitate angiogenesis in the cryopreserved ovarian tissue transplantation. However, the risk of embolization, immunogenic effect and tumorigenesis hinders the clinical application of MSCs to human organ transplantation. In this study, we established an in vitro ovarian culture system to restore frozen-thawed ovarian function before transplantation with the application of umbilical cord mesenchymal stem cells (UC-MSCs), and explored the effects of UC-MSCs on frozen-thawed ovaries in vitro ovarian culture system and the mechanisms of UC-MSCs on the angiogenesis of frozen-thawed ovaries. Methods A simple in vitro three dimensional (3D) ovarian culture system using Matrigel was established to support to an ideal niche, and ovary was alone cultured in the 24-well plate as a control. We also evaluated the effects of UC-MSCs treatment on ovarian function with or without Matrigel support. All thawed ovaries were randomly divided into control group (Matrigel−/UC-MSCs−), Matrigel group (Matrigel+/UC-MSCs−), UC-MSCs group (Matrigel−/UC-MSCs+) and UC-MSCs + Matrigel group (Matrigel+/UC-MSCs+). HE staining was used to detect the histological structure of follicles and TUNEL staining was used to detect cell apoptosis. The number of microvessels was counted to evaluate neovascularization. The mRNA expression of VEGFA, IGF1 and ANGPT2 were detected by RT-PCR. Western blotting was used to measure the expression of GSK-3β, β-catenin and p-β-catenin. Results In the absence of UC-MSCs, 3D culture system supported by Matrigel showed significantly improved follicular development and microvascular number. Additionally, UC-MSCs were also found to effectively improve follicular development and microvascular number regardless of the culture condition used. However, alleviated follicular apoptosis, increased mRNA expression of angiogenesis-related gene and activated Wnt/β-catenin pathway occurred only in the UC-MSCs + Matrigel group. Besides, with the application of IWP-2 in UC-MSCs + Matrigel group, Wnt//β-catenin pathway could be blocked by IWP-2 serving as one of Wnt/β-catenin pathway inhibitors. Conclusions This in vitro study showed the beneficial effects of UC-MSCs on thawed ovaries and explored a potential mechanism inducing angiogenesis. In particular, 3D ovarian culture system supported by Matrigel further improved UC-MSCs treatment. The in vitro culture system using Matrigel and UC-MSCs may provide a potential treatment strategy for improving the success rate of thawed ovaries transplantation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02989-8.
Collapse
Affiliation(s)
- Wenjuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Caiyun Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaoqian Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jingjing Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China. .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China. .,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Jianye Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China. .,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China. .,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
18
|
Schaller-Ammann R, Kreß S, Feiel J, Schwagerle G, Priedl J, Birngruber T, Kasper C, Egger D. Advanced Online Monitoring of In Vitro Human 3D Full-Thickness Skin Equivalents. Pharmaceutics 2022; 14:pharmaceutics14071436. [PMID: 35890329 PMCID: PMC9315769 DOI: 10.3390/pharmaceutics14071436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/17/2022] Open
Abstract
Skin equivalents and skin explants are widely used for dermal penetration studies in the pharmacological development of drugs. Environmental parameters, such as the incubation and culture conditions affect cellular responses and thus the relevance of the experimental outcome. However, available systems such as the Franz diffusion chamber, only measure in the receiving culture medium, rather than assessing the actual conditions for cells in the tissue. We developed a sampling design that combines open flow microperfusion (OFM) sampling technology for continuous concentration measurements directly in the tissue with microfluidic biosensors for online monitoring of culture parameters. We tested our design with real-time measurements of oxygen, glucose, lactate, and pH in full-thickness skin equivalent and skin explants. Furthermore, we compared dermal penetration for acyclovir, lidocaine, and diclofenac in skin equivalents and skin explants. We observed differences in oxygen, glucose, and drug concentrations in skin equivalents compared to the respective culture medium and to skin explants.
Collapse
Affiliation(s)
- Roland Schaller-Ammann
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; (R.S.-A.); (J.F.); (G.S.); (J.P.)
| | - Sebastian Kreß
- Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural, Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria; (S.K.); (C.K.)
| | - Jürgen Feiel
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; (R.S.-A.); (J.F.); (G.S.); (J.P.)
| | - Gerd Schwagerle
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; (R.S.-A.); (J.F.); (G.S.); (J.P.)
| | - Joachim Priedl
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; (R.S.-A.); (J.F.); (G.S.); (J.P.)
| | - Thomas Birngruber
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; (R.S.-A.); (J.F.); (G.S.); (J.P.)
- Correspondence: (T.B.); (D.E.)
| | - Cornelia Kasper
- Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural, Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria; (S.K.); (C.K.)
| | - Dominik Egger
- Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural, Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria; (S.K.); (C.K.)
- Correspondence: (T.B.); (D.E.)
| |
Collapse
|
19
|
Yavvari P, Laporte A, Elomaa L, Schraufstetter F, Pacharzina I, Daberkow AD, Hoppensack A, Weinhart M. 3D-Cultured Vascular-Like Networks Enable Validation of Vascular Disruption Properties of Drugs In Vitro. Front Bioeng Biotechnol 2022; 10:888492. [PMID: 35769106 PMCID: PMC9234334 DOI: 10.3389/fbioe.2022.888492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Vascular-disrupting agents are an interesting class of anticancer compounds because of their combined mode of action in preventing new blood vessel formation and disruption of already existing vasculature in the immediate microenvironment of solid tumors. The validation of vascular disruption properties of these drugs in vitro is rarely addressed due to the lack of proper in vitro angiogenesis models comprising mature and long-lived vascular-like networks. We herein report an indirect coculture model of human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs) to form three-dimensional profuse vascular-like networks. HUVECs embedded and sandwiched in the collagen scaffold were cocultured with HDFs located outside the scaffold. The indirect coculture approach with the vascular endothelial growth factor (VEGF) producing HDFs triggered the formation of progressively maturing lumenized vascular-like networks of endothelial cells within less than 7 days, which have proven to be viably maintained in culture beyond day 21. Molecular weight-dependent Texas red-dextran permeability studies indicated high vascular barrier function of the generated networks. Their longevity allowed us to study the dose-dependent response upon treatment with the three known antiangiogenic and/or vascular disrupting agents brivanib, combretastatin A4 phosphate (CA4P), and 6´-sialylgalactose (SG) via semi-quantitative brightfield and qualitative confocal laser scanning microscopic (CLSM) image analysis. Compared to the reported data on in vivo efficacy of these drugs in terms of antiangiogenic and vascular disrupting effects, we observed similar trends with our 3D model, which are not reflected in conventional in vitro angiogenesis assays. High-vascular disruption under continuous treatment of the matured vascular-like network was observed at concentrations ≥3.5 ng·ml−1 for CA4P and ≥300 nM for brivanib. In contrast, SG failed to induce any significant vascular disruption in vitro. This advanced model of a 3D vascular-like network allows for testing single and combinational antiangiogenic and vascular disrupting effects with optimized dosing and may thus bridge the gap between the in vitro and in vivo experiments in validating hits from high-throughput screening. Moreover, the physiological 3D environment mimicking in vitro assay is not only highly relevant to in vivo studies linked to cancer but also to the field of tissue regeneration.
Collapse
Affiliation(s)
| | - Anna Laporte
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Inga Pacharzina
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | - Anke Hoppensack
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
- *Correspondence: Marie Weinhart, ,
| |
Collapse
|
20
|
Cecen B, Bal-Ozturk A, Yasayan G, Alarcin E, Kocak P, Tutar R, Kozaci LD, Shin SR, Miri AK. Selection of natural biomaterials for micro-tissue and organ-on-chip models. J Biomed Mater Res A 2022; 110:1147-1165. [PMID: 35102687 PMCID: PMC10700148 DOI: 10.1002/jbm.a.37353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
The desired organ in micro-tissue models of organ-on-a-chip (OoC) devices dictates the optimum biomaterials, divided into natural and synthetic biomaterials. They can resemble biological tissues' biological functions and architectures by constructing bioactivity of macromolecules, cells, nanoparticles, and other biological agents. The inclusion of such components in OoCs allows them having biological processes, such as basic biorecognition, enzymatic cleavage, and regulated drug release. In this report, we review natural-based biomaterials that are used in OoCs and their main characteristics. We address the preparation, modification, and characterization methods of natural-based biomaterials and summarize recent reports on their applications in the design and fabrication of micro-tissue models. This article will help bioengineers select the proper biomaterials based on developing new technologies to meet clinical expectations and improve patient outcomes fusing disease modeling.
Collapse
Affiliation(s)
- Berivan Cecen
- Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Ayca Bal-Ozturk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey
| | - Gokcen Yasayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Polen Kocak
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Rumeysa Tutar
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Leyla Didem Kozaci
- Faculty of Medicine, Department of Medical Biochemistry, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, Massachusetts, USA
| | - Amir K. Miri
- Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
21
|
Dewyse L, De Smet V, Verhulst S, Eysackers N, Kunda R, Messaoudi N, Reynaert H, van Grunsven LA. Improved Precision-Cut Liver Slice Cultures for Testing Drug-Induced Liver Fibrosis. Front Med (Lausanne) 2022; 9:862185. [PMID: 35433753 PMCID: PMC9007724 DOI: 10.3389/fmed.2022.862185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
In vitro models of human liver disease often fail to mimic the complex 3D structures and cellular organizations found in vivo. Precision cut liver slices (PCLS) retain the complex physiological architecture of the native liver and therefore could be an exceptional in vitro liver model. However, the production of PCLS induces a spontaneous culture-induced fibrogenic reaction, limiting the application of PCLS to anti-fibrotic compounds. Our aim was to improve PCLS cultures to allow compound-induced fibrosis induction. Hepatotoxicity in PCLS cultures was analyzed by lactate dehydrogenase leakage and albumin secretion, while fibrogenesis was analyzed by qRT-PCR and western blot for hepatic stellate cell (HSC) activation markers and collagen 6 secretion by enzyme-linked immunosorbent assays (ELISA). We demonstrate that supplementation of 3 mm mouse PCLS cultures with valproate strongly reduces fibrosis and improves cell viability in our PCLS cultures for up to 5 days. Fibrogenesis can still be induced both directly and indirectly through exposure to TGFβ and the hepatotoxin acetaminophen, respectively. Finally, human PCLS cultures showed similar but less robust results. In conclusion, we optimized PCLS cultures to allow for drug-induced liver fibrosis modeling.
Collapse
Affiliation(s)
- Liza Dewyse
- Department of Basic Biomedical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vincent De Smet
- Department of Basic Biomedical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Internal Medicine, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Stefaan Verhulst
- Department of Basic Biomedical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nathalie Eysackers
- Department of Basic Biomedical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rastislav Kunda
- Department of Surgery, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Nouredin Messaoudi
- Department of Surgery, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Hendrik Reynaert
- Department of Basic Biomedical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Gastroenterology and Hepatology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Leo A van Grunsven
- Department of Basic Biomedical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
22
|
Graff P, Hönzke S, Joshi AA, Yealland G, Fleige E, Unbehauen M, Schäfer-Korting M, Hocke A, Haag R, Hedtrich S. Preclinical Testing of Dendritic Core-Multishell Nanoparticles in Inflammatory Skin Equivalents. Mol Pharm 2022; 19:1795-1802. [PMID: 35266720 DOI: 10.1021/acs.molpharmaceut.1c00734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human skin equivalents emerged as novel tools in preclinical dermatological research. It is being claimed that they may bridge the translational gap between preclinical and clinical research, yet only a few studies have investigated their suitability for preclinical drug testing so far. Therefore, we investigated if inflammatory skin equivalents, which emulate hallmarks of atopic dermatitis (AD), are suitable to assess the anti-inflammatory effects of dexamethasone (DXM) in a cream formulation or loaded onto dendritic core-multishell nanoparticles. Topical DXM application resulted in significantly decreased expression of the proinflammatory cytokine TSLP, increased expression of the skin barrier protein involucrin, and facilitated glucocorticoid receptor translocation in a dose-dependent manner. Further, DXM treatment inhibited gene expression of extracellular matrix components, potentially indicative of the known skin atrophy-inducing side effects of glucocorticoids. Overall, we were able to successfully assess the anti-inflammatory effects of DXM and the superiority of the nanoparticle formulation. Nevertheless the identification of robust readout parameters proved challenging and requires careful study design.
Collapse
Affiliation(s)
- Patrick Graff
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Center of Biological Design, 13125 Berlin, Germany
| | - Stefan Hönzke
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany.,Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Aaroh Anand Joshi
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany.,Department of Nephrology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Guy Yealland
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Emanuel Fleige
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michael Unbehauen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Monika Schäfer-Korting
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Andreas Hocke
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Sarah Hedtrich
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Center of Biological Design, 13125 Berlin, Germany.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
23
|
Sonawane A, Vadloori B, Poosala S, Kandarova H, Kulkarni M, Olayanju A, Dey T, Saxena U, Smirnova L, Kanda Y, Reddy J, Dravida S, Biswas S, Vinken M, Gettayacamin M, Ahluwalia A, Mondini F, Bhattacharya S, Kulkarni P, Jacobsen KR, Vangala S, Millás AL. Advances in Animal Models and Cutting-Edge Research in Alternatives: Proceedings of the Second International Conference on 3Rs Research and Progress, Hyderabad, 2021. Altern Lab Anim 2022; 50:156-171. [PMID: 35410493 DOI: 10.1177/02611929221089216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The fact that animal models fail to replicate human disease faithfully is now being widely accepted by researchers across the globe. As a result, they are exploring the use of alternatives to animal models. The time has come to refine our experimental practices, reduce the numbers and eventually replace the animals used in research with human-derived and human-relevant 3-D disease models. Oncoseek Bio-Acasta Health, which is an innovative biotechnology start-up company based in Hyderabad and Vishakhapatnam, India, organises an annual International Conference on 3Rs Research and Progress. In 2021, this conference was on 'Advances in Research Animal Models and Cutting-Edge Research in Alternatives'. This annual conference is a platform that brings together eminent scientists and researchers from various parts of the world, to share recent advances from their research in the field of alternatives to animals including new approach methodologies, and to promote practices to help refine animal experiments where alternatives are not available. This report presents the proceedings of the conference, which was held in hybrid mode (i.e. virtual and in-person) in November 2021.
Collapse
Affiliation(s)
| | | | | | - Helena Kandarova
- Centre of Experimental Medicine, Slovak Academy of Science, Slovakia
| | | | | | - Tuli Dey
- Savitribai Phule Pune University, India
| | | | - Lena Smirnova
- Johns Hopkins Bloomberg School of Public Health, USA
| | | | | | | | | | | | - Montip Gettayacamin
- Association for Accreditation of Laboratory Animal Care (AAALAC international), USA
| | - Arti Ahluwalia
- University of Pisa, and Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research (Centro 3R), Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Neha Tiwari
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ana Sonzogni
- Group of Polymers and Polymerization Reactors INTEC (Universidad Nacional del Litoral-CONICET) Güemes 3450 Santa Fe 3000 Argentina
| | - David Esporrín‐Ubieto
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Huiyi Wang
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Marcelo Calderón
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science 48009 Bilbao Spain
| |
Collapse
|
25
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022; 61:e202107960. [PMID: 34487599 PMCID: PMC9292798 DOI: 10.1002/anie.202107960] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/15/2022]
Abstract
Skin penetration of active molecules for treatment of diverse diseases is a major field of research owing to the advantages associated with the skin like easy accessibility, reduced systemic-derived side effects, and increased therapeutic efficacy. Despite these advantages, dermal drug delivery is generally challenging due to the low skin permeability of therapeutics. Although various methods have been developed to improve skin penetration and permeation of therapeutics, they are usually aggressive and could lead to irreversible damage to the stratum corneum. Nanosized carrier systems represent an alternative approach for current technologies, with minimal damage to the natural barrier function of skin. In this Review, the use of nanoparticles to deliver drug molecules, genetic material, and vaccines into the skin is discussed. In addition, nanotoxicology studies and the recent clinical development of nanoparticles are highlighted to shed light on their potential to undergo market translation.
Collapse
Affiliation(s)
- Neha Tiwari
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ana Sonzogni
- Group of Polymers and Polymerization ReactorsINTEC (Universidad Nacional del Litoral-CONICET)Güemes 3450Santa Fe3000Argentina
| | - David Esporrín‐Ubieto
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Huiyi Wang
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Marcelo Calderón
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
- IKERBASQUE, Basque Foundation for Science48009BilbaoSpain
| |
Collapse
|
26
|
Herbert SL, Fick A, Heydarian M, Metzger M, Wöckel A, Rudel T, Kozjak-Pavlovic V, Wulff C. Establishment of the SIS scaffold-based 3D model of human peritoneum for studying the dissemination of ovarian cancer. J Tissue Eng 2022; 13:20417314221088514. [PMID: 35340423 PMCID: PMC8949747 DOI: 10.1177/20417314221088514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is the second most common gynecological malignancy in women. More than 70% of the cases are diagnosed at the advanced stage, presenting as primary peritoneal metastasis, which results in a poor 5-year survival rate of around 40%. Mechanisms of peritoneal metastasis, including adhesion, migration, and invasion, are still not completely understood and therapeutic options are extremely limited. Therefore, there is a strong requirement for a 3D model mimicking the in vivo situation. In this study, we describe the establishment of a 3D tissue model of the human peritoneum based on decellularized porcine small intestinal submucosa (SIS) scaffold. The SIS scaffold was populated with human dermal fibroblasts, with LP-9 cells on the apical side representing the peritoneal mesothelium, while HUVEC cells on the basal side of the scaffold served to mimic the endothelial cell layer. Functional analyses of the transepithelial electrical resistance (TEER) and the FITC-dextran assay indicated the high barrier integrity of our model. The histological, immunohistochemical, and ultrastructural analyses showed the main characteristics of the site of adhesion. Initial experiments using the SKOV-3 cell line as representative for ovarian carcinoma demonstrated the usefulness of our models for studying tumor cell adhesion, as well as the effect of tumor cells on endothelial cell-to-cell contacts. Taken together, our data show that the novel peritoneal 3D tissue model is a promising tool for studying the peritoneal dissemination of ovarian cancer.
Collapse
Affiliation(s)
- Saskia-Laureen Herbert
- Department of Obstetrics and Gynaecology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andrea Fick
- Department of Obstetrics and Gynaecology, University Hospital Wuerzburg, Wuerzburg, Germany
| | | | - Marco Metzger
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany.,Fraunhofer ISC, Translational Centre Regenerative Medicine TLC-RT, Wuerzburg, Germany
| | - Achim Wöckel
- Department of Obstetrics and Gynaecology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocentre, University of Wuerzburg, Wuerzburg, Germany
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocentre, University of Wuerzburg, Wuerzburg, Germany
| | - Christine Wulff
- Department of Obstetrics and Gynaecology, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
27
|
de Sá Schiavo Matias G, da Silva Nunes Barreto R, Carreira ACO, Junior MYN, Fratini P, Ferreira CR, Miglino MA. Proteomic profile of extracellular matrix from native and decellularized chorionic canine placenta. J Proteomics 2022; 256:104497. [DOI: 10.1016/j.jprot.2022.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|
28
|
Jin Z, Li Y, Yu K, Liu L, Fu J, Yao X, Zhang A, He Y. 3D Printing of Physical Organ Models: Recent Developments and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101394. [PMID: 34240580 PMCID: PMC8425903 DOI: 10.1002/advs.202101394] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/14/2021] [Indexed: 05/05/2023]
Abstract
Physical organ models are the objects that replicate the patient-specific anatomy and have played important roles in modern medical diagnosis and disease treatment. 3D printing, as a powerful multi-function manufacturing technology, breaks the limitations of traditional methods and provides a great potential for manufacturing organ models. However, the clinical application of organ model is still in small scale, facing the challenges including high cost, poor mimicking performance and insufficient accuracy. In this review, the mainstream 3D printing technologies are introduced, and the existing manufacturing methods are divided into "directly printing" and "indirectly printing", with an emphasis on choosing suitable techniques and materials. This review also summarizes the ideas to address these challenges and focuses on three points: 1) what are the characteristics and requirements of organ models in different application scenarios, 2) how to choose the suitable 3D printing methods and materials according to different application categories, and 3) how to reduce the cost of organ models and make the process simple and convenient. Moreover, the state-of-the-art in organ models are summarized and the contribution of 3D printed organ models to various surgical procedures is highlighted. Finally, current limitations, evaluation criteria and future perspectives for this emerging area are discussed.
Collapse
Affiliation(s)
- Zhongboyu Jin
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Yuanrong Li
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Linxiang Liu
- Zhejiang University HospitalZhejiang UniversityHangzhouZhejiang310027China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Xinhua Yao
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Aiguo Zhang
- Department of OrthopedicsWuxi Children's Hospital affiliated to Nanjing Medical UniversityWuxiJiangsu214023China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhouZhejiang310027China
- Key Laboratory of Materials Processing and MoldZhengzhou UniversityZhengzhou450002China
| |
Collapse
|
29
|
Bioprinted Multi-Cell Type Lung Model for the Study of Viral Inhibitors. Viruses 2021; 13:v13081590. [PMID: 34452455 PMCID: PMC8402746 DOI: 10.3390/v13081590] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV) continuously causes epidemics and claims numerous lives every year. The available treatment options are insufficient and the limited pertinence of animal models for human IAV infections is hampering the development of new therapeutics. Bioprinted tissue models support studying pathogenic mechanisms and pathogen-host interactions in a human micro tissue environment. Here, we describe a human lung model, which consisted of a bioprinted base of primary human lung fibroblasts together with monocytic THP-1 cells, on top of which alveolar epithelial A549 cells were printed. Cells were embedded in a hydrogel consisting of alginate, gelatin and collagen. These constructs were kept in long-term culture for 35 days and their viability, expression of specific cell markers and general rheological parameters were analyzed. When the models were challenged with a combination of the bacterial toxins LPS and ATP, a release of the proinflammatory cytokines IL-1β and IL-8 was observed, confirming that the model can generate an immune response. In virus inhibition assays with the bioprinted lung model, the replication of a seasonal IAV strain was restricted by treatment with an antiviral agent in a dose-dependent manner. The printed lung construct provides an alveolar model to investigate pulmonary pathogenic biology and to support development of new therapeutics not only for IAV, but also for other viruses.
Collapse
|
30
|
Kulsharova G, Kurmangaliyeva A. Liver microphysiological platforms for drug metabolism applications. Cell Prolif 2021; 54:e13099. [PMID: 34291515 PMCID: PMC8450120 DOI: 10.1111/cpr.13099] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/21/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
Drug development is a costly and lengthy process with low success rates. To improve the efficiency of drug development, there has been an increasing need in developing alternative methods able to eliminate toxic compounds early in the drug development pipeline. Drug metabolism plays a key role in determining the efficacy of a drug and its potential side effects. Since drug metabolism occurs mainly in the liver, liver cell‐based alternative engineering platforms have been growing in the last decade. Microphysiological liver cell‐based systems called liver‐on‐a‐chip platforms can better recapitulate the environment for human liver cells in laboratory settings and have the potential to reduce the number of animal models used in drug development by predicting the response of the liver to a drug in vitro. In this review, we discuss the liver microphysiological platforms from the perspective of drug metabolism studies. We highlight the stand‐alone liver‐on‐a‐chip platforms and multi‐organ systems integrating liver‐on‐a‐chip devices used for drug metabolism mimicry in vitro and review the state‐of‐the‐art platforms reported in the last few years. With the development of more robust and reproducible liver cell‐based microphysiological platforms, the drug development field has the potential of reducing the costs and lengths associated with currently existing drug testing methods.
Collapse
Affiliation(s)
- Gulsim Kulsharova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | |
Collapse
|
31
|
Gupta R, Sharma D. Therapeutic response differences between 2D and 3D tumor models of magnetic hyperthermia. NANOSCALE ADVANCES 2021; 3:3663-3680. [PMID: 36133021 PMCID: PMC9418625 DOI: 10.1039/d1na00224d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/05/2021] [Indexed: 05/02/2023]
Abstract
Magnetic hyperthermia-based cancer therapy (MHCT) has surfaced as one of the promising techniques for inaccessible solid tumors. It involves generation of localized heat in the tumor tissues on application of an alternating magnetic field in the presence of magnetic nanoparticles (MNPs). Unfortunately, lack of precise temperature and adequate MNP distribution at the tumor site under in vivo conditions has limited its application in the biomedical field. Evaluation of in vitro tumor models is an alternative for in vivo models. However, generally used in vitro two-dimensional (2D) models cannot mimic all the characteristics of a patient's tumor and hence, fail to establish or address the experimental variables and concerns. Considering that three-dimensional (3D) models have emerged as the best possible state to replicate the in vivo conditions successfully in the laboratory for most cell types, it is possible to conduct MHCT studies with higher clinical relevance for the analysis of the selection of magnetic parameters, MNP distribution, heat dissipation, action and acquired thermotolerance in cancer cells. In this review, various forms of 3D cultures have been considered and the successful implication of MHCT on them has been summarized, which includes tumor spheroids, and cultures grown in scaffolds, cell culture inserts and microfluidic devices. This review aims to summarize the contrast between 2D and 3D in vitro tumor models for pre-clinical MHCT studies. Furthermore, we have collated and discussed the usefulness, suitability, pros and cons of these tumor models. Even though numerous cell culture models have been established, further investigations on the new pre-clinical models and selection of best fit model for successful MHCT applications are still necessary to confer a better understanding for researchers.
Collapse
Affiliation(s)
- Ruby Gupta
- Institute of Nano Science and Technology Knowledge City, Sector 81 Mohali Punjab-140306 India
| | - Deepika Sharma
- Institute of Nano Science and Technology Knowledge City, Sector 81 Mohali Punjab-140306 India
| |
Collapse
|
32
|
Staicu CE, Jipa F, Axente E, Radu M, Radu BM, Sima F. Lab-on-a-Chip Platforms as Tools for Drug Screening in Neuropathologies Associated with Blood-Brain Barrier Alterations. Biomolecules 2021; 11:916. [PMID: 34205550 PMCID: PMC8235582 DOI: 10.3390/biom11060916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Lab-on-a-chip (LOC) and organ-on-a-chip (OOC) devices are highly versatile platforms that enable miniaturization and advanced controlled laboratory functions (i.e., microfluidics, advanced optical or electrical recordings, high-throughput screening). The manufacturing advancements of LOCs/OOCs for biomedical applications and their current limitations are briefly discussed. Multiple studies have exploited the advantages of mimicking organs or tissues on a chip. Among these, we focused our attention on the brain-on-a-chip, blood-brain barrier (BBB)-on-a-chip, and neurovascular unit (NVU)-on-a-chip applications. Mainly, we review the latest developments of brain-on-a-chip, BBB-on-a-chip, and NVU-on-a-chip devices and their use as testing platforms for high-throughput pharmacological screening. In particular, we analyze the most important contributions of these studies in the field of neurodegenerative diseases and their relevance in translational personalized medicine.
Collapse
Affiliation(s)
- Cristina Elena Staicu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
- Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania; (F.J.); (E.A.); (F.S.)
| | - Florin Jipa
- Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania; (F.J.); (E.A.); (F.S.)
| | - Emanuel Axente
- Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania; (F.J.); (E.A.); (F.S.)
| | - Mihai Radu
- Department of Life and Environmental Physics, ‘Horia Hulubei’ National Institute for Physics and Nuclear Engineering, 077125 Măgurele, Romania;
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Felix Sima
- Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania; (F.J.); (E.A.); (F.S.)
| |
Collapse
|
33
|
Liverani C, De Vita A, Spadazzi C, Miserocchi G, Cocchi C, Bongiovanni A, De Lucia A, La Manna F, Fabbri F, Tebaldi M, Amadori D, Tasciotti E, Martinelli G, Mercatali L, Ibrahim T. Lineage-specific mechanisms and drivers of breast cancer chemoresistance revealed by 3D biomimetic culture. Mol Oncol 2021; 16:921-939. [PMID: 34109737 PMCID: PMC8847989 DOI: 10.1002/1878-0261.13037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 01/16/2023] Open
Abstract
To improve the success rate of current preclinical drug trials, there is a growing need for more complex and relevant models that can help predict clinical resistance to anticancer agents. Here, we present a three‐dimensional (3D) technology, based on biomimetic collagen scaffolds, that enables the modeling of the tumor hypoxic state and the prediction of in vivo chemotherapy responses in terms of efficacy, molecular alterations, and emergence of resistance mechanisms. The human breast cancer cell lines MDA‐MB‐231 (triple negative) and MCF‐7 (luminal A) were treated with scaling doses of doxorubicin in monolayer cultures, 3D collagen scaffolds, or orthotopically transplanted murine models. Lineage‐specific resistance mechanisms were revealed by the 3D tumor model. Reduced drug uptake, increased drug efflux, and drug lysosomal confinement were observed in triple‐negative MDA‐MB‐231 cells. In luminal A MCF‐7 cells, the selection of a drug‐resistant subline from parental cells with deregulation of p53 pathways occurred. These cells were demonstrated to be insensitive to DNA damage. Transcriptome analysis was carried out to identify differentially expressed genes (DEGs) in treated cells. DEG evaluation in breast cancer patients demonstrated their potential role as predictive biomarkers. High expression of the transporter associated with antigen processing 1 (TAP1) and the tumor protein p53‐inducible protein 3 (TP53I3) was associated with shorter relapse in patients affected by ER+ breast tumor. Likewise, the same clinical outcome was associated with high expression of the lysosomal‐associated membrane protein 1 LAMP1 in triple‐negative breast cancer. Hypoxia inhibition by resveratrol treatment was found to partially re‐sensitize cells to doxorubicin treatment. Our model might improve preclinical in vitro analysis for the translation of anticancer compounds as it provides: (a) more accurate data on drug efficacy and (b) enhanced understanding of resistance mechanisms and molecular drivers.
Collapse
Affiliation(s)
- Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Claudia Cocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna De Lucia
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Federico La Manna
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Francesco Fabbri
- Bioscience Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Michela Tebaldi
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Dino Amadori
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), TX, USA.,IRCCS San Raffaele Pisana, Rome Sclavo Research Center, Siena, Italy
| | - Giovanni Martinelli
- Scientific Directory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
34
|
Hwang DG, Choi YM, Jang J. 3D Bioprinting-Based Vascularized Tissue Models Mimicking Tissue-Specific Architecture and Pathophysiology for in vitro Studies. Front Bioeng Biotechnol 2021; 9:685507. [PMID: 34136473 PMCID: PMC8201787 DOI: 10.3389/fbioe.2021.685507] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
A wide variety of experimental models including 2D cell cultures, model organisms, and 3D in vitro models have been developed to understand pathophysiological phenomena and assess the safety and efficacy of potential therapeutics. In this sense, 3D in vitro models are an intermediate between 2D cell cultures and animal models, as they adequately reproduce 3D microenvironments and human physiology while also being controllable and reproducible. Particularly, recent advances in 3D in vitro biomimicry models, which can produce complex cell structures, shapes, and arrangements, can more similarly reflect in vivo conditions than 2D cell culture. Based on this, 3D bioprinting technology, which enables to place the desired materials in the desired locations, has been introduced to fabricate tissue models with high structural similarity to the native tissues. Therefore, this review discusses the recent developments in this field and the key features of various types of 3D-bioprinted tissues, particularly those associated with blood vessels or highly vascularized organs, such as the heart, liver, and kidney. Moreover, this review also summarizes the current state of the three categories: (1) chemical substance treatment, (2) 3D bioprinting of lesions, and (3) recapitulation of tumor microenvironments (TME) of 3D bioprinting-based disease models according to their disease modeling approach. Finally, we propose the future directions of 3D bioprinting approaches for the creation of more advanced in vitro biomimetic 3D tissues, as well as the translation of 3D bioprinted tissue models to clinical applications.
Collapse
Affiliation(s)
- Dong Gyu Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Yoo-Mi Choi
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea.,Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, South Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea.,Institute of Convergence Science, Yonsei University, Seoul, South Korea
| |
Collapse
|
35
|
Tharmatt A, Thakur S, Singh A, Kaur M, Shahtaghi NR, Malhotra D, Jain SK. Olive oil and oleic acid-based self nano-emulsifying formulation of omega-3-fatty acids with improved strength, stability, and therapeutics. J Microencapsul 2021; 38:298-313. [PMID: 33863269 DOI: 10.1080/02652048.2021.1914760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIM To develop, characterise, and optimise SNEDDS formulation to enhance organoleptics, bioavailability, physical & oxidative-stability, and extend shelf-life of pure Ω-3-fatty acids oil for use in the food fortification industry as nutraceuticals. METHODS SNEDDS formulations were prepared using a simple stirring technique and optimised based on in-vitro characterisation. RESULTS The optimised SNEDDS formulation (F3) had a mean diameter of 52.9 ± 0.4 nm, PDI of 0.229 ± 0.02, zeta potential of -17.3 ± 0.1 mV, cloud temperature of 92 ± 0.2 °C, self-emulsification time of 50 ± 0.2 sec, and stable under accelerated stability conditions. Intestinal permeability study on rat ileum depicted absorption of 88.5 ± 0.2% DHA at 5 h for F3 formulation in comparison to 61.5 ± 0.2% for commercial counterpart. F3 formulation exhibited better therapeutics for melamine-induced cognitive dysfunction. CONCLUSIONS The developed Ω-3-loaded SNEDDS heralds the future for an efficacious, safer, and higher strength formulation intended as a better substitute for currently available formulations.
Collapse
Affiliation(s)
- Abhay Tharmatt
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Manjot Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Navid Reza Shahtaghi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Divay Malhotra
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
36
|
Fontana F, Figueiredo P, Martins JP, Santos HA. Requirements for Animal Experiments: Problems and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004182. [PMID: 33025748 DOI: 10.1002/smll.202004182] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Indexed: 05/27/2023]
Abstract
In vivo models remain a principle screening tool in the drug discovery pipeline. Here, the challenges associated with the need for animal experiments, as well as their impact on research, individual/societal, and economic contexts are discussed. A number of alternatives that, with further development, optimization, and investment, may replace animal experiments are also revised.
Collapse
Affiliation(s)
- Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Patrícia Figueiredo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - João P Martins
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
37
|
Yang S, Chen Z, Cheng Y, Liu T, Pu Y, Liang G. Environmental toxicology wars: Organ-on-a-chip for assessing the toxicity of environmental pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115861. [PMID: 33120150 DOI: 10.1016/j.envpol.2020.115861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 05/07/2023]
Abstract
Environmental pollution is a widespread problem, which has seriously threatened human health and led to an increase of human diseases. Therefore, it is critical to evaluate environmental pollutants quickly and efficiently. Because of obvious inter-species differences between animals and humans, and lack of physiologically-relevant microenvironment, animal models and in vitro two-dimensional (2D) models can not accurately describe toxicological effects and predicting actual in vivo responses. To make up the limitations of conventional environmental toxicology screening, organ-on-a-chip (OOC) systems are increasingly developing. OOC systems can provide a well-organized architecture with comparable to the complex microenvironment in vivo and generate realistic responses to environmental pollutants. The feasibility, adjustability and reliability of OCC systems make it possible to offer new opportunities for environmental pollutants screening, which can study their metabolism, collective response, and fate in vivo. Further progress can address the challenges to make OCC systems better investigate and evaluate environmental pollutants with high predictive power.
Collapse
Affiliation(s)
- Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, PR China, 210096.
| | - Yanping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| |
Collapse
|
38
|
de Boer A, Krul L, Fehr M, Geurts L, Kramer N, Tabernero Urbieta M, van der Harst J, van de Water B, Venema K, Schütte K, Hepburn PA. Animal-free strategies in food safety & nutrition: What are we waiting for? Part I: Food safety. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Schmidt K, Berg J, Roehrs V, Kurreck J, Al-Zeer MA. 3D-bioprinted HepaRG cultures as a model for testing long term aflatoxin B1 toxicity in vitro. Toxicol Rep 2020; 7:1578-1587. [PMID: 33304827 PMCID: PMC7708771 DOI: 10.1016/j.toxrep.2020.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022] Open
Abstract
In recent years 3D-bioprinting technology has been developed as an alternative to animal testing. It possesses a great potential for in vitro testing as it aims to mimic human organs and physiology. In the present study, an alginate-gelatin-Matrigel based hydrogel was used to prepare 3D-bioprinted HepaRG cultures using a pneumatic extrusion printer. These 3D models were tested for viability and metabolic functions. Using 3D-bioprinted HepaRG cultures, we tested the toxicity of aflatoxin B1 (10 or 20 μM) in vitro and compared the results with 2D HepaRG cultures. There was a dose-dependent toxicity effect on cell viability, reduction of metabolic activity and albumin production. We found that 3D-bioprinted HepaRG cultures are more resistant to aflatoxin B1 treatment than 2D cultures. Although the metabolic activities were reduced upon treatment with aflatoxin B1, the 3D models were still viable and survived longer, up to 3 weeks, than the 2D culture, as visualized by fluorescence microscopy. Furthermore, albumin production recovered slightly in 3D models after one and two weeks of treatment. Taken together, we consider using 3D-bioprinting technology to generate 3D tissue models as an alternative way to study toxicity in vitro and this could also provide a suitable alternative for chronic hepatotoxicity studies in vitro.
Collapse
Affiliation(s)
- Konrad Schmidt
- Department of Applied Biochemistry, Institute of Biotechnology, 4/3-2, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Johanna Berg
- Department of Applied Biochemistry, Institute of Biotechnology, 4/3-2, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Viola Roehrs
- Department of Applied Biochemistry, Institute of Biotechnology, 4/3-2, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, 4/3-2, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Munir A. Al-Zeer
- Department of Applied Biochemistry, Institute of Biotechnology, 4/3-2, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
40
|
Liu D, Jiao S, Wei J, Zhang X, Pei Y, Pei Z, Li J, Du Y. Investigation of absorption, metabolism and toxicity of ginsenosides compound K based on human organ chips. Int J Pharm 2020; 587:119669. [DOI: 10.1016/j.ijpharm.2020.119669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/01/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
|
41
|
Ramos Campos EV, Proença PLDF, Doretto-Silva L, Andrade-Oliveira V, Fraceto LF, de Araujo DR. Trends in nanoformulations for atopic dermatitis treatment. Expert Opin Drug Deliv 2020; 17:1615-1630. [PMID: 32816566 DOI: 10.1080/17425247.2020.1813107] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Immunological skin dysfunctions trigger the synthesis and release of inflammatory cytokines, which induce recurrent skin inflammation associated with chronic itching, inefficient barrier behavior, and reduced skin hydration. These features characterize a multifactorial chronic inflammatory disease atopic dermatitis (AD). AD therapy includes anti-inflammatory drugs and immunosuppressors as well as non-pharmacological alternatives such as emollients, moisturizers, and lipids (ceramides, phospholipids) for modulating the skin hydration and the barrier repair. However, these treatments are inconvenient with low drug skin penetration and insufficient maintenance on the application site. AREAS COVERED Nanotechnology-based therapies can be a great strategy to overcome these limitations. Considering the particular skin morphological organization, SC lipid matrix composition, and immunological functions/features related to nanocarriers, this review focuses on recent developments of nanoparticulate systems (polymeric, lipid-based, inorganic) as parent or hybrid systems including their chemical composition, physico-chemical and biopharmaceutical properties, and differential characteristics that evaluate them as new effective drug-delivery systems for AD treatment. EXPERT OPINION Despite the several innovative formulations, research in nanotechnology-based carriers should address specific aspects such as the use of moisturizers associated to pharmacological therapies, toxicity studies, scale-up production processes and the nanocarrier influence on immunological response. These approaches will help researchers choose the most appropriate nanocarrier system and widen nanomedicine applications and commercialization.
Collapse
Affiliation(s)
| | - Patrícia Luiza De Freitas Proença
- Department of Environmental Engineering, São Paulo State University - UNESP, Institute of Science and Technology , Sorocaba, SP, Brazil
| | - Lorena Doretto-Silva
- Human and Natural Sciences Center, Federal University of ABC , Santo André, SP, Brazil
| | | | - Leonardo Fernandes Fraceto
- Department of Environmental Engineering, São Paulo State University - UNESP, Institute of Science and Technology , Sorocaba, SP, Brazil
| | | |
Collapse
|
42
|
Zhu H, Yang H, Ma Y, Lu TJ, Xu F, Genin GM, Lin M. Spatiotemporally Controlled Photoresponsive Hydrogels: Design and Predictive Modeling from Processing through Application. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2000639. [PMID: 32802013 PMCID: PMC7418561 DOI: 10.1002/adfm.202000639] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/16/2020] [Indexed: 05/16/2023]
Abstract
Photoresponsive hydrogels (PRHs) are soft materials whose mechanical and chemical properties can be tuned spatially and temporally with relative ease. Both photo-crosslinkable and photodegradable hydrogels find utility in a range of biomedical applications that require tissue-like properties or programmable responses. Progress in engineering with PRHs is facilitated by the development of theoretical tools that enable optimization of their photochemistry, polymer matrices, nanofillers, and architecture. This review brings together models and design principles that enable key applications of PRHs in tissue engineering, drug delivery, and soft robotics, and highlights ongoing challenges in both modeling and application.
Collapse
Affiliation(s)
- Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Haiqian Yang
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjing210016P. R. China
- MOE Key Laboratory for Multifunctional Materials and StructuresXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Guy M. Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
- Department of Mechanical Engineering & Materials ScienceWashington University in St. LouisSt. LouisMO63130USA
- NSF Science and Technology Center for Engineering MechanobiologyWashington University in St. LouisSt. LouisMO63130USA
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| |
Collapse
|
43
|
Del Favero G, Kraegeloh A. Integrating Biophysics in Toxicology. Cells 2020; 9:E1282. [PMID: 32455794 PMCID: PMC7290780 DOI: 10.3390/cells9051282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Integration of biophysical stimulation in test systems is established in diverse branches of biomedical sciences including toxicology. This is largely motivated by the need to create novel experimental setups capable of reproducing more closely in vivo physiological conditions. Indeed, we face the need to increase predictive power and experimental output, albeit reducing the use of animals in toxicity testing. In vivo, mechanical stimulation is essential for cellular homeostasis. In vitro, diverse strategies can be used to model this crucial component. The compliance of the extracellular matrix can be tuned by modifying the stiffness or through the deformation of substrates hosting the cells via static or dynamic strain. Moreover, cells can be cultivated under shear stress deriving from the movement of the extracellular fluids. In turn, introduction of physical cues in the cell culture environment modulates differentiation, functional properties, and metabolic competence, thus influencing cellular capability to cope with toxic insults. This review summarizes the state of the art of integration of biophysical stimuli in model systems for toxicity testing, discusses future challenges, and provides perspectives for the further advancement of in vitro cytotoxicity studies.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38-40, 1090 Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna Währinger Straße 38-40, 1090 Vienna, Austria
| | - Annette Kraegeloh
- INM—Leibniz-Institut für Neue Materialien GmbH, Campus D2 2, 66123 Saarbrücken, Germany;
| |
Collapse
|
44
|
Fan D, Li Y, Wang X, Zhu T, Wang Q, Cai H, Li W, Tian Y, Liu Z. Progressive 3D Printing Technology and Its Application in Medical Materials. Front Pharmacol 2020; 11:122. [PMID: 32265689 PMCID: PMC7100535 DOI: 10.3389/fphar.2020.00122] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) printing enables patient-specific anatomical level productions with high adjustability and resolution in microstructures. With cost-effective manufacturing for high productivity, 3D printing has become a leading healthcare and pharmaceutical manufacturing technology, which is suitable for variety of applications including tissue engineering models, anatomical models, pharmacological design and validation model, medical apparatus and instruments. Today, 3D printing is offering clinical available medical products and platforms suitable for emerging research fields, including tissue and organ printing. In this review, our goal is to discuss progressive 3D printing technology and its application in medical materials. The additive overview also provides manufacturing techniques and printable materials.
Collapse
Affiliation(s)
- Daoyang Fan
- Department of Orthopedic, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Yan Li
- Department of Orthopedic, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tengjiao Zhu
- Department of Orthopedic, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Qi Wang
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Hong Cai
- Department of Orthopedic, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Weishi Li
- Department of Orthopedic, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Yun Tian
- Department of Orthopedic, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhongjun Liu
- Department of Orthopedic, Peking University Third Hospital, Beijing, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
45
|
Pfuhler S, van Benthem J, Curren R, Doak SH, Dusinska M, Hayashi M, Heflich RH, Kidd D, Kirkland D, Luan Y, Ouedraogo G, Reisinger K, Sofuni T, van Acker F, Yang Y, Corvi R. Use of in vitro 3D tissue models in genotoxicity testing: Strategic fit, validation status and way forward. Report of the working group from the 7 th International Workshop on Genotoxicity Testing (IWGT). Mutat Res 2020; 850-851:503135. [PMID: 32247552 DOI: 10.1016/j.mrgentox.2020.503135] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/25/2022]
Abstract
Use of three-dimensional (3D) tissue equivalents in toxicology has been increasing over the last decade as novel preclinical test systems and as alternatives to animal testing. In the area of genetic toxicology, progress has been made with establishing robust protocols for skin, airway (lung) and liver tissue equivalents. In light of these advancements, a "Use of 3D Tissues in Genotoxicity Testing" working group (WG) met at the 7th IWGT meeting in Tokyo in November 2017 to discuss progress with these models and how they may fit into a genotoxicity testing strategy. The workshop demonstrated that skin models have reached an advanced state of validation following over 10 years of development, while liver and airway model-based genotoxicity assays show promise but are at an early stage of development. Further effort in liver and airway model-based assays is needed to address the lack of coverage of the three main endpoints of genotoxicity (mutagenicity, clastogenicity and aneugenicity), and information on metabolic competence. The IWGT WG believes that the 3D skin comet and micronucleus assays are now sufficiently validated to undergo an independent peer review of the validation study, followed by development of individual OECD Test Guidelines.
Collapse
Affiliation(s)
- Stefan Pfuhler
- Procter and Gamble, Mason Business Centre, Mason, OH, USA.
| | - Jan van Benthem
- National Institute for Public Health and the Environment, Centre for Health Protection, Bilthoven, the Netherlands
| | - Rodger Curren
- Institute for In Vitro Sciences, Inc., Gaithersburg, MD, USA
| | - Shareen H Doak
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | | | - Robert H Heflich
- U.S. Food and Drug Administration/National Center for Toxicological Research, Jefferson, AR, USA
| | - Darren Kidd
- Covance Laboratories Ltd, Otley Road, Harrogate, HG3 1PY, UK
| | | | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | | | | | - Toshio Sofuni
- Formerly National Institute of Health Sciences, Tokyo, Japan
| | | | - Ying Yang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, PR China
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
46
|
Mamani JB, Marinho BS, Rego GNDA, Nucci MP, Alvieri F, Santos RSD, Ferreira JVM, Oliveira FAD, Gamarra LF. Magnetic hyperthermia therapy in glioblastoma tumor on-a-Chip model. EINSTEIN-SAO PAULO 2020; 18:eAO4954. [PMID: 31939525 PMCID: PMC6924828 DOI: 10.31744/einstein_journal/2020ao4954] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To evaluate the magnetic hyperthermia therapy in glioblastoma tumor-on-a-Chip model using a microfluidics device. METHODS The magnetic nanoparticles coated with aminosilane were used for the therapy of magnetic hyperthermia, being evaluated the specific absorption rate of the magnetic nanoparticles at 300 Gauss and 305kHz. A preculture of C6 cells was performed before the 3D cells culture on the chip. The process of magnetic hyperthermia on the Chip was performed after administration of 20μL of magnetic nanoparticles (10mgFe/mL) using the parameters that generated the specific absorption rate value. The efficacy of magnetic hyperthermia therapy was evaluated by using the cell viability test through the following fluorescence staining: calcein acetoxymethyl ester (492/513nm), for live cells, and ethidium homodimer-1 (526/619nm) for dead cells dyes. RESULTS Magnetic nanoparticles when submitted to the alternating magnetic field (300 Gauss and 305kHz) produced a mean value of the specific absorption rate of 115.4±6.0W/g. The 3D culture of C6 cells evaluated by light field microscopy imaging showed the proliferation and morphology of the cells prior to the application of magnetic hyperthermia therapy. Fluorescence images showed decreased viability of cultured cells in organ-on-a-Chip by 20% and 100% after 10 and 30 minutes of the magnetic hyperthermia therapy application respectively. CONCLUSION The study showed that the therapeutic process of magnetic hyperthermia in the glioblastoma on-a-chip model was effective to produce the total cell lise after 30 minutes of therapy.
Collapse
Affiliation(s)
| | | | | | - Mariana Penteado Nucci
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
47
|
Hesh CA, Qiu Y, Lam WA. Vascularized Microfluidics and the Blood-Endothelium Interface. MICROMACHINES 2019; 11:E18. [PMID: 31878018 PMCID: PMC7019435 DOI: 10.3390/mi11010018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Abstract
The microvasculature is the primary conduit through which the human body transmits oxygen, nutrients, and other biological information to its peripheral tissues. It does this through bidirectional communication between the blood, consisting of plasma and non-adherent cells, and the microvascular endothelium. Current understanding of this blood-endothelium interface has been predominantly derived from a combination of reductionist two-dimensional in vitro models and biologically complex in vivo animal models, both of which recapitulate the human microvasculature to varying but limited degrees. In an effort to address these limitations, vascularized microfluidics have become a platform of increasing importance as a consequence of their ability to isolate biologically complex phenomena while also recapitulating biochemical and biophysical behaviors known to be important to the function of the blood-endothelium interface. In this review, we discuss the basic principles of vascularized microfluidic fabrication, the contribution this platform has made to our understanding of the blood-endothelium interface in both homeostasis and disease, the limitations and challenges of these vascularized microfluidics for studying this interface, and how these inform future directions.
Collapse
Affiliation(s)
- Christopher A. Hesh
- Department of Radiology & Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Yongzhi Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30322, USA
| |
Collapse
|
48
|
Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I, Lawrence C, Muriana A, Peterson RT, Van Cruchten S, Zon LI. Use of Zebrafish in Drug Discovery Toxicology. Chem Res Toxicol 2019; 33:95-118. [PMID: 31625720 DOI: 10.1021/acs.chemrestox.9b00335] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unpredicted human safety events in clinical trials for new drugs are costly in terms of human health and money. The drug discovery industry attempts to minimize those events with diligent preclinical safety testing. Current standard practices are good at preventing toxic compounds from being tested in the clinic; however, false negative preclinical toxicity results are still a reality. Continual improvement must be pursued in the preclinical realm. Higher-quality therapies can be brought forward with more information about potential toxicities and associated mechanisms. The zebrafish model is a bridge between in vitro assays and mammalian in vivo studies. This model is powerful in its breadth of application and tractability for research. In the past two decades, our understanding of disease biology and drug toxicity has grown significantly owing to thousands of studies on this tiny vertebrate. This Review summarizes challenges and strengths of the model, discusses the 3Rs value that it can deliver, highlights translatable and untranslatable biology, and brings together reports from recent studies with zebrafish focusing on new drug discovery toxicology.
Collapse
Affiliation(s)
- Steven Cassar
- Preclinical Safety , AbbVie , North Chicago , Illinois 60064 , United States
| | - Isaac Adatto
- Stem Cell and Regenerative Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Jennifer L Freeman
- School of Health Sciences , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Joshua T Gamse
- Drug Safety Evaluation , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | | | - Christian Lawrence
- Aquatic Resources Program , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
| | | | - Randall T Peterson
- Pharmacology and Toxicology, College of Pharmacy , University of Utah , Salt Lake City , Utah 84112 , United States
| | | | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department , Harvard University , Boston , Massachusetts 02138 , United States
| |
Collapse
|
49
|
Pally D, Pramanik D, Bhat R. An Interplay Between Reaction-Diffusion and Cell-Matrix Adhesion Regulates Multiscale Invasion in Early Breast Carcinomatosis. Front Physiol 2019; 10:790. [PMID: 31456688 PMCID: PMC6700745 DOI: 10.3389/fphys.2019.00790] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
The progression of cancer in the breast involves multiple reciprocal interactions between malignantly transformed epithelia, surrounding untransformed but affected stromal cells, and the extracellular matrix (ECM) that is remodeled during the process. A quantitative understanding of the relative contribution of such interactions to phenotypes associated with cancer cells can be arrived at through the construction of increasingly complex experimental and computational models. Herein, we introduce a multiscale three-dimensional (3D) organo- and pathotypic experimental assay that approximates, to an unprecedented extent, the histopathological complexity of a tumor disseminating into its surrounding stromal milieu via both bulk and solitary motility dynamics. End point and time-lapse microscopic observations of this assay allow us to study the earliest steps of cancer invasion as well as the dynamical interactions between the epithelial and stromal compartments. We then simulate our experimental observations using the modeling environment Compucell3D that is based on the Glazier-Graner-Hogeweg model. The computational model, which comprises adhesion between cancer cells and the matrices, cell proliferation and apoptosis, and matrix remodeling through reaction-diffusion-based morphogen dynamics, is first trained to phenocopy controls run with the experimental model, wherein one or the other matrices have been removed. The trained computational model successfully predicts phenotypes of the experimental counterparts that are subjected to pharmacological treatments (inhibition of N-linked glycosylation and matrix metalloproteinase activity) and scaffold modulation (alteration of collagen density). Further parametric exploration-based simulations suggest that specific permissive regimes of cell-cell and cell-matrix adhesions, operating in the context of a reaction-diffusion-regulated ECM dynamics, promote multiscale invasion of breast cancer cells and determine the extent to which the latter migrate through their surrounding stroma.
Collapse
Affiliation(s)
| | | | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
50
|
Tian C, Tu Q, Liu W, Wang J. Recent advances in microfluidic technologies for organ-on-a-chip. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|